aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/rcutree_plugin.h
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/rcutree_plugin.h')
-rw-r--r--kernel/rcutree_plugin.h447
1 files changed, 447 insertions, 0 deletions
diff --git a/kernel/rcutree_plugin.h b/kernel/rcutree_plugin.h
new file mode 100644
index 000000000000..cd2ab67400c6
--- /dev/null
+++ b/kernel/rcutree_plugin.h
@@ -0,0 +1,447 @@
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptable semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27
28#ifdef CONFIG_TREE_PREEMPT_RCU
29
30struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state);
31DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
32
33/*
34 * Tell them what RCU they are running.
35 */
36static inline void rcu_bootup_announce(void)
37{
38 printk(KERN_INFO
39 "Experimental preemptable hierarchical RCU implementation.\n");
40}
41
42/*
43 * Return the number of RCU-preempt batches processed thus far
44 * for debug and statistics.
45 */
46long rcu_batches_completed_preempt(void)
47{
48 return rcu_preempt_state.completed;
49}
50EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
51
52/*
53 * Return the number of RCU batches processed thus far for debug & stats.
54 */
55long rcu_batches_completed(void)
56{
57 return rcu_batches_completed_preempt();
58}
59EXPORT_SYMBOL_GPL(rcu_batches_completed);
60
61/*
62 * Record a preemptable-RCU quiescent state for the specified CPU. Note
63 * that this just means that the task currently running on the CPU is
64 * not in a quiescent state. There might be any number of tasks blocked
65 * while in an RCU read-side critical section.
66 */
67static void rcu_preempt_qs_record(int cpu)
68{
69 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
70 rdp->passed_quiesc = 1;
71 rdp->passed_quiesc_completed = rdp->completed;
72}
73
74/*
75 * We have entered the scheduler or are between softirqs in ksoftirqd.
76 * If we are in an RCU read-side critical section, we need to reflect
77 * that in the state of the rcu_node structure corresponding to this CPU.
78 * Caller must disable hardirqs.
79 */
80static void rcu_preempt_qs(int cpu)
81{
82 struct task_struct *t = current;
83 int phase;
84 struct rcu_data *rdp;
85 struct rcu_node *rnp;
86
87 if (t->rcu_read_lock_nesting &&
88 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
89
90 /* Possibly blocking in an RCU read-side critical section. */
91 rdp = rcu_preempt_state.rda[cpu];
92 rnp = rdp->mynode;
93 spin_lock(&rnp->lock);
94 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
95 t->rcu_blocked_cpu = cpu;
96
97 /*
98 * If this CPU has already checked in, then this task
99 * will hold up the next grace period rather than the
100 * current grace period. Queue the task accordingly.
101 * If the task is queued for the current grace period
102 * (i.e., this CPU has not yet passed through a quiescent
103 * state for the current grace period), then as long
104 * as that task remains queued, the current grace period
105 * cannot end.
106 */
107 phase = !(rnp->qsmask & rdp->grpmask) ^ (rnp->gpnum & 0x1);
108 list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]);
109 smp_mb(); /* Ensure later ctxt swtch seen after above. */
110 spin_unlock(&rnp->lock);
111 }
112
113 /*
114 * Either we were not in an RCU read-side critical section to
115 * begin with, or we have now recorded that critical section
116 * globally. Either way, we can now note a quiescent state
117 * for this CPU. Again, if we were in an RCU read-side critical
118 * section, and if that critical section was blocking the current
119 * grace period, then the fact that the task has been enqueued
120 * means that we continue to block the current grace period.
121 */
122 rcu_preempt_qs_record(cpu);
123 t->rcu_read_unlock_special &= ~(RCU_READ_UNLOCK_NEED_QS |
124 RCU_READ_UNLOCK_GOT_QS);
125}
126
127/*
128 * Tree-preemptable RCU implementation for rcu_read_lock().
129 * Just increment ->rcu_read_lock_nesting, shared state will be updated
130 * if we block.
131 */
132void __rcu_read_lock(void)
133{
134 ACCESS_ONCE(current->rcu_read_lock_nesting)++;
135 barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */
136}
137EXPORT_SYMBOL_GPL(__rcu_read_lock);
138
139static void rcu_read_unlock_special(struct task_struct *t)
140{
141 int empty;
142 unsigned long flags;
143 unsigned long mask;
144 struct rcu_node *rnp;
145 int special;
146
147 /* NMI handlers cannot block and cannot safely manipulate state. */
148 if (in_nmi())
149 return;
150
151 local_irq_save(flags);
152
153 /*
154 * If RCU core is waiting for this CPU to exit critical section,
155 * let it know that we have done so.
156 */
157 special = t->rcu_read_unlock_special;
158 if (special & RCU_READ_UNLOCK_NEED_QS) {
159 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
160 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_GOT_QS;
161 }
162
163 /* Hardware IRQ handlers cannot block. */
164 if (in_irq()) {
165 local_irq_restore(flags);
166 return;
167 }
168
169 /* Clean up if blocked during RCU read-side critical section. */
170 if (special & RCU_READ_UNLOCK_BLOCKED) {
171 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
172
173 /* Remove this task from the list it blocked on. */
174 rnp = rcu_preempt_state.rda[t->rcu_blocked_cpu]->mynode;
175 spin_lock(&rnp->lock);
176 empty = list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]);
177 list_del_init(&t->rcu_node_entry);
178 t->rcu_blocked_cpu = -1;
179
180 /*
181 * If this was the last task on the current list, and if
182 * we aren't waiting on any CPUs, report the quiescent state.
183 * Note that both cpu_quiet_msk_finish() and cpu_quiet_msk()
184 * drop rnp->lock and restore irq.
185 */
186 if (!empty && rnp->qsmask == 0 &&
187 list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1])) {
188 t->rcu_read_unlock_special &=
189 ~(RCU_READ_UNLOCK_NEED_QS |
190 RCU_READ_UNLOCK_GOT_QS);
191 if (rnp->parent == NULL) {
192 /* Only one rcu_node in the tree. */
193 cpu_quiet_msk_finish(&rcu_preempt_state, flags);
194 return;
195 }
196 /* Report up the rest of the hierarchy. */
197 mask = rnp->grpmask;
198 spin_unlock_irqrestore(&rnp->lock, flags);
199 rnp = rnp->parent;
200 spin_lock_irqsave(&rnp->lock, flags);
201 cpu_quiet_msk(mask, &rcu_preempt_state, rnp, flags);
202 return;
203 }
204 spin_unlock(&rnp->lock);
205 }
206 local_irq_restore(flags);
207}
208
209/*
210 * Tree-preemptable RCU implementation for rcu_read_unlock().
211 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
212 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
213 * invoke rcu_read_unlock_special() to clean up after a context switch
214 * in an RCU read-side critical section and other special cases.
215 */
216void __rcu_read_unlock(void)
217{
218 struct task_struct *t = current;
219
220 barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */
221 if (--ACCESS_ONCE(t->rcu_read_lock_nesting) == 0 &&
222 unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
223 rcu_read_unlock_special(t);
224}
225EXPORT_SYMBOL_GPL(__rcu_read_unlock);
226
227#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
228
229/*
230 * Scan the current list of tasks blocked within RCU read-side critical
231 * sections, printing out the tid of each.
232 */
233static void rcu_print_task_stall(struct rcu_node *rnp)
234{
235 unsigned long flags;
236 struct list_head *lp;
237 int phase = rnp->gpnum & 0x1;
238 struct task_struct *t;
239
240 if (!list_empty(&rnp->blocked_tasks[phase])) {
241 spin_lock_irqsave(&rnp->lock, flags);
242 phase = rnp->gpnum & 0x1; /* re-read under lock. */
243 lp = &rnp->blocked_tasks[phase];
244 list_for_each_entry(t, lp, rcu_node_entry)
245 printk(" P%d", t->pid);
246 spin_unlock_irqrestore(&rnp->lock, flags);
247 }
248}
249
250#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
251
252/*
253 * Check for preempted RCU readers for the specified rcu_node structure.
254 * If the caller needs a reliable answer, it must hold the rcu_node's
255 * >lock.
256 */
257static int rcu_preempted_readers(struct rcu_node *rnp)
258{
259 return !list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]);
260}
261
262/*
263 * Check for a quiescent state from the current CPU. When a task blocks,
264 * the task is recorded in the corresponding CPU's rcu_node structure,
265 * which is checked elsewhere.
266 *
267 * Caller must disable hard irqs.
