diff options
Diffstat (limited to 'kernel/rcupreempt.c')
| -rw-r--r-- | kernel/rcupreempt.c | 1539 |
1 files changed, 0 insertions, 1539 deletions
diff --git a/kernel/rcupreempt.c b/kernel/rcupreempt.c deleted file mode 100644 index beb0e659adcc..000000000000 --- a/kernel/rcupreempt.c +++ /dev/null | |||
| @@ -1,1539 +0,0 @@ | |||
| 1 | /* | ||
| 2 | * Read-Copy Update mechanism for mutual exclusion, realtime implementation | ||
| 3 | * | ||
| 4 | * This program is free software; you can redistribute it and/or modify | ||
| 5 | * it under the terms of the GNU General Public License as published by | ||
| 6 | * the Free Software Foundation; either version 2 of the License, or | ||
| 7 | * (at your option) any later version. | ||
| 8 | * | ||
| 9 | * This program is distributed in the hope that it will be useful, | ||
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 12 | * GNU General Public License for more details. | ||
| 13 | * | ||
| 14 | * You should have received a copy of the GNU General Public License | ||
| 15 | * along with this program; if not, write to the Free Software | ||
| 16 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
| 17 | * | ||
| 18 | * Copyright IBM Corporation, 2006 | ||
| 19 | * | ||
| 20 | * Authors: Paul E. McKenney <paulmck@us.ibm.com> | ||
| 21 | * With thanks to Esben Nielsen, Bill Huey, and Ingo Molnar | ||
| 22 | * for pushing me away from locks and towards counters, and | ||
| 23 | * to Suparna Bhattacharya for pushing me completely away | ||
| 24 | * from atomic instructions on the read side. | ||
| 25 | * | ||
| 26 | * - Added handling of Dynamic Ticks | ||
| 27 | * Copyright 2007 - Paul E. Mckenney <paulmck@us.ibm.com> | ||
| 28 | * - Steven Rostedt <srostedt@redhat.com> | ||
| 29 | * | ||
| 30 | * Papers: http://www.rdrop.com/users/paulmck/RCU | ||
| 31 | * | ||
| 32 | * Design Document: http://lwn.net/Articles/253651/ | ||
| 33 | * | ||
| 34 | * For detailed explanation of Read-Copy Update mechanism see - | ||
| 35 | * Documentation/RCU/ *.txt | ||
| 36 | * | ||
| 37 | */ | ||
| 38 | #include <linux/types.h> | ||
| 39 | #include <linux/kernel.h> | ||
| 40 | #include <linux/init.h> | ||
| 41 | #include <linux/spinlock.h> | ||
| 42 | #include <linux/smp.h> | ||
| 43 | #include <linux/rcupdate.h> | ||
| 44 | #include <linux/interrupt.h> | ||
| 45 | #include <linux/sched.h> | ||
| 46 | #include <asm/atomic.h> | ||
| 47 | #include <linux/bitops.h> | ||
| 48 | #include <linux/module.h> | ||
| 49 | #include <linux/kthread.h> | ||
| 50 | #include <linux/completion.h> | ||
| 51 | #include <linux/moduleparam.h> | ||
| 52 | #include <linux/percpu.h> | ||
| 53 | #include <linux/notifier.h> | ||
| 54 | #include <linux/cpu.h> | ||
| 55 | #include <linux/random.h> | ||
| 56 | #include <linux/delay.h> | ||
| 57 | #include <linux/cpumask.h> | ||
| 58 | #include <linux/rcupreempt_trace.h> | ||
| 59 | #include <asm/byteorder.h> | ||
| 60 | |||
| 61 | /* | ||
| 62 | * PREEMPT_RCU data structures. | ||
| 63 | */ | ||
| 64 | |||
| 65 | /* | ||
| 66 | * GP_STAGES specifies the number of times the state machine has | ||
| 67 | * to go through the all the rcu_try_flip_states (see below) | ||
| 68 | * in a single Grace Period. | ||
| 69 | * | ||
| 70 | * GP in GP_STAGES stands for Grace Period ;) | ||
| 71 | */ | ||
| 72 | #define GP_STAGES 2 | ||
| 73 | struct rcu_data { | ||
| 74 | spinlock_t lock; /* Protect rcu_data fields. */ | ||
| 75 | long completed; /* Number of last completed batch. */ | ||
| 76 | int waitlistcount; | ||
| 77 | struct rcu_head *nextlist; | ||
| 78 | struct rcu_head **nexttail; | ||
| 79 | struct rcu_head *waitlist[GP_STAGES]; | ||
| 80 | struct rcu_head **waittail[GP_STAGES]; | ||
| 81 | struct rcu_head *donelist; /* from waitlist & waitschedlist */ | ||
| 82 | struct rcu_head **donetail; | ||
| 83 | long rcu_flipctr[2]; | ||
| 84 | struct rcu_head *nextschedlist; | ||
| 85 | struct rcu_head **nextschedtail; | ||
| 86 | struct rcu_head *waitschedlist; | ||
| 87 | struct rcu_head **waitschedtail; | ||
| 88 | int rcu_sched_sleeping; | ||
| 89 | #ifdef CONFIG_RCU_TRACE | ||
| 90 | struct rcupreempt_trace trace; | ||
| 91 | #endif /* #ifdef CONFIG_RCU_TRACE */ | ||
| 92 | }; | ||
| 93 | |||
| 94 | /* | ||
| 95 | * States for rcu_try_flip() and friends. | ||
| 96 | */ | ||
| 97 | |||
| 98 | enum rcu_try_flip_states { | ||
| 99 | |||
| 100 | /* | ||
| 101 | * Stay here if nothing is happening. Flip the counter if somthing | ||
| 102 | * starts happening. Denoted by "I" | ||
| 103 | */ | ||
| 104 | rcu_try_flip_idle_state, | ||
| 105 | |||
| 106 | /* | ||
| 107 | * Wait here for all CPUs to notice that the counter has flipped. This | ||
| 108 | * prevents the old set of counters from ever being incremented once | ||
| 109 | * we leave this state, which in turn is necessary because we cannot | ||
| 110 | * test any individual counter for zero -- we can only check the sum. | ||
| 111 | * Denoted by "A". | ||
| 112 | */ | ||
| 113 | rcu_try_flip_waitack_state, | ||
| 114 | |||
| 115 | /* | ||
| 116 | * Wait here for the sum of the old per-CPU counters to reach zero. | ||
| 117 | * Denoted by "Z". | ||
| 118 | */ | ||
| 119 | rcu_try_flip_waitzero_state, | ||
| 120 | |||
| 121 | /* | ||
| 122 | * Wait here for each of the other CPUs to execute a memory barrier. | ||
| 123 | * This is necessary to ensure that these other CPUs really have | ||
| 124 | * completed executing their RCU read-side critical sections, despite | ||
| 125 | * their CPUs wildly reordering memory. Denoted by "M". | ||
| 126 | */ | ||
| 127 | rcu_try_flip_waitmb_state, | ||
