diff options
Diffstat (limited to 'kernel/rcutree_plugin.h')
-rw-r--r-- | kernel/rcutree_plugin.h | 1192 |
1 files changed, 1040 insertions, 152 deletions
diff --git a/kernel/rcutree_plugin.h b/kernel/rcutree_plugin.h index 0e4f420245d9..8aafbb80b8b0 100644 --- a/kernel/rcutree_plugin.h +++ b/kernel/rcutree_plugin.h | |||
@@ -1,7 +1,7 @@ | |||
1 | /* | 1 | /* |
2 | * Read-Copy Update mechanism for mutual exclusion (tree-based version) | 2 | * Read-Copy Update mechanism for mutual exclusion (tree-based version) |
3 | * Internal non-public definitions that provide either classic | 3 | * Internal non-public definitions that provide either classic |
4 | * or preemptable semantics. | 4 | * or preemptible semantics. |
5 | * | 5 | * |
6 | * This program is free software; you can redistribute it and/or modify | 6 | * This program is free software; you can redistribute it and/or modify |
7 | * it under the terms of the GNU General Public License as published by | 7 | * it under the terms of the GNU General Public License as published by |
@@ -25,6 +25,7 @@ | |||
25 | */ | 25 | */ |
26 | 26 | ||
27 | #include <linux/delay.h> | 27 | #include <linux/delay.h> |
28 | #include <linux/stop_machine.h> | ||
28 | 29 | ||
29 | /* | 30 | /* |
30 | * Check the RCU kernel configuration parameters and print informative | 31 | * Check the RCU kernel configuration parameters and print informative |
@@ -53,11 +54,7 @@ static void __init rcu_bootup_announce_oddness(void) | |||
53 | #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE | 54 | #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE |
54 | printk(KERN_INFO "\tRCU torture testing starts during boot.\n"); | 55 | printk(KERN_INFO "\tRCU torture testing starts during boot.\n"); |
55 | #endif | 56 | #endif |
56 | #ifndef CONFIG_RCU_CPU_STALL_DETECTOR | 57 | #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE) |
57 | printk(KERN_INFO | ||
58 | "\tRCU-based detection of stalled CPUs is disabled.\n"); | ||
59 | #endif | ||
60 | #ifndef CONFIG_RCU_CPU_STALL_VERBOSE | ||
61 | printk(KERN_INFO "\tVerbose stalled-CPUs detection is disabled.\n"); | 58 | printk(KERN_INFO "\tVerbose stalled-CPUs detection is disabled.\n"); |
62 | #endif | 59 | #endif |
63 | #if NUM_RCU_LVL_4 != 0 | 60 | #if NUM_RCU_LVL_4 != 0 |
@@ -69,7 +66,9 @@ static void __init rcu_bootup_announce_oddness(void) | |||
69 | 66 | ||
70 | struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state); | 67 | struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state); |
71 | DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data); | 68 | DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data); |
69 | static struct rcu_state *rcu_state = &rcu_preempt_state; | ||
72 | 70 | ||
71 | static void rcu_read_unlock_special(struct task_struct *t); | ||
73 | static int rcu_preempted_readers_exp(struct rcu_node *rnp); | 72 | static int rcu_preempted_readers_exp(struct rcu_node *rnp); |
74 | 73 | ||
75 | /* | 74 | /* |
@@ -77,7 +76,7 @@ static int rcu_preempted_readers_exp(struct rcu_node *rnp); | |||
77 | */ | 76 | */ |
78 | static void __init rcu_bootup_announce(void) | 77 | static void __init rcu_bootup_announce(void) |
79 | { | 78 | { |
80 | printk(KERN_INFO "Preemptable hierarchical RCU implementation.\n"); | 79 | printk(KERN_INFO "Preemptible hierarchical RCU implementation.\n"); |
81 | rcu_bootup_announce_oddness(); | 80 | rcu_bootup_announce_oddness(); |
82 | } | 81 | } |
83 | 82 | ||
@@ -110,7 +109,7 @@ void rcu_force_quiescent_state(void) | |||
110 | EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); | 109 | EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); |
111 | 110 | ||
112 | /* | 111 | /* |
113 | * Record a preemptable-RCU quiescent state for the specified CPU. Note | 112 | * Record a preemptible-RCU quiescent state for the specified CPU. Note |
114 | * that this just means that the task currently running on the CPU is | 113 | * that this just means that the task currently running on the CPU is |
115 | * not in a quiescent state. There might be any number of tasks blocked | 114 | * not in a quiescent state. There might be any number of tasks blocked |
116 | * while in an RCU read-side critical section. | 115 | * while in an RCU read-side critical section. |
@@ -133,12 +132,12 @@ static void rcu_preempt_qs(int cpu) | |||
133 | * We have entered the scheduler, and the current task might soon be | 132 | * We have entered the scheduler, and the current task might soon be |
134 | * context-switched away from. If this task is in an RCU read-side | 133 | * context-switched away from. If this task is in an RCU read-side |
135 | * critical section, we will no longer be able to rely on the CPU to | 134 | * critical section, we will no longer be able to rely on the CPU to |
136 | * record that fact, so we enqueue the task on the appropriate entry | 135 | * record that fact, so we enqueue the task on the blkd_tasks list. |
137 | * of the blocked_tasks[] array. The task will dequeue itself when | 136 | * The task will dequeue itself when it exits the outermost enclosing |
138 | * it exits the outermost enclosing RCU read-side critical section. | 137 | * RCU read-side critical section. Therefore, the current grace period |
139 | * Therefore, the current grace period cannot be permitted to complete | 138 | * cannot be permitted to complete until the blkd_tasks list entries |
140 | * until the blocked_tasks[] entry indexed by the low-order bit of | 139 | * predating the current grace period drain, in other words, until |
141 | * rnp->gpnum empties. | 140 | * rnp->gp_tasks becomes NULL. |
142 | * | 141 | * |
143 | * Caller must disable preemption. | 142 | * Caller must disable preemption. |
144 | */ | 143 | */ |
@@ -146,15 +145,14 @@ static void rcu_preempt_note_context_switch(int cpu) | |||
146 | { | 145 | { |
147 | struct task_struct *t = current; | 146 | struct task_struct *t = current; |
148 | unsigned long flags; | 147 | unsigned long flags; |
149 | int phase; | ||
150 | struct rcu_data *rdp; | 148 | struct rcu_data *rdp; |
151 | struct rcu_node *rnp; | 149 | struct rcu_node *rnp; |
152 | 150 | ||
153 | if (t->rcu_read_lock_nesting && | 151 | if (t->rcu_read_lock_nesting > 0 && |
154 | (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) { | 152 | (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) { |
155 | 153 | ||
156 | /* Possibly blocking in an RCU read-side critical section. */ | 154 | /* Possibly blocking in an RCU read-side critical section. */ |
157 | rdp = rcu_preempt_state.rda[cpu]; | 155 | rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu); |
158 | rnp = rdp->mynode; | 156 | rnp = rdp->mynode; |
159 | raw_spin_lock_irqsave(&rnp->lock, flags); | 157 | raw_spin_lock_irqsave(&rnp->lock, flags); |
160 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED; | 158 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED; |
@@ -168,16 +166,39 @@ static void rcu_preempt_note_context_switch(int cpu) | |||
168 | * (i.e., this CPU has not yet passed through a quiescent | 166 | * (i.e., this CPU has not yet passed through a quiescent |
169 | * state for the current grace period), then as long | 167 | * state for the current grace period), then as long |
170 | * as that task remains queued, the current grace period | 168 | * as that task remains queued, the current grace period |
171 | * cannot end. | 169 | * cannot end. Note that there is some uncertainty as |
170 | * to exactly when the current grace period started. | ||
171 | * We take a conservative approach, which can result | ||
172 | * in unnecessarily waiting on tasks that started very | ||
173 | * slightly after the current grace period began. C'est | ||
174 | * la vie!!! | ||
172 | * | 175 | * |
173 | * But first, note that the current CPU must still be | 176 | * But first, note that the current CPU must still be |
174 | * on line! | 177 | * on line! |
175 | */ | 178 | */ |
176 | WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0); | 179 | WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0); |
177 | WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); | 180 | WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); |
178 | phase = (rnp->gpnum + !(rnp->qsmask & rdp->grpmask)) & 0x1; | 181 | if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) { |
179 | list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]); | 182 | list_add(&t->rcu_node_entry, rnp->gp_tasks->prev); |
183 | rnp->gp_tasks = &t->rcu_node_entry; | ||
184 | #ifdef CONFIG_RCU_BOOST | ||
185 | if (rnp->boost_tasks != NULL) | ||
186 | rnp->boost_tasks = rnp->gp_tasks; | ||
187 | #endif /* #ifdef CONFIG_RCU_BOOST */ | ||
188 | } else { | ||
189 | list_add(&t->rcu_node_entry, &rnp->blkd_tasks); | ||
190 | if (rnp->qsmask & rdp->grpmask) | ||
191 | rnp->gp_tasks = &t->rcu_node_entry; | ||
192 | } | ||
180 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 193 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
194 | } else if (t->rcu_read_lock_nesting < 0 && | ||
195 | t->rcu_read_unlock_special) { | ||
196 | |||
197 | /* | ||
198 | * Complete exit from RCU read-side critical section on | ||
199 | * behalf of preempted instance of __rcu_read_unlock(). | ||
200 | */ | ||
201 | rcu_read_unlock_special(t); | ||
181 | } | 202 | } |
182 | 203 | ||
183 | /* | 204 | /* |
@@ -195,13 +216,13 @@ static void rcu_preempt_note_context_switch(int cpu) | |||
195 | } | 216 | } |
196 | 217 | ||
197 | /* | 218 | /* |
198 | * Tree-preemptable RCU implementation for rcu_read_lock(). | 219 | * Tree-preemptible RCU implementation for rcu_read_lock(). |
199 | * Just increment ->rcu_read_lock_nesting, shared state will be updated | 220 | * Just increment ->rcu_read_lock_nesting, shared state will be updated |
200 | * if we block. | 221 | * if we block. |
201 | */ | 222 | */ |
202 | void __rcu_read_lock(void) | 223 | void __rcu_read_lock(void) |
203 | { | 224 | { |
204 | ACCESS_ONCE(current->rcu_read_lock_nesting)++; | 225 | current->rcu_read_lock_nesting++; |
205 | barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */ | 226 | barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */ |
206 | } | 227 | } |
207 | EXPORT_SYMBOL_GPL(__rcu_read_lock); | 228 | EXPORT_SYMBOL_GPL(__rcu_read_lock); |
@@ -211,12 +232,9 @@ EXPORT_SYMBOL_GPL(__rcu_read_lock); | |||
