aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/rcutree.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/rcutree.c')
-rw-r--r--kernel/rcutree.c1051
1 files changed, 711 insertions, 340 deletions
diff --git a/kernel/rcutree.c b/kernel/rcutree.c
index 97ce31579ec0..53ae9598f798 100644
--- a/kernel/rcutree.c
+++ b/kernel/rcutree.c
@@ -25,7 +25,7 @@
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 * 26 *
27 * For detailed explanation of Read-Copy Update mechanism see - 27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU 28 * Documentation/RCU
29 */ 29 */
30#include <linux/types.h> 30#include <linux/types.h>
31#include <linux/kernel.h> 31#include <linux/kernel.h>
@@ -35,6 +35,7 @@
35#include <linux/rcupdate.h> 35#include <linux/rcupdate.h>
36#include <linux/interrupt.h> 36#include <linux/interrupt.h>
37#include <linux/sched.h> 37#include <linux/sched.h>
38#include <linux/nmi.h>
38#include <asm/atomic.h> 39#include <asm/atomic.h>
39#include <linux/bitops.h> 40#include <linux/bitops.h>
40#include <linux/module.h> 41#include <linux/module.h>
@@ -45,39 +46,80 @@
45#include <linux/cpu.h> 46#include <linux/cpu.h>
46#include <linux/mutex.h> 47#include <linux/mutex.h>
47#include <linux/time.h> 48#include <linux/time.h>
49#include <linux/kernel_stat.h>
48 50
49#ifdef CONFIG_DEBUG_LOCK_ALLOC 51#include "rcutree.h"
50static struct lock_class_key rcu_lock_key;
51struct lockdep_map rcu_lock_map =
52 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
53EXPORT_SYMBOL_GPL(rcu_lock_map);
54#endif
55 52
56/* Data structures. */ 53/* Data structures. */
57 54
55static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
56
58#define RCU_STATE_INITIALIZER(name) { \ 57#define RCU_STATE_INITIALIZER(name) { \
59 .level = { &name.node[0] }, \ 58 .level = { &name.node[0] }, \
60 .levelcnt = { \ 59 .levelcnt = { \
61 NUM_RCU_LVL_0, /* root of hierarchy. */ \ 60 NUM_RCU_LVL_0, /* root of hierarchy. */ \
62 NUM_RCU_LVL_1, \ 61 NUM_RCU_LVL_1, \
63 NUM_RCU_LVL_2, \ 62 NUM_RCU_LVL_2, \
64 NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \ 63 NUM_RCU_LVL_3, \
64 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
65 }, \ 65 }, \
66 .signaled = RCU_SIGNAL_INIT, \ 66 .signaled = RCU_GP_IDLE, \
67 .gpnum = -300, \ 67 .gpnum = -300, \
68 .completed = -300, \ 68 .completed = -300, \
69 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \ 69 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
70 .orphan_cbs_list = NULL, \
71 .orphan_cbs_tail = &name.orphan_cbs_list, \
72 .orphan_qlen = 0, \
70 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \ 73 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
71 .n_force_qs = 0, \ 74 .n_force_qs = 0, \
72 .n_force_qs_ngp = 0, \ 75 .n_force_qs_ngp = 0, \
73} 76}
74 77
75struct rcu_state rcu_state = RCU_STATE_INITIALIZER(rcu_state); 78struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
76DEFINE_PER_CPU(struct rcu_data, rcu_data); 79DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
77 80
78struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state); 81struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
79DEFINE_PER_CPU(struct rcu_data, rcu_bh_data); 82DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
80 83
84static int rcu_scheduler_active __read_mostly;
85
86
87/*
88 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
89 * permit this function to be invoked without holding the root rcu_node
90 * structure's ->lock, but of course results can be subject to change.
91 */
92static int rcu_gp_in_progress(struct rcu_state *rsp)
93{
94 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
95}
96
97/*
98 * Note a quiescent state. Because we do not need to know
99 * how many quiescent states passed, just if there was at least
100 * one since the start of the grace period, this just sets a flag.
101 */
102void rcu_sched_qs(int cpu)
103{
104 struct rcu_data *rdp;
105
106 rdp = &per_cpu(rcu_sched_data, cpu);
107 rdp->passed_quiesc_completed = rdp->gpnum - 1;
108 barrier();
109 rdp->passed_quiesc = 1;
110 rcu_preempt_note_context_switch(cpu);
111}
112
113void rcu_bh_qs(int cpu)
114{
115 struct rcu_data *rdp;
116
117 rdp = &per_cpu(rcu_bh_data, cpu);
118 rdp->passed_quiesc_completed = rdp->gpnum - 1;
119 barrier();
120 rdp->passed_quiesc = 1;
121}
122
81#ifdef CONFIG_NO_HZ 123#ifdef CONFIG_NO_HZ
82DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { 124DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
83 .dynticks_nesting = 1, 125 .dynticks_nesting = 1,
@@ -89,16 +131,21 @@ static int blimit = 10; /* Maximum callbacks per softirq. */
89static int qhimark = 10000; /* If this many pending, ignore blimit. */ 131static int qhimark = 10000; /* If this many pending, ignore blimit. */
90static int qlowmark = 100; /* Once only this many pending, use blimit. */ 132static int qlowmark = 100; /* Once only this many pending, use blimit. */
91 133
134module_param(blimit, int, 0);
135module_param(qhimark, int, 0);
136module_param(qlowmark, int, 0);
137
92static void force_quiescent_state(struct rcu_state *rsp, int relaxed); 138static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
139static int rcu_pending(int cpu);
93 140
94/* 141/*
95 * Return the number of RCU batches processed thus far for debug & stats. 142 * Return the number of RCU-sched batches processed thus far for debug & stats.
96 */ 143 */
97long rcu_batches_completed(void) 144long rcu_batches_completed_sched(void)
98{ 145{
99 return rcu_state.completed; 146 return rcu_sched_state.completed;
100} 147}
101EXPORT_SYMBOL_GPL(rcu_batches_completed); 148EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
102 149
103/* 150/*
104 * Return the number of RCU BH batches processed thus far for debug & stats. 151 * Return the number of RCU BH batches processed thus far for debug & stats.
@@ -124,9 +171,7 @@ cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
124static int 171static int
125cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) 172cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
126{ 173{
127 /* ACCESS_ONCE() because we are accessing outside of lock. */ 174 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
128 return *rdp->nxttail[RCU_DONE_TAIL] &&
129 ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum);
130} 175}
131 176
132/* 177/*
@@ -161,6 +206,10 @@ static int rcu_implicit_offline_qs(struct rcu_data *rdp)
161 return 1; 206 return 1;
162 } 207 }
163 208
209 /* If preemptable RCU, no point in sending reschedule IPI. */
210 if (rdp->preemptable)
211 return 0;
212
164 /* The CPU is online, so send it a reschedule IPI. */ 213 /* The CPU is online, so send it a reschedule IPI. */
165 if (rdp->cpu != smp_processor_id()) 214 if (rdp->cpu != smp_processor_id())
166 smp_send_reschedule(rdp->cpu); 215 smp_send_reschedule(rdp->cpu);
@@ -173,7 +222,6 @@ static int rcu_implicit_offline_qs(struct rcu_data *rdp)
173#endif /* #ifdef CONFIG_SMP */ 222#endif /* #ifdef CONFIG_SMP */
174 223
175#ifdef CONFIG_NO_HZ 224#ifdef CONFIG_NO_HZ
176static DEFINE_RATELIMIT_STATE(rcu_rs, 10 * HZ, 5);
177 225
178/** 226/**
179 * rcu_enter_nohz - inform RCU that current CPU is entering nohz 227 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
@@ -193,7 +241,7 @@ void rcu_enter_nohz(void)
193 rdtp = &__get_cpu_var(rcu_dynticks); 241 rdtp = &__get_cpu_var(rcu_dynticks);
194 rdtp->dynticks++; 242 rdtp->dynticks++;
195 rdtp->dynticks_nesting--; 243 rdtp->dynticks_nesting--;
196 WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs); 244 WARN_ON_ONCE(rdtp->dynticks & 0x1);
197 local_irq_restore(flags); 245 local_irq_restore(flags);
198} 246}
199 247
@@ -212,7 +260,7 @@ void rcu_exit_nohz(void)
212 rdtp = &__get_cpu_var(rcu_dynticks); 260 rdtp = &__get_cpu_var(rcu_dynticks);
213 rdtp->dynticks++; 261 rdtp->dynticks++;
214 rdtp->dynticks_nesting++; 262 rdtp->dynticks_nesting++;
215 WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs); 263 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
216 local_irq_restore(flags); 264 local_irq_restore(flags);
217 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ 265 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
218} 266}
@@ -231,7 +279,7 @@ void rcu_nmi_enter(void)
231 if (rdtp->dynticks & 0x1) 279 if (rdtp->dynticks & 0x1)
232 return; 280 return;
233 rdtp->dynticks_nmi++; 281 rdtp->dynticks_nmi++;
234 WARN_ON_RATELIMIT(!(rdtp->dynticks_nmi & 0x1), &rcu_rs); 282 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
235 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ 283 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
236} 284}
237 285
@@ -250,7 +298,7 @@ void rcu_nmi_exit(void)
250 return; 298 return;
251 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ 299 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
252 rdtp->dynticks_nmi++; 300 rdtp->dynticks_nmi++;
253 WARN_ON_RATELIMIT(rdtp->dynticks_nmi & 0x1, &rcu_rs); 301 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
254} 302}
255 303
256/** 304/**
@@ -266,7 +314,7 @@ void rcu_irq_enter(void)
266 if (rdtp->dynticks_nesting++) 314 if (rdtp->dynticks_nesting++)
267 return; 315 return;
268 rdtp->dynticks++; 316 rdtp->dynticks++;
269 WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs); 317 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
270 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ 318 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
271} 319}
272 320
@@ -285,39 +333,20 @@ void rcu_irq_exit(void)
285 return; 333 return;
286 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ 334 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
287 rdtp->dynticks++; 335 rdtp->dynticks++;
288 WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs); 336 WARN_ON_ONCE(rdtp->dynticks & 0x1);
289 337
290 /* If the interrupt queued a callback, get out of dyntick mode. */ 338 /* If the interrupt queued a callback, get out of dyntick mode. */
291 if (__get_cpu_var(rcu_data).nxtlist || 339 if (__get_cpu_var(rcu_sched_data).nxtlist ||
292 __get_cpu_var(rcu_bh_data).nxtlist) 340 __get_cpu_var(rcu_bh_data).nxtlist)
293 set_need_resched(); 341 set_need_resched();
294} 342}
295 343
296/*
297 * Record the specified "completed" value, which is later used to validate
298 * dynticks counter manipulations. Specify "rsp->completed - 1" to
299 * unconditionally invalidate any future dynticks manipulations (which is
300 * useful at the beginning of a grace period).