| 128 | }; | ||
| 129 | |||
| 130 | /* | ||
| 131 | * States for rcu_ctrlblk.rcu_sched_sleep. | ||
| 132 | */ | ||
| 133 | |||
| 134 | enum rcu_sched_sleep_states { | ||
| 135 | rcu_sched_not_sleeping, /* Not sleeping, callbacks need GP. */ | ||
| 136 | rcu_sched_sleep_prep, /* Thinking of sleeping, rechecking. */ | ||
| 137 | rcu_sched_sleeping, /* Sleeping, awaken if GP needed. */ | ||
| 138 | }; | ||
| 139 | |||
| 140 | struct rcu_ctrlblk { | ||
| 141 | spinlock_t fliplock; /* Protect state-machine transitions. */ | ||
| 142 | long completed; /* Number of last completed batch. */ | ||
| 143 | enum rcu_try_flip_states rcu_try_flip_state; /* The current state of | ||
| 144 | the rcu state machine */ | ||
| 145 | spinlock_t schedlock; /* Protect rcu_sched sleep state. */ | ||
| 146 | enum rcu_sched_sleep_states sched_sleep; /* rcu_sched state. */ | ||
| 147 | wait_queue_head_t sched_wq; /* Place for rcu_sched to sleep. */ | ||
| 148 | }; | ||
| 149 | |||
| 150 | struct rcu_dyntick_sched { | ||
| 151 | int dynticks; | ||
| 152 | int dynticks_snap; | ||
| 153 | int sched_qs; | ||
| 154 | int sched_qs_snap; | ||
| 155 | int sched_dynticks_snap; | ||
| 156 | }; | ||
| 157 | |||
| 158 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_dyntick_sched, rcu_dyntick_sched) = { | ||
| 159 | .dynticks = 1, | ||
| 160 | }; | ||
| 161 | |||
| 162 | void rcu_qsctr_inc(int cpu) | ||
| 163 | { | ||
| 164 | struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); | ||
| 165 | |||
| 166 | rdssp->sched_qs++; | ||
| 167 | } | ||
| 168 | |||
| 169 | #ifdef CONFIG_NO_HZ | ||
| 170 | |||
| 171 | void rcu_enter_nohz(void) | ||
| 172 | { | ||
| 173 | static DEFINE_RATELIMIT_STATE(rs, 10 * HZ, 1); | ||
| 174 | |||
| 175 | smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ | ||
| 176 | __get_cpu_var(rcu_dyntick_sched).dynticks++; | ||
| 177 | WARN_ON_RATELIMIT(__get_cpu_var(rcu_dyntick_sched).dynticks & 0x1, &rs); | ||
| 178 | } | ||
| 179 | |||
| 180 | void rcu_exit_nohz(void) | ||
| 181 | { | ||
| 182 | static DEFINE_RATELIMIT_STATE(rs, 10 * HZ, 1); | ||
| 183 | |||
| 184 | __get_cpu_var(rcu_dyntick_sched).dynticks++; | ||
| 185 | smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ | ||
| 186 | WARN_ON_RATELIMIT(!(__get_cpu_var(rcu_dyntick_sched).dynticks & 0x1), | ||
| 187 | &rs); | ||
| 188 | } | ||
| 189 | |||
| 190 | #endif /* CONFIG_NO_HZ */ | ||
| 191 | |||
| 192 | |||
| 193 | static DEFINE_PER_CPU(struct rcu_data, rcu_data); | ||
| 194 | |||
| 195 | static struct rcu_ctrlblk rcu_ctrlblk = { | ||
| 196 | .fliplock = __SPIN_LOCK_UNLOCKED(rcu_ctrlblk.fliplock), | ||
| 197 | .completed = 0, | ||
| 198 | .rcu_try_flip_state = rcu_try_flip_idle_state, | ||
| 199 | .schedlock = __SPIN_LOCK_UNLOCKED(rcu_ctrlblk.schedlock), | ||
| 200 | .sched_sleep = rcu_sched_not_sleeping, | ||
| 201 | .sched_wq = __WAIT_QUEUE_HEAD_INITIALIZER(rcu_ctrlblk.sched_wq), | ||
| 202 | }; | ||
| 203 | |||
| 204 | static struct task_struct *rcu_sched_grace_period_task; | ||
| 205 | |||
| 206 | #ifdef CONFIG_RCU_TRACE | ||
| 207 | static char *rcu_try_flip_state_names[] = | ||
| 208 | { "idle", "waitack", "waitzero", "waitmb" }; | ||
| 209 | #endif /* #ifdef CONFIG_RCU_TRACE */ | ||
| 210 | |||
| 211 | static DECLARE_BITMAP(rcu_cpu_online_map, NR_CPUS) __read_mostly | ||
| 212 | = CPU_BITS_NONE; | ||
| 213 | |||
| 214 | /* | ||
| 215 | * Enum and per-CPU flag to determine when each CPU has seen | ||
| 216 | * the most recent counter flip. | ||
| 217 | */ | ||
| 218 | |||
| 219 | enum rcu_flip_flag_values { | ||
| 220 | rcu_flip_seen, /* Steady/initial state, last flip seen. */ | ||
| 221 | /* Only GP detector can update. */ | ||
| 222 | rcu_flipped /* Flip just completed, need confirmation. */ | ||
| 223 | /* Only corresponding CPU can update. */ | ||
| 224 | }; | ||
| 225 | static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_flip_flag_values, rcu_flip_flag) | ||
| 226 | = rcu_flip_seen; | ||
| 227 | |||
| 228 | /* | ||
| 229 | * Enum and per-CPU flag to determine when each CPU has executed the | ||
| 230 | * needed memory barrier to fence in memory references from its last RCU | ||
| 231 | * read-side critical section in the just-completed grace period. | ||
| 232 | */ | ||
| 233 | |||
| 234 | enum rcu_mb_flag_values { | ||
| 235 | rcu_mb_done, /* Steady/initial state, no mb()s required. */ | ||
| 236 | /* Only GP detector can update. */ | ||
| 237 | rcu_mb_needed /* Flip just completed, need an mb(). */ | ||
| 238 | /* Only corresponding CPU can update. */ | ||
| 239 | }; | ||
| 240 | static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_mb_flag_values, rcu_mb_flag) | ||
| 241 | = rcu_mb_done; | ||
| 242 | |||
| 243 | /* | ||
| 244 | * RCU_DATA_ME: find the current CPU's rcu_data structure. | ||
| 245 | * RCU_DATA_CPU: find the specified CPU's rcu_data structure. | ||
| 246 | */ | ||
| 247 | #define RCU_DATA_ME() (&__get_cpu_var(rcu_data)) | ||
| 248 | #define RCU_DATA_CPU(cpu) (&per_cpu(rcu_data, cpu)) | ||
| 249 | |||
| 250 | /* | ||
| 251 | * Helper macro for tracing when the appropriate rcu_data is not | ||
| 252 | * cached in a local variable, but where the CPU number is so cached. | ||
| 253 | */ | ||
| 254 | #define RCU_TRACE_CPU(f, cpu) RCU_TRACE(f, &(RCU_DATA_CPU(cpu)->trace)); | ||
| 255 | |||
| 256 | /* | ||
| 257 | * Helper macro for tracing when the appropriate rcu_data is not | ||
| 258 | * cached in a local variable. | ||
| 259 | */ | ||
| 260 | #define RCU_TRACE_ME(f) RCU_TRACE(f, &(RCU_DATA_ME()->trace)); | ||
| 261 | |||
| 262 | /* | ||