211 | * for the specified rcu_node structure. If the caller needs a reliable | 232 | * for the specified rcu_node structure. If the caller needs a reliable |
212 | * answer, it must hold the rcu_node's ->lock. | 233 | * answer, it must hold the rcu_node's ->lock. |
213 | */ | 234 | */ |
214 | static int rcu_preempted_readers(struct rcu_node *rnp) | 235 | static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) |
215 | { | 236 | { |
216 | int phase = rnp->gpnum & 0x1; | 237 | return rnp->gp_tasks != NULL; |
217 | |||
218 | return !list_empty(&rnp->blocked_tasks[phase]) || | ||
219 | !list_empty(&rnp->blocked_tasks[phase + 2]); | ||
220 | } | 238 | } |
221 | 239 | ||
222 | /* | 240 | /* |
@@ -232,7 +250,7 @@ static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) | |||
232 | unsigned long mask; | 250 | unsigned long mask; |
233 | struct rcu_node *rnp_p; | 251 | struct rcu_node *rnp_p; |
234 | 252 | ||
235 | if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) { | 253 | if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { |
236 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 254 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
237 | return; /* Still need more quiescent states! */ | 255 | return; /* Still need more quiescent states! */ |
238 | } | 256 | } |
@@ -256,15 +274,31 @@ static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) | |||
256 | } | 274 | } |
257 | 275 | ||
258 | /* | 276 | /* |
277 | * Advance a ->blkd_tasks-list pointer to the next entry, instead | ||
278 | * returning NULL if at the end of the list. | ||
279 | */ | ||
280 | static struct list_head *rcu_next_node_entry(struct task_struct *t, | ||
281 | struct rcu_node *rnp) | ||
282 | { | ||
283 | struct list_head *np; | ||
284 | |||
285 | np = t->rcu_node_entry.next; | ||
286 | if (np == &rnp->blkd_tasks) | ||
287 | np = NULL; | ||
288 | return np; | ||
289 | } | ||
290 | |||
291 | /* | ||
259 | * Handle special cases during rcu_read_unlock(), such as needing to | 292 | * Handle special cases during rcu_read_unlock(), such as needing to |
260 | * notify RCU core processing or task having blocked during the RCU | 293 | * notify RCU core processing or task having blocked during the RCU |
261 | * read-side critical section. | 294 | * read-side critical section. |
262 | */ | 295 | */ |
263 | static void rcu_read_unlock_special(struct task_struct *t) | 296 | static noinline void rcu_read_unlock_special(struct task_struct *t) |
264 | { | 297 | { |
265 | int empty; | 298 | int empty; |
266 | int empty_exp; | 299 | int empty_exp; |
267 | unsigned long flags; | 300 | unsigned long flags; |
301 | struct list_head *np; | ||
268 | struct rcu_node *rnp; | 302 | struct rcu_node *rnp; |
269 | int special; | 303 | int special; |
270 | 304 | ||
@@ -284,7 +318,7 @@ static void rcu_read_unlock_special(struct task_struct *t) | |||
284 | } | 318 | } |
285 | 319 | ||
286 | /* Hardware IRQ handlers cannot block. */ | 320 | /* Hardware IRQ handlers cannot block. */ |
287 | if (in_irq()) { | 321 | if (in_irq() || in_serving_softirq()) { |
288 | local_irq_restore(flags); | 322 | local_irq_restore(flags); |
289 | return; | 323 | return; |
290 | } | 324 | } |
@@ -305,10 +339,24 @@ static void rcu_read_unlock_special(struct task_struct *t) | |||
305 | break; | 339 | break; |
306 | raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ | 340 | raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
307 | } | 341 | } |
308 | empty = !rcu_preempted_readers(rnp); | 342 | empty = !rcu_preempt_blocked_readers_cgp(rnp); |
309 | empty_exp = !rcu_preempted_readers_exp(rnp); | 343 | empty_exp = !rcu_preempted_readers_exp(rnp); |
310 | smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ | 344 | smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ |
345 | np = rcu_next_node_entry(t, rnp); | ||
311 | list_del_init(&t->rcu_node_entry); | 346 | list_del_init(&t->rcu_node_entry); |
347 | if (&t->rcu_node_entry == rnp->gp_tasks) | ||
348 | rnp->gp_tasks = np; | ||
349 | if (&t->rcu_node_entry == rnp->exp_tasks) | ||
350 | rnp->exp_tasks = np; | ||
351 | #ifdef CONFIG_RCU_BOOST | ||
352 | if (&t->rcu_node_entry == rnp->boost_tasks) | ||
353 | rnp->boost_tasks = np; | ||
354 | /* Snapshot and clear ->rcu_boosted with rcu_node lock held. */ | ||
355 | if (t->rcu_boosted) { | ||
356 | special |= RCU_READ_UNLOCK_BOOSTED; | ||
357 | t->rcu_boosted = 0; | ||
358 | } | ||
359 | #endif /* #ifdef CONFIG_RCU_BOOST */ | ||
312 | t->rcu_blocked_node = NULL; | 360 | t->rcu_blocked_node = NULL; |
313 | 361 | ||
314 | /* | 362 | /* |
@@ -321,6 +369,14 @@ static void rcu_read_unlock_special(struct task_struct *t) | |||
321 | else | 369 | else |
322 | rcu_report_unblock_qs_rnp(rnp, flags); | 370 | rcu_report_unblock_qs_rnp(rnp, flags); |
323 | 371 | ||
372 | #ifdef CONFIG_RCU_BOOST | ||
373 | /* Unboost if we were boosted. */ | ||
374 | if (special & RCU_READ_UNLOCK_BOOSTED) { | ||
375 | rt_mutex_unlock(t->rcu_boost_mutex); | ||
376 | t->rcu_boost_mutex = NULL; | ||
377 | } | ||
378 | #endif /* #ifdef CONFIG_RCU_BOOST */ | ||
379 | |||
324 | /* | 380 | /* |
325 | * If this was the last task on the expedited lists, | 381 | * If this was the last task on the expedited lists, |
326 | * then we need to report up the rcu_node hierarchy. | 382 | * then we need to report up the rcu_node hierarchy. |
@@ -333,7 +389,7 @@ static void rcu_read_unlock_special(struct task_struct *t) | |||
333 | } | 389 | } |
334 | 390 | ||
335 | /* | 391 | /* |
336 | * Tree-preemptable RCU implementation for rcu_read_unlock(). | 392 | * Tree-preemptible RCU implementation for rcu_read_unlock(). |
337 | * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost | 393 | * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost |
338 | * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then | 394 | * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then |
339 | * invoke rcu_read_unlock_special() to clean up after a context switch | 395 | * invoke rcu_read_unlock_special() to clean up after a context switch |
@@ -344,17 +400,26 @@ void __rcu_read_unlock(void) | |||
344 | struct task_struct *t = current; | 400 | struct task_struct *t = current; |
345 | 401 | ||
346 | barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */ | 402 | barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */ |
347 | if (--ACCESS_ONCE(t->rcu_read_lock_nesting) == 0 && | 403 | if (t->rcu_read_lock_nesting != 1) |
348 | unlikely(ACCESS_ONCE(t->rcu_read_unlock_special))) | 404 | --t->rcu_read_lock_nesting; |
349 | rcu_read_unlock_special(t); | 405 | else { |
406 | t->rcu_read_lock_nesting = INT_MIN; | ||
407 | barrier(); /* assign before ->rcu_read_unlock_special load */ | ||
408 | if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special))) | ||
409 | rcu_read_unlock_special(t); | ||
410 | barrier(); /* ->rcu_read_unlock_special load before assign */ | ||
411 | t->rcu_read_lock_nesting = 0; | ||
412 | } | ||
350 | #ifdef CONFIG_PROVE_LOCKING | 413 | #ifdef CONFIG_PROVE_LOCKING |
351 | WARN_ON_ONCE(ACCESS_ONCE(t->rcu_read_lock_nesting) < 0); | 414 | { |
415 | int rrln = ACCESS_ONCE(t->rcu_read_lock_nesting); | ||
416 | |||
417 | WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2); | ||
418 | } | ||
352 | #endif /* #ifdef CONFIG_PROVE_LOCKING */ | 419 | #endif /* #ifdef CONFIG_PROVE_LOCKING */ |
353 | } | 420 | } |
354 | EXPORT_SYMBOL_GPL(__rcu_read_unlock); | 421 | EXPORT_SYMBOL_GPL(__rcu_read_unlock); |
355 | 422 | ||
356 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR | ||
357 | |||
358 | #ifdef CONFIG_RCU_CPU_STALL_VERBOSE | 423 | #ifdef CONFIG_RCU_CPU_STALL_VERBOSE |
359 | 424 | ||
360 | /* | 425 | /* |
@@ -364,18 +429,16 @@ EXPORT_SYMBOL_GPL(__rcu_read_unlock); | |||
364 | static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp) | 429 | static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp) |
365 | { | 430 | { |
366 | unsigned long flags; | 431 | unsigned long flags; |
367 | struct list_head *lp; | ||
368 | int phase; | ||
369 | struct task_struct *t; | 432 | struct task_struct *t; |
370 | 433 | ||
371 | if (rcu_preempted_readers(rnp)) { | 434 | if (!rcu_preempt_blocked_readers_cgp(rnp)) |
372 | raw_spin_lock_irqsave(&rnp->lock, flags); | 435 | return; |
373 | phase = rnp->gpnum & 0x1; | 436 | raw_spin_lock_irqsave(&rnp->lock, flags); |
374 | lp = &rnp->blocked_tasks[phase]; | 437 | t = list_entry(rnp->gp_tasks, |
375 | list_for_each_entry(t, lp, rcu_node_entry) | 438 | struct task_struct, rcu_node_entry); |
376 | sched_show_task(t); | 439 | list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) |
377 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 440 | sched_show_task(t); |
378 | } | 441 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
379 | } | 442 | } |
380 | 443 | ||
381 | /* | 444 | /* |
@@ -405,19 +468,25 @@ static void rcu_print_detail_task_stall(struct rcu_state *rsp) | |||
405 | */ | 468 | */ |
406 | static void rcu_print_task_stall(struct rcu_node *rnp) | 469 | static void rcu_print_task_stall(struct rcu_node *rnp) |
407 | { | 470 | { |
408 | struct list_head *lp; | ||
409 | int phase; | ||
410 | struct task_struct *t; | 471 | struct task_struct *t; |
411 | 472 | ||
412 | if (rcu_preempted_readers(rnp)) { | 473 | if (!rcu_preempt_blocked_readers_cgp(rnp)) |
413 | phase = rnp->gpnum & 0x1; | 474 | return; |
414 | lp = &rnp->blocked_tasks[phase]; | 475 | t = list_entry(rnp->gp_tasks, |
415 | list_for_each_entry(t, lp, rcu_node_entry) | 476 | struct task_struct, rcu_node_entry); |
416 | printk(" P%d", t->pid); | 477 | list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) |
417 | } | 478 | printk(" P%d", t->pid); |
418 | } | 479 | } |
419 | 480 | ||
420 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | 481 | /* |
482 | * Suppress preemptible RCU's CPU stall warnings by pushing the | ||
483 | * time of the next stall-warning message comfortably far into the | ||
484 | * future. | ||
485 | */ | ||
486 | static void rcu_preempt_stall_reset(void) | ||
487 | { | ||
488 | rcu_preempt_state.jiffies_stall = jiffies + ULONG_MAX / 2; | ||
489 | } | ||
421 | 490 | ||
422 | /* | 491 | /* |
423 | * Check that the list of blocked tasks for the newly completed grace | 492 | * Check that the list of blocked tasks for the newly completed grace |