301 */
302static void dyntick_record_completed(struct rcu_state *rsp, long comp)
303{
304 rsp->dynticks_completed = comp;
305}
306
307#ifdef CONFIG_SMP 344#ifdef CONFIG_SMP
308 345
309/* 346/*
310 * Recall the previously recorded value of the completion for dynticks.
311 */
312static long dyntick_recall_completed(struct rcu_state *rsp)
313{
314 return rsp->dynticks_completed;
315}
316
317/*
318 * Snapshot the specified CPU's dynticks counter so that we can later 347 * Snapshot the specified CPU's dynticks counter so that we can later
319 * credit them with an implicit quiescent state. Return 1 if this CPU 348 * credit them with an implicit quiescent state. Return 1 if this CPU
320 * is already in a quiescent state courtesy of dynticks idle mode. 349 * is in dynticks idle mode, which is an extended quiescent state.
321 */ 350 */
322static int dyntick_save_progress_counter(struct rcu_data *rdp) 351static int dyntick_save_progress_counter(struct rcu_data *rdp)
323{ 352{
@@ -377,24 +406,8 @@ static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
377 406
378#else /* #ifdef CONFIG_NO_HZ */ 407#else /* #ifdef CONFIG_NO_HZ */
379 408
380static void dyntick_record_completed(struct rcu_state *rsp, long comp)
381{
382}
383
384#ifdef CONFIG_SMP 409#ifdef CONFIG_SMP
385 410
386/*
387 * If there are no dynticks, then the only way that a CPU can passively
388 * be in a quiescent state is to be offline. Unlike dynticks idle, which
389 * is a point in time during the prior (already finished) grace period,
390 * an offline CPU is always in a quiescent state, and thus can be
391 * unconditionally applied. So just return the current value of completed.
392 */
393static long dyntick_recall_completed(struct rcu_state *rsp)
394{
395 return rsp->completed;
396}
397
398static int dyntick_save_progress_counter(struct rcu_data *rdp) 411static int dyntick_save_progress_counter(struct rcu_data *rdp)
399{ 412{
400 return 0; 413 return 0;
@@ -423,32 +436,39 @@ static void print_other_cpu_stall(struct rcu_state *rsp)
423 long delta; 436 long delta;
424 unsigned long flags; 437 unsigned long flags;
425 struct rcu_node *rnp = rcu_get_root(rsp); 438 struct rcu_node *rnp = rcu_get_root(rsp);
426 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
427 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
428 439
429 /* Only let one CPU complain about others per time interval. */ 440 /* Only let one CPU complain about others per time interval. */
430 441
431 spin_lock_irqsave(&rnp->lock, flags); 442 spin_lock_irqsave(&rnp->lock, flags);
432 delta = jiffies - rsp->jiffies_stall; 443 delta = jiffies - rsp->jiffies_stall;
433 if (delta < RCU_STALL_RAT_DELAY || rsp->gpnum == rsp->completed) { 444 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
434 spin_unlock_irqrestore(&rnp->lock, flags); 445 spin_unlock_irqrestore(&rnp->lock, flags);
435 return; 446 return;
436 } 447 }
437 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK; 448 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
449
450 /*
451 * Now rat on any tasks that got kicked up to the root rcu_node
452 * due to CPU offlining.
453 */
454 rcu_print_task_stall(rnp);
438 spin_unlock_irqrestore(&rnp->lock, flags); 455 spin_unlock_irqrestore(&rnp->lock, flags);
439 456
440 /* OK, time to rat on our buddy... */ 457 /* OK, time to rat on our buddy... */
441 458
442 printk(KERN_ERR "INFO: RCU detected CPU stalls:"); 459 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
443 for (; rnp_cur < rnp_end; rnp_cur++) { 460 rcu_for_each_leaf_node(rsp, rnp) {
444 if (rnp_cur->qsmask == 0) 461 rcu_print_task_stall(rnp);
462 if (rnp->qsmask == 0)
445 continue; 463 continue;
446 for (cpu = 0; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++) 464 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
447 if (rnp_cur->qsmask & (1UL << cpu)) 465 if (rnp->qsmask & (1UL << cpu))
448 printk(" %d", rnp_cur->grplo + cpu); 466 printk(" %d", rnp->grplo + cpu);
449 } 467 }
450 printk(" (detected by %d, t=%ld jiffies)\n", 468 printk(" (detected by %d, t=%ld jiffies)\n",
451 smp_processor_id(), (long)(jiffies - rsp->gp_start)); 469 smp_processor_id(), (long)(jiffies - rsp->gp_start));
470 trigger_all_cpu_backtrace();
471
452 force_quiescent_state(rsp, 0); /* Kick them all. */ 472 force_quiescent_state(rsp, 0); /* Kick them all. */
453} 473}
454 474
@@ -459,12 +479,14 @@ static void print_cpu_stall(struct rcu_state *rsp)
459 479
460 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n", 480 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
461 smp_processor_id(), jiffies - rsp->gp_start); 481 smp_processor_id(), jiffies - rsp->gp_start);
462 dump_stack(); 482 trigger_all_cpu_backtrace();
483
463 spin_lock_irqsave(&rnp->lock, flags); 484 spin_lock_irqsave(&rnp->lock, flags);
464 if ((long)(jiffies - rsp->jiffies_stall) >= 0) 485 if ((long)(jiffies - rsp->jiffies_stall) >= 0)
465 rsp->jiffies_stall = 486 rsp->jiffies_stall =
466 jiffies + RCU_SECONDS_TILL_STALL_RECHECK; 487 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
467 spin_unlock_irqrestore(&rnp->lock, flags); 488 spin_unlock_irqrestore(&rnp->lock, flags);
489
468 set_need_resched(); /* kick ourselves to get things going. */ 490 set_need_resched(); /* kick ourselves to get things going. */
469} 491}
470 492
@@ -480,8 +502,7 @@ static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
480 /* We haven't checked in, so go dump stack. */ 502 /* We haven't checked in, so go dump stack. */
481 print_cpu_stall(rsp); 503 print_cpu_stall(rsp);
482 504
483 } else if (rsp->gpnum != rsp->completed && 505 } else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
484 delta >= RCU_STALL_RAT_DELAY) {
485 506
486 /* They had two time units to dump stack, so complain. */ 507 /* They had two time units to dump stack, so complain. */
487 print_other_cpu_stall(rsp); 508 print_other_cpu_stall(rsp);
@@ -503,15 +524,33 @@ static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
503/* 524/*
504 * Update CPU-local rcu_data state to record the newly noticed grace period. 525 * Update CPU-local rcu_data state to record the newly noticed grace period.
505 * This is used both when we started the grace period and when we notice 526 * This is used both when we started the grace period and when we notice
506 * that someone else started the grace period. 527 * that someone else started the grace period. The caller must hold the
528 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
529 * and must have irqs disabled.
507 */ 530 */
531static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
532{
533 if (rdp->gpnum != rnp->gpnum) {
534 rdp->qs_pending = 1;
535 rdp->passed_quiesc = 0;
536 rdp->gpnum = rnp->gpnum;
537 }
538}
539
508static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp) 540static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
509{ 541{
510 rdp->qs_pending = 1; 542 unsigned long flags;
511 rdp->passed_quiesc = 0; 543 struct rcu_node *rnp;
512 rdp->gpnum = rsp->gpnum; 544
513 rdp->n_rcu_pending_force_qs = rdp->n_rcu_pending + 545 local_irq_save(flags);
514 RCU_JIFFIES_TILL_FORCE_QS; 546 rnp = rdp->mynode;
547 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
548 !spin_trylock(&rnp->lock)) { /* irqs already off, retry later. */
549 local_irq_restore(flags);
550 return;
551 }
552 __note_new_gpnum(rsp, rnp, rdp);
553 spin_unlock_irqrestore(&rnp->lock, flags);
515} 554}
516 555
517/* 556/*
@@ -535,6 +574,79 @@ check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
535} 574}
536 575
537/* 576/*
577 * Advance this CPU's callbacks, but only if the current grace period
578 * has ended. This may be called only from the CPU to whom the rdp
579 * belongs. In addition, the corresponding leaf rcu_node structure's
580 * ->lock must be held by the caller, with irqs disabled.
581 */
582static void
583__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
584{
585 /* Did another grace period end? */
586 if (rdp->completed != rnp->completed) {
587
588 /* Advance callbacks. No harm if list empty. */
589 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
590 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
591 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
592
593 /* Remember that we saw this grace-period completion. */
594 rdp->completed = rnp->completed;
595 }
596}
597
598/*
599 * Advance this CPU's callbacks, but only if the current grace period
600 * has ended. This may be called only from the CPU to whom the rdp
601 * belongs.
602 */
603static void
604rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
605{
606 unsigned long flags;
607 struct rcu_node *rnp;
608
609 local_irq_save(flags);
610 rnp = rdp->mynode;
611 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
612 !spin_trylock(&rnp->lock)) { /* irqs already off, retry later. */
613 local_irq_restore(flags);
614 return;
615 }
616 __rcu_process_gp_end(rsp, rnp, rdp);
617 spin_unlock_irqrestore(&rnp->lock, flags);
618}
619
620/*
621 * Do per-CPU grace-period initialization for running CPU. The caller
622 * must hold the lock of the leaf rcu_node structure corresponding to
623 * this CPU.