| 263 | * Helper macro for tracing when the appropriate rcu_data is pointed | ||
| 264 | * to by a local variable. | ||
| 265 | */ | ||
| 266 | #define RCU_TRACE_RDP(f, rdp) RCU_TRACE(f, &((rdp)->trace)); | ||
| 267 | |||
| 268 | #define RCU_SCHED_BATCH_TIME (HZ / 50) | ||
| 269 | |||
| 270 | /* | ||
| 271 | * Return the number of RCU batches processed thus far. Useful | ||
| 272 | * for debug and statistics. | ||
| 273 | */ | ||
| 274 | long rcu_batches_completed(void) | ||
| 275 | { | ||
| 276 | return rcu_ctrlblk.completed; | ||
| 277 | } | ||
| 278 | EXPORT_SYMBOL_GPL(rcu_batches_completed); | ||
| 279 | |||
| 280 | void __rcu_read_lock(void) | ||
| 281 | { | ||
| 282 | int idx; | ||
| 283 | struct task_struct *t = current; | ||
| 284 | int nesting; | ||
| 285 | |||
| 286 | nesting = ACCESS_ONCE(t->rcu_read_lock_nesting); | ||
| 287 | if (nesting != 0) { | ||
| 288 | |||
| 289 | /* An earlier rcu_read_lock() covers us, just count it. */ | ||
| 290 | |||
| 291 | t->rcu_read_lock_nesting = nesting + 1; | ||
| 292 | |||
| 293 | } else { | ||
| 294 | unsigned long flags; | ||
| 295 | |||
| 296 | /* | ||
| 297 | * We disable interrupts for the following reasons: | ||
| 298 | * - If we get scheduling clock interrupt here, and we | ||
| 299 | * end up acking the counter flip, it's like a promise | ||
| 300 | * that we will never increment the old counter again. | ||
| 301 | * Thus we will break that promise if that | ||
| 302 | * scheduling clock interrupt happens between the time | ||
| 303 | * we pick the .completed field and the time that we | ||
| 304 | * increment our counter. | ||
| 305 | * | ||
| 306 | * - We don't want to be preempted out here. | ||
| 307 | * | ||
| 308 | * NMIs can still occur, of course, and might themselves | ||
| 309 | * contain rcu_read_lock(). | ||
| 310 | */ | ||
| 311 | |||
| 312 | local_irq_save(flags); | ||
| 313 | |||
| 314 | /* | ||
| 315 | * Outermost nesting of rcu_read_lock(), so increment | ||
| 316 | * the current counter for the current CPU. Use volatile | ||
| 317 | * casts to prevent the compiler from reordering. | ||
| 318 | */ | ||
| 319 | |||
| 320 | idx = ACCESS_ONCE(rcu_ctrlblk.completed) & 0x1; | ||
| 321 | ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])++; | ||
| 322 | |||
| 323 | /* | ||
| 324 | * Now that the per-CPU counter has been incremented, we | ||
| 325 | * are protected from races with rcu_read_lock() invoked | ||
| 326 | * from NMI handlers on this CPU. We can therefore safely | ||
| 327 | * increment the nesting counter, relieving further NMIs | ||
| 328 | * of the need to increment the per-CPU counter. | ||
| 329 | */ | ||
| 330 | |||
| 331 | ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting + 1; | ||
| 332 | |||
| 333 | /* | ||
| 334 | * Now that we have preventing any NMIs from storing | ||
| 335 | * to the ->rcu_flipctr_idx, we can safely use it to | ||
| 336 | * remember which counter to decrement in the matching | ||
| 337 | * rcu_read_unlock(). | ||
| 338 | */ | ||
| 339 | |||
| 340 | ACCESS_ONCE(t->rcu_flipctr_idx) = idx; | ||
| 341 | local_irq_restore(flags); | ||
| 342 | } | ||
| 343 | } | ||
| 344 | EXPORT_SYMBOL_GPL(__rcu_read_lock); | ||
| 345 | |||
| 346 | void __rcu_read_unlock(void) | ||
| 347 | { | ||
| 348 | int idx; | ||
| 349 | struct task_struct *t = current; | ||
| 350 | int nesting; | ||
| 351 | |||
| 352 | nesting = ACCESS_ONCE(t->rcu_read_lock_nesting); | ||
| 353 | if (nesting > 1) { | ||
| 354 | |||
| 355 | /* | ||
| 356 | * We are still protected by the enclosing rcu_read_lock(), | ||
| 357 | * so simply decrement the counter. | ||
| 358 | */ | ||
| 359 | |||
| 360 | t->rcu_read_lock_nesting = nesting - 1; | ||
| 361 | |||
| 362 | } else { | ||
| 363 | unsigned long flags; | ||
| 364 | |||
| 365 | /* | ||
| 366 | * Disable local interrupts to prevent the grace-period | ||
| 367 | * detection state machine from seeing us half-done. | ||
| 368 | * NMIs can still occur, of course, and might themselves | ||
| 369 | * contain rcu_read_lock() and rcu_read_unlock(). | ||
| 370 | */ | ||
| 371 | |||
| 372 | local_irq_save(flags); | ||
| 373 | |||
| 374 | /* | ||
| 375 | * Outermost nesting of rcu_read_unlock(), so we must | ||
| 376 | * decrement the current counter for the current CPU. | ||
| 377 | * This must be done carefully, because NMIs can | ||
| 378 | * occur at any point in this code, and any rcu_read_lock() | ||
| 379 | * and rcu_read_unlock() pairs in the NMI handlers | ||
| 380 | * must interact non-destructively with this code. | ||
| 381 | * Lots of volatile casts, and -very- careful ordering. | ||
| 382 | * | ||
| 383 | * Changes to this code, including this one, must be | ||
| 384 | * inspected, validated, and tested extremely carefully!!! | ||
| 385 | */ | ||
| 386 | |||
| 387 | /* | ||
| 388 | * First, pick up the index. | ||
| 389 | */ | ||
| 390 | |||
| 391 | idx = ACCESS_ONCE(t->rcu_flipctr_idx); | ||
| 392 | |||
| 393 | /* | ||
| 394 | * Now that we have fetched the counter index, it is | ||
| 395 | * safe to decrement the per-task RCU nesting counter. | ||
| 396 | * After this, any interrupts or NMIs will increment and | ||
| 397 | * decrement the per-CPU counters. | ||
| 398 | */ | ||
| 399 | ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting - 1; | ||
| 400 | |||
| 401 | /* | ||
| 402 | * It is now safe to decrement this task's nesting count. | ||
| 403 | * NMIs that occur after this statement will route their | ||
| 404 | * rcu_read_lock() calls through this "else" clause, and | ||
| 405 | * will thus start incrementing the per-CPU counter on | ||