@@ -425,10 +494,15 @@ static void rcu_print_task_stall(struct rcu_node *rnp) | |||
425 | * period that still has RCU readers blocked! This function must be | 494 | * period that still has RCU readers blocked! This function must be |
426 | * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock | 495 | * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock |
427 | * must be held by the caller. | 496 | * must be held by the caller. |
497 | * | ||
498 | * Also, if there are blocked tasks on the list, they automatically | ||
499 | * block the newly created grace period, so set up ->gp_tasks accordingly. | ||
428 | */ | 500 | */ |
429 | static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) | 501 | static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) |
430 | { | 502 | { |
431 | WARN_ON_ONCE(rcu_preempted_readers(rnp)); | 503 | WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); |
504 | if (!list_empty(&rnp->blkd_tasks)) | ||
505 | rnp->gp_tasks = rnp->blkd_tasks.next; | ||
432 | WARN_ON_ONCE(rnp->qsmask); | 506 | WARN_ON_ONCE(rnp->qsmask); |
433 | } | 507 | } |
434 | 508 | ||
@@ -452,50 +526,68 @@ static int rcu_preempt_offline_tasks(struct rcu_state *rsp, | |||
452 | struct rcu_node *rnp, | 526 | struct rcu_node *rnp, |
453 | struct rcu_data *rdp) | 527 | struct rcu_data *rdp) |
454 | { | 528 | { |
455 | int i; | ||
456 | struct list_head *lp; | 529 | struct list_head *lp; |
457 | struct list_head *lp_root; | 530 | struct list_head *lp_root; |
458 | int retval = 0; | 531 | int retval = 0; |
459 | struct rcu_node *rnp_root = rcu_get_root(rsp); | 532 | struct rcu_node *rnp_root = rcu_get_root(rsp); |
460 | struct task_struct *tp; | 533 | struct task_struct *t; |
461 | 534 | ||
462 | if (rnp == rnp_root) { | 535 | if (rnp == rnp_root) { |
463 | WARN_ONCE(1, "Last CPU thought to be offlined?"); | 536 | WARN_ONCE(1, "Last CPU thought to be offlined?"); |
464 | return 0; /* Shouldn't happen: at least one CPU online. */ | 537 | return 0; /* Shouldn't happen: at least one CPU online. */ |
465 | } | 538 | } |
466 | WARN_ON_ONCE(rnp != rdp->mynode && | 539 | |
467 | (!list_empty(&rnp->blocked_tasks[0]) || | 540 | /* If we are on an internal node, complain bitterly. */ |
468 | !list_empty(&rnp->blocked_tasks[1]) || | 541 | WARN_ON_ONCE(rnp != rdp->mynode); |
469 | !list_empty(&rnp->blocked_tasks[2]) || | ||
470 | !list_empty(&rnp->blocked_tasks[3]))); | ||
471 | 542 | ||
472 | /* | 543 | /* |
473 | * Move tasks up to root rcu_node. Rely on the fact that the | 544 | * Move tasks up to root rcu_node. Don't try to get fancy for |
474 | * root rcu_node can be at most one ahead of the rest of the | 545 | * this corner-case operation -- just put this node's tasks |
475 | * rcu_nodes in terms of gp_num value. This fact allows us to | 546 | * at the head of the root node's list, and update the root node's |
476 | * move the blocked_tasks[] array directly, element by element. | 547 | * ->gp_tasks and ->exp_tasks pointers to those of this node's, |
548 | * if non-NULL. This might result in waiting for more tasks than | ||
549 | * absolutely necessary, but this is a good performance/complexity | ||
550 | * tradeoff. | ||
477 | */ | 551 | */ |
478 | if (rcu_preempted_readers(rnp)) | 552 | if (rcu_preempt_blocked_readers_cgp(rnp)) |
479 | retval |= RCU_OFL_TASKS_NORM_GP; | 553 | retval |= RCU_OFL_TASKS_NORM_GP; |
480 | if (rcu_preempted_readers_exp(rnp)) | 554 | if (rcu_preempted_readers_exp(rnp)) |
481 | retval |= RCU_OFL_TASKS_EXP_GP; | 555 | retval |= RCU_OFL_TASKS_EXP_GP; |
482 | for (i = 0; i < 4; i++) { | 556 | lp = &rnp->blkd_tasks; |
483 | lp = &rnp->blocked_tasks[i]; | 557 | lp_root = &rnp_root->blkd_tasks; |
484 | lp_root = &rnp_root->blocked_tasks[i]; | 558 | while (!list_empty(lp)) { |
485 | while (!list_empty(lp)) { | 559 | t = list_entry(lp->next, typeof(*t), rcu_node_entry); |
486 | tp = list_entry(lp->next, typeof(*tp), rcu_node_entry); | 560 | raw_spin_lock(&rnp_root->lock); /* irqs already disabled */ |
487 | raw_spin_lock(&rnp_root->lock); /* irqs already disabled */ | 561 | list_del(&t->rcu_node_entry); |
488 | list_del(&tp->rcu_node_entry); | 562 | t->rcu_blocked_node = rnp_root; |
489 | tp->rcu_blocked_node = rnp_root; | 563 | list_add(&t->rcu_node_entry, lp_root); |
490 | list_add(&tp->rcu_node_entry, lp_root); | 564 | if (&t->rcu_node_entry == rnp->gp_tasks) |
491 | raw_spin_unlock(&rnp_root->lock); /* irqs remain disabled */ | 565 | rnp_root->gp_tasks = rnp->gp_tasks; |
492 | } | 566 | if (&t->rcu_node_entry == rnp->exp_tasks) |
567 | rnp_root->exp_tasks = rnp->exp_tasks; | ||
568 | #ifdef CONFIG_RCU_BOOST | ||
569 | if (&t->rcu_node_entry == rnp->boost_tasks) | ||
570 | rnp_root->boost_tasks = rnp->boost_tasks; | ||
571 | #endif /* #ifdef CONFIG_RCU_BOOST */ | ||
572 | raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */ | ||
493 | } | 573 | } |
574 | |||
575 | #ifdef CONFIG_RCU_BOOST | ||
576 | /* In case root is being boosted and leaf is not. */ | ||
577 | raw_spin_lock(&rnp_root->lock); /* irqs already disabled */ | ||
578 | if (rnp_root->boost_tasks != NULL && | ||
579 | rnp_root->boost_tasks != rnp_root->gp_tasks) | ||
580 | rnp_root->boost_tasks = rnp_root->gp_tasks; | ||
581 | raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */ | ||
582 | #endif /* #ifdef CONFIG_RCU_BOOST */ | ||
583 | |||
584 | rnp->gp_tasks = NULL; | ||
585 | rnp->exp_tasks = NULL; | ||
494 | return retval; | 586 | return retval; |
495 | } | 587 | } |
496 | 588 | ||
497 | /* | 589 | /* |
498 | * Do CPU-offline processing for preemptable RCU. | 590 | * Do CPU-offline processing for preemptible RCU. |
499 | */ | 591 | */ |
500 | static void rcu_preempt_offline_cpu(int cpu) | 592 | static void rcu_preempt_offline_cpu(int cpu) |
501 | { | 593 | { |
@@ -519,12 +611,13 @@ static void rcu_preempt_check_callbacks(int cpu) | |||
519 | rcu_preempt_qs(cpu); | 611 | rcu_preempt_qs(cpu); |
520 | return; | 612 | return; |
521 | } | 613 | } |
522 | if (per_cpu(rcu_preempt_data, cpu).qs_pending) | 614 | if (t->rcu_read_lock_nesting > 0 && |
615 | per_cpu(rcu_preempt_data, cpu).qs_pending) | ||
523 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS; | 616 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS; |
524 | } | 617 | } |
525 | 618 | ||
526 | /* | 619 | /* |
527 | * Process callbacks for preemptable RCU. | 620 | * Process callbacks for preemptible RCU. |
528 | */ | 621 | */ |
529 | static void rcu_preempt_process_callbacks(void) | 622 | static void rcu_preempt_process_callbacks(void) |
530 | { | 623 | { |
@@ -532,8 +625,17 @@ static void rcu_preempt_process_callbacks(void) | |||
532 | &__get_cpu_var(rcu_preempt_data)); | 625 | &__get_cpu_var(rcu_preempt_data)); |
533 | } | 626 | } |
534 | 627 | ||
628 | #ifdef CONFIG_RCU_BOOST | ||
629 | |||
630 | static void rcu_preempt_do_callbacks(void) | ||
631 | { | ||
632 | rcu_do_batch(&rcu_preempt_state, &__get_cpu_var(rcu_preempt_data)); | ||
633 | } | ||
634 | |||
635 | #endif /* #ifdef CONFIG_RCU_BOOST */ | ||
636 | |||
535 | /* | 637 | /* |
536 | * Queue a preemptable-RCU callback for invocation after a grace period. | 638 | * Queue a preemptible-RCU callback for invocation after a grace period. |
537 | */ | 639 | */ |
538 | void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | 640 | void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) |
539 | { | 641 | { |
@@ -546,9 +648,11 @@ EXPORT_SYMBOL_GPL(call_rcu); | |||
546 | * | 648 | * |
547 | * Control will return to the caller some time after a full grace | 649 | * Control will return to the caller some time after a full grace |
548 | * period has elapsed, in other words after all currently executing RCU | 650 | * period has elapsed, in other words after all currently executing RCU |
549 | * read-side critical sections have completed. RCU read-side critical | 651 | * read-side critical sections have completed. Note, however, that |
550 | * sections are delimited by rcu_read_lock() and rcu_read_unlock(), | 652 | * upon return from synchronize_rcu(), the caller might well be executing |
551 | * and may be nested. | 653 | * concurrently with new RCU read-side critical sections that began while |
654 | * synchronize_rcu() was waiting. RCU read-side critical sections are | ||
655 | * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. | ||
552 | */ | 656 | */ |
553 | void synchronize_rcu(void) | 657 | void synchronize_rcu(void) |
554 | { | 658 | { |
@@ -579,8 +683,7 @@ static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex); | |||
579 | */ | 683 | */ |
580 | static int rcu_preempted_readers_exp(struct rcu_node *rnp) | 684 | static int rcu_preempted_readers_exp(struct rcu_node *rnp) |
581 | { | 685 | { |
582 | return !list_empty(&rnp->blocked_tasks[2]) || | 686 | return rnp->exp_tasks != NULL; |
583 | !list_empty(&rnp->blocked_tasks[3]); | ||
584 | } | 687 | } |
585 | 688 | ||
586 | /* | 689 | /* |
@@ -615,9 +718,12 @@ static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp) | |||
615 | 718 | ||
616 | raw_spin_lock_irqsave(&rnp->lock, flags); | 719 | raw_spin_lock_irqsave(&rnp->lock, flags); |
617 | for (;;) { | 720 | for (;;) { |
618 | if (!sync_rcu_preempt_exp_done(rnp)) | 721 | if (!sync_rcu_preempt_exp_done(rnp)) { |
722 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | ||
619 | break; | 723 | break; |
724 | } | ||
620 | if (rnp->parent == NULL) { | 725 | if (rnp->parent == NULL) { |
726 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | ||
621 | wake_up(&sync_rcu_preempt_exp_wq); | 727 | wake_up(&sync_rcu_preempt_exp_wq); |
622 | break; | 728 | break; |
623 | } | 729 | } |
@@ -627,7 +733,6 @@ static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp) | |||
627 | raw_spin_lock(&rnp->lock); /* irqs already disabled */ | 733 | raw_spin_lock(&rnp->lock); /* irqs already disabled */ |
628 | rnp->expmask &= ~mask; | 734 | rnp->expmask &= ~mask; |
629 | } | 735 | } |
630 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | ||
631 | } | 736 | } |
632 | 737 | ||
633 | /* | 738 | /* |
@@ -640,13 +745,17 @@ static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp) | |||
640 | static void | 745 | static void |
641 | sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp) | 746 | sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp) |