624 */
625static void
626rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
627{
628 /* Prior grace period ended, so advance callbacks for current CPU. */
629 __rcu_process_gp_end(rsp, rnp, rdp);
630
631 /*
632 * Because this CPU just now started the new grace period, we know
633 * that all of its callbacks will be covered by this upcoming grace
634 * period, even the ones that were registered arbitrarily recently.
635 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
636 *
637 * Other CPUs cannot be sure exactly when the grace period started.
638 * Therefore, their recently registered callbacks must pass through
639 * an additional RCU_NEXT_READY stage, so that they will be handled
640 * by the next RCU grace period.
641 */
642 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
643 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
644
645 /* Set state so that this CPU will detect the next quiescent state. */
646 __note_new_gpnum(rsp, rnp, rdp);
647}
648
649/*
538 * Start a new RCU grace period if warranted, re-initializing the hierarchy 650 * Start a new RCU grace period if warranted, re-initializing the hierarchy
539 * in preparation for detecting the next grace period. The caller must hold 651 * in preparation for detecting the next grace period. The caller must hold
540 * the root node's ->lock, which is released before return. Hard irqs must 652 * the root node's ->lock, which is released before return. Hard irqs must
@@ -546,36 +658,43 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
546{ 658{
547 struct rcu_data *rdp = rsp->rda[smp_processor_id()]; 659 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
548 struct rcu_node *rnp = rcu_get_root(rsp); 660 struct rcu_node *rnp = rcu_get_root(rsp);
549 struct rcu_node *rnp_cur;
550 struct rcu_node *rnp_end;
551 661
552 if (!cpu_needs_another_gp(rsp, rdp)) { 662 if (!cpu_needs_another_gp(rsp, rdp)) {
553 spin_unlock_irqrestore(&rnp->lock, flags); 663 if (rnp->completed == rsp->completed) {
664 spin_unlock_irqrestore(&rnp->lock, flags);
665 return;
666 }
667 spin_unlock(&rnp->lock); /* irqs remain disabled. */
668
669 /*
670 * Propagate new ->completed value to rcu_node structures
671 * so that other CPUs don't have to wait until the start
672 * of the next grace period to process their callbacks.
673 */
674 rcu_for_each_node_breadth_first(rsp, rnp) {
675 spin_lock(&rnp->lock); /* irqs already disabled. */
676 rnp->completed = rsp->completed;
677 spin_unlock(&rnp->lock); /* irqs remain disabled. */
678 }
679 local_irq_restore(flags);
554 return; 680 return;
555 } 681 }
556 682
557 /* Advance to a new grace period and initialize state. */ 683 /* Advance to a new grace period and initialize state. */
558 rsp->gpnum++; 684 rsp->gpnum++;
685 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
559 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */ 686 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
560 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; 687 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
561 rdp->n_rcu_pending_force_qs = rdp->n_rcu_pending +
562 RCU_JIFFIES_TILL_FORCE_QS;
563 record_gp_stall_check_time(rsp); 688 record_gp_stall_check_time(rsp);
564 dyntick_record_completed(rsp, rsp->completed - 1);
565 note_new_gpnum(rsp, rdp);
566
567 /*
568 * Because we are first, we know that all our callbacks will
569 * be covered by this upcoming grace period, even the ones
570 * that were registered arbitrarily recently.
571 */
572 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
573 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
574 689
575 /* Special-case the common single-level case. */ 690 /* Special-case the common single-level case. */
576 if (NUM_RCU_NODES == 1) { 691 if (NUM_RCU_NODES == 1) {
692 rcu_preempt_check_blocked_tasks(rnp);
577 rnp->qsmask = rnp->qsmaskinit; 693 rnp->qsmask = rnp->qsmaskinit;
694 rnp->gpnum = rsp->gpnum;
695 rnp->completed = rsp->completed;
578 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */ 696 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
697 rcu_start_gp_per_cpu(rsp, rnp, rdp);
579 spin_unlock_irqrestore(&rnp->lock, flags); 698 spin_unlock_irqrestore(&rnp->lock, flags);
580 return; 699 return;
581 } 700 }
@@ -587,88 +706,71 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
587 spin_lock(&rsp->onofflock); /* irqs already disabled. */ 706 spin_lock(&rsp->onofflock); /* irqs already disabled. */
588 707
589 /* 708 /*
590 * Set the quiescent-state-needed bits in all the non-leaf RCU 709 * Set the quiescent-state-needed bits in all the rcu_node
591 * nodes for all currently online CPUs. This operation relies 710 * structures for all currently online CPUs in breadth-first
592 * on the layout of the hierarchy within the rsp->node[] array. 711 * order, starting from the root rcu_node structure. This
593 * Note that other CPUs will access only the leaves of the 712 * operation relies on the layout of the hierarchy within the
594 * hierarchy, which still indicate that no grace period is in 713 * rsp->node[] array. Note that other CPUs will access only
595 * progress. In addition, we have excluded CPU-hotplug operations. 714 * the leaves of the hierarchy, which still indicate that no
596 * 715 * grace period is in progress, at least until the corresponding
597 * We therefore do not need to hold any locks. Any required 716 * leaf node has been initialized. In addition, we have excluded
598 * memory barriers will be supplied by the locks guarding the 717 * CPU-hotplug operations.
599 * leaf rcu_nodes in the hierarchy.
600 */
601
602 rnp_end = rsp->level[NUM_RCU_LVLS - 1];
603 for (rnp_cur = &rsp->node[0]; rnp_cur < rnp_end; rnp_cur++)
604 rnp_cur->qsmask = rnp_cur->qsmaskinit;
605
606 /*
607 * Now set up the leaf nodes. Here we must be careful. First,
608 * we need to hold the lock in order to exclude other CPUs, which
609 * might be contending for the leaf nodes' locks. Second, as
610 * soon as we initialize a given leaf node, its CPUs might run
611 * up the rest of the hierarchy. We must therefore acquire locks
612 * for each node that we touch during this stage. (But we still
613 * are excluding CPU-hotplug operations.)
614 * 718 *
615 * Note that the grace period cannot complete until we finish 719 * Note that the grace period cannot complete until we finish
616 * the initialization process, as there will be at least one 720 * the initialization process, as there will be at least one
617 * qsmask bit set in the root node until that time, namely the 721 * qsmask bit set in the root node until that time, namely the
618 * one corresponding to this CPU. 722 * one corresponding to this CPU, due to the fact that we have
723 * irqs disabled.
619 */ 724 */
620 rnp_end = &rsp->node[NUM_RCU_NODES]; 725 rcu_for_each_node_breadth_first(rsp, rnp) {
621 rnp_cur = rsp->level[NUM_RCU_LVLS - 1]; 726 spin_lock(&rnp->lock); /* irqs already disabled. */
622 for (; rnp_cur < rnp_end; rnp_cur++) { 727 rcu_preempt_check_blocked_tasks(rnp);
623 spin_lock(&rnp_cur->lock); /* irqs already disabled. */ 728 rnp->qsmask = rnp->qsmaskinit;
624 rnp_cur->qsmask = rnp_cur->qsmaskinit; 729 rnp->gpnum = rsp->gpnum;
625 spin_unlock(&rnp_cur->lock); /* irqs already disabled. */ 730 rnp->completed = rsp->completed;
731 if (rnp == rdp->mynode)
732 rcu_start_gp_per_cpu(rsp, rnp, rdp);
733 spin_unlock(&rnp->lock); /* irqs remain disabled. */
626 } 734 }
627 735
736 rnp = rcu_get_root(rsp);
737 spin_lock(&rnp->lock); /* irqs already disabled. */
628 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */ 738 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
739 spin_unlock(&rnp->lock); /* irqs remain disabled. */
629 spin_unlock_irqrestore(&rsp->onofflock, flags); 740 spin_unlock_irqrestore(&rsp->onofflock, flags);
630} 741}
631 742
632/* 743/*
633 * Advance this CPU's callbacks, but only if the current grace period 744 * Report a full set of quiescent states to the specified rcu_state
634 * has ended. This may be called only from the CPU to whom the rdp 745 * data structure. This involves cleaning up after the prior grace
635 * belongs. 746 * period and letting rcu_start_gp() start up the next grace period
747 * if one is needed. Note that the caller must hold rnp->lock, as
748 * required by rcu_start_gp(), which will release it.
636 */ 749 */
637static void 750static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
638rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp) 751 __releases(rcu_get_root(rsp)->lock)
639{ 752{
640 long completed_snap; 753 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
641 unsigned long flags; 754 rsp->completed = rsp->gpnum;
642 755 rsp->signaled = RCU_GP_IDLE;
643 local_irq_save(flags); 756 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
644 completed_snap = ACCESS_ONCE(rsp->completed); /* outside of lock. */
645
646 /* Did another grace period end? */
647 if (rdp->completed != completed_snap) {
648
649 /* Advance callbacks. No harm if list empty. */
650 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
651 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
652 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
653
654 /* Remember that we saw this grace-period completion. */
655 rdp->completed = completed_snap;
656 }
657 local_irq_restore(flags);
658} 757}
659 758
660/* 759/*
661 * Similar to cpu_quiet(), for which it is a helper function. Allows 760 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
662 * a group of CPUs to be quieted at one go, though all the CPUs in the 761 * Allows quiescent states for a group of CPUs to be reported at one go
663 * group must be represented by the same leaf rcu_node structure. 762 * to the specified rcu_node structure, though all the CPUs in the group
664 * That structure's lock must be held upon entry, and it is released 763 * must be represented by the same rcu_node structure (which need not be
665 * before return. 764 * a leaf rcu_node structure, though it often will be). That structure's
765 * lock must be held upon entry, and it is released before return.