| 406 | * their own. They will also clobber ->rcu_flipctr_idx, | ||
| 407 | * but that is OK, since we have already fetched it. | ||
| 408 | */ | ||
| 409 | |||
| 410 | ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])--; | ||
| 411 | local_irq_restore(flags); | ||
| 412 | } | ||
| 413 | } | ||
| 414 | EXPORT_SYMBOL_GPL(__rcu_read_unlock); | ||
| 415 | |||
| 416 | /* | ||
| 417 | * If a global counter flip has occurred since the last time that we | ||
| 418 | * advanced callbacks, advance them. Hardware interrupts must be | ||
| 419 | * disabled when calling this function. | ||
| 420 | */ | ||
| 421 | static void __rcu_advance_callbacks(struct rcu_data *rdp) | ||
| 422 | { | ||
| 423 | int cpu; | ||
| 424 | int i; | ||
| 425 | int wlc = 0; | ||
| 426 | |||
| 427 | if (rdp->completed != rcu_ctrlblk.completed) { | ||
| 428 | if (rdp->waitlist[GP_STAGES - 1] != NULL) { | ||
| 429 | *rdp->donetail = rdp->waitlist[GP_STAGES - 1]; | ||
| 430 | rdp->donetail = rdp->waittail[GP_STAGES - 1]; | ||
| 431 | RCU_TRACE_RDP(rcupreempt_trace_move2done, rdp); | ||
| 432 | } | ||
| 433 | for (i = GP_STAGES - 2; i >= 0; i--) { | ||
| 434 | if (rdp->waitlist[i] != NULL) { | ||
| 435 | rdp->waitlist[i + 1] = rdp->waitlist[i]; | ||
| 436 | rdp->waittail[i + 1] = rdp->waittail[i]; | ||
| 437 | wlc++; | ||
| 438 | } else { | ||
| 439 | rdp->waitlist[i + 1] = NULL; | ||
| 440 | rdp->waittail[i + 1] = | ||
| 441 | &rdp->waitlist[i + 1]; | ||
| 442 | } | ||
| 443 | } | ||
| 444 | if (rdp->nextlist != NULL) { | ||
| 445 | rdp->waitlist[0] = rdp->nextlist; | ||
| 446 | rdp->waittail[0] = rdp->nexttail; | ||
| 447 | wlc++; | ||
| 448 | rdp->nextlist = NULL; | ||
| 449 | rdp->nexttail = &rdp->nextlist; | ||
| 450 | RCU_TRACE_RDP(rcupreempt_trace_move2wait, rdp); | ||
| 451 | } else { | ||
| 452 | rdp->waitlist[0] = NULL; | ||
| 453 | rdp->waittail[0] = &rdp->waitlist[0]; | ||
| 454 | } | ||
| 455 | rdp->waitlistcount = wlc; | ||
| 456 | rdp->completed = rcu_ctrlblk.completed; | ||
| 457 | } | ||
| 458 | |||
| 459 | /* | ||
| 460 | * Check to see if this CPU needs to report that it has seen | ||
| 461 | * the most recent counter flip, thereby declaring that all | ||
| 462 | * subsequent rcu_read_lock() invocations will respect this flip. | ||
| 463 | */ | ||
| 464 | |||
| 465 | cpu = raw_smp_processor_id(); | ||
| 466 | if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) { | ||
| 467 | smp_mb(); /* Subsequent counter accesses must see new value */ | ||
| 468 | per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen; | ||
| 469 | smp_mb(); /* Subsequent RCU read-side critical sections */ | ||
| 470 | /* seen -after- acknowledgement. */ | ||
| 471 | } | ||
| 472 | } | ||
| 473 | |||
| 474 | #ifdef CONFIG_NO_HZ | ||
| 475 | static DEFINE_PER_CPU(int, rcu_update_flag); | ||
| 476 | |||
| 477 | /** | ||
| 478 | * rcu_irq_enter - Called from Hard irq handlers and NMI/SMI. | ||
| 479 | * | ||
| 480 | * If the CPU was idle with dynamic ticks active, this updates the | ||
| 481 | * rcu_dyntick_sched.dynticks to let the RCU handling know that the | ||
| 482 | * CPU is active. | ||
| 483 | */ | ||
| 484 | void rcu_irq_enter(void) | ||
| 485 | { | ||
| 486 | int cpu = smp_processor_id(); | ||
| 487 | struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); | ||
| 488 | |||
| 489 | if (per_cpu(rcu_update_flag, cpu)) | ||
| 490 | per_cpu(rcu_update_flag, cpu)++; | ||
| 491 | |||
| 492 | /* | ||
| 493 | * Only update if we are coming from a stopped ticks mode | ||
| 494 | * (rcu_dyntick_sched.dynticks is even). | ||
| 495 | */ | ||
| 496 | if (!in_interrupt() && | ||
| 497 | (rdssp->dynticks & 0x1) == 0) { | ||
| 498 | /* | ||
| 499 | * The following might seem like we could have a race | ||
| 500 | * with NMI/SMIs. But this really isn't a problem. | ||
| 501 | * Here we do a read/modify/write, and the race happens | ||
| 502 | * when an NMI/SMI comes in after the read and before | ||
| 503 | * the write. But NMI/SMIs will increment this counter | ||
| 504 | * twice before returning, so the zero bit will not | ||
| 505 | * be corrupted by the NMI/SMI which is the most important | ||
| 506 | * part. | ||
| 507 | * | ||
| 508 | * The only thing is that we would bring back the counter | ||
| 509 | * to a postion that it was in during the NMI/SMI. | ||
| 510 | * But the zero bit would be set, so the rest of the | ||
| 511 | * counter would again be ignored. | ||
| 512 | * | ||
| 513 | * On return from the IRQ, the counter may have the zero | ||
| 514 | * bit be 0 and the counter the same as the return from | ||
| 515 | * the NMI/SMI. If the state machine was so unlucky to | ||
| 516 | * see that, it still doesn't matter, since all | ||
| 517 | * RCU read-side critical sections on this CPU would | ||
| 518 | * have already completed. | ||
| 519 | */ | ||
| 520 | rdssp->dynticks++; | ||
| 521 | /* | ||
| 522 | * The following memory barrier ensures that any | ||
| 523 | * rcu_read_lock() primitives in the irq handler | ||
| 524 | * are seen by other CPUs to follow the above | ||
| 525 | * increment to rcu_dyntick_sched.dynticks. This is | ||
| 526 | * required in order for other CPUs to correctly | ||
| 527 | * determine when it is safe to advance the RCU | ||
| 528 | * grace-period state machine. | ||
| 529 | */ | ||
| 530 | smp_mb(); /* see above block comment. */ | ||
| 531 | /* | ||
| 532 | * Since we can't determine the dynamic tick mode from | ||
| 533 | * the rcu_dyntick_sched.dynticks after this routine, | ||
| 534 | * we use a second flag to acknowledge that we came | ||
| 535 | * from an idle state with ticks stopped. | ||