642 | { | 747 | { |
643 | int must_wait; | 748 | unsigned long flags; |
749 | int must_wait = 0; | ||
644 | 750 | ||
645 | raw_spin_lock(&rnp->lock); /* irqs already disabled */ | 751 | raw_spin_lock_irqsave(&rnp->lock, flags); |
646 | list_splice_init(&rnp->blocked_tasks[0], &rnp->blocked_tasks[2]); | 752 | if (list_empty(&rnp->blkd_tasks)) |
647 | list_splice_init(&rnp->blocked_tasks[1], &rnp->blocked_tasks[3]); | 753 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
648 | must_wait = rcu_preempted_readers_exp(rnp); | 754 | else { |
649 | raw_spin_unlock(&rnp->lock); /* irqs remain disabled */ | 755 | rnp->exp_tasks = rnp->blkd_tasks.next; |
756 | rcu_initiate_boost(rnp, flags); /* releases rnp->lock */ | ||
757 | must_wait = 1; | ||
758 | } | ||
650 | if (!must_wait) | 759 | if (!must_wait) |
651 | rcu_report_exp_rnp(rsp, rnp); | 760 | rcu_report_exp_rnp(rsp, rnp); |
652 | } | 761 | } |
@@ -654,9 +763,7 @@ sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp) | |||
654 | /* | 763 | /* |
655 | * Wait for an rcu-preempt grace period, but expedite it. The basic idea | 764 | * Wait for an rcu-preempt grace period, but expedite it. The basic idea |
656 | * is to invoke synchronize_sched_expedited() to push all the tasks to | 765 | * is to invoke synchronize_sched_expedited() to push all the tasks to |
657 | * the ->blocked_tasks[] lists, move all entries from the first set of | 766 | * the ->blkd_tasks lists and wait for this list to drain. |
658 | * ->blocked_tasks[] lists to the second set, and finally wait for this | ||
659 | * second set to drain. | ||
660 | */ | 767 | */ |
661 | void synchronize_rcu_expedited(void) | 768 | void synchronize_rcu_expedited(void) |
662 | { | 769 | { |
@@ -688,7 +795,7 @@ void synchronize_rcu_expedited(void) | |||
688 | if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0) | 795 | if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0) |
689 | goto unlock_mb_ret; /* Others did our work for us. */ | 796 | goto unlock_mb_ret; /* Others did our work for us. */ |
690 | 797 | ||
691 | /* force all RCU readers onto blocked_tasks[]. */ | 798 | /* force all RCU readers onto ->blkd_tasks lists. */ |
692 | synchronize_sched_expedited(); | 799 | synchronize_sched_expedited(); |
693 | 800 | ||
694 | raw_spin_lock_irqsave(&rsp->onofflock, flags); | 801 | raw_spin_lock_irqsave(&rsp->onofflock, flags); |
@@ -700,7 +807,7 @@ void synchronize_rcu_expedited(void) | |||
700 | raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ | 807 | raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
701 | } | 808 | } |
702 | 809 | ||
703 | /* Snapshot current state of ->blocked_tasks[] lists. */ | 810 | /* Snapshot current state of ->blkd_tasks lists. */ |
704 | rcu_for_each_leaf_node(rsp, rnp) | 811 | rcu_for_each_leaf_node(rsp, rnp) |
705 | sync_rcu_preempt_exp_init(rsp, rnp); | 812 | sync_rcu_preempt_exp_init(rsp, rnp); |
706 | if (NUM_RCU_NODES > 1) | 813 | if (NUM_RCU_NODES > 1) |
@@ -708,7 +815,7 @@ void synchronize_rcu_expedited(void) | |||
708 | 815 | ||
709 | raw_spin_unlock_irqrestore(&rsp->onofflock, flags); | 816 | raw_spin_unlock_irqrestore(&rsp->onofflock, flags); |
710 | 817 | ||
711 | /* Wait for snapshotted ->blocked_tasks[] lists to drain. */ | 818 | /* Wait for snapshotted ->blkd_tasks lists to drain. */ |
712 | rnp = rcu_get_root(rsp); | 819 | rnp = rcu_get_root(rsp); |
713 | wait_event(sync_rcu_preempt_exp_wq, | 820 | wait_event(sync_rcu_preempt_exp_wq, |
714 | sync_rcu_preempt_exp_done(rnp)); | 821 | sync_rcu_preempt_exp_done(rnp)); |
@@ -724,7 +831,7 @@ mb_ret: | |||
724 | EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); | 831 | EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); |
725 | 832 | ||
726 | /* | 833 | /* |
727 | * Check to see if there is any immediate preemptable-RCU-related work | 834 | * Check to see if there is any immediate preemptible-RCU-related work |
728 | * to be done. | 835 | * to be done. |
729 | */ | 836 | */ |
730 | static int rcu_preempt_pending(int cpu) | 837 | static int rcu_preempt_pending(int cpu) |
@@ -734,7 +841,7 @@ static int rcu_preempt_pending(int cpu) | |||
734 | } | 841 | } |
735 | 842 | ||
736 | /* | 843 | /* |
737 | * Does preemptable RCU need the CPU to stay out of dynticks mode? | 844 | * Does preemptible RCU need the CPU to stay out of dynticks mode? |
738 | */ | 845 | */ |
739 | static int rcu_preempt_needs_cpu(int cpu) | 846 | static int rcu_preempt_needs_cpu(int cpu) |
740 | { | 847 | { |
@@ -751,7 +858,7 @@ void rcu_barrier(void) | |||
751 | EXPORT_SYMBOL_GPL(rcu_barrier); | 858 | EXPORT_SYMBOL_GPL(rcu_barrier); |
752 | 859 | ||
753 | /* | 860 | /* |
754 | * Initialize preemptable RCU's per-CPU data. | 861 | * Initialize preemptible RCU's per-CPU data. |
755 | */ | 862 | */ |
756 | static void __cpuinit rcu_preempt_init_percpu_data(int cpu) | 863 | static void __cpuinit rcu_preempt_init_percpu_data(int cpu) |
757 | { | 864 | { |
@@ -759,23 +866,23 @@ static void __cpuinit rcu_preempt_init_percpu_data(int cpu) | |||
759 | } | 866 | } |
760 | 867 | ||
761 | /* | 868 | /* |
762 | * Move preemptable RCU's callbacks to ->orphan_cbs_list. | 869 | * Move preemptible RCU's callbacks from dying CPU to other online CPU. |
763 | */ | 870 | */ |
764 | static void rcu_preempt_send_cbs_to_orphanage(void) | 871 | static void rcu_preempt_send_cbs_to_online(void) |
765 | { | 872 | { |
766 | rcu_send_cbs_to_orphanage(&rcu_preempt_state); | 873 | rcu_send_cbs_to_online(&rcu_preempt_state); |
767 | } | 874 | } |
768 | 875 | ||
769 | /* | 876 | /* |
770 | * Initialize preemptable RCU's state structures. | 877 | * Initialize preemptible RCU's state structures. |
771 | */ | 878 | */ |
772 | static void __init __rcu_init_preempt(void) | 879 | static void __init __rcu_init_preempt(void) |
773 | { | 880 | { |
774 | RCU_INIT_FLAVOR(&rcu_preempt_state, rcu_preempt_data); | 881 | rcu_init_one(&rcu_preempt_state, &rcu_preempt_data); |
775 | } | 882 | } |
776 | 883 | ||
777 | /* | 884 | /* |
778 | * Check for a task exiting while in a preemptable-RCU read-side | 885 | * Check for a task exiting while in a preemptible-RCU read-side |
779 | * critical section, clean up if so. No need to issue warnings, | 886 | * critical section, clean up if so. No need to issue warnings, |
780 | * as debug_check_no_locks_held() already does this if lockdep | 887 | * as debug_check_no_locks_held() already does this if lockdep |
781 | * is enabled. | 888 | * is enabled. |
@@ -787,11 +894,13 @@ void exit_rcu(void) | |||
787 | if (t->rcu_read_lock_nesting == 0) | 894 | if (t->rcu_read_lock_nesting == 0) |
788 | return; | 895 | return; |
789 | t->rcu_read_lock_nesting = 1; | 896 | t->rcu_read_lock_nesting = 1; |
790 | rcu_read_unlock(); | 897 | __rcu_read_unlock(); |
791 | } | 898 | } |
792 | 899 | ||
793 | #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */ | 900 | #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */ |
794 | 901 | ||
902 | static struct rcu_state *rcu_state = &rcu_sched_state; | ||
903 | |||
795 | /* | 904 | /* |
796 | * Tell them what RCU they are running. | 905 | * Tell them what RCU they are running. |
797 | */ | 906 | */ |
@@ -821,7 +930,7 @@ void rcu_force_quiescent_state(void) | |||
821 | EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); | 930 | EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); |
822 | 931 | ||
823 | /* | 932 | /* |
824 | * Because preemptable RCU does not exist, we never have to check for | 933 | * Because preemptible RCU does not exist, we never have to check for |
825 | * CPUs being in quiescent states. | 934 | * CPUs being in quiescent states. |
826 | */ | 935 | */ |
827 | static void rcu_preempt_note_context_switch(int cpu) | 936 | static void rcu_preempt_note_context_switch(int cpu) |
@@ -829,10 +938,10 @@ static void rcu_preempt_note_context_switch(int cpu) | |||
829 | } | 938 | } |
830 | 939 | ||
831 | /* | 940 | /* |
832 | * Because preemptable RCU does not exist, there are never any preempted | 941 | * Because preemptible RCU does not exist, there are never any preempted |
833 | * RCU readers. | 942 | * RCU readers. |
834 | */ | 943 | */ |
835 | static int rcu_preempted_readers(struct rcu_node *rnp) | 944 | static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) |
836 | { | 945 | { |
837 | return 0; | 946 | return 0; |
838 | } | 947 | } |
@@ -847,10 +956,8 @@ static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) | |||
847 | 956 | ||
848 | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ | 957 | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ |
849 | 958 | ||
850 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR | ||
851 | |||
852 | /* | 959 | /* |
853 | * Because preemptable RCU does not exist, we never have to check for | 960 | * Because preemptible RCU does not exist, we never have to check for |
854 | * tasks blocked within RCU read-side critical sections. | 961 | * tasks blocked within RCU read-side critical sections. |
855 | */ | 962 | */ |
856 | static void rcu_print_detail_task_stall(struct rcu_state *rsp) | 963 | static void rcu_print_detail_task_stall(struct rcu_state *rsp) |
@@ -858,17 +965,23 @@ static void rcu_print_detail_task_stall(struct rcu_state *rsp) | |||
858 | } | 965 | } |
859 | 966 | ||
860 | /* | 967 | /* |
861 | * Because preemptable RCU does not exist, we never have to check for | 968 | * Because preemptible RCU does not exist, we never have to check for |
862 | * tasks blocked within RCU read-side critical sections. | 969 | * tasks blocked within RCU read-side critical sections. |
863 | */ | 970 | */ |
864 | static void rcu_print_task_stall(struct rcu_node *rnp) | 971 | static void rcu_print_task_stall(struct rcu_node *rnp) |
865 | { | 972 | { |
866 | } | 973 | } |
867 | 974 | ||
868 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | 975 | /* |
976 | * Because preemptible RCU does not exist, there is no need to suppress | ||
977 | * its CPU stall warnings. | ||
978 | */ | ||
979 | static void rcu_preempt_stall_reset(void) | ||
980 | { | ||
981 | } | ||
869 | 982 | ||
870 | /* | 983 | /* |
871 | * Because there is no preemptable RCU, there can be no readers blocked, | 984 | * Because there is no preemptible RCU, there can be no readers blocked, |