666 */ 766 */
667static void 767static void
668cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp, 768rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
669 unsigned long flags) 769 struct rcu_node *rnp, unsigned long flags)
670 __releases(rnp->lock) 770 __releases(rnp->lock)
671{ 771{
772 struct rcu_node *rnp_c;
773
672 /* Walk up the rcu_node hierarchy. */ 774 /* Walk up the rcu_node hierarchy. */
673 for (;;) { 775 for (;;) {
674 if (!(rnp->qsmask & mask)) { 776 if (!(rnp->qsmask & mask)) {
@@ -678,7 +780,7 @@ cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
678 return; 780 return;
679 } 781 }
680 rnp->qsmask &= ~mask; 782 rnp->qsmask &= ~mask;
681 if (rnp->qsmask != 0) { 783 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
682 784
683 /* Other bits still set at this level, so done. */ 785 /* Other bits still set at this level, so done. */
684 spin_unlock_irqrestore(&rnp->lock, flags); 786 spin_unlock_irqrestore(&rnp->lock, flags);
@@ -692,31 +794,31 @@ cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
692 break; 794 break;
693 } 795 }
694 spin_unlock_irqrestore(&rnp->lock, flags); 796 spin_unlock_irqrestore(&rnp->lock, flags);
797 rnp_c = rnp;
695 rnp = rnp->parent; 798 rnp = rnp->parent;
696 spin_lock_irqsave(&rnp->lock, flags); 799 spin_lock_irqsave(&rnp->lock, flags);
800 WARN_ON_ONCE(rnp_c->qsmask);
697 } 801 }
698 802
699 /* 803 /*
700 * Get here if we are the last CPU to pass through a quiescent 804 * Get here if we are the last CPU to pass through a quiescent
701 * state for this grace period. Clean up and let rcu_start_gp() 805 * state for this grace period. Invoke rcu_report_qs_rsp()
702 * start up the next grace period if one is needed. Note that 806 * to clean up and start the next grace period if one is needed.
703 * we still hold rnp->lock, as required by rcu_start_gp(), which
704 * will release it.
705 */ 807 */
706 rsp->completed = rsp->gpnum; 808 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
707 rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]);
708 rcu_start_gp(rsp, flags); /* releases rnp->lock. */
709} 809}
710 810
711/* 811/*
712 * Record a quiescent state for the specified CPU, which must either be 812 * Record a quiescent state for the specified CPU to that CPU's rcu_data
713 * the current CPU or an offline CPU. The lastcomp argument is used to 813 * structure. This must be either called from the specified CPU, or
714 * make sure we are still in the grace period of interest. We don't want 814 * called when the specified CPU is known to be offline (and when it is
715 * to end the current grace period based on quiescent states detected in 815 * also known that no other CPU is concurrently trying to help the offline
716 * an earlier grace period! 816 * CPU). The lastcomp argument is used to make sure we are still in the
817 * grace period of interest. We don't want to end the current grace period
818 * based on quiescent states detected in an earlier grace period!
717 */ 819 */
718static void 820static void
719cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp) 821rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
720{ 822{
721 unsigned long flags; 823 unsigned long flags;
722 unsigned long mask; 824 unsigned long mask;
@@ -724,15 +826,15 @@ cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
724 826
725 rnp = rdp->mynode; 827 rnp = rdp->mynode;
726 spin_lock_irqsave(&rnp->lock, flags); 828 spin_lock_irqsave(&rnp->lock, flags);
727 if (lastcomp != ACCESS_ONCE(rsp->completed)) { 829 if (lastcomp != rnp->completed) {
728 830
729 /* 831 /*
730 * Someone beat us to it for this grace period, so leave. 832 * Someone beat us to it for this grace period, so leave.
731 * The race with GP start is resolved by the fact that we 833 * The race with GP start is resolved by the fact that we
732 * hold the leaf rcu_node lock, so that the per-CPU bits 834 * hold the leaf rcu_node lock, so that the per-CPU bits
733 * cannot yet be initialized -- so we would simply find our 835 * cannot yet be initialized -- so we would simply find our
734 * CPU's bit already cleared in cpu_quiet_msk() if this race 836 * CPU's bit already cleared in rcu_report_qs_rnp() if this
735 * occurred. 837 * race occurred.
736 */ 838 */
737 rdp->passed_quiesc = 0; /* try again later! */ 839 rdp->passed_quiesc = 0; /* try again later! */
738 spin_unlock_irqrestore(&rnp->lock, flags); 840 spin_unlock_irqrestore(&rnp->lock, flags);
@@ -748,10 +850,9 @@ cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
748 * This GP can't end until cpu checks in, so all of our 850 * This GP can't end until cpu checks in, so all of our
749 * callbacks can be processed during the next GP. 851 * callbacks can be processed during the next GP.
750 */ 852 */
751 rdp = rsp->rda[smp_processor_id()];
752 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; 853 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
753 854
754 cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */ 855 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
755 } 856 }
756} 857}
757 858
@@ -782,74 +883,113 @@ rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
782 if (!rdp->passed_quiesc) 883 if (!rdp->passed_quiesc)
783 return; 884 return;
784 885
785 /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */ 886 /*
786 cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed); 887 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
888 * judge of that).
889 */
890 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
787} 891}
788 892
789#ifdef CONFIG_HOTPLUG_CPU 893#ifdef CONFIG_HOTPLUG_CPU
790 894
791/* 895/*
896 * Move a dying CPU's RCU callbacks to the ->orphan_cbs_list for the
897 * specified flavor of RCU. The callbacks will be adopted by the next
898 * _rcu_barrier() invocation or by the CPU_DEAD notifier, whichever
899 * comes first. Because this is invoked from the CPU_DYING notifier,
900 * irqs are already disabled.
901 */
902static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
903{
904 int i;
905 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
906
907 if (rdp->nxtlist == NULL)
908 return; /* irqs disabled, so comparison is stable. */
909 spin_lock(&rsp->onofflock); /* irqs already disabled. */
910 *rsp->orphan_cbs_tail = rdp->nxtlist;
911 rsp->orphan_cbs_tail = rdp->nxttail[RCU_NEXT_TAIL];
912 rdp->nxtlist = NULL;
913 for (i = 0; i < RCU_NEXT_SIZE; i++)
914 rdp->nxttail[i] = &rdp->nxtlist;
915 rsp->orphan_qlen += rdp->qlen;
916 rdp->qlen = 0;
917 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
918}
919
920/*
921 * Adopt previously orphaned RCU callbacks.
922 */
923static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
924{
925 unsigned long flags;
926 struct rcu_data *rdp;
927
928 spin_lock_irqsave(&rsp->onofflock, flags);
929 rdp = rsp->rda[smp_processor_id()];
930 if (rsp->orphan_cbs_list == NULL) {
931 spin_unlock_irqrestore(&rsp->onofflock, flags);
932 return;
933 }
934 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_list;
935 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_tail;
936 rdp->qlen += rsp->orphan_qlen;
937 rsp->orphan_cbs_list = NULL;
938 rsp->orphan_cbs_tail = &rsp->orphan_cbs_list;
939 rsp->orphan_qlen = 0;
940 spin_unlock_irqrestore(&rsp->onofflock, flags);
941}
942
943/*
792 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy 944 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
793 * and move all callbacks from the outgoing CPU to the current one. 945 * and move all callbacks from the outgoing CPU to the current one.
794 */ 946 */
795static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp) 947static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
796{ 948{
797 int i;
798 unsigned long flags; 949 unsigned long flags;
799 long lastcomp;
800 unsigned long mask; 950 unsigned long mask;
951 int need_report = 0;
801 struct rcu_data *rdp = rsp->rda[cpu]; 952 struct rcu_data *rdp = rsp->rda[cpu];
802 struct rcu_data *rdp_me;
803 struct rcu_node *rnp; 953 struct rcu_node *rnp;
804 954
805 /* Exclude any attempts to start a new grace period. */ 955 /* Exclude any attempts to start a new grace period. */
806 spin_lock_irqsave(&rsp->onofflock, flags); 956 spin_lock_irqsave(&rsp->onofflock, flags);
807 957
808 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */ 958 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
809 rnp = rdp->mynode; 959 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
810 mask = rdp->grpmask; /* rnp->grplo is constant. */ 960 mask = rdp->grpmask; /* rnp->grplo is constant. */
811 do { 961 do {
812 spin_lock(&rnp->lock); /* irqs already disabled. */ 962 spin_lock(&rnp->lock); /* irqs already disabled. */
813 rnp->qsmaskinit &= ~mask; 963 rnp->qsmaskinit &= ~mask;
814 if (rnp->qsmaskinit != 0) { 964 if (rnp->qsmaskinit != 0) {
815 spin_unlock(&rnp->lock); /* irqs already disabled. */ 965 if (rnp != rdp->mynode)
966 spin_unlock(&rnp->lock); /* irqs remain disabled. */
816 break; 967 break;
817 } 968 }
969 if (rnp == rdp->mynode)
970 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
971 else
972 spin_unlock(&rnp->lock); /* irqs remain disabled. */
818 mask = rnp->grpmask; 973 mask = rnp->grpmask;
819 spin_unlock(&rnp->lock); /* irqs already disabled. */
820 rnp = rnp->parent; 974 rnp = rnp->parent;
821 } while (rnp != NULL); 975 } while (rnp != NULL);
822 lastcomp = rsp->completed;
823
824 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
825
826 /* Being offline is a quiescent state, so go record it. */
827 cpu_quiet(cpu, rsp, rdp, lastcomp);
828 976
829 /* 977 /*
830 * Move callbacks from the outgoing CPU to the running CPU. 978 * We still hold the leaf rcu_node structure lock here, and
831 * Note that the outgoing CPU is now quiscent, so it is now 979 * irqs are still disabled. The reason for this subterfuge is
832 * (uncharacteristically) safe to access it rcu_data structure. 980 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
833 * Note also that we must carefully retain the order of the 981 * held leads to deadlock.