| 536 | */ | ||
| 537 | per_cpu(rcu_update_flag, cpu)++; | ||
| 538 | /* | ||
| 539 | * If we take an NMI/SMI now, they will also increment | ||
| 540 | * the rcu_update_flag, and will not update the | ||
| 541 | * rcu_dyntick_sched.dynticks on exit. That is for | ||
| 542 | * this IRQ to do. | ||
| 543 | */ | ||
| 544 | } | ||
| 545 | } | ||
| 546 | |||
| 547 | /** | ||
| 548 | * rcu_irq_exit - Called from exiting Hard irq context. | ||
| 549 | * | ||
| 550 | * If the CPU was idle with dynamic ticks active, update the | ||
| 551 | * rcu_dyntick_sched.dynticks to put let the RCU handling be | ||
| 552 | * aware that the CPU is going back to idle with no ticks. | ||
| 553 | */ | ||
| 554 | void rcu_irq_exit(void) | ||
| 555 | { | ||
| 556 | int cpu = smp_processor_id(); | ||
| 557 | struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); | ||
| 558 | |||
| 559 | /* | ||
| 560 | * rcu_update_flag is set if we interrupted the CPU | ||
| 561 | * when it was idle with ticks stopped. | ||
| 562 | * Once this occurs, we keep track of interrupt nesting | ||
| 563 | * because a NMI/SMI could also come in, and we still | ||
| 564 | * only want the IRQ that started the increment of the | ||
| 565 | * rcu_dyntick_sched.dynticks to be the one that modifies | ||
| 566 | * it on exit. | ||
| 567 | */ | ||
| 568 | if (per_cpu(rcu_update_flag, cpu)) { | ||
| 569 | if (--per_cpu(rcu_update_flag, cpu)) | ||
| 570 | return; | ||
| 571 | |||
| 572 | /* This must match the interrupt nesting */ | ||
| 573 | WARN_ON(in_interrupt()); | ||
| 574 | |||
| 575 | /* | ||
| 576 | * If an NMI/SMI happens now we are still | ||
| 577 | * protected by the rcu_dyntick_sched.dynticks being odd. | ||
| 578 | */ | ||
| 579 | |||
| 580 | /* | ||
| 581 | * The following memory barrier ensures that any | ||
| 582 | * rcu_read_unlock() primitives in the irq handler | ||
| 583 | * are seen by other CPUs to preceed the following | ||
| 584 | * increment to rcu_dyntick_sched.dynticks. This | ||
| 585 | * is required in order for other CPUs to determine | ||
| 586 | * when it is safe to advance the RCU grace-period | ||
| 587 | * state machine. | ||
| 588 | */ | ||
| 589 | smp_mb(); /* see above block comment. */ | ||
| 590 | rdssp->dynticks++; | ||
| 591 | WARN_ON(rdssp->dynticks & 0x1); | ||
| 592 | } | ||
| 593 | } | ||
| 594 | |||
| 595 | void rcu_nmi_enter(void) | ||
| 596 | { | ||
| 597 | rcu_irq_enter(); | ||
| 598 | } | ||
| 599 | |||
| 600 | void rcu_nmi_exit(void) | ||
| 601 | { | ||
| 602 | rcu_irq_exit(); | ||
| 603 | } | ||
| 604 | |||
| 605 | static void dyntick_save_progress_counter(int cpu) | ||
| 606 | { | ||
| 607 | struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); | ||
| 608 | |||
| 609 | rdssp->dynticks_snap = rdssp->dynticks; | ||
| 610 | } | ||
| 611 | |||
| 612 | static inline int | ||
| 613 | rcu_try_flip_waitack_needed(int cpu) | ||
| 614 | { | ||
| 615 | long curr; | ||
| 616 | long snap; | ||
| 617 | struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); | ||
| 618 | |||
| 619 | curr = rdssp->dynticks; | ||
| 620 | snap = rdssp->dynticks_snap; | ||
| 621 | smp_mb(); /* force ordering with cpu entering/leaving dynticks. */ | ||
| 622 | |||
| 623 | /* | ||
| 624 | * If the CPU remained in dynticks mode for the entire time | ||
| 625 | * and didn't take any interrupts, NMIs, SMIs, or whatever, | ||
| 626 | * then it cannot be in the middle of an rcu_read_lock(), so | ||
| 627 | * the next rcu_read_lock() it executes must use the new value | ||
| 628 | * of the counter. So we can safely pretend that this CPU | ||
| 629 | * already acknowledged the counter. | ||
| 630 | */ | ||
| 631 | |||
| 632 | if ((curr == snap) && ((curr & 0x1) == 0)) | ||
| 633 | return 0; | ||
| 634 | |||
| 635 | /* | ||
| 636 | * If the CPU passed through or entered a dynticks idle phase with | ||
| 637 | * no active irq handlers, then, as above, we can safely pretend | ||
| 638 | * that this CPU already acknowledged the counter. | ||
| 639 | */ | ||
| 640 | |||
| 641 | if ((curr - snap) > 2 || (curr & 0x1) == 0) | ||
| 642 | return 0; | ||
| 643 | |||
| 644 | /* We need this CPU to explicitly acknowledge the counter flip. */ | ||
| 645 | |||
| 646 | return 1; | ||
| 647 | } | ||
| 648 | |||
| 649 | static inline int | ||
| 650 | rcu_try_flip_waitmb_needed(int cpu) | ||
| 651 | { | ||
| 652 | long curr; | ||
| 653 | long snap; | ||
| 654 | struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); | ||
| 655 | |||
| 656 | curr = rdssp->dynticks; | ||
| 657 | snap = rdssp->dynticks_snap; | ||
| 658 | smp_mb(); /* force ordering with cpu entering/leaving dynticks. */ | ||
| 659 | |||
| 660 | /* | ||
| 661 | * If the CPU remained in dynticks mode for the entire time | ||
| 662 | * and didn't take any interrupts, NMIs, SMIs, or whatever, | ||
| 663 | * then it cannot have executed an RCU read-side critical section | ||
| 664 | * during that time, so there is no need for it to execute a | ||
| 665 | * memory barrier. | ||
| 666 | */ | ||
| 667 | |||
| 668 | if ((curr == snap) && ((curr & 0x1) == 0)) | ||
| 669 | return 0; | ||
| 670 | |||
| 671 | /* | ||
| 672 | * If the CPU either entered or exited an outermost interrupt, | ||
| 673 | * SMI, NMI, or whatever handler, then we know that it executed | ||
| 674 | * a memory barrier when doing so. So we don't need another one. | ||
| 675 | */ | ||
| 676 | if (curr != snap) | ||
| 677 | return 0; | ||
| 678 | |||
| 679 | /* We need the CPU to execute a memory barrier. */ | ||
| 680 | |||
| 681 | return 1; | ||
| 682 | } | ||
| 683 | |||