872 | * so there is no need to check for blocked tasks. So check only for | 985 | * so there is no need to check for blocked tasks. So check only for |
873 | * bogus qsmask values. | 986 | * bogus qsmask values. |
874 | */ | 987 | */ |
@@ -880,7 +993,7 @@ static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) | |||
880 | #ifdef CONFIG_HOTPLUG_CPU | 993 | #ifdef CONFIG_HOTPLUG_CPU |
881 | 994 | ||
882 | /* | 995 | /* |
883 | * Because preemptable RCU does not exist, it never needs to migrate | 996 | * Because preemptible RCU does not exist, it never needs to migrate |
884 | * tasks that were blocked within RCU read-side critical sections, and | 997 | * tasks that were blocked within RCU read-side critical sections, and |
885 | * such non-existent tasks cannot possibly have been blocking the current | 998 | * such non-existent tasks cannot possibly have been blocking the current |
886 | * grace period. | 999 | * grace period. |
@@ -893,7 +1006,7 @@ static int rcu_preempt_offline_tasks(struct rcu_state *rsp, | |||
893 | } | 1006 | } |
894 | 1007 | ||
895 | /* | 1008 | /* |
896 | * Because preemptable RCU does not exist, it never needs CPU-offline | 1009 | * Because preemptible RCU does not exist, it never needs CPU-offline |
897 | * processing. | 1010 | * processing. |
898 | */ | 1011 | */ |
899 | static void rcu_preempt_offline_cpu(int cpu) | 1012 | static void rcu_preempt_offline_cpu(int cpu) |
@@ -903,7 +1016,7 @@ static void rcu_preempt_offline_cpu(int cpu) | |||
903 | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ | 1016 | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ |
904 | 1017 | ||
905 | /* | 1018 | /* |
906 | * Because preemptable RCU does not exist, it never has any callbacks | 1019 | * Because preemptible RCU does not exist, it never has any callbacks |
907 | * to check. | 1020 | * to check. |
908 | */ | 1021 | */ |
909 | static void rcu_preempt_check_callbacks(int cpu) | 1022 | static void rcu_preempt_check_callbacks(int cpu) |
@@ -911,7 +1024,7 @@ static void rcu_preempt_check_callbacks(int cpu) | |||
911 | } | 1024 | } |
912 | 1025 | ||
913 | /* | 1026 | /* |
914 | * Because preemptable RCU does not exist, it never has any callbacks | 1027 | * Because preemptible RCU does not exist, it never has any callbacks |
915 | * to process. | 1028 | * to process. |
916 | */ | 1029 | */ |
917 | static void rcu_preempt_process_callbacks(void) | 1030 | static void rcu_preempt_process_callbacks(void) |
@@ -919,17 +1032,8 @@ static void rcu_preempt_process_callbacks(void) | |||
919 | } | 1032 | } |
920 | 1033 | ||
921 | /* | 1034 | /* |
922 | * In classic RCU, call_rcu() is just call_rcu_sched(). | ||
923 | */ | ||
924 | void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | ||
925 | { | ||
926 | call_rcu_sched(head, func); | ||
927 | } | ||
928 | EXPORT_SYMBOL_GPL(call_rcu); | ||
929 | |||
930 | /* | ||
931 | * Wait for an rcu-preempt grace period, but make it happen quickly. | 1035 | * Wait for an rcu-preempt grace period, but make it happen quickly. |
932 | * But because preemptable RCU does not exist, map to rcu-sched. | 1036 | * But because preemptible RCU does not exist, map to rcu-sched. |
933 | */ | 1037 | */ |
934 | void synchronize_rcu_expedited(void) | 1038 | void synchronize_rcu_expedited(void) |
935 | { | 1039 | { |
@@ -940,7 +1044,7 @@ EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); | |||
940 | #ifdef CONFIG_HOTPLUG_CPU | 1044 | #ifdef CONFIG_HOTPLUG_CPU |
941 | 1045 | ||
942 | /* | 1046 | /* |
943 | * Because preemptable RCU does not exist, there is never any need to | 1047 | * Because preemptible RCU does not exist, there is never any need to |
944 | * report on tasks preempted in RCU read-side critical sections during | 1048 | * report on tasks preempted in RCU read-side critical sections during |
945 | * expedited RCU grace periods. | 1049 | * expedited RCU grace periods. |
946 | */ | 1050 | */ |
@@ -952,7 +1056,7 @@ static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp) | |||
952 | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ | 1056 | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ |
953 | 1057 | ||
954 | /* | 1058 | /* |
955 | * Because preemptable RCU does not exist, it never has any work to do. | 1059 | * Because preemptible RCU does not exist, it never has any work to do. |
956 | */ | 1060 | */ |
957 | static int rcu_preempt_pending(int cpu) | 1061 | static int rcu_preempt_pending(int cpu) |
958 | { | 1062 | { |
@@ -960,7 +1064,7 @@ static int rcu_preempt_pending(int cpu) | |||
960 | } | 1064 | } |
961 | 1065 | ||
962 | /* | 1066 | /* |
963 | * Because preemptable RCU does not exist, it never needs any CPU. | 1067 | * Because preemptible RCU does not exist, it never needs any CPU. |
964 | */ | 1068 | */ |
965 | static int rcu_preempt_needs_cpu(int cpu) | 1069 | static int rcu_preempt_needs_cpu(int cpu) |
966 | { | 1070 | { |
@@ -968,7 +1072,7 @@ static int rcu_preempt_needs_cpu(int cpu) | |||
968 | } | 1072 | } |
969 | 1073 | ||
970 | /* | 1074 | /* |
971 | * Because preemptable RCU does not exist, rcu_barrier() is just | 1075 | * Because preemptible RCU does not exist, rcu_barrier() is just |
972 | * another name for rcu_barrier_sched(). | 1076 | * another name for rcu_barrier_sched(). |
973 | */ | 1077 | */ |
974 | void rcu_barrier(void) | 1078 | void rcu_barrier(void) |
@@ -978,7 +1082,7 @@ void rcu_barrier(void) | |||
978 | EXPORT_SYMBOL_GPL(rcu_barrier); | 1082 | EXPORT_SYMBOL_GPL(rcu_barrier); |
979 | 1083 | ||
980 | /* | 1084 | /* |
981 | * Because preemptable RCU does not exist, there is no per-CPU | 1085 | * Because preemptible RCU does not exist, there is no per-CPU |
982 | * data to initialize. | 1086 | * data to initialize. |
983 | */ | 1087 | */ |
984 | static void __cpuinit rcu_preempt_init_percpu_data(int cpu) | 1088 | static void __cpuinit rcu_preempt_init_percpu_data(int cpu) |
@@ -986,14 +1090,14 @@ static void __cpuinit rcu_preempt_init_percpu_data(int cpu) | |||
986 | } | 1090 | } |
987 | 1091 | ||
988 | /* | 1092 | /* |
989 | * Because there is no preemptable RCU, there are no callbacks to move. | 1093 | * Because there is no preemptible RCU, there are no callbacks to move. |
990 | */ | 1094 | */ |
991 | static void rcu_preempt_send_cbs_to_orphanage(void) | 1095 | static void rcu_preempt_send_cbs_to_online(void) |
992 | { | 1096 | { |
993 | } | 1097 | } |
994 | 1098 | ||
995 | /* | 1099 | /* |
996 | * Because preemptable RCU does not exist, it need not be initialized. | 1100 | * Because preemptible RCU does not exist, it need not be initialized. |
997 | */ | 1101 | */ |
998 | static void __init __rcu_init_preempt(void) | 1102 | static void __init __rcu_init_preempt(void) |
999 | { | 1103 | { |
@@ -1001,6 +1105,791 @@ static void __init __rcu_init_preempt(void) | |||
1001 | 1105 | ||
1002 | #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */ | 1106 | #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */ |
1003 | 1107 | ||
1108 | #ifdef CONFIG_RCU_BOOST | ||
1109 | |||
1110 | #include "rtmutex_common.h" | ||
1111 | |||
1112 | #ifdef CONFIG_RCU_TRACE | ||
1113 | |||
1114 | static void rcu_initiate_boost_trace(struct rcu_node *rnp) | ||
1115 | { | ||
1116 | if (list_empty(&rnp->blkd_tasks)) | ||
1117 | rnp->n_balk_blkd_tasks++; | ||
1118 | else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL) | ||
1119 | rnp->n_balk_exp_gp_tasks++; | ||
1120 | else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL) | ||
1121 | rnp->n_balk_boost_tasks++; | ||
1122 | else if (rnp->gp_tasks != NULL && rnp->qsmask != 0) | ||
1123 | rnp->n_balk_notblocked++; | ||
1124 | else if (rnp->gp_tasks != NULL && | ||
1125 | ULONG_CMP_LT(jiffies, rnp->boost_time)) | ||
1126 | rnp->n_balk_notyet++; | ||
1127 | else | ||
1128 | rnp->n_balk_nos++; | ||
1129 | } | ||
1130 | |||
1131 | #else /* #ifdef CONFIG_RCU_TRACE */ | ||
1132 | |||
1133 | static void rcu_initiate_boost_trace(struct rcu_node *rnp) | ||
1134 | { | ||
1135 | } | ||
1136 | |||
1137 | #endif /* #else #ifdef CONFIG_RCU_TRACE */ | ||
1138 | |||
1139 | /* | ||
1140 | * Carry out RCU priority boosting on the task indicated by ->exp_tasks | ||
1141 | * or ->boost_tasks, advancing the pointer to the next task in the | ||
1142 | * ->blkd_tasks list. | ||
1143 | * | ||
1144 | * Note that irqs must be enabled: boosting the task can block. | ||
1145 | * Returns 1 if there are more tasks needing to be boosted. | ||
1146 | */ | ||
1147 | static int rcu_boost(struct rcu_node *rnp) | ||
1148 | { | ||
1149 | unsigned long flags; | ||
1150 | struct rt_mutex mtx; | ||
1151 | struct task_struct *t; | ||
1152 | struct list_head *tb; | ||
1153 | |||
1154 | if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) | ||
1155 | return 0; /* Nothing left to boost. */ | ||
1156 | |||
1157 | raw_spin_lock_irqsave(&rnp->lock, flags); | ||
1158 | |||
1159 | /* | ||
1160 | * Recheck under the lock: all tasks in need of boosting | ||
1161 | * might exit their RCU read-side critical sections on their own. | ||
1162 | */ | ||
1163 | if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { | ||
1164 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | ||
1165 | return 0; | ||
1166 | } | ||
1167 | |||
1168 | /* | ||
1169 | * Preferentially boost tasks blocking expedited grace periods. | ||
1170 | * This cannot starve the normal grace periods because a second | ||
1171 | * expedited grace period must boost all blocked tasks, including | ||
1172 | * those blocking the pre-existing normal grace period. | ||
1173 | */ | ||
1174 | if (rnp->exp_tasks != NULL) { | ||
1175 | tb = rnp->exp_tasks; | ||
1176 | rnp->n_exp_boosts++; | ||
1177 | } else { | ||
1178 | tb = rnp->boost_tasks; | ||
1179 | rnp->n_normal_boosts++; | ||
1180 | } | ||
1181 | rnp->n_tasks_boosted++; | ||
1182 | |||
1183 | /* | ||
1184 | * We boost task t by manufacturing an rt_mutex that appears to | ||
1185 | * be held by task t. We leave a pointer to that rt_mutex where | ||
1186 | * task t can find it, and task t will release the mutex when it | ||
1187 | * exits its outermost RCU read-side critical section. Then | ||
1188 | * simply acquiring this artificial rt_mutex will boost task | ||
1189 | * t's priority. (Thanks to tglx for suggesting this approach!) | ||
1190 | * | ||
1191 | * Note that task t must acquire rnp->lock to remove itself from | ||