834 * outgoing CPU's callbacks in order for rcu_barrier() to work
835 * correctly. Finally, note that we start all the callbacks
836 * afresh, even those that have passed through a grace period
837 * and are therefore ready to invoke. The theory is that hotplug
838 * events are rare, and that if they are frequent enough to
839 * indefinitely delay callbacks, you have far worse things to
840 * be worrying about.
841 */ 982 */
842 rdp_me = rsp->rda[smp_processor_id()]; 983 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
843 if (rdp->nxtlist != NULL) { 984 rnp = rdp->mynode;
844 *rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist; 985 if (need_report & RCU_OFL_TASKS_NORM_GP)
845 rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; 986 rcu_report_unblock_qs_rnp(rnp, flags);
846 rdp->nxtlist = NULL; 987 else
847 for (i = 0; i < RCU_NEXT_SIZE; i++) 988 spin_unlock_irqrestore(&rnp->lock, flags);
848 rdp->nxttail[i] = &rdp->nxtlist; 989 if (need_report & RCU_OFL_TASKS_EXP_GP)
849 rdp_me->qlen += rdp->qlen; 990 rcu_report_exp_rnp(rsp, rnp);
850 rdp->qlen = 0; 991
851 } 992 rcu_adopt_orphan_cbs(rsp);
852 local_irq_restore(flags);
853} 993}
854 994
855/* 995/*
@@ -860,12 +1000,21 @@ static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
860 */ 1000 */
861static void rcu_offline_cpu(int cpu) 1001static void rcu_offline_cpu(int cpu)
862{ 1002{
863 __rcu_offline_cpu(cpu, &rcu_state); 1003 __rcu_offline_cpu(cpu, &rcu_sched_state);
864 __rcu_offline_cpu(cpu, &rcu_bh_state); 1004 __rcu_offline_cpu(cpu, &rcu_bh_state);
1005 rcu_preempt_offline_cpu(cpu);
865} 1006}
866 1007
867#else /* #ifdef CONFIG_HOTPLUG_CPU */ 1008#else /* #ifdef CONFIG_HOTPLUG_CPU */
868 1009
1010static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
1011{
1012}
1013
1014static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1015{
1016}
1017
869static void rcu_offline_cpu(int cpu) 1018static void rcu_offline_cpu(int cpu)
870{ 1019{
871} 1020}
@@ -876,7 +1025,7 @@ static void rcu_offline_cpu(int cpu)
876 * Invoke any RCU callbacks that have made it to the end of their grace 1025 * Invoke any RCU callbacks that have made it to the end of their grace
877 * period. Thottle as specified by rdp->blimit. 1026 * period. Thottle as specified by rdp->blimit.
878 */ 1027 */
879static void rcu_do_batch(struct rcu_data *rdp) 1028static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
880{ 1029{
881 unsigned long flags; 1030 unsigned long flags;
882 struct rcu_head *next, *list, **tail; 1031 struct rcu_head *next, *list, **tail;
@@ -929,6 +1078,13 @@ static void rcu_do_batch(struct rcu_data *rdp)
929 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark) 1078 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
930 rdp->blimit = blimit; 1079 rdp->blimit = blimit;
931 1080
1081 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1082 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1083 rdp->qlen_last_fqs_check = 0;
1084 rdp->n_force_qs_snap = rsp->n_force_qs;
1085 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1086 rdp->qlen_last_fqs_check = rdp->qlen;
1087
932 local_irq_restore(flags); 1088 local_irq_restore(flags);
933 1089
934 /* Re-raise the RCU softirq if there are callbacks remaining. */ 1090 /* Re-raise the RCU softirq if there are callbacks remaining. */
@@ -947,6 +1103,8 @@ static void rcu_do_batch(struct rcu_data *rdp)
947 */ 1103 */
948void rcu_check_callbacks(int cpu, int user) 1104void rcu_check_callbacks(int cpu, int user)
949{ 1105{
1106 if (!rcu_pending(cpu))
1107 return; /* if nothing for RCU to do. */
950 if (user || 1108 if (user ||
951 (idle_cpu(cpu) && rcu_scheduler_active && 1109 (idle_cpu(cpu) && rcu_scheduler_active &&
952 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) { 1110 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
@@ -955,17 +1113,16 @@ void rcu_check_callbacks(int cpu, int user)
955 * Get here if this CPU took its interrupt from user 1113 * Get here if this CPU took its interrupt from user
956 * mode or from the idle loop, and if this is not a 1114 * mode or from the idle loop, and if this is not a
957 * nested interrupt. In this case, the CPU is in 1115 * nested interrupt. In this case, the CPU is in
958 * a quiescent state, so count it. 1116 * a quiescent state, so note it.
959 * 1117 *
960 * No memory barrier is required here because both 1118 * No memory barrier is required here because both
961 * rcu_qsctr_inc() and rcu_bh_qsctr_inc() reference 1119 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
962 * only CPU-local variables that other CPUs neither 1120 * variables that other CPUs neither access nor modify,
963 * access nor modify, at least not while the corresponding 1121 * at least not while the corresponding CPU is online.
964 * CPU is online.
965 */ 1122 */
966 1123
967 rcu_qsctr_inc(cpu); 1124 rcu_sched_qs(cpu);
968 rcu_bh_qsctr_inc(cpu); 1125 rcu_bh_qs(cpu);
969 1126
970 } else if (!in_softirq()) { 1127 } else if (!in_softirq()) {
971 1128
@@ -973,11 +1130,12 @@ void rcu_check_callbacks(int cpu, int user)
973 * Get here if this CPU did not take its interrupt from 1130 * Get here if this CPU did not take its interrupt from
974 * softirq, in other words, if it is not interrupting 1131 * softirq, in other words, if it is not interrupting
975 * a rcu_bh read-side critical section. This is an _bh 1132 * a rcu_bh read-side critical section. This is an _bh
976 * critical section, so count it. 1133 * critical section, so note it.
977 */ 1134 */
978 1135
979 rcu_bh_qsctr_inc(cpu); 1136 rcu_bh_qs(cpu);
980 } 1137 }
1138 rcu_preempt_check_callbacks(cpu);
981 raise_softirq(RCU_SOFTIRQ); 1139 raise_softirq(RCU_SOFTIRQ);
982} 1140}
983 1141
@@ -996,33 +1154,32 @@ static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
996 int cpu; 1154 int cpu;
997 unsigned long flags; 1155 unsigned long flags;
998 unsigned long mask; 1156 unsigned long mask;
999 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1]; 1157 struct rcu_node *rnp;
1000 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
1001 1158
1002 for (; rnp_cur < rnp_end; rnp_cur++) { 1159 rcu_for_each_leaf_node(rsp, rnp) {
1003 mask = 0; 1160 mask = 0;
1004 spin_lock_irqsave(&rnp_cur->lock, flags); 1161 spin_lock_irqsave(&rnp->lock, flags);
1005 if (rsp->completed != lastcomp) { 1162 if (rnp->completed != lastcomp) {
1006 spin_unlock_irqrestore(&rnp_cur->lock, flags); 1163 spin_unlock_irqrestore(&rnp->lock, flags);
1007 return 1; 1164 return 1;
1008 } 1165 }
1009 if (rnp_cur->qsmask == 0) { 1166 if (rnp->qsmask == 0) {
1010 spin_unlock_irqrestore(&rnp_cur->lock, flags); 1167 spin_unlock_irqrestore(&rnp->lock, flags);
1011 continue; 1168 continue;
1012 } 1169 }
1013 cpu = rnp_cur->grplo; 1170 cpu = rnp->grplo;
1014 bit = 1; 1171 bit = 1;
1015 for (; cpu <= rnp_cur->grphi; cpu++, bit <<= 1) { 1172 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1016 if ((rnp_cur->qsmask & bit) != 0 && f(rsp->rda[cpu])) 1173 if ((rnp->qsmask & bit) != 0 && f(rsp->rda[cpu]))
1017 mask |= bit; 1174 mask |= bit;
1018 } 1175 }
1019 if (mask != 0 && rsp->completed == lastcomp) { 1176 if (mask != 0 && rnp->completed == lastcomp) {
1020 1177
1021 /* cpu_quiet_msk() releases rnp_cur->lock. */ 1178 /* rcu_report_qs_rnp() releases rnp->lock. */
1022 cpu_quiet_msk(mask, rsp, rnp_cur, flags); 1179 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1023 continue; 1180 continue;
1024 } 1181 }
1025 spin_unlock_irqrestore(&rnp_cur->lock, flags); 1182 spin_unlock_irqrestore(&rnp->lock, flags);
1026 } 1183 }
1027 return 0; 1184 return 0;
1028} 1185}
@@ -1035,37 +1192,35 @@ static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1035{ 1192{
1036 unsigned long flags; 1193 unsigned long flags;
1037 long lastcomp; 1194 long lastcomp;
1038 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
1039 struct rcu_node *rnp = rcu_get_root(rsp); 1195 struct rcu_node *rnp = rcu_get_root(rsp);
1040 u8 signaled; 1196 u8 signaled;
1197 u8 forcenow;
1041 1198
1042 if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum)) 1199 if (!rcu_gp_in_progress(rsp))
1043 return; /* No grace period in progress, nothing to force. */ 1200 return; /* No grace period in progress, nothing to force. */
1044 if (!spin_trylock_irqsave(&rsp->fqslock, flags)) { 1201 if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
1045 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */ 1202 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1046 return; /* Someone else is already on the job. */ 1203 return; /* Someone else is already on the job. */
1047 } 1204 }
1048 if (relaxed && 1205 if (relaxed &&
1049 (long)(rsp->jiffies_force_qs - jiffies) >= 0 && 1206 (long)(rsp->jiffies_force_qs - jiffies) >= 0)
1050 (rdp->n_rcu_pending_force_qs - rdp->n_rcu_pending) >= 0)
1051 goto unlock_ret; /* no emergency and done recently. */ 1207 goto unlock_ret; /* no emergency and done recently. */
1052 rsp->n_force_qs++; 1208 rsp->n_force_qs++;
1053 spin_lock(&rnp->lock); 1209 spin_lock(&rnp->lock);
1054 lastcomp = rsp->completed; 1210 lastcomp = rsp->gpnum - 1;