| 684 | static void dyntick_save_progress_counter_sched(int cpu) | ||
| 685 | { | ||
| 686 | struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); | ||
| 687 | |||
| 688 | rdssp->sched_dynticks_snap = rdssp->dynticks; | ||
| 689 | } | ||
| 690 | |||
| 691 | static int rcu_qsctr_inc_needed_dyntick(int cpu) | ||
| 692 | { | ||
| 693 | long curr; | ||
| 694 | long snap; | ||
| 695 | struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); | ||
| 696 | |||
| 697 | curr = rdssp->dynticks; | ||
| 698 | snap = rdssp->sched_dynticks_snap; | ||
| 699 | smp_mb(); /* force ordering with cpu entering/leaving dynticks. */ | ||
| 700 | |||
| 701 | /* | ||
| 702 | * If the CPU remained in dynticks mode for the entire time | ||
| 703 | * and didn't take any interrupts, NMIs, SMIs, or whatever, | ||
| 704 | * then it cannot be in the middle of an rcu_read_lock(), so | ||
| 705 | * the next rcu_read_lock() it executes must use the new value | ||
| 706 | * of the counter. Therefore, this CPU has been in a quiescent | ||
| 707 | * state the entire time, and we don't need to wait for it. | ||
| 708 | */ | ||
| 709 | |||
| 710 | if ((curr == snap) && ((curr & 0x1) == 0)) | ||
| 711 | return 0; | ||
| 712 | |||
| 713 | /* | ||
| 714 | * If the CPU passed through or entered a dynticks idle phase with | ||
| 715 | * no active irq handlers, then, as above, this CPU has already | ||
| 716 | * passed through a quiescent state. | ||
| 717 | */ | ||
| 718 | |||
| 719 | if ((curr - snap) > 2 || (snap & 0x1) == 0) | ||
| 720 | return 0; | ||
| 721 | |||
| 722 | /* We need this CPU to go through a quiescent state. */ | ||
| 723 | |||
| 724 | return 1; | ||
| 725 | } | ||
| 726 | |||
| 727 | #else /* !CONFIG_NO_HZ */ | ||
| 728 | |||
| 729 | # define dyntick_save_progress_counter(cpu) do { } while (0) | ||
| 730 | # define rcu_try_flip_waitack_needed(cpu) (1) | ||
| 731 | # define rcu_try_flip_waitmb_needed(cpu) (1) | ||
| 732 | |||
| 733 | # define dyntick_save_progress_counter_sched(cpu) do { } while (0) | ||
| 734 | # define rcu_qsctr_inc_needed_dyntick(cpu) (1) | ||
| 735 | |||
| 736 | #endif /* CONFIG_NO_HZ */ | ||
| 737 | |||
| 738 | static void save_qsctr_sched(int cpu) | ||
| 739 | { | ||
| 740 | struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); | ||
| 741 | |||
| 742 | rdssp->sched_qs_snap = rdssp->sched_qs; | ||
| 743 | } | ||
| 744 | |||
| 745 | static inline int rcu_qsctr_inc_needed(int cpu) | ||
| 746 | { | ||
| 747 | struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); | ||
| 748 | |||
| 749 | /* | ||
| 750 | * If there has been a quiescent state, no more need to wait | ||
| 751 | * on this CPU. | ||
| 752 | */ | ||
| 753 | |||
| 754 | if (rdssp->sched_qs != rdssp->sched_qs_snap) { | ||
| 755 | smp_mb(); /* force ordering with cpu entering schedule(). */ | ||
| 756 | return 0; | ||
| 757 | } | ||
| 758 | |||
| 759 | /* We need this CPU to go through a quiescent state. */ | ||
| 760 | |||
| 761 | return 1; | ||
| 762 | } | ||
| 763 | |||
| 764 | /* | ||
| 765 | * Get here when RCU is idle. Decide whether we need to | ||
| 766 | * move out of idle state, and return non-zero if so. | ||
| 767 | * "Straightforward" approach for the moment, might later | ||
| 768 | * use callback-list lengths, grace-period duration, or | ||
| 769 | * some such to determine when to exit idle state. | ||
| 770 | * Might also need a pre-idle test that does not acquire | ||
| 771 | * the lock, but let's get the simple case working first... | ||
| 772 | */ | ||
| 773 | |||
| 774 | static int | ||
| 775 | rcu_try_flip_idle(void) | ||
| 776 | { | ||
| 777 | int cpu; | ||
| 778 | |||
| 779 | RCU_TRACE_ME(rcupreempt_trace_try_flip_i1); | ||
| 780 | if (!rcu_pending(smp_processor_id())) { | ||
| 781 | RCU_TRACE_ME(rcupreempt_trace_try_flip_ie1); | ||
| 782 | return 0; | ||
| 783 | } | ||
| 784 | |||
| 785 | /* | ||
| 786 | * Do the flip. | ||
| 787 | */ | ||
| 788 | |||
| 789 | RCU_TRACE_ME(rcupreempt_trace_try_flip_g1); | ||
| 790 | rcu_ctrlblk.completed++; /* stands in for rcu_try_flip_g2 */ | ||
| 791 | |||
| 792 | /* | ||
| 793 | * Need a memory barrier so that other CPUs see the new | ||
| 794 | * counter value before they see the subsequent change of all | ||
| 795 | * the rcu_flip_flag instances to rcu_flipped. | ||
| 796 | */ | ||
| 797 | |||
| 798 | smp_mb(); /* see above block comment. */ | ||
| 799 | |||
| 800 | /* Now ask each CPU for acknowledgement of the flip. */ | ||
| 801 | |||
| 802 | for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map)) { | ||
| 803 | per_cpu(rcu_flip_flag, cpu) = rcu_flipped; | ||
| 804 | dyntick_save_progress_counter(cpu); | ||
| 805 | } | ||
| 806 | |||
| 807 | return 1; | ||
| 808 | } | ||
| 809 | |||
| 810 | /* | ||
| 811 | * Wait for CPUs to acknowledge the flip. | ||
| 812 | */ | ||
| 813 | |||
| 814 | static int | ||
| 815 | rcu_try_flip_waitack(void) | ||
| 816 | { | ||
| 817 | int cpu; | ||
| 818 | |||
| 819 | RCU_TRACE_ME(rcupreempt_trace_try_flip_a1); | ||
| 820 | for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map)) | ||
| 821 | if (rcu_try_flip_waitack_needed(cpu) && | ||
| 822 | per_cpu(rcu_flip_flag, cpu) != rcu_flip_seen) { | ||
| 823 | RCU_TRACE_ME(rcupreempt_trace_try_flip_ae1); | ||
| 824 | return 0; | ||
| 825 | } | ||
| 826 | |||
| 827 | /* | ||
| 828 | * Make sure our checks above don't bleed into subsequent | ||
| 829 | * waiting for the sum of the counters to reach zero. | ||
| 830 | */ | ||
| 831 | |||
| 832 | smp_mb(); /* see above block comment. */ | ||
| 833 | RCU_TRACE_ME(rcupreempt_trace_try_flip_a2); | ||
| 834 | return 1; | ||
| 835 | } | ||
| 836 | |||
| 837 | /* | ||
| 838 | * Wait for collective ``last'' counter to reach zero, | ||
| 839 | * then tell all CPUs to do an end-of-grace-period memory barrier. | ||
| 840 | */ | ||
| 841 | |||
| 842 | static int | ||
| 843 | rcu_try_flip_waitzero(void) | ||
| 844 | { | ||
| 845 | int cpu; | ||
| 846 | int lastidx = !(rcu_ctrlblk.completed & 0x1); | ||
| 847 | int sum = 0; | ||
| 848 | |||
| 849 | /* Check to see if the sum of the "last" counters is zero. */ | ||
| 850 | |||
| 851 | RCU_TRACE_ME(rcupreempt_trace_try_flip_z1); | ||
| 852 | for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map)) | ||
| 853 | sum += RCU_DATA_CPU(cpu)->rcu_flipctr[lastidx]; | ||
| 854 | if (sum != 0) { | ||
| 855 | RCU_TRACE_ME(rcupreempt_trace_try_flip_ze1); | ||
| 856 | return 0; | ||
| 857 | } | ||
| 858 | |||
| 859 | /* | ||
| 860 | * This ensures that the other CPUs see the call for | ||
| 861 | * memory barriers -after- the sum to zero has been | ||
| 862 | * detected here | ||
| 863 | */ | ||
| 864 | smp_mb(); /* ^^^^^^^^^^^^ */ | ||
| 865 | |||
| 866 | /* Call for a memory barrier from each CPU. */ | ||
| 867 | for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map)) { | ||
| 868 | per_cpu(rcu_mb_flag, cpu) = rcu_mb_needed; | ||
| 869 | dyntick_save_progress_counter(cpu); | ||
| 870 | } | ||
| 871 | |||
| 872 | RCU_TRACE_ME(rcupreempt_trace_try_flip_z2); | ||
| 873 | return 1; | ||
| 874 | } | ||
| 875 | |||
| 876 | /* | ||
| 877 | * Wait for all CPUs to do their end-of-grace-period memory barrier. | ||
| 878 | * Return 0 once all CPUs have done so. | ||
| 879 | */ | ||
| 880 | |||
| 881 | static int | ||
| 882 | rcu_try_flip_waitmb(void) | ||
| 883 | { | ||
| 884 | int cpu; | ||
| 885 | |||
| 886 | RCU_TRACE_ME(rcupreempt_trace_try_flip_m1); | ||
| 887 | for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map)) | ||
| 888 | if (rcu_try_flip_waitmb_needed(cpu) && | ||
| 889 | per_cpu(rcu_mb_flag, cpu) != rcu_mb_done) { | ||
| 890 | RCU_TRACE_ME(rcupreempt_trace_try_flip_me1); | ||
| 891 | return 0; | ||
| 892 | } | ||
| 893 | |||
| 894 | smp_mb(); /* Ensure that the above checks precede any following flip. */ | ||
| 895 | RCU_TRACE_ME(rcupreempt_trace_try_flip_m2); | ||
| 896 | return 1; | ||
| 897 | } | ||
| 898 | |||
| 899 | /* | ||
| 900 | * Attempt a single flip of the counters. Remember, a single flip does | ||
| 901 | * -not- constitute a grace period. Instead, the interval between | ||
| 902 | * at least GP_STAGES consecutive flips is a grace period. | ||
| 903 | * | ||
| 904 | * If anyone is nuts enough to run this CONFIG_PREEMPT_RCU implementation | ||
| 905 | * on a large SMP, they might want to use a hierarchical organization of | ||
| 906 | * the per-CPU-counter pairs. | ||
| 907 | */ | ||
| 908 | static void rcu_try_flip(void) | ||
| 909 | { | ||
| 910 | unsigned long flags; | ||
| 911 | |||
| 912 | RCU_TRACE_ME(rcupreempt_trace_try_flip_1); | ||
| 913 | if (unlikely(!spin_trylock_irqsave(&rcu_ctrlblk.fliplock, flags))) { | ||
| 914 | RCU_TRACE_ME(rcupreempt_trace_try_flip_e1); | ||
| 915 | return; | ||
| 916 | } | ||
| 917 | |||
| 918 | /* | ||
| 919 | * Take the next transition(s) through the RCU grace-period | ||
| 920 | * flip-counter state machine. | ||
| 921 | */ | ||
| 922 | |||
| 923 | switch (rcu_ctrlblk.rcu_try_flip_state) { | ||
| 924 | case rcu_try_flip_idle_state: | ||
| 925 | if (rcu_try_flip_idle()) | ||
| 926 | rcu_ctrlblk.rcu_try_flip_state = | ||
| 927 | rcu_try_flip_waitack_state; | ||
| 928 | break; | ||
| 929 | case rcu_try_flip_waitack_state: | ||
| 930 | if (rcu_try_flip_waitack()) | ||
| 931 | rcu_ctrlblk.rcu_try_flip_state = | ||
| 932 | rcu_try_flip_waitzero_state; | ||
| 933 | break; | ||
| 934 | case rcu_try_flip_waitzero_state: | ||
| 935 | if (rcu_try_flip_waitzero()) | ||
| 936 | rcu_ctrlblk.rcu_try_flip_state = | ||
| 937 | rcu_try_flip_waitmb_state; | ||
| 938 | break; | ||
| 939 | case rcu_try_flip_waitmb_state: | ||
| 940 | if (rcu_try_flip_waitmb()) | ||
| 941 | rcu_ctrlblk.rcu_try_flip_state = | ||
| 942 | rcu_try_flip_idle_state; | ||
| 943 | } | ||
| 944 | spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags); | ||
| 945 | } | ||
| 946 | |||
| 947 | /* | ||
| 948 | * Check to see if this CPU needs to do a memory barrier in order to | ||
| 949 | * ensure that any prior RCU read-side critical sections have committed | ||
| 950 | * their counter manipulations and critical-section memory references | ||
| 951 | * before declaring the grace period to be completed. | ||
| 952 | */ | ||
| 953 | static void rcu_check_mb(int cpu) | ||
| 954 | { | ||
| 955 | if (per_cpu(rcu_mb_flag, cpu) == rcu_mb_needed) { | ||
| 956 | smp_mb(); /* Ensure RCU read-side accesses are visible. */ | ||
| 957 | per_cpu(rcu_mb_flag, cpu) = rcu_mb_done; | ||
| 958 | } | ||
| 959 | } | ||
| 960 | |||
| 961 | void rcu_check_callbacks(int cpu, int user) | ||
| 962 | { | ||
| 963 | unsigned long flags; | ||
| 964 | struct rcu_data *rdp = RCU_DATA_CPU(cpu); | ||
| 965 | |||
| 966 | /* | ||
| 967 | * If this CPU took its interrupt from user mode or from the | ||
| 968 | * idle loop, and this is not a nested interrupt, then | ||
| 969 | * this CPU has to have exited all prior preept-disable | ||
| 970 | * sections of code. So increment the counter to note this. | ||
| 971 | * | ||
| 972 | * The memory barrier is needed to handle the case where | ||
| 973 | * writes from a preempt-disable section of code get reordered | ||
| 974 | * into schedule() by this CPU's write buffer. So the memory | ||