1192 | * the ->blkd_tasks list, which it will do from exit() if from | ||
1193 | * nowhere else. We therefore are guaranteed that task t will | ||
1194 | * stay around at least until we drop rnp->lock. Note that | ||
1195 | * rnp->lock also resolves races between our priority boosting | ||
1196 | * and task t's exiting its outermost RCU read-side critical | ||
1197 | * section. | ||
1198 | */ | ||
1199 | t = container_of(tb, struct task_struct, rcu_node_entry); | ||
1200 | rt_mutex_init_proxy_locked(&mtx, t); | ||
1201 | t->rcu_boost_mutex = &mtx; | ||
1202 | t->rcu_boosted = 1; | ||
1203 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | ||
1204 | rt_mutex_lock(&mtx); /* Side effect: boosts task t's priority. */ | ||
1205 | rt_mutex_unlock(&mtx); /* Keep lockdep happy. */ | ||
1206 | |||
1207 | return rnp->exp_tasks != NULL || rnp->boost_tasks != NULL; | ||
1208 | } | ||
1209 | |||
1210 | /* | ||
1211 | * Timer handler to initiate waking up of boost kthreads that | ||
1212 | * have yielded the CPU due to excessive numbers of tasks to | ||
1213 | * boost. We wake up the per-rcu_node kthread, which in turn | ||
1214 | * will wake up the booster kthread. | ||
1215 | */ | ||
1216 | static void rcu_boost_kthread_timer(unsigned long arg) | ||
1217 | { | ||
1218 | invoke_rcu_node_kthread((struct rcu_node *)arg); | ||
1219 | } | ||
1220 | |||
1221 | /* | ||
1222 | * Priority-boosting kthread. One per leaf rcu_node and one for the | ||
1223 | * root rcu_node. | ||
1224 | */ | ||
1225 | static int rcu_boost_kthread(void *arg) | ||
1226 | { | ||
1227 | struct rcu_node *rnp = (struct rcu_node *)arg; | ||
1228 | int spincnt = 0; | ||
1229 | int more2boost; | ||
1230 | |||
1231 | for (;;) { | ||
1232 | rnp->boost_kthread_status = RCU_KTHREAD_WAITING; | ||
1233 | rcu_wait(rnp->boost_tasks || rnp->exp_tasks); | ||
1234 | rnp->boost_kthread_status = RCU_KTHREAD_RUNNING; | ||
1235 | more2boost = rcu_boost(rnp); | ||
1236 | if (more2boost) | ||
1237 | spincnt++; | ||
1238 | else | ||
1239 | spincnt = 0; | ||
1240 | if (spincnt > 10) { | ||
1241 | rcu_yield(rcu_boost_kthread_timer, (unsigned long)rnp); | ||
1242 | spincnt = 0; | ||
1243 | } | ||
1244 | } | ||
1245 | /* NOTREACHED */ | ||
1246 | return 0; | ||
1247 | } | ||
1248 | |||
1249 | /* | ||
1250 | * Check to see if it is time to start boosting RCU readers that are | ||
1251 | * blocking the current grace period, and, if so, tell the per-rcu_node | ||
1252 | * kthread to start boosting them. If there is an expedited grace | ||
1253 | * period in progress, it is always time to boost. | ||
1254 | * | ||
1255 | * The caller must hold rnp->lock, which this function releases, | ||
1256 | * but irqs remain disabled. The ->boost_kthread_task is immortal, | ||
1257 | * so we don't need to worry about it going away. | ||
1258 | */ | ||
1259 | static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) | ||
1260 | { | ||
1261 | struct task_struct *t; | ||
1262 | |||
1263 | if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { | ||
1264 | rnp->n_balk_exp_gp_tasks++; | ||
1265 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | ||
1266 | return; | ||
1267 | } | ||
1268 | if (rnp->exp_tasks != NULL || | ||
1269 | (rnp->gp_tasks != NULL && | ||
1270 | rnp->boost_tasks == NULL && | ||
1271 | rnp->qsmask == 0 && | ||
1272 | ULONG_CMP_GE(jiffies, rnp->boost_time))) { | ||
1273 | if (rnp->exp_tasks == NULL) | ||
1274 | rnp->boost_tasks = rnp->gp_tasks; | ||
1275 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | ||
1276 | t = rnp->boost_kthread_task; | ||
1277 | if (t != NULL) | ||
1278 | wake_up_process(t); | ||
1279 | } else { | ||
1280 | rcu_initiate_boost_trace(rnp); | ||
1281 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | ||
1282 | } | ||
1283 | } | ||
1284 | |||
1285 | /* | ||
1286 | * Wake up the per-CPU kthread to invoke RCU callbacks. | ||
1287 | */ | ||
1288 | static void invoke_rcu_callbacks_kthread(void) | ||
1289 | { | ||
1290 | unsigned long flags; | ||
1291 | |||
1292 | local_irq_save(flags); | ||
1293 | __this_cpu_write(rcu_cpu_has_work, 1); | ||
1294 | if (__this_cpu_read(rcu_cpu_kthread_task) == NULL) { | ||
1295 | local_irq_restore(flags); | ||
1296 | return; | ||
1297 | } | ||
1298 | wake_up_process(__this_cpu_read(rcu_cpu_kthread_task)); | ||
1299 | local_irq_restore(flags); | ||
1300 | } | ||
1301 | |||
1302 | /* | ||
1303 | * Set the affinity of the boost kthread. The CPU-hotplug locks are | ||
1304 | * held, so no one should be messing with the existence of the boost | ||
1305 | * kthread. | ||
1306 | */ | ||
1307 | static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, | ||
1308 | cpumask_var_t cm) | ||
1309 | { | ||
1310 | struct task_struct *t; | ||
1311 | |||
1312 | t = rnp->boost_kthread_task; | ||
1313 | if (t != NULL) | ||
1314 | set_cpus_allowed_ptr(rnp->boost_kthread_task, cm); | ||
1315 | } | ||
1316 | |||
1317 | #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) | ||
1318 | |||
1319 | /* | ||
1320 | * Do priority-boost accounting for the start of a new grace period. | ||
1321 | */ | ||
1322 | static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) | ||
1323 | { | ||
1324 | rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; | ||
1325 | } | ||
1326 | |||
1327 | /* | ||
1328 | * Create an RCU-boost kthread for the specified node if one does not | ||
1329 | * already exist. We only create this kthread for preemptible RCU. | ||
1330 | * Returns zero if all is well, a negated errno otherwise. | ||
1331 | */ | ||
1332 | static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp, | ||
1333 | struct rcu_node *rnp, | ||
1334 | int rnp_index) | ||
1335 | { | ||
1336 | unsigned long flags; | ||
1337 | struct sched_param sp; | ||
1338 | struct task_struct *t; | ||
1339 | |||
1340 | if (&rcu_preempt_state != rsp) | ||
1341 | return 0; | ||
1342 | rsp->boost = 1; | ||
1343 | if (rnp->boost_kthread_task != NULL) | ||
1344 | return 0; | ||
1345 | t = kthread_create(rcu_boost_kthread, (void *)rnp, | ||
1346 | "rcub%d", rnp_index); | ||
1347 | if (IS_ERR(t)) | ||
1348 | return PTR_ERR(t); | ||
1349 | raw_spin_lock_irqsave(&rnp->lock, flags); | ||
1350 | rnp->boost_kthread_task = t; | ||
1351 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | ||
1352 | sp.sched_priority = RCU_KTHREAD_PRIO; | ||
1353 | sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); | ||
1354 | wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ | ||
1355 | return 0; | ||
1356 | } | ||
1357 | |||
1358 | #ifdef CONFIG_HOTPLUG_CPU | ||
1359 | |||
1360 | /* | ||
1361 | * Stop the RCU's per-CPU kthread when its CPU goes offline,. | ||
1362 | */ | ||
1363 | static void rcu_stop_cpu_kthread(int cpu) | ||
1364 | { | ||
1365 | struct task_struct *t; | ||
1366 | |||
1367 | /* Stop the CPU's kthread. */ | ||
1368 | t = per_cpu(rcu_cpu_kthread_task, cpu); | ||
1369 | if (t != NULL) { | ||
1370 | per_cpu(rcu_cpu_kthread_task, cpu) = NULL; | ||
1371 | kthread_stop(t); | ||
1372 | } | ||
1373 | } | ||
1374 | |||
1375 | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ | ||
1376 | |||
1377 | static void rcu_kthread_do_work(void) | ||
1378 | { | ||
1379 | rcu_do_batch(&rcu_sched_state, &__get_cpu_var(rcu_sched_data)); | ||
1380 | rcu_do_batch(&rcu_bh_state, &__get_cpu_var(rcu_bh_data)); | ||
1381 | rcu_preempt_do_callbacks(); | ||
1382 | } | ||
1383 | |||
1384 | /* | ||
1385 | * Wake up the specified per-rcu_node-structure kthread. | ||
1386 | * Because the per-rcu_node kthreads are immortal, we don't need | ||
1387 | * to do anything to keep them alive. | ||
1388 | */ | ||
1389 | static void invoke_rcu_node_kthread(struct rcu_node *rnp) | ||
1390 | { | ||
1391 | struct task_struct *t; | ||
1392 | |||
1393 | t = rnp->node_kthread_task; | ||
1394 | if (t != NULL) | ||
1395 | wake_up_process(t); | ||
1396 | } | ||
1397 | |||
1398 | /* | ||
1399 | * Set the specified CPU's kthread to run RT or not, as specified by | ||
1400 | * the to_rt argument. The CPU-hotplug locks are held, so the task | ||
1401 | * is not going away. | ||
1402 | */ | ||
1403 | static void rcu_cpu_kthread_setrt(int cpu, int to_rt) | ||
1404 | { | ||
1405 | int policy; | ||
1406 | struct sched_param sp; | ||
1407 | struct task_struct *t; | ||
1408 | |||
1409 | t = per_cpu(rcu_cpu_kthread_task, cpu); | ||
1410 | if (t == NULL) | ||
1411 | return; | ||
1412 | if (to_rt) { | ||
1413 | policy = SCHED_FIFO; | ||
1414 | sp.sched_priority = RCU_KTHREAD_PRIO; | ||
1415 | } else { | ||
1416 | policy = SCHED_NORMAL; | ||
1417 | sp.sched_priority = 0; | ||
1418 | } | ||
1419 | sched_setscheduler_nocheck(t, policy, &sp); | ||
1420 | } | ||
1421 | |||
1422 | /* | ||
1423 | * Timer handler to initiate the waking up of per-CPU kthreads that | ||
1424 | * have yielded the CPU due to excess numbers of RCU callbacks. | ||
1425 | * We wake up the per-rcu_node kthread, which in turn will wake up | ||
1426 | * the booster kthread. | ||
1427 | */ | ||
1428 | static void rcu_cpu_kthread_timer(unsigned long arg) | ||
1429 | { | ||
1430 | struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg); | ||
1431 | struct rcu_node *rnp = rdp->mynode; | ||
1432 | |||
1433 | atomic_or(rdp->grpmask, &rnp->wakemask); | ||
1434 | invoke_rcu_node_kthread(rnp); | ||
1435 | } | ||
1436 | |||
1437 | /* | ||
1438 | * Drop to non-real-time priority and yield, but only after posting a | ||
1439 | * timer that will cause us to regain our real-time priority if we | ||
1440 | * remain preempted. Either way, we restore our real-time priority | ||
1441 | * before returning. | ||
1442 | */ | ||
1443 | static void rcu_yield(void (*f)(unsigned long), unsigned long arg) | ||
1444 | { | ||
1445 | struct sched_param sp; | ||
1446 | struct timer_list yield_timer; | ||
1447 | |||
1448 | setup_timer_on_stack(&yield_timer, f, arg); | ||
1449 | mod_timer(&yield_timer, jiffies + 2); | ||
1450 | sp.sched_priority = 0; | ||
1451 | sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp); | ||
1452 | set_user_nice(current, 19); | ||
1453 | schedule(); | ||
1454 | sp.sched_priority = RCU_KTHREAD_PRIO; | ||
1455 | sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); | ||
1456 | del_timer(&yield_timer); | ||
1457 | } | ||
1458 | |||
1459 | /* | ||
1460 | * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU. | ||
1461 | * This can happen while the corresponding CPU is either coming online | ||
1462 | * or going offline. We cannot wait until the CPU is fully online | ||
1463 | * before starting the kthread, because the various notifier functions | ||
1464 | * can wait for RCU grace periods. So we park rcu_cpu_kthread() until | ||
1465 | * the corresponding CPU is online. | ||
1466 | * | ||
1467 | * Return 1 if the kthread needs to stop, 0 otherwise. | ||
1468 | * | ||
1469 | * Caller must disable bh. This function can momentarily enable it. | ||
1470 | */ | ||
1471 | static int rcu_cpu_kthread_should_stop(int cpu) | ||
1472 | { | ||
1473 | while (cpu_is_offline(cpu) || | ||
1474 | !cpumask_equal(¤t->cpus_allowed, cpumask_of(cpu)) || | ||
1475 | smp_processor_id() != cpu) { | ||
1476 | if (kthread_should_stop()) | ||
1477 | return 1; | ||
1478 | per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; | ||
1479 | per_cpu(rcu_cpu_kthread_cpu, cpu) = raw_smp_processor_id(); | ||
1480 | local_bh_enable(); | ||
1481 | schedule_timeout_uninterruptible(1); | ||
1482 | if (!cpumask_equal(¤t->cpus_allowed, cpumask_of(cpu))) | ||
1483 | set_cpus_allowed_ptr(current, cpumask_of(cpu)); | ||
1484 | local_bh_disable(); | ||
1485 | } | ||
1486 | per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu; | ||
1487 | return 0; | ||
1488 | } | ||
1489 | |||
1490 | /* | ||
1491 | * Per-CPU kernel thread that invokes RCU callbacks. This replaces the | ||
1492 | * earlier RCU softirq. | ||
1493 | */ | ||
1494 | static int rcu_cpu_kthread(void *arg) | ||
1495 | { | ||
1496 | int cpu = (int)(long)arg; | ||
1497 | unsigned long flags; | ||
1498 | int spincnt = 0; | ||
1499 | unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu); | ||
1500 | char work; | ||
1501 | char *workp = &per_cpu(rcu_cpu_has_work, cpu); | ||
1502 | |||
1503 | for (;;) { | ||
1504 | *statusp = RCU_KTHREAD_WAITING; | ||
1505 | rcu_wait(*workp != 0 || kthread_should_stop()); | ||
1506 | local_bh_disable(); | ||
1507 | if (rcu_cpu_kthread_should_stop(cpu)) { | ||
1508 | local_bh_enable(); | ||
1509 | break; | ||
1510 | } | ||
1511 | *statusp = RCU_KTHREAD_RUNNING; | ||
1512 | per_cpu(rcu_cpu_kthread_loops, cpu)++; | ||
1513 | local_irq_save(flags); | ||
1514 | work = *workp; | ||
1515 | *workp = 0; | ||
1516 | local_irq_restore(flags); | ||
1517 | if (work) | ||
1518 | rcu_kthread_do_work(); | ||
1519 | local_bh_enable(); | ||
1520 | if (*workp != 0) | ||
1521 | spincnt++; | ||
1522 | else | ||
1523 | spincnt = 0; | ||
1524 | if (spincnt > 10) { | ||
1525 | *statusp = RCU_KTHREAD_YIELDING; | ||
1526 | rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu); | ||
1527 | spincnt = 0; | ||
1528 | } | ||
1529 | } | ||
1530 | *statusp = RCU_KTHREAD_STOPPED; | ||
1531 | return 0; | ||
1532 | } | ||
1533 | |||
1534 | /* | ||
1535 | * Spawn a per-CPU kthread, setting up affinity and priority. | ||
1536 | * Because the CPU hotplug lock is held, no other CPU will be attempting | ||
1537 | * to manipulate rcu_cpu_kthread_task. There might be another CPU | ||
1538 | * attempting to access it during boot, but the locking in kthread_bind() | ||
1539 | * will enforce sufficient ordering. | ||
1540 | * | ||
1541 | * Please note that we cannot simply refuse to wake up the per-CPU | ||
1542 | * kthread because kthreads are created in TASK_UNINTERRUPTIBLE state, | ||
1543 | * which can result in softlockup complaints if the task ends up being | ||
1544 | * idle for more than a couple of minutes. | ||
1545 | * | ||
1546 | * However, please note also that we cannot bind the per-CPU kthread to its | ||
1547 | * CPU until that CPU is fully online. We also cannot wait until the | ||
1548 | * CPU is fully online before we create its per-CPU kthread, as this would | ||
1549 | * deadlock the system when CPU notifiers tried waiting for grace | ||
1550 | * periods. So we bind the per-CPU kthread to its CPU only if the CPU | ||
1551 | * is online. If its CPU is not yet fully online, then the code in | ||
1552 | * rcu_cpu_kthread() will wait until it is fully online, and then do | ||
1553 | * the binding. | ||
1554 | */ | ||
1555 | static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu) | ||
1556 | { | ||
1557 | struct sched_param sp; | ||
1558 | struct task_struct *t; | ||
1559 | |||
1560 | if (!rcu_scheduler_fully_active || | ||
1561 | per_cpu(rcu_cpu_kthread_task, cpu) != NULL) | ||
1562 | return 0; | ||
1563 | t = kthread_create(rcu_cpu_kthread, (void *)(long)cpu, "rcuc%d", cpu); | ||
1564 | if (IS_ERR(t)) | ||
1565 | return PTR_ERR(t); | ||
1566 | if (cpu_online(cpu)) | ||
1567 | kthread_bind(t, cpu); | ||
1568 | per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu; | ||
1569 | WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL); | ||
1570 | sp.sched_priority = RCU_KTHREAD_PRIO; | ||
1571 | sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); | ||
1572 | per_cpu(rcu_cpu_kthread_task, cpu) = t; | ||
1573 | wake_up_process(t); /* Get to TASK_INTERRUPTIBLE quickly. */ | ||
1574 | return 0; | ||
1575 | } | ||
1576 | |||
1577 | /* | ||
1578 | * Per-rcu_node kthread, which is in charge of waking up the per-CPU | ||
1579 | * kthreads when needed. We ignore requests to wake up kthreads | ||
1580 | * for offline CPUs, which is OK because force_quiescent_state() | ||
1581 | * takes care of this case. | ||
1582 | */ | ||
1583 | static int rcu_node_kthread(void *arg) | ||
1584 | { | ||
1585 | int cpu; | ||
1586 | unsigned long flags; | ||
1587 | unsigned long mask; | ||
1588 | struct rcu_node *rnp = (struct rcu_node *)arg; | ||
1589 | struct sched_param sp; | ||
1590 | struct task_struct *t; | ||
1591 | |||
1592 | for (;;) { | ||
1593 | rnp->node_kthread_status = RCU_KTHREAD_WAITING; | ||
1594 | rcu_wait(atomic_read(&rnp->wakemask) != 0); | ||
1595 | rnp->node_kthread_status = RCU_KTHREAD_RUNNING; | ||
1596 | raw_spin_lock_irqsave(&rnp->lock, flags); | ||
1597 | mask = atomic_xchg(&rnp->wakemask, 0); | ||
1598 | rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */ | ||
1599 | for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) { | ||
1600 | if ((mask & 0x1) == 0) | ||
1601 | continue; | ||
1602 | preempt_disable(); | ||
1603 | t = per_cpu(rcu_cpu_kthread_task, cpu); | ||
1604 | if (!cpu_online(cpu) || t == NULL) { | ||
1605 | preempt_enable(); | ||
1606 | continue; | ||
1607 | } | ||
1608 | per_cpu(rcu_cpu_has_work, cpu) = 1; | ||
1609 | sp.sched_priority = RCU_KTHREAD_PRIO; | ||
1610 | sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); | ||
1611 | preempt_enable(); | ||
1612 | } | ||
1613 | } | ||
1614 | /* NOTREACHED */ | ||
1615 | rnp->node_kthread_status = RCU_KTHREAD_STOPPED; | ||
1616 | return 0; | ||
1617 | } | ||
1618 | |||
1619 | /* | ||
1620 | * Set the per-rcu_node kthread's affinity to cover all CPUs that are | ||
1621 | * served by the rcu_node in question. The CPU hotplug lock is still | ||
1622 | * held, so the value of rnp->qsmaskinit will be stable. | ||
1623 | * | ||
1624 | * We don't include outgoingcpu in the affinity set, use -1 if there is | ||
1625 | * no outgoing CPU. If there are no CPUs left in the affinity set, | ||
1626 | * this function allows the kthread to execute on any CPU. | ||
1627 | */ | ||
1628 | static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) | ||
1629 | { | ||
1630 | cpumask_var_t cm; | ||
1631 | int cpu; | ||
1632 | unsigned long mask = rnp->qsmaskinit; | ||
1633 | |||
1634 | if (rnp->node_kthread_task == NULL) | ||
1635 | return; | ||
1636 | if (!alloc_cpumask_var(&cm, GFP_KERNEL)) | ||
1637 | return; | ||
1638 | cpumask_clear(cm); | ||
1639 | for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) | ||
1640 | if ((mask & 0x1) && cpu != outgoingcpu) | ||
1641 | cpumask_set_cpu(cpu, cm); | ||
1642 | if (cpumask_weight(cm) == 0) { | ||
1643 | cpumask_setall(cm); | ||
1644 | for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) | ||
1645 | cpumask_clear_cpu(cpu, cm); | ||
1646 | WARN_ON_ONCE(cpumask_weight(cm) == 0); | ||
1647 | } | ||
1648 | set_cpus_allowed_ptr(rnp->node_kthread_task, cm); | ||
1649 | rcu_boost_kthread_setaffinity(rnp, cm); | ||
1650 | free_cpumask_var(cm); | ||
1651 | } | ||
1652 | |||
1653 | /* | ||
1654 | * Spawn a per-rcu_node kthread, setting priority and affinity. | ||
1655 | * Called during boot before online/offline can happen, or, if | ||
1656 | * during runtime, with the main CPU-hotplug locks held. So only | ||
1657 | * one of these can be executing at a time. | ||
1658 | */ | ||
1659 | static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp, | ||
1660 | struct rcu_node *rnp) | ||
1661 | { | ||
1662 | unsigned long flags; | ||
1663 | int rnp_index = rnp - &rsp->node[0]; | ||
1664 | struct sched_param sp; | ||
1665 | struct task_struct *t; | ||
1666 | |||
1667 | if (!rcu_scheduler_fully_active || | ||
1668 | rnp->qsmaskinit == 0) | ||
1669 | return 0; | ||
1670 | if (rnp->node_kthread_task == NULL) { | ||
1671 | t = kthread_create(rcu_node_kthread, (void *)rnp, | ||
1672 | "rcun%d", rnp_index); | ||
1673 | if (IS_ERR(t)) | ||
1674 | return PTR_ERR(t); | ||
1675 | raw_spin_lock_irqsave(&rnp->lock, flags); | ||
1676 | rnp->node_kthread_task = t; | ||
1677 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | ||
1678 | sp.sched_priority = 99; | ||
1679 | sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); | ||
1680 | wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ | ||
1681 | } | ||
1682 | return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index); | ||
1683 | } | ||
1684 | |||
1685 | /* | ||
1686 | * Spawn all kthreads -- called as soon as the scheduler is running. | ||
1687 | */ | ||
1688 | static int __init rcu_spawn_kthreads(void) | ||
1689 | { | ||
1690 | int cpu; | ||
1691 | struct rcu_node *rnp; | ||
1692 | |||
1693 | rcu_scheduler_fully_active = 1; | ||
1694 | for_each_possible_cpu(cpu) { | ||
1695 | per_cpu(rcu_cpu_has_work, cpu) = 0; | ||
1696 | if (cpu_online(cpu)) | ||
1697 | (void)rcu_spawn_one_cpu_kthread(cpu); | ||
1698 | } | ||
1699 | rnp = rcu_get_root(rcu_state); | ||
1700 | (void)rcu_spawn_one_node_kthread(rcu_state, rnp); | ||
1701 | if (NUM_RCU_NODES > 1) { | ||
1702 | rcu_for_each_leaf_node(rcu_state, rnp) | ||
1703 | (void)rcu_spawn_one_node_kthread(rcu_state, rnp); | ||
1704 | } | ||
1705 | return 0; | ||
1706 | } | ||
1707 | early_initcall(rcu_spawn_kthreads); | ||
1708 | |||
1709 | static void __cpuinit rcu_prepare_kthreads(int cpu) | ||
1710 | { | ||
1711 | struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu); | ||
1712 | struct rcu_node *rnp = rdp->mynode; | ||
1713 | |||
1714 | /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ | ||
1715 | if (rcu_scheduler_fully_active) { | ||
1716 | (void)rcu_spawn_one_cpu_kthread(cpu); | ||
1717 | if (rnp->node_kthread_task == NULL) | ||
1718 | (void)rcu_spawn_one_node_kthread(rcu_state, rnp); | ||
1719 | } | ||
1720 | } | ||
1721 | |||
1722 | #else /* #ifdef CONFIG_RCU_BOOST */ | ||
1723 | |||
1724 | static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) | ||
1725 | { | ||
1726 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | ||
1727 | } | ||
1728 | |||
1729 | static void invoke_rcu_callbacks_kthread(void) | ||
1730 | { | ||
1731 | WARN_ON_ONCE(1); | ||
1732 | } | ||
1733 | |||
1734 | static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) | ||
1735 | { | ||
1736 | } | ||
1737 | |||
1738 | #ifdef CONFIG_HOTPLUG_CPU | ||
1739 | |||
1740 | static void rcu_stop_cpu_kthread(int cpu) | ||
1741 | { | ||
1742 | } | ||
1743 | |||
1744 | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ | ||
1745 | |||
1746 | static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) | ||
1747 | { | ||
1748 | } | ||
1749 | |||
1750 | static void rcu_cpu_kthread_setrt(int cpu, int to_rt) | ||
1751 | { | ||
1752 | } | ||
1753 | |||
1754 | static int __init rcu_scheduler_really_started(void) | ||
1755 | { | ||
1756 | rcu_scheduler_fully_active = 1; | ||
1757 | return 0; | ||
1758 | } | ||
1759 | early_initcall(rcu_scheduler_really_started); | ||
1760 | |||
1761 | static void __cpuinit rcu_prepare_kthreads(int cpu) | ||
1762 | { | ||
1763 | } | ||
1764 | |||
1765 | #endif /* #else #ifdef CONFIG_RCU_BOOST */ | ||
1766 | |||
1767 | #ifndef CONFIG_SMP | ||
1768 | |||
1769 | void synchronize_sched_expedited(void) | ||
1770 | { | ||
1771 | cond_resched(); | ||
1772 | } | ||
1773 | EXPORT_SYMBOL_GPL(synchronize_sched_expedited); | ||
1774 | |||
1775 | #else /* #ifndef CONFIG_SMP */ | ||
1776 | |||
1777 | static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0); | ||
1778 | static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0); | ||
1779 | |||
1780 | static int synchronize_sched_expedited_cpu_stop(void *data) | ||
1781 | { | ||
1782 | /* | ||
1783 | * There must be a full memory barrier on each affected CPU | ||
1784 | * between the time that try_stop_cpus() is called and the | ||
1785 | * time that it returns. | ||
1786 | * | ||
1787 | * In the current initial implementation of cpu_stop, the | ||
1788 | * above condition is already met when the control reaches | ||
1789 | * this point and the following smp_mb() is not strictly | ||
1790 | * necessary. Do smp_mb() anyway for documentation and | ||
1791 | * robustness against future implementation changes. | ||
1792 | */ | ||
1793 | smp_mb(); /* See above comment block. */ | ||
1794 | return 0; | ||
1795 | } | ||
1796 | |||
1797 | /* | ||
1798 | * Wait for an rcu-sched grace period to elapse, but use "big hammer" | ||
1799 | * approach to force grace period to end quickly. This consumes | ||
1800 | * significant time on all CPUs, and is thus not recommended for | ||
1801 | * any sort of common-case code. | ||
1802 | * | ||
1803 | * Note that it is illegal to call this function while holding any | ||
1804 | * lock that is acquired by a CPU-hotplug notifier. Failing to | ||
1805 | * observe this restriction will result in deadlock. | ||
1806 | * | ||
1807 | * This implementation can be thought of as an application of ticket | ||
1808 | * locking to RCU, with sync_sched_expedited_started and | ||
1809 | * sync_sched_expedited_done taking on the roles of the halves | ||
1810 | * of the ticket-lock word. Each task atomically increments | ||
1811 | * sync_sched_expedited_started upon entry, snapshotting the old value, | ||
1812 | * then attempts to stop all the CPUs. If this succeeds, then each | ||
1813 | * CPU will have executed a context switch, resulting in an RCU-sched | ||
1814 | * grace period. We are then done, so we use atomic_cmpxchg() to | ||
1815 | * update sync_sched_expedited_done to match our snapshot -- but | ||
1816 | * only if someone else has not already advanced past our snapshot. | ||
1817 | * | ||
1818 | * On the other hand, if try_stop_cpus() fails, we check the value | ||
1819 | * of sync_sched_expedited_done. If it has advanced past our | ||
1820 | * initial snapshot, then someone else must have forced a grace period | ||
1821 | * some time after we took our snapshot. In this case, our work is | ||
1822 | * done for us, and we can simply return. Otherwise, we try again, | ||
1823 | * but keep our initial snapshot for purposes of checking for someone | ||
1824 | * doing our work for us. | ||
1825 | * | ||
1826 | * If we fail too many times in a row, we fall back to synchronize_sched(). | ||
1827 | */ | ||
1828 | void synchronize_sched_expedited(void) | ||
1829 | { | ||
1830 | int firstsnap, s, snap, trycount = 0; | ||
1831 | |||
1832 | /* Note that atomic_inc_return() implies full memory barrier. */ | ||
1833 | firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started); | ||
1834 | get_online_cpus(); | ||
1835 | |||
1836 | /* | ||
1837 | * Each pass through the following loop attempts to force a | ||
1838 | * context switch on each CPU. | ||
1839 | */ | ||
1840 | while (try_stop_cpus(cpu_online_mask, | ||
1841 | synchronize_sched_expedited_cpu_stop, | ||
1842 | NULL) == -EAGAIN) { | ||
1843 | put_online_cpus(); | ||
1844 | |||
1845 | /* No joy, try again later. Or just synchronize_sched(). */ | ||
1846 | if (trycount++ < 10) | ||
1847 | udelay(trycount * num_online_cpus()); | ||
1848 | else { | ||
1849 | synchronize_sched(); | ||
1850 | return; | ||
1851 | } | ||
1852 | |||
1853 | /* Check to see if someone else did our work for us. */ | ||
1854 | s = atomic_read(&sync_sched_expedited_done); | ||
1855 | if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) { | ||
1856 | smp_mb(); /* ensure test happens before caller kfree */ | ||
1857 | return; | ||
1858 | } | ||
1859 | |||
1860 | /* | ||
1861 | * Refetching sync_sched_expedited_started allows later | ||
1862 | * callers to piggyback on our grace period. We subtract | ||
1863 | * 1 to get the same token that the last incrementer got. | ||
1864 | * We retry after they started, so our grace period works | ||
1865 | * for them, and they started after our first try, so their | ||
1866 | * grace period works for us. | ||
1867 | */ | ||
1868 | get_online_cpus(); | ||
1869 | snap = atomic_read(&sync_sched_expedited_started) - 1; | ||
1870 | smp_mb(); /* ensure read is before try_stop_cpus(). */ | ||
1871 | } | ||
1872 | |||
1873 | /* | ||
1874 | * Everyone up to our most recent fetch is covered by our grace | ||
1875 | * period. Update the counter, but only if our work is still | ||
1876 | * relevant -- which it won't be if someone who started later | ||
1877 | * than we did beat us to the punch. | ||
1878 | */ | ||
1879 | do { | ||
1880 | s = atomic_read(&sync_sched_expedited_done); | ||
1881 | if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) { | ||
1882 | smp_mb(); /* ensure test happens before caller kfree */ | ||
1883 | break; | ||
1884 | } | ||
1885 | } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s); | ||
1886 | |||
1887 | put_online_cpus(); | ||
1888 | } | ||
1889 | EXPORT_SYMBOL_GPL(synchronize_sched_expedited); | ||
1890 | |||
1891 | #endif /* #else #ifndef CONFIG_SMP */ | ||
1892 | |||
1004 | #if !defined(CONFIG_RCU_FAST_NO_HZ) | 1893 | #if !defined(CONFIG_RCU_FAST_NO_HZ) |
1005 | 1894 | ||
1006 | /* | 1895 | /* |
@@ -1047,14 +1936,13 @@ static DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff); | |||
1047 | * | 1936 | * |
1048 | * Because it is not legal to invoke rcu_process_callbacks() with irqs | 1937 | * Because it is not legal to invoke rcu_process_callbacks() with irqs |
1049 | * disabled, we do one pass of force_quiescent_state(), then do a | 1938 | * disabled, we do one pass of force_quiescent_state(), then do a |
1050 | * raise_softirq() to cause rcu_process_callbacks() to be invoked later. | 1939 | * invoke_rcu_core() to cause rcu_process_callbacks() to be invoked |
1051 | * The per-cpu rcu_dyntick_drain variable controls the sequencing. | 1940 | * later. The per-cpu rcu_dyntick_drain variable controls the sequencing. |
1052 | */ | 1941 | */ |
1053 | int rcu_needs_cpu(int cpu) | 1942 | int rcu_needs_cpu(int cpu) |
1054 | { | 1943 | { |
1055 | int c = 0; | 1944 | int c = 0; |
1056 | int snap; | 1945 | int snap; |
1057 | int snap_nmi; | ||
1058 | int thatcpu; | 1946 | int thatcpu; |
1059 | 1947 | ||
1060 | /* Check for being in the holdoff period. */ | 1948 | /* Check for being in the holdoff period. */ |
@@ -1065,10 +1953,10 @@ int rcu_needs_cpu(int cpu) | |||
1065 | for_each_online_cpu(thatcpu) { | 1953 | for_each_online_cpu(thatcpu) { |
1066 | if (thatcpu == cpu) | 1954 | if (thatcpu == cpu) |
1067 | continue; | 1955 | continue; |
1068 | snap = per_cpu(rcu_dynticks, thatcpu).dynticks; | 1956 | snap = atomic_add_return(0, &per_cpu(rcu_dynticks, |
1069 | snap_nmi = per_cpu(rcu_dynticks, thatcpu).dynticks_nmi; | 1957 | thatcpu).dynticks); |
1070 | smp_mb(); /* Order sampling of snap with end of grace period. */ | 1958 | smp_mb(); /* Order sampling of snap with end of grace period. */ |
1071 | if (((snap & 0x1) != 0) || ((snap_nmi & 0x1) != 0)) { | 1959 | if ((snap & 0x1) != 0) { |
1072 | per_cpu(rcu_dyntick_drain, cpu) = 0; | 1960 | per_cpu(rcu_dyntick_drain, cpu) = 0; |
1073 | per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1; | 1961 | per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1; |
1074 | return rcu_needs_cpu_quick_check(cpu); | 1962 | return rcu_needs_cpu_quick_check(cpu); |
@@ -1099,7 +1987,7 @@ int rcu_needs_cpu(int cpu) | |||
1099 | 1987 | ||
1100 | /* If RCU callbacks are still pending, RCU still needs this CPU. */ | 1988 | /* If RCU callbacks are still pending, RCU still needs this CPU. */ |
1101 | if (c) | 1989 | if (c) |
1102 | raise_softirq(RCU_SOFTIRQ); | 1990 | invoke_rcu_core(); |
1103 | return c; | 1991 | return c; |
1104 | } | 1992 | } |
1105 | 1993 | ||