1055 signaled = rsp->signaled; 1211 signaled = rsp->signaled;
1056 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; 1212 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1057 rdp->n_rcu_pending_force_qs = rdp->n_rcu_pending + 1213 if(!rcu_gp_in_progress(rsp)) {
1058 RCU_JIFFIES_TILL_FORCE_QS;
1059 if (lastcomp == rsp->gpnum) {
1060 rsp->n_force_qs_ngp++; 1214 rsp->n_force_qs_ngp++;
1061 spin_unlock(&rnp->lock); 1215 spin_unlock(&rnp->lock);
1062 goto unlock_ret; /* no GP in progress, time updated. */ 1216 goto unlock_ret; /* no GP in progress, time updated. */
1063 } 1217 }
1064 spin_unlock(&rnp->lock); 1218 spin_unlock(&rnp->lock);
1065 switch (signaled) { 1219 switch (signaled) {
1220 case RCU_GP_IDLE:
1066 case RCU_GP_INIT: 1221 case RCU_GP_INIT:
1067 1222
1068 break; /* grace period still initializing, ignore. */ 1223 break; /* grace period idle or initializing, ignore. */
1069 1224
1070 case RCU_SAVE_DYNTICK: 1225 case RCU_SAVE_DYNTICK:
1071 1226
@@ -1076,20 +1231,29 @@ static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1076 if (rcu_process_dyntick(rsp, lastcomp, 1231 if (rcu_process_dyntick(rsp, lastcomp,
1077 dyntick_save_progress_counter)) 1232 dyntick_save_progress_counter))
1078 goto unlock_ret; 1233 goto unlock_ret;
1234 /* fall into next case. */
1235
1236 case RCU_SAVE_COMPLETED:
1079 1237
1080 /* Update state, record completion counter. */ 1238 /* Update state, record completion counter. */
1239 forcenow = 0;
1081 spin_lock(&rnp->lock); 1240 spin_lock(&rnp->lock);
1082 if (lastcomp == rsp->completed) { 1241 if (lastcomp + 1 == rsp->gpnum &&
1242 lastcomp == rsp->completed &&
1243 rsp->signaled == signaled) {
1083 rsp->signaled = RCU_FORCE_QS; 1244 rsp->signaled = RCU_FORCE_QS;
1084 dyntick_record_completed(rsp, lastcomp); 1245 rsp->completed_fqs = lastcomp;
1246 forcenow = signaled == RCU_SAVE_COMPLETED;
1085 } 1247 }
1086 spin_unlock(&rnp->lock); 1248 spin_unlock(&rnp->lock);
1087 break; 1249 if (!forcenow)
1250 break;
1251 /* fall into next case. */
1088 1252
1089 case RCU_FORCE_QS: 1253 case RCU_FORCE_QS:
1090 1254
1091 /* Check dyntick-idle state, send IPI to laggarts. */ 1255 /* Check dyntick-idle state, send IPI to laggarts. */
1092 if (rcu_process_dyntick(rsp, dyntick_recall_completed(rsp), 1256 if (rcu_process_dyntick(rsp, rsp->completed_fqs,
1093 rcu_implicit_dynticks_qs)) 1257 rcu_implicit_dynticks_qs))
1094 goto unlock_ret; 1258 goto unlock_ret;
1095 1259
@@ -1120,12 +1284,13 @@ __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1120{ 1284{
1121 unsigned long flags; 1285 unsigned long flags;
1122 1286
1287 WARN_ON_ONCE(rdp->beenonline == 0);
1288
1123 /* 1289 /*
1124 * If an RCU GP has gone long enough, go check for dyntick 1290 * If an RCU GP has gone long enough, go check for dyntick
1125 * idle CPUs and, if needed, send resched IPIs. 1291 * idle CPUs and, if needed, send resched IPIs.
1126 */ 1292 */
1127 if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0 || 1293 if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
1128 (rdp->n_rcu_pending_force_qs - rdp->n_rcu_pending) < 0)
1129 force_quiescent_state(rsp, 1); 1294 force_quiescent_state(rsp, 1);
1130 1295
1131 /* 1296 /*
@@ -1144,7 +1309,7 @@ __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1144 } 1309 }
1145 1310
1146 /* If there are callbacks ready, invoke them. */ 1311 /* If there are callbacks ready, invoke them. */
1147 rcu_do_batch(rdp); 1312 rcu_do_batch(rsp, rdp);
1148} 1313}
1149 1314
1150/* 1315/*
@@ -1159,8 +1324,10 @@ static void rcu_process_callbacks(struct softirq_action *unused)
1159 */ 1324 */
1160 smp_mb(); /* See above block comment. */ 1325 smp_mb(); /* See above block comment. */
1161 1326
1162 __rcu_process_callbacks(&rcu_state, &__get_cpu_var(rcu_data)); 1327 __rcu_process_callbacks(&rcu_sched_state,
1328 &__get_cpu_var(rcu_sched_data));
1163 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data)); 1329 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1330 rcu_preempt_process_callbacks();
1164 1331
1165 /* 1332 /*
1166 * Memory references from any later RCU read-side critical sections 1333 * Memory references from any later RCU read-side critical sections
@@ -1198,7 +1365,7 @@ __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1198 rdp->nxttail[RCU_NEXT_TAIL] = &head->next; 1365 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1199 1366
1200 /* Start a new grace period if one not already started. */ 1367 /* Start a new grace period if one not already started. */
1201 if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum)) { 1368 if (!rcu_gp_in_progress(rsp)) {
1202 unsigned long nestflag; 1369 unsigned long nestflag;
1203 struct rcu_node *rnp_root = rcu_get_root(rsp); 1370 struct rcu_node *rnp_root = rcu_get_root(rsp);
1204 1371
@@ -1206,24 +1373,33 @@ __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1206 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */ 1373 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1207 } 1374 }
1208 1375
1209 /* Force the grace period if too many callbacks or too long waiting. */ 1376 /*
1210 if (unlikely(++rdp->qlen > qhimark)) { 1377 * Force the grace period if too many callbacks or too long waiting.
1378 * Enforce hysteresis, and don't invoke force_quiescent_state()
1379 * if some other CPU has recently done so. Also, don't bother
1380 * invoking force_quiescent_state() if the newly enqueued callback
1381 * is the only one waiting for a grace period to complete.
1382 */
1383 if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1211 rdp->blimit = LONG_MAX; 1384 rdp->blimit = LONG_MAX;
1212 force_quiescent_state(rsp, 0); 1385 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1213 } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0 || 1386 *rdp->nxttail[RCU_DONE_TAIL] != head)
1214 (rdp->n_rcu_pending_force_qs - rdp->n_rcu_pending) < 0) 1387 force_quiescent_state(rsp, 0);
1388 rdp->n_force_qs_snap = rsp->n_force_qs;
1389 rdp->qlen_last_fqs_check = rdp->qlen;
1390 } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
1215 force_quiescent_state(rsp, 1); 1391 force_quiescent_state(rsp, 1);
1216 local_irq_restore(flags); 1392 local_irq_restore(flags);
1217} 1393}
1218 1394
1219/* 1395/*
1220 * Queue an RCU callback for invocation after a grace period. 1396 * Queue an RCU-sched callback for invocation after a grace period.
1221 */ 1397 */
1222void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) 1398void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1223{ 1399{
1224 __call_rcu(head, func, &rcu_state); 1400 __call_rcu(head, func, &rcu_sched_state);
1225} 1401}
1226EXPORT_SYMBOL_GPL(call_rcu); 1402EXPORT_SYMBOL_GPL(call_rcu_sched);
1227 1403
1228/* 1404/*
1229 * Queue an RCU for invocation after a quicker grace period. 1405 * Queue an RCU for invocation after a quicker grace period.
@@ -1234,6 +1410,68 @@ void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1234} 1410}
1235EXPORT_SYMBOL_GPL(call_rcu_bh); 1411EXPORT_SYMBOL_GPL(call_rcu_bh);
1236 1412
1413/**
1414 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1415 *
1416 * Control will return to the caller some time after a full rcu-sched
1417 * grace period has elapsed, in other words after all currently executing
1418 * rcu-sched read-side critical sections have completed. These read-side
1419 * critical sections are delimited by rcu_read_lock_sched() and
1420 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1421 * local_irq_disable(), and so on may be used in place of
1422 * rcu_read_lock_sched().
1423 *
1424 * This means that all preempt_disable code sequences, including NMI and
1425 * hardware-interrupt handlers, in progress on entry will have completed
1426 * before this primitive returns. However, this does not guarantee that
1427 * softirq handlers will have completed, since in some kernels, these
1428 * handlers can run in process context, and can block.
1429 *
1430 * This primitive provides the guarantees made by the (now removed)
1431 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1432 * guarantees that rcu_read_lock() sections will have completed.
1433 * In "classic RCU", these two guarantees happen to be one and
1434 * the same, but can differ in realtime RCU implementations.
1435 */
1436void synchronize_sched(void)
1437{
1438 struct rcu_synchronize rcu;
1439
1440 if (rcu_blocking_is_gp())
1441 return;
1442
1443 init_completion(&rcu.completion);
1444 /* Will wake me after RCU finished. */
1445 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1446 /* Wait for it. */
1447 wait_for_completion(&rcu.completion);
1448}
1449EXPORT_SYMBOL_GPL(synchronize_sched);
1450
1451/**
1452 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1453 *
1454 * Control will return to the caller some time after a full rcu_bh grace
1455 * period has elapsed, in other words after all currently executing rcu_bh
1456 * read-side critical sections have completed. RCU read-side critical
1457 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1458 * and may be nested.
1459 */
1460void synchronize_rcu_bh(void)
1461{
1462 struct rcu_synchronize rcu;
1463
1464 if (rcu_blocking_is_gp())
1465 return;
1466
1467 init_completion(&rcu.completion);
1468 /* Will wake me after RCU finished. */
1469 call_rcu_bh(&rcu.head, wakeme_after_rcu);
1470 /* Wait for it. */
1471 wait_for_completion(&rcu.completion);
1472}
1473EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1474
1237/* 1475/*
1238 * Check to see if there is any immediate RCU-related work to be done 1476 * Check to see if there is any immediate RCU-related work to be done
1239 * by the current CPU, for the specified type of RCU, returning 1 if so. 1477 * by the current CPU, for the specified type of RCU, returning 1 if so.
@@ -1243,38 +1481,52 @@ EXPORT_SYMBOL_GPL(call_rcu_bh);
1243 */ 1481 */
1244static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) 1482static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1245{ 1483{
1484 struct rcu_node *rnp = rdp->mynode;
1485
1246 rdp->n_rcu_pending++; 1486 rdp->n_rcu_pending++;
1247 1487
1248 /* Check for CPU stalls, if enabled. */ 1488 /* Check for CPU stalls, if enabled. */
1249 check_cpu_stall(rsp, rdp); 1489 check_cpu_stall(rsp, rdp);
1250 1490
1251 /* Is the RCU core waiting for a quiescent state from this CPU? */ 1491 /* Is the RCU core waiting for a quiescent state from this CPU? */
1252 if (rdp->qs_pending) 1492 if (rdp->qs_pending) {
1493 rdp->n_rp_qs_pending++;
1253 return 1; 1494 return 1;
1495 }
1254 1496
1255 /* Does this CPU have callbacks ready to invoke? */ 1497 /* Does this CPU have callbacks ready to invoke? */
1256 if (cpu_has_callbacks_ready_to_invoke(rdp)) 1498 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1499 rdp->n_rp_cb_ready++;
1257 return 1; 1500 return 1;
1501 }
1258 1502
1259 /* Has RCU gone idle with this CPU needing another grace period? */ 1503 /* Has RCU gone idle with this CPU needing another grace period? */
1260 if (cpu_needs_another_gp(rsp, rdp)) 1504 if (cpu_needs_another_gp(rsp, rdp)) {
1505 rdp->n_rp_cpu_needs_gp++;
1261 return 1; 1506 return 1;
1507 }
1262 1508
1263 /* Has another RCU grace period completed? */ 1509 /* Has another RCU grace period completed? */
1264 if (ACCESS_ONCE(rsp->completed) != rdp->completed) /* outside of lock */ 1510 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1511 rdp->n_rp_gp_completed++;
1265 return 1; 1512 return 1;
1513 }
1266 1514
1267 /* Has a new RCU grace period started? */ 1515 /* Has a new RCU grace period started? */
1268 if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum) /* outside of lock */ 1516 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1517 rdp->n_rp_gp_started++;
1269 return 1; 1518 return 1;
1519 }
1270 1520
1271 /* Has an RCU GP gone long enough to send resched IPIs &c? */ 1521 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1272 if (ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum) && 1522 if (rcu_gp_in_progress(rsp) &&
1273 ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0 || 1523 ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) {
1274 (rdp->n_rcu_pending_force_qs - rdp->n_rcu_pending) < 0)) 1524 rdp->n_rp_need_fqs++;
1275 return 1; 1525 return 1;
1526 }
1276 1527
1277 /* nothing to do */ 1528 /* nothing to do */
1529 rdp->n_rp_need_nothing++;
1278 return 0; 1530 return 0;
1279} 1531}
1280 1532
@@ -1283,10 +1535,11 @@ static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1283 * by the current CPU, returning 1 if so. This function is part of the 1535 * by the current CPU, returning 1 if so. This function is part of the
1284 * RCU implementation; it is -not- an exported member of the RCU API. 1536 * RCU implementation; it is -not- an exported member of the RCU API.
1285 */ 1537 */
1286int rcu_pending(int cpu) 1538static int rcu_pending(int cpu)
1287{ 1539{
1288 return __rcu_pending(&rcu_state, &per_cpu(rcu_data, cpu)) || 1540 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1289 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)); 1541 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1542 rcu_preempt_pending(cpu);
1290} 1543}
1291 1544
1292/* 1545/*
@@ -1298,51 +1551,150 @@ int rcu_pending(int cpu)
1298int rcu_needs_cpu(int cpu) 1551int rcu_needs_cpu(int cpu)
1299{ 1552{
1300 /* RCU callbacks either ready or pending? */ 1553 /* RCU callbacks either ready or pending? */
1301 return per_cpu(rcu_data, cpu).nxtlist || 1554 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1302 per_cpu(rcu_bh_data, cpu).nxtlist; 1555 per_cpu(rcu_bh_data, cpu).nxtlist ||
1556 rcu_preempt_needs_cpu(cpu);
1303} 1557}
1304 1558
1305/* 1559/*
1306 * Initialize a CPU's per-CPU RCU data. We take this "scorched earth" 1560 * This function is invoked towards the end of the scheduler's initialization
1307 * approach so that we don't have to worry about how long the CPU has 1561 * process. Before this is called, the idle task might contain
1308 * been gone, or whether it ever was online previously. We do trust the 1562 * RCU read-side critical sections (during which time, this idle
1309 * ->mynode field, as it is constant for a given struct rcu_data and 1563 * task is booting the system). After this function is called, the
1310 * initialized during early boot. 1564 * idle tasks are prohibited from containing RCU read-side critical
1311 * 1565 * sections.
1312 * Note that only one online or offline event can be happening at a given
1313 * time. Note also that we can accept some slop in the rsp->completed
1314 * access due to the fact that this CPU cannot possibly have any RCU
1315 * callbacks in flight yet.
1316 */ 1566 */
1317static void __cpuinit 1567void rcu_scheduler_starting(void)
1318rcu_init_percpu_data(int cpu, struct rcu_state *rsp) 1568{
1569 WARN_ON(num_online_cpus() != 1);
1570 WARN_ON(nr_context_switches() > 0);
1571 rcu_scheduler_active = 1;
1572}
1573
1574static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1575static atomic_t rcu_barrier_cpu_count;
1576static DEFINE_MUTEX(rcu_barrier_mutex);
1577static struct completion rcu_barrier_completion;
1578
1579static void rcu_barrier_callback(struct rcu_head *notused)
1580{
1581 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1582 complete(&rcu_barrier_completion);
1583}
1584
1585/*
1586 * Called with preemption disabled, and from cross-cpu IRQ context.
1587 */
1588static void rcu_barrier_func(void *type)
1589{
1590 int cpu = smp_processor_id();
1591 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1592 void (*call_rcu_func)(struct rcu_head *head,
1593 void (*func)(struct rcu_head *head));
1594
1595 atomic_inc(&rcu_barrier_cpu_count);
1596 call_rcu_func = type;
1597 call_rcu_func(head, rcu_barrier_callback);
1598}
1599
1600/*
1601 * Orchestrate the specified type of RCU barrier, waiting for all
1602 * RCU callbacks of the specified type to complete.
1603 */
1604static void _rcu_barrier(struct rcu_state *rsp,
1605 void (*call_rcu_func)(struct rcu_head *head,
1606 void (*func)(struct rcu_head *head)))
1607{
1608 BUG_ON(in_interrupt());
1609 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1610 mutex_lock(&rcu_barrier_mutex);
1611 init_completion(&rcu_barrier_completion);
1612 /*
1613 * Initialize rcu_barrier_cpu_count to 1, then invoke
1614 * rcu_barrier_func() on each CPU, so that each CPU also has
1615 * incremented rcu_barrier_cpu_count. Only then is it safe to
1616 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1617 * might complete its grace period before all of the other CPUs
1618 * did their increment, causing this function to return too
1619 * early.
1620 */
1621 atomic_set(&rcu_barrier_cpu_count, 1);
1622 preempt_disable(); /* stop CPU_DYING from filling orphan_cbs_list */
1623 rcu_adopt_orphan_cbs(rsp);
1624 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1625 preempt_enable(); /* CPU_DYING can again fill orphan_cbs_list */
1626 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1627 complete(&rcu_barrier_completion);
1628 wait_for_completion(&rcu_barrier_completion);
1629 mutex_unlock(&rcu_barrier_mutex);
1630}
1631
1632/**
1633 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1634 */
1635void rcu_barrier_bh(void)
1636{
1637 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
1638}
1639EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1640
1641/**
1642 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1643 */
1644void rcu_barrier_sched(void)
1645{
1646 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
1647}
1648EXPORT_SYMBOL_GPL(rcu_barrier_sched);
1649
1650/*
1651 * Do boot-time initialization of a CPU's per-CPU RCU data.