| 975 | * barrier makes sure that the rcu_qsctr_inc() is seen by other | ||
| 976 | * CPUs to happen after any such write. | ||
| 977 | */ | ||
| 978 | |||
| 979 | if (user || | ||
| 980 | (idle_cpu(cpu) && !in_softirq() && | ||
| 981 | hardirq_count() <= (1 << HARDIRQ_SHIFT))) { | ||
| 982 | smp_mb(); /* Guard against aggressive schedule(). */ | ||
| 983 | rcu_qsctr_inc(cpu); | ||
| 984 | } | ||
| 985 | |||
| 986 | rcu_check_mb(cpu); | ||
| 987 | if (rcu_ctrlblk.completed == rdp->completed) | ||
| 988 | rcu_try_flip(); | ||
| 989 | spin_lock_irqsave(&rdp->lock, flags); | ||
| 990 | RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp); | ||
| 991 | __rcu_advance_callbacks(rdp); | ||
| 992 | if (rdp->donelist == NULL) { | ||
| 993 | spin_unlock_irqrestore(&rdp->lock, flags); | ||
| 994 | } else { | ||
| 995 | spin_unlock_irqrestore(&rdp->lock, flags); | ||
| 996 | raise_softirq(RCU_SOFTIRQ); | ||
| 997 | } | ||
| 998 | } | ||
| 999 | |||
| 1000 | /* | ||
| 1001 | * Needed by dynticks, to make sure all RCU processing has finished | ||
| 1002 | * when we go idle: | ||
| 1003 | */ | ||
| 1004 | void rcu_advance_callbacks(int cpu, int user) | ||
| 1005 | { | ||
| 1006 | unsigned long flags; | ||
| 1007 | struct rcu_data *rdp = RCU_DATA_CPU(cpu); | ||
| 1008 | |||
| 1009 | if (rcu_ctrlblk.completed == rdp->completed) { | ||
| 1010 | rcu_try_flip(); | ||
| 1011 | if (rcu_ctrlblk.completed == rdp->completed) | ||
| 1012 | return; | ||
| 1013 | } | ||
| 1014 | spin_lock_irqsave(&rdp->lock, flags); | ||
| 1015 | RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp); | ||
| 1016 | __rcu_advance_callbacks(rdp); | ||
| 1017 | spin_unlock_irqrestore(&rdp->lock, flags); | ||
| 1018 | } | ||
| 1019 | |||
| 1020 | #ifdef CONFIG_HOTPLUG_CPU | ||
| 1021 | #define rcu_offline_cpu_enqueue(srclist, srctail, dstlist, dsttail) do { \ | ||
| 1022 | *dsttail = srclist; \ | ||
| 1023 | if (srclist != NULL) { \ | ||
| 1024 | dsttail = srctail; \ | ||
| 1025 | srclist = NULL; \ | ||
| 1026 | srctail = &srclist;\ | ||
| 1027 | } \ | ||
| 1028 | } while (0) | ||
| 1029 | |||
| 1030 | void rcu_offline_cpu(int cpu) | ||
| 1031 | { | ||
| 1032 | int i; | ||
| 1033 | struct rcu_head *list = NULL; | ||
| 1034 | unsigned long flags; | ||
| 1035 | struct rcu_data *rdp = RCU_DATA_CPU(cpu); | ||
| 1036 | struct rcu_head *schedlist = NULL; | ||
| 1037 | struct rcu_head **schedtail = &schedlist; | ||
| 1038 | struct rcu_head **tail = &list; | ||
| 1039 | |||
| 1040 | /* | ||
| 1041 | * Remove all callbacks from the newly dead CPU, retaining order. | ||
| 1042 | * Otherwise rcu_barrier() will fail | ||
| 1043 | */ | ||
| 1044 | |||
| 1045 | spin_lock_irqsave(&rdp->lock, flags); | ||
| 1046 | rcu_offline_cpu_enqueue(rdp->donelist, rdp->donetail, list, tail); | ||
| 1047 | for (i = GP_STAGES - 1; i >= 0; i--) | ||
| 1048 | rcu_offline_cpu_enqueue(rdp->waitlist[i], rdp->waittail[i], | ||
| 1049 | list, tail); | ||
| 1050 | rcu_offline_cpu_enqueue(rdp->nextlist, rdp->nexttail, list, tail); | ||
| 1051 | rcu_offline_cpu_enqueue(rdp->waitschedlist, rdp->waitschedtail, | ||
| 1052 | schedlist, schedtail); | ||
| 1053 | rcu_offline_cpu_enqueue(rdp->nextschedlist, rdp->nextschedtail, | ||
| 1054 | schedlist, schedtail); | ||
| 1055 | rdp->rcu_sched_sleeping = 0; | ||
| 1056 | spin_unlock_irqrestore(&rdp->lock, flags); | ||
| 1057 | rdp->waitlistcount = 0; | ||
| 1058 | |||
| 1059 | /* Disengage the newly dead CPU from the grace-period computation. */ | ||
| 1060 | |||
| 1061 | spin_lock_irqsave(&rcu_ctrlblk.fliplock, flags); | ||
| 1062 | rcu_check_mb(cpu); | ||
| 1063 | if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) { | ||
| 1064 | smp_mb(); /* Subsequent counter accesses must see new value */ | ||
| 1065 | per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen; | ||
| 1066 | smp_mb(); /* Subsequent RCU read-side critical sections */ | ||
| 1067 | /* seen -after- acknowledgement. */ | ||
| 1068 | } | ||
| 1069 | |||
| 1070 | RCU_DATA_ME()->rcu_flipctr[0] += RCU_DATA_CPU(cpu)->rcu_flipctr[0]; | ||
| 1071 | RCU_DATA_ME()->rcu_flipctr[1] += RCU_DATA_CPU(cpu)->rcu_flipctr[1]; | ||
| 1072 | |||
| 1073 | RCU_DATA_CPU(cpu)->rcu_flipctr[0] = 0; | ||
| 1074 | RCU_DATA_CPU(cpu)->rcu_flipctr[1] = 0; | ||
| 1075 | |||
| 1076 | cpumask_clear_cpu(cpu, to_cpumask(rcu_cpu_online_map)); | ||
| 1077 | |||
| 1078 | spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags); | ||
| 1079 | |||
| 1080 | /* | ||
| 1081 | * Place the removed callbacks on the current CPU's queue. | ||
| 1082 | * Make them all start a new grace period: simple approach, | ||
| 1083 | * in theory could starve a given set of callbacks, but | ||
| 1084 | * you would need to be doing some serious CPU hotplugging | ||
| 1085 | * to make this happen. If this becomes a problem, adding | ||
| 1086 | * a synchronize_rcu() to the hotplug path would be a simple | ||
| 1087 | * fix. | ||
| 1088 | */ | ||
| 1089 | |||
| 1090 | local_irq_save(flags); /* disable preempt till we know what lock. */ | ||
| 1091 | rdp = RCU_DATA_ME(); | ||
| 1092 | spin_lock(&rdp->lock); | ||
| 1093 | *rdp->nexttail = list; | ||
| 1094 | if (list) | ||
| 1095 | rdp->nexttail = tail; | ||
| 1096 | *rdp->nextschedtail = schedlist; | ||
| 1097 | if (schedlist) | ||
| 1098 | rdp->nextschedtail = schedtail; | ||
| 1099 | spin_unlock_irqrestore(&rdp->lock, flags); | ||
| 1100 | } | ||
| 1101 | |||
| 1102 | #else /* #ifdef CONFIG_HOTPLUG_CPU */ | ||
| 1103 | |||
| 1104 | void rcu_offline_cpu(int cpu) | ||
| 1105 | { | ||
| 1106 | } | ||
| 1107 | |||
| 1108 | #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */ | ||