diff options
Diffstat (limited to 'kernel/rcutree_plugin.h')
| -rw-r--r-- | kernel/rcutree_plugin.h | 532 |
1 files changed, 532 insertions, 0 deletions
diff --git a/kernel/rcutree_plugin.h b/kernel/rcutree_plugin.h new file mode 100644 index 000000000000..47789369ea59 --- /dev/null +++ b/kernel/rcutree_plugin.h | |||
| @@ -0,0 +1,532 @@ | |||
| 1 | /* | ||
| 2 | * Read-Copy Update mechanism for mutual exclusion (tree-based version) | ||
| 3 | * Internal non-public definitions that provide either classic | ||
| 4 | * or preemptable semantics. | ||
| 5 | * | ||
| 6 | * This program is free software; you can redistribute it and/or modify | ||
| 7 | * it under the terms of the GNU General Public License as published by | ||
| 8 | * the Free Software Foundation; either version 2 of the License, or | ||
| 9 | * (at your option) any later version. | ||
| 10 | * | ||
| 11 | * This program is distributed in the hope that it will be useful, | ||
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 14 | * GNU General Public License for more details. | ||
| 15 | * | ||
| 16 | * You should have received a copy of the GNU General Public License | ||
| 17 | * along with this program; if not, write to the Free Software | ||
| 18 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
| 19 | * | ||
| 20 | * Copyright Red Hat, 2009 | ||
| 21 | * Copyright IBM Corporation, 2009 | ||
| 22 | * | ||
| 23 | * Author: Ingo Molnar <mingo@elte.hu> | ||
| 24 | * Paul E. McKenney <paulmck@linux.vnet.ibm.com> | ||
| 25 | */ | ||
| 26 | |||
| 27 | |||
| 28 | #ifdef CONFIG_TREE_PREEMPT_RCU | ||
| 29 | |||
| 30 | struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state); | ||
| 31 | DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data); | ||
| 32 | |||
| 33 | /* | ||
| 34 | * Tell them what RCU they are running. | ||
| 35 | */ | ||
| 36 | static inline void rcu_bootup_announce(void) | ||
| 37 | { | ||
| 38 | printk(KERN_INFO | ||
| 39 | "Experimental preemptable hierarchical RCU implementation.\n"); | ||
| 40 | } | ||
| 41 | |||
| 42 | /* | ||
| 43 | * Return the number of RCU-preempt batches processed thus far | ||
| 44 | * for debug and statistics. | ||
| 45 | */ | ||
| 46 | long rcu_batches_completed_preempt(void) | ||
| 47 | { | ||
| 48 | return rcu_preempt_state.completed; | ||
| 49 | } | ||
| 50 | EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt); | ||
| 51 | |||
| 52 | /* | ||
| 53 | * Return the number of RCU batches processed thus far for debug & stats. | ||
| 54 | */ | ||
| 55 | long rcu_batches_completed(void) | ||
| 56 | { | ||
| 57 | return rcu_batches_completed_preempt(); | ||
| 58 | } | ||
| 59 | EXPORT_SYMBOL_GPL(rcu_batches_completed); | ||
| 60 | |||
| 61 | /* | ||
| 62 | * Record a preemptable-RCU quiescent state for the specified CPU. Note | ||
| 63 | * that this just means that the task currently running on the CPU is | ||
| 64 | * not in a quiescent state. There might be any number of tasks blocked | ||
| 65 | * while in an RCU read-side critical section. | ||
| 66 | */ | ||
| 67 | static void rcu_preempt_qs_record(int cpu) | ||
| 68 | { | ||
| 69 | struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu); | ||
| 70 | rdp->passed_quiesc = 1; | ||
| 71 | rdp->passed_quiesc_completed = rdp->completed; | ||
| 72 | } | ||
| 73 | |||
| 74 | /* | ||
| 75 | * We have entered the scheduler or are between softirqs in ksoftirqd. | ||
| 76 | * If we are in an RCU read-side critical section, we need to reflect | ||
| 77 | * that in the state of the rcu_node structure corresponding to this CPU. | ||
| 78 | * Caller must disable hardirqs. | ||
| 79 | */ | ||
| 80 | static void rcu_preempt_qs(int cpu) | ||
| 81 | { | ||
| 82 | struct task_struct *t = current; | ||
| 83 | int phase; | ||
| 84 | struct rcu_data *rdp; | ||
| 85 | struct rcu_node *rnp; | ||
| 86 | |||
| 87 | if (t->rcu_read_lock_nesting && | ||
| 88 | (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) { | ||
| 89 | |||
| 90 | /* Possibly blocking in an RCU read-side critical section. */ | ||
| 91 | rdp = rcu_preempt_state.rda[cpu]; | ||
| 92 | rnp = rdp->mynode; | ||
| 93 | spin_lock(&rnp->lock); | ||
| 94 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED; | ||
| 95 | t->rcu_blocked_node = rnp; | ||
| 96 | |||
| 97 | /* | ||
| 98 | * If this CPU has already checked in, then this task | ||
| 99 | * will hold up the next grace period rather than the | ||
| 100 | * current grace period. Queue the task accordingly. | ||
| 101 | * If the task is queued for the current grace period | ||
| 102 | * (i.e., this CPU has not yet passed through a quiescent | ||
| 103 | * state for the current grace period), then as long | ||
| 104 | * as that task remains queued, the current grace period | ||
| 105 | * cannot end. | ||
| 106 | */ | ||
| 107 | phase = !(rnp->qsmask & rdp->grpmask) ^ (rnp->gpnum & 0x1); | ||
| 108 | list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]); | ||
| 109 | smp_mb(); /* Ensure later ctxt swtch seen after above. */ | ||
| 110 | spin_unlock(&rnp->lock); | ||
| 111 | } | ||
| 112 | |||
| 113 | /* | ||
| 114 | * Either we were not in an RCU read-side critical section to | ||
| 115 | * begin with, or we have now recorded that critical section | ||
| 116 | * globally. Either way, we can now note a quiescent state | ||
| 117 | * for this CPU. Again, if we were in an RCU read-side critical | ||
| 118 | * section, and if that critical section was blocking the current | ||
| 119 | * grace period, then the fact that the task has been enqueued | ||
| 120 | * means that we continue to block the current grace period. | ||
| 121 | */ | ||
| 122 | rcu_preempt_qs_record(cpu); | ||
| 123 | t->rcu_read_unlock_special &= ~(RCU_READ_UNLOCK_NEED_QS | | ||
| 124 | RCU_READ_UNLOCK_GOT_QS); | ||
| 125 | } | ||
| 126 | |||
| 127 | /* | ||
| 128 | * Tree-preemptable RCU implementation for rcu_read_lock(). | ||
| 129 | * Just increment ->rcu_read_lock_nesting, shared state will be updated | ||
| 130 | * if we block. | ||
| 131 | */ | ||
| 132 | void __rcu_read_lock(void) | ||
| 133 | { | ||
| 134 | ACCESS_ONCE(current->rcu_read_lock_nesting)++; | ||
| 135 | barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */ | ||
| 136 | } | ||
| 137 | EXPORT_SYMBOL_GPL(__rcu_read_lock); | ||
| 138 | |||
| 139 | static void rcu_read_unlock_special(struct task_struct *t) | ||
| 140 | { | ||
| 141 | int empty; | ||
| 142 | unsigned long flags; | ||
| 143 | unsigned long mask; | ||
| 144 | struct rcu_node *rnp; | ||
| 145 | int special; | ||
| 146 | |||
| 147 | /* NMI handlers cannot block and cannot safely manipulate state. */ | ||
| 148 | if (in_nmi()) | ||
| 149 | return; | ||
| 150 | |||
| 151 | local_irq_save(flags); | ||
| 152 | |||
| 153 | /* | ||
| 154 | * If RCU core is waiting for this CPU to exit critical section, | ||
| 155 | * let it know that we have done so. | ||
| 156 | */ | ||
| 157 | special = t->rcu_read_unlock_special; | ||
| 158 | if (special & RCU_READ_UNLOCK_NEED_QS) { | ||
| 159 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; | ||
| 160 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_GOT_QS; | ||
| 161 | } | ||
| 162 | |||
| 163 | /* Hardware IRQ handlers cannot block. */ | ||
| 164 | if (in_irq()) { | ||
| 165 | local_irq_restore(flags); | ||
| 166 | return; | ||
| 167 | } | ||
| 168 | |||
| 169 | /* Clean up if blocked during RCU read-side critical section. */ | ||
| 170 | if (special & RCU_READ_UNLOCK_BLOCKED) { | ||
| 171 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED; | ||
| 172 | |||
| 173 | /* | ||
| 174 | * Remove this task from the list it blocked on. The | ||
| 175 | * task can migrate while we acquire the lock, but at | ||
| 176 | * most one time. So at most two passes through loop. | ||
| 177 | */ | ||
| 178 | for (;;) { | ||
| 179 | rnp = t->rcu_blocked_node; | ||
| 180 | spin_lock(&rnp->lock); | ||
| 181 | if (rnp == t->rcu_blocked_node) | ||
| 182 | break; | ||
| 183 | spin_unlock(&rnp->lock); | ||
| 184 | } | ||
| 185 | empty = list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]); | ||
| 186 | list_del_init(&t->rcu_node_entry); | ||
| 187 | t->rcu_blocked_node = NULL; | ||
| 188 | |||
| 189 | /* | ||
| 190 | * If this was the last task on the current list, and if | ||
| 191 | * we aren't waiting on any CPUs, report the quiescent state. | ||
| 192 | * Note that both cpu_quiet_msk_finish() and cpu_quiet_msk() | ||
| 193 | * drop rnp->lock and restore irq. | ||
| 194 | */ | ||
| 195 | if (!empty && rnp->qsmask == 0 && | ||
| 196 | list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1])) { | ||
| 197 | t->rcu_read_unlock_special &= | ||
| 198 | ~(RCU_READ_UNLOCK_NEED_QS | | ||
| 199 | RCU_READ_UNLOCK_GOT_QS); | ||
| 200 | if (rnp->parent == NULL) { | ||
| 201 | /* Only one rcu_node in the tree. */ | ||
| 202 | cpu_quiet_msk_finish(&rcu_preempt_state, flags); | ||
| 203 | return; | ||
| 204 | } | ||
| 205 | /* Report up the rest of the hierarchy. */ | ||
| 206 | mask = rnp->grpmask; | ||
| 207 | spin_unlock_irqrestore(&rnp->lock, flags); | ||
| 208 | rnp = rnp->parent; | ||
| 209 | spin_lock_irqsave(&rnp->lock, flags); | ||
| 210 | cpu_quiet_msk(mask, &rcu_preempt_state, rnp, flags); | ||
| 211 | return; | ||
| 212 | } | ||
| 213 | spin_unlock(&rnp->lock); | ||
| 214 | } | ||
| 215 | local_irq_restore(flags); | ||
| 216 | } | ||
| 217 | |||
| 218 | /* | ||
| 219 | * Tree-preemptable RCU implementation for rcu_read_unlock(). | ||
| 220 | * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost | ||
| 221 | * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then | ||
| 222 | * invoke rcu_read_unlock_special() to clean up after a context switch | ||
| 223 | * in an RCU read-side critical section and other special cases. | ||
| 224 | */ | ||
| 225 | void __rcu_read_unlock(void) | ||
| 226 | { | ||
| 227 | struct task_struct *t = current; | ||
| 228 | |||
| 229 | barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */ | ||
| 230 | if (--ACCESS_ONCE(t->rcu_read_lock_nesting) == 0 && | ||
| 231 | unlikely(ACCESS_ONCE(t->rcu_read_unlock_special))) | ||
| 232 | rcu_read_unlock_special(t); | ||
| 233 | } | ||
| 234 | EXPORT_SYMBOL_GPL(__rcu_read_unlock); | ||
| 235 | |||
| 236 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR | ||
| 237 | |||
| 238 | /* | ||
| 239 | * Scan the current list of tasks blocked within RCU read-side critical | ||
| 240 | * sections, printing out the tid of each. | ||
| 241 | */ | ||
| 242 | static void rcu_print_task_stall(struct rcu_node *rnp) | ||
| 243 | { | ||
| 244 | unsigned long flags; | ||
| 245 | struct list_head *lp; | ||
| 246 | int phase = rnp->gpnum & 0x1; | ||
| 247 | struct task_struct *t; | ||
| 248 | |||
| 249 | if (!list_empty(&rnp->blocked_tasks[phase])) { | ||
| 250 | spin_lock_irqsave(&rnp->lock, flags); | ||
| 251 | phase = rnp->gpnum & 0x1; /* re-read under lock. */ | ||
| 252 | lp = &rnp->blocked_tasks[phase]; | ||
| 253 | list_for_each_entry(t, lp, rcu_node_entry) | ||
| 254 | printk(" P%d", t->pid); | ||
| 255 | spin_unlock_irqrestore(&rnp->lock, flags); | ||
| 256 | } | ||
| 257 | } | ||
| 258 | |||
| 259 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | ||
| 260 | |||
| 261 | /* | ||
| 262 | * Check for preempted RCU readers for the specified rcu_node structure. | ||
| 263 | * If the caller needs a reliable answer, it must hold the rcu_node's | ||
| 264 | * >lock. | ||
| 265 | */ | ||
| 266 | static int rcu_preempted_readers(struct rcu_node *rnp) | ||
| 267 | { | ||
| 268 | return !list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]); | ||
| 269 | } | ||
| 270 | |||
| 271 | #ifdef CONFIG_HOTPLUG_CPU | ||
| 272 | |||
| 273 | /* | ||
| 274 | * Handle tasklist migration for case in which all CPUs covered by the | ||
| 275 | * specified rcu_node have gone offline. Move them up to the root | ||
| 276 | * rcu_node. The reason for not just moving them to the immediate | ||
| 277 | * parent is to remove the need for rcu_read_unlock_special() to | ||
| 278 | * make more than two attempts to acquire the target rcu_node's lock. | ||
| 279 | * | ||
| 280 | * The caller must hold rnp->lock with irqs disabled. | ||
| 281 | */ | ||
| 282 | static void rcu_preempt_offline_tasks(struct rcu_state *rsp, | ||
| 283 | struct rcu_node *rnp) | ||
| 284 | { | ||
| 285 | int i; | ||
| 286 | struct list_head *lp; | ||
| 287 | struct list_head *lp_root; | ||
| 288 | struct rcu_node *rnp_root = rcu_get_root(rsp); | ||
| 289 | struct task_struct *tp; | ||
| 290 | |||
| 291 | if (rnp == rnp_root) { | ||
| 292 | WARN_ONCE(1, "Last CPU thought to be offlined?"); | ||
| 293 | return; /* Shouldn't happen: at least one CPU online. */ | ||
| 294 | } | ||
| 295 | |||
| 296 | /* | ||
| 297 | * Move tasks up to root rcu_node. Rely on the fact that the | ||
| 298 | * root rcu_node can be at most one ahead of the rest of the | ||
| 299 | * rcu_nodes in terms of gp_num value. This fact allows us to | ||
| 300 | * move the blocked_tasks[] array directly, element by element. | ||
| 301 | */ | ||
| 302 | for (i = 0; i < 2; i++) { | ||
| 303 | lp = &rnp->blocked_tasks[i]; | ||
| 304 | lp_root = &rnp_root->blocked_tasks[i]; | ||
| 305 | while (!list_empty(lp)) { | ||
| 306 | tp = list_entry(lp->next, typeof(*tp), rcu_node_entry); | ||
| 307 | spin_lock(&rnp_root->lock); /* irqs already disabled */ | ||
| 308 | list_del(&tp->rcu_node_entry); | ||
| 309 | tp->rcu_blocked_node = rnp_root; | ||
| 310 | list_add(&tp->rcu_node_entry, lp_root); | ||
| 311 | spin_unlock(&rnp_root->lock); /* irqs remain disabled */ | ||
| 312 | } | ||
| 313 | } | ||
| 314 | } | ||
| 315 | |||
| 316 | /* | ||
| 317 | * Do CPU-offline processing for preemptable RCU. | ||
| 318 | */ | ||
| 319 | static void rcu_preempt_offline_cpu(int cpu) | ||
| 320 | { | ||
| 321 | __rcu_offline_cpu(cpu, &rcu_preempt_state); | ||
| 322 | } | ||
| 323 | |||
| 324 | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ | ||
| 325 | |||
| 326 | /* | ||
| 327 | * Check for a quiescent state from the current CPU. When a task blocks, | ||
| 328 | * the task is recorded in the corresponding CPU's rcu_node structure, | ||
| 329 | * which is checked elsewhere. | ||
| 330 | * | ||
| 331 | * Caller must disable hard irqs. | ||
| 332 | */ | ||
| 333 | static void rcu_preempt_check_callbacks(int cpu) | ||
| 334 | { | ||
| 335 | struct task_struct *t = current; | ||
| 336 | |||
| 337 | if (t->rcu_read_lock_nesting == 0) { | ||
| 338 | t->rcu_read_unlock_special &= | ||
| 339 | ~(RCU_READ_UNLOCK_NEED_QS | RCU_READ_UNLOCK_GOT_QS); | ||
| 340 | rcu_preempt_qs_record(cpu); | ||
| 341 | return; | ||
| 342 | } | ||
| 343 | if (per_cpu(rcu_preempt_data, cpu).qs_pending) { | ||
| 344 | if (t->rcu_read_unlock_special & RCU_READ_UNLOCK_GOT_QS) { | ||
| 345 | rcu_preempt_qs_record(cpu); | ||
| 346 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_GOT_QS; | ||
| 347 | } else if (!(t->rcu_read_unlock_special & | ||
| 348 | RCU_READ_UNLOCK_NEED_QS)) { | ||
| 349 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS; | ||
| 350 | } | ||
| 351 | } | ||
| 352 | } | ||
| 353 | |||
| 354 | /* | ||
| 355 | * Process callbacks for preemptable RCU. | ||
| 356 | */ | ||
| 357 | static void rcu_preempt_process_callbacks(void) | ||
| 358 | { | ||
| 359 | __rcu_process_callbacks(&rcu_preempt_state, | ||
| 360 | &__get_cpu_var(rcu_preempt_data)); | ||
| 361 | } | ||
| 362 | |||
| 363 | /* | ||
| 364 | * Queue a preemptable-RCU callback for invocation after a grace period. | ||
| 365 | */ | ||
| 366 | void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | ||
| 367 | { | ||
| 368 | __call_rcu(head, func, &rcu_preempt_state); | ||
| 369 | } | ||
| 370 | EXPORT_SYMBOL_GPL(call_rcu); | ||
| 371 | |||
| 372 | /* | ||
| 373 | * Check to see if there is any immediate preemptable-RCU-related work | ||
| 374 | * to be done. | ||
| 375 | */ | ||
| 376 | static int rcu_preempt_pending(int cpu) | ||
| 377 | { | ||
| 378 | return __rcu_pending(&rcu_preempt_state, | ||
| 379 | &per_cpu(rcu_preempt_data, cpu)); | ||
| 380 | } | ||
| 381 | |||
| 382 | /* | ||
| 383 | * Does preemptable RCU need the CPU to stay out of dynticks mode? | ||
| 384 | */ | ||
| 385 | static int rcu_preempt_needs_cpu(int cpu) | ||
| 386 | { | ||
| 387 | return !!per_cpu(rcu_preempt_data, cpu).nxtlist; | ||
| 388 | } | ||
| 389 | |||
| 390 | /* | ||
| 391 | * Initialize preemptable RCU's per-CPU data. | ||
| 392 | */ | ||
| 393 | static void __cpuinit rcu_preempt_init_percpu_data(int cpu) | ||
| 394 | { | ||
| 395 | rcu_init_percpu_data(cpu, &rcu_preempt_state, 1); | ||
| 396 | } | ||
| 397 | |||
| 398 | /* | ||
| 399 | * Check for a task exiting while in a preemptable-RCU read-side | ||
| 400 | * critical section, clean up if so. No need to issue warnings, | ||
| 401 | * as debug_check_no_locks_held() already does this if lockdep | ||
| 402 | * is enabled. | ||
| 403 | */ | ||
| 404 | void exit_rcu(void) | ||
| 405 | { | ||
| 406 | struct task_struct *t = current; | ||
| 407 | |||
| 408 | if (t->rcu_read_lock_nesting == 0) | ||
| 409 | return; | ||
| 410 | t->rcu_read_lock_nesting = 1; | ||
| 411 | rcu_read_unlock(); | ||
| 412 | } | ||
| 413 | |||
| 414 | #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */ | ||
| 415 | |||
| 416 | /* | ||
| 417 | * Tell them what RCU they are running. | ||
| 418 | */ | ||
| 419 | static inline void rcu_bootup_announce(void) | ||
| 420 | { | ||
| 421 | printk(KERN_INFO "Hierarchical RCU implementation.\n"); | ||
| 422 | } | ||
| 423 | |||
| 424 | /* | ||
| 425 | * Return the number of RCU batches processed thus far for debug & stats. | ||
| 426 | */ | ||
| 427 | long rcu_batches_completed(void) | ||
| 428 | { | ||
| 429 | return rcu_batches_completed_sched(); | ||
| 430 | } | ||
| 431 | EXPORT_SYMBOL_GPL(rcu_batches_completed); | ||
| 432 | |||
| 433 | /* | ||
| 434 | * Because preemptable RCU does not exist, we never have to check for | ||
| 435 | * CPUs being in quiescent states. | ||
| 436 | */ | ||
| 437 | static void rcu_preempt_qs(int cpu) | ||
| 438 | { | ||
| 439 | } | ||
| 440 | |||
| 441 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR | ||
| 442 | |||
| 443 | /* | ||
| 444 | * Because preemptable RCU does not exist, we never have to check for | ||
| 445 | * tasks blocked within RCU read-side critical sections. | ||
| 446 | */ | ||
| 447 | static void rcu_print_task_stall(struct rcu_node *rnp) | ||
| 448 | { | ||
| 449 | } | ||
| 450 | |||
| 451 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | ||
| 452 | |||
| 453 | /* | ||
| 454 | * Because preemptable RCU does not exist, there are never any preempted | ||
| 455 | * RCU readers. | ||
| 456 | */ | ||
| 457 | static int rcu_preempted_readers(struct rcu_node *rnp) | ||
| 458 | { | ||
| 459 | return 0; | ||
| 460 | } | ||
| 461 | |||
| 462 | #ifdef CONFIG_HOTPLUG_CPU | ||
| 463 | |||
| 464 | /* | ||
| 465 | * Because preemptable RCU does not exist, it never needs to migrate | ||
| 466 | * tasks that were blocked within RCU read-side critical sections. | ||
| 467 | */ | ||
| 468 | static void rcu_preempt_offline_tasks(struct rcu_state *rsp, | ||
| 469 | struct rcu_node *rnp) | ||
| 470 | { | ||
| 471 | } | ||
| 472 | |||
| 473 | /* | ||
| 474 | * Because preemptable RCU does not exist, it never needs CPU-offline | ||
| 475 | * processing. | ||
| 476 | */ | ||
| 477 | static void rcu_preempt_offline_cpu(int cpu) | ||
| 478 | { | ||
| 479 | } | ||
| 480 | |||
| 481 | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ | ||
| 482 | |||
| 483 | /* | ||
| 484 | * Because preemptable RCU does not exist, it never has any callbacks | ||
| 485 | * to check. | ||
| 486 | */ | ||
| 487 | void rcu_preempt_check_callbacks(int cpu) | ||
| 488 | { | ||
| 489 | } | ||
| 490 | |||
| 491 | /* | ||
| 492 | * Because preemptable RCU does not exist, it never has any callbacks | ||
| 493 | * to process. | ||
| 494 | */ | ||
| 495 | void rcu_preempt_process_callbacks(void) | ||
| 496 | { | ||
| 497 | } | ||
| 498 | |||
| 499 | /* | ||
| 500 | * In classic RCU, call_rcu() is just call_rcu_sched(). | ||
| 501 | */ | ||
| 502 | void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | ||
| 503 | { | ||
| 504 | call_rcu_sched(head, func); | ||
| 505 | } | ||
| 506 | EXPORT_SYMBOL_GPL(call_rcu); | ||
| 507 | |||
| 508 | /* | ||
| 509 | * Because preemptable RCU does not exist, it never has any work to do. | ||
| 510 | */ | ||
| 511 | static int rcu_preempt_pending(int cpu) | ||
| 512 | { | ||
| 513 | return 0; | ||
| 514 | } | ||
| 515 | |||
| 516 | /* | ||
| 517 | * Because preemptable RCU does not exist, it never needs any CPU. | ||
| 518 | */ | ||
| 519 | static int rcu_preempt_needs_cpu(int cpu) | ||
| 520 | { | ||
| 521 | return 0; | ||
| 522 | } | ||
| 523 | |||
| 524 | /* | ||
| 525 | * Because preemptable RCU does not exist, there is no per-CPU | ||
| 526 | * data to initialize. | ||
| 527 | */ | ||
| 528 | static void __cpuinit rcu_preempt_init_percpu_data(int cpu) | ||
| 529 | { | ||
| 530 | } | ||
| 531 | |||
| 532 | #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */ | ||