1652 */
1653static void __init
1654rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1319{ 1655{
1320 unsigned long flags; 1656 unsigned long flags;
1321 int i; 1657 int i;
1322 long lastcomp;
1323 unsigned long mask;
1324 struct rcu_data *rdp = rsp->rda[cpu]; 1658 struct rcu_data *rdp = rsp->rda[cpu];
1325 struct rcu_node *rnp = rcu_get_root(rsp); 1659 struct rcu_node *rnp = rcu_get_root(rsp);
1326 1660
1327 /* Set up local state, ensuring consistent view of global state. */ 1661 /* Set up local state, ensuring consistent view of global state. */
1328 spin_lock_irqsave(&rnp->lock, flags); 1662 spin_lock_irqsave(&rnp->lock, flags);
1329 lastcomp = rsp->completed;
1330 rdp->completed = lastcomp;
1331 rdp->gpnum = lastcomp;
1332 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1333 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1334 rdp->beenonline = 1; /* We have now been online. */
1335 rdp->passed_quiesc_completed = lastcomp - 1;
1336 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo); 1663 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1337 rdp->nxtlist = NULL; 1664 rdp->nxtlist = NULL;
1338 for (i = 0; i < RCU_NEXT_SIZE; i++) 1665 for (i = 0; i < RCU_NEXT_SIZE; i++)
1339 rdp->nxttail[i] = &rdp->nxtlist; 1666 rdp->nxttail[i] = &rdp->nxtlist;
1340 rdp->qlen = 0; 1667 rdp->qlen = 0;
1341 rdp->blimit = blimit;
1342#ifdef CONFIG_NO_HZ 1668#ifdef CONFIG_NO_HZ
1343 rdp->dynticks = &per_cpu(rcu_dynticks, cpu); 1669 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1344#endif /* #ifdef CONFIG_NO_HZ */ 1670#endif /* #ifdef CONFIG_NO_HZ */
1345 rdp->cpu = cpu; 1671 rdp->cpu = cpu;
1672 spin_unlock_irqrestore(&rnp->lock, flags);
1673}
1674
1675/*
1676 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1677 * offline event can be happening at a given time. Note also that we
1678 * can accept some slop in the rsp->completed access due to the fact
1679 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1680 */
1681static void __cpuinit
1682rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
1683{
1684 unsigned long flags;
1685 unsigned long mask;
1686 struct rcu_data *rdp = rsp->rda[cpu];
1687 struct rcu_node *rnp = rcu_get_root(rsp);
1688
1689 /* Set up local state, ensuring consistent view of global state. */
1690 spin_lock_irqsave(&rnp->lock, flags);
1691 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1692 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1693 rdp->beenonline = 1; /* We have now been online. */
1694 rdp->preemptable = preemptable;
1695 rdp->qlen_last_fqs_check = 0;
1696 rdp->n_force_qs_snap = rsp->n_force_qs;
1697 rdp->blimit = blimit;
1346 spin_unlock(&rnp->lock); /* irqs remain disabled. */ 1698 spin_unlock(&rnp->lock); /* irqs remain disabled. */
1347 1699
1348 /* 1700 /*
@@ -1361,38 +1713,30 @@ rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
1361 spin_lock(&rnp->lock); /* irqs already disabled. */ 1713 spin_lock(&rnp->lock); /* irqs already disabled. */
1362 rnp->qsmaskinit |= mask; 1714 rnp->qsmaskinit |= mask;
1363 mask = rnp->grpmask; 1715 mask = rnp->grpmask;
1716 if (rnp == rdp->mynode) {
1717 rdp->gpnum = rnp->completed; /* if GP in progress... */
1718 rdp->completed = rnp->completed;
1719 rdp->passed_quiesc_completed = rnp->completed - 1;
1720 }
1364 spin_unlock(&rnp->lock); /* irqs already disabled. */ 1721 spin_unlock(&rnp->lock); /* irqs already disabled. */
1365 rnp = rnp->parent; 1722 rnp = rnp->parent;
1366 } while (rnp != NULL && !(rnp->qsmaskinit & mask)); 1723 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1367 1724
1368 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ 1725 spin_unlock_irqrestore(&rsp->onofflock, flags);
1369
1370 /*
1371 * A new grace period might start here. If so, we will be part of
1372 * it, and its gpnum will be greater than ours, so we will
1373 * participate. It is also possible for the gpnum to have been
1374 * incremented before this function was called, and the bitmasks
1375 * to not be filled out until now, in which case we will also
1376 * participate due to our gpnum being behind.
1377 */
1378
1379 /* Since it is coming online, the CPU is in a quiescent state. */
1380 cpu_quiet(cpu, rsp, rdp, lastcomp);
1381 local_irq_restore(flags);
1382} 1726}
1383 1727
1384static void __cpuinit rcu_online_cpu(int cpu) 1728static void __cpuinit rcu_online_cpu(int cpu)
1385{ 1729{
1386 rcu_init_percpu_data(cpu, &rcu_state); 1730 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1387 rcu_init_percpu_data(cpu, &rcu_bh_state); 1731 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1388 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 1732 rcu_preempt_init_percpu_data(cpu);
1389} 1733}
1390 1734
1391/* 1735/*
1392 * Handle CPU online/offline notifcation events. 1736 * Handle CPU online/offline notification events.
1393 */ 1737 */
1394static int __cpuinit rcu_cpu_notify(struct notifier_block *self, 1738static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1395 unsigned long action, void *hcpu) 1739 unsigned long action, void *hcpu)
1396{ 1740{
1397 long cpu = (long)hcpu; 1741 long cpu = (long)hcpu;
1398 1742
@@ -1401,6 +1745,22 @@ static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1401 case CPU_UP_PREPARE_FROZEN: 1745 case CPU_UP_PREPARE_FROZEN:
1402 rcu_online_cpu(cpu); 1746 rcu_online_cpu(cpu);
1403 break; 1747 break;
1748 case CPU_DYING:
1749 case CPU_DYING_FROZEN:
1750 /*
1751 * preempt_disable() in _rcu_barrier() prevents stop_machine(),
1752 * so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);"
1753 * returns, all online cpus have queued rcu_barrier_func().
1754 * The dying CPU clears its cpu_online_mask bit and
1755 * moves all of its RCU callbacks to ->orphan_cbs_list
1756 * in the context of stop_machine(), so subsequent calls
1757 * to _rcu_barrier() will adopt these callbacks and only
1758 * then queue rcu_barrier_func() on all remaining CPUs.
1759 */
1760 rcu_send_cbs_to_orphanage(&rcu_bh_state);
1761 rcu_send_cbs_to_orphanage(&rcu_sched_state);
1762 rcu_preempt_send_cbs_to_orphanage();
1763 break;
1404 case CPU_DEAD: 1764 case CPU_DEAD:
1405 case CPU_DEAD_FROZEN: 1765 case CPU_DEAD_FROZEN:
1406 case CPU_UP_CANCELED: 1766 case CPU_UP_CANCELED:
@@ -1464,6 +1824,8 @@ static void __init rcu_init_one(struct rcu_state *rsp)
1464 rnp = rsp->level[i]; 1824 rnp = rsp->level[i];
1465 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) { 1825 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1466 spin_lock_init(&rnp->lock); 1826 spin_lock_init(&rnp->lock);
1827 lockdep_set_class(&rnp->lock, &rcu_node_class[i]);
1828 rnp->gpnum = 0;
1467 rnp->qsmask = 0; 1829 rnp->qsmask = 0;
1468 rnp->qsmaskinit = 0; 1830 rnp->qsmaskinit = 0;
1469 rnp->grplo = j * cpustride; 1831 rnp->grplo = j * cpustride;
@@ -1481,16 +1843,26 @@ static void __init rcu_init_one(struct rcu_state *rsp)
1481 j / rsp->levelspread[i - 1]; 1843 j / rsp->levelspread[i - 1];
1482 } 1844 }
1483 rnp->level = i; 1845 rnp->level = i;
1846 INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1847 INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
1848 INIT_LIST_HEAD(&rnp->blocked_tasks[2]);
1849 INIT_LIST_HEAD(&rnp->blocked_tasks[3]);
1484 } 1850 }
1485 } 1851 }
1486} 1852}
1487 1853
1488/* 1854/*
1489 * Helper macro for __rcu_init(). To be used nowhere else! 1855 * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
1490 * Assigns leaf node pointers into each CPU's rcu_data structure. 1856 * nowhere else! Assigns leaf node pointers into each CPU's rcu_data
1857 * structure.
1491 */ 1858 */
1492#define RCU_DATA_PTR_INIT(rsp, rcu_data) \ 1859#define RCU_INIT_FLAVOR(rsp, rcu_data) \
1493do { \ 1860do { \
1861 int i; \
1862 int j; \
1863 struct rcu_node *rnp; \
1864 \
1865 rcu_init_one(rsp); \
1494 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \ 1866 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1495 j = 0; \ 1867 j = 0; \
1496 for_each_possible_cpu(i) { \ 1868 for_each_possible_cpu(i) { \
@@ -1498,35 +1870,34 @@ do { \
1498 j++; \ 1870 j++; \
1499 per_cpu(rcu_data, i).mynode = &rnp[j]; \ 1871 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1500 (rsp)->rda[i] = &per_cpu(rcu_data, i); \ 1872 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
1873 rcu_boot_init_percpu_data(i, rsp); \
1501 } \ 1874 } \
1502} while (0) 1875} while (0)
1503 1876
1504static struct notifier_block __cpuinitdata rcu_nb = { 1877void __init rcu_init(void)
1505 .notifier_call = rcu_cpu_notify,
1506};
1507
1508void __init __rcu_init(void)
1509{ 1878{
1510 int i; /* All used by RCU_DATA_PTR_INIT(). */ 1879 int i;
1511 int j;
1512 struct rcu_node *rnp;
1513 1880
1514 printk(KERN_WARNING "Experimental hierarchical RCU implementation.\n"); 1881 rcu_bootup_announce();
1515#ifdef CONFIG_RCU_CPU_STALL_DETECTOR 1882#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1516 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n"); 1883 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1517#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ 1884#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
1518 rcu_init_one(&rcu_state); 1885#if NUM_RCU_LVL_4 != 0
1519 RCU_DATA_PTR_INIT(&rcu_state, rcu_data); 1886 printk(KERN_INFO "Experimental four-level hierarchy is enabled.\n");
1520 rcu_init_one(&rcu_bh_state); 1887#endif /* #if NUM_RCU_LVL_4 != 0 */
1521 RCU_DATA_PTR_INIT(&rcu_bh_state, rcu_bh_data); 1888 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
1889 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
1890 __rcu_init_preempt();
1891 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
1522 1892
1893 /*
1894 * We don't need protection against CPU-hotplug here because
1895 * this is called early in boot, before either interrupts
1896 * or the scheduler are operational.
1897 */
1898 cpu_notifier(rcu_cpu_notify, 0);
1523 for_each_online_cpu(i) 1899 for_each_online_cpu(i)
1524 rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, (void *)(long)i); 1900 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)i);
1525 /* Register notifier for non-boot CPUs */
1526 register_cpu_notifier(&rcu_nb);
1527 printk(KERN_WARNING "Experimental hierarchical RCU init done.\n");
1528} 1901}
1529 1902
1530module_param(blimit, int, 0); 1903#include "rcutree_plugin.h"
1531module_param(qhimark, int, 0);
1532module_param(qlowmark, int, 0);