268 */
269static void rcu_preempt_check_callbacks(int cpu)
270{
271 struct task_struct *t = current;
272
273 if (t->rcu_read_lock_nesting == 0) {
274 t->rcu_read_unlock_special &=
275 ~(RCU_READ_UNLOCK_NEED_QS | RCU_READ_UNLOCK_GOT_QS);
276 rcu_preempt_qs_record(cpu);
277 return;
278 }
279 if (per_cpu(rcu_preempt_data, cpu).qs_pending) {
280 if (t->rcu_read_unlock_special & RCU_READ_UNLOCK_GOT_QS) {
281 rcu_preempt_qs_record(cpu);
282 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_GOT_QS;
283 } else if (!(t->rcu_read_unlock_special &
284 RCU_READ_UNLOCK_NEED_QS)) {
285 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
286 }
287 }
288}
289
290/*
291 * Process callbacks for preemptable RCU.
292 */
293static void rcu_preempt_process_callbacks(void)
294{
295 __rcu_process_callbacks(&rcu_preempt_state,
296 &__get_cpu_var(rcu_preempt_data));
297}
298
299/*
300 * Queue a preemptable-RCU callback for invocation after a grace period.
301 */
302void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
303{
304 __call_rcu(head, func, &rcu_preempt_state);
305}
306EXPORT_SYMBOL_GPL(call_rcu);
307
308/*
309 * Check to see if there is any immediate preemptable-RCU-related work
310 * to be done.
311 */
312static int rcu_preempt_pending(int cpu)
313{
314 return __rcu_pending(&rcu_preempt_state,
315 &per_cpu(rcu_preempt_data, cpu));
316}
317
318/*
319 * Does preemptable RCU need the CPU to stay out of dynticks mode?
320 */
321static int rcu_preempt_needs_cpu(int cpu)
322{
323 return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
324}
325
326/*
327 * Initialize preemptable RCU's per-CPU data.
328 */
329static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
330{
331 rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
332}
333
334/*
335 * Check for a task exiting while in a preemptable-RCU read-side
336 * critical section, clean up if so. No need to issue warnings,
337 * as debug_check_no_locks_held() already does this if lockdep
338 * is enabled.
339 */
340void exit_rcu(void)
341{
342 struct task_struct *t = current;
343
344 if (t->rcu_read_lock_nesting == 0)
345 return;
346 t->rcu_read_lock_nesting = 1;
347 rcu_read_unlock();
348}
349
350#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
351
352/*
353 * Tell them what RCU they are running.
354 */
355static inline void rcu_bootup_announce(void)
356{
357 printk(KERN_INFO "Hierarchical RCU implementation.\n");
358}
359
360/*
361 * Return the number of RCU batches processed thus far for debug & stats.
362 */
363long rcu_batches_completed(void)
364{
365 return rcu_batches_completed_sched();
366}
367EXPORT_SYMBOL_GPL(rcu_batches_completed);
368
369/*
370 * Because preemptable RCU does not exist, we never have to check for
371 * CPUs being in quiescent states.
372 */
373static void rcu_preempt_qs(int cpu)
374{
375}
376
377#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
378
379/*
380 * Because preemptable RCU does not exist, we never have to check for
381 * tasks blocked within RCU read-side critical sections.
382 */
383static void rcu_print_task_stall(struct rcu_node *rnp)
384{
385}
386
387#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
388
389/*
390 * Because preemptable RCU does not exist, there are never any preempted
391 * RCU readers.
392 */
393static int rcu_preempted_readers(struct rcu_node *rnp)
394{
395 return 0;
396}
397
398/*
399 * Because preemptable RCU does not exist, it never has any callbacks
400 * to check.
401 */
402void rcu_preempt_check_callbacks(int cpu)
403{
404}
405
406/*
407 * Because preemptable RCU does not exist, it never has any callbacks
408 * to process.
409 */
410void rcu_preempt_process_callbacks(void)
411{
412}
413
414/*
415 * In classic RCU, call_rcu() is just call_rcu_sched().
416 */
417void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
418{
419 call_rcu_sched(head, func);
420}
421EXPORT_SYMBOL_GPL(call_rcu);
422
423/*
424 * Because preemptable RCU does not exist, it never has any work to do.
425 */
426static int rcu_preempt_pending(int cpu)
427{
428 return 0;
429}
430
431/*
432 * Because preemptable RCU does not exist, it never needs any CPU.
433 */
434static int rcu_preempt_needs_cpu(int cpu)
435{
436 return 0;
437}
438
439/*
440 * Because preemptable RCU does not exist, there is no per-CPU
441 * data to initialize.
442 */
443static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
444{
445}
446
447#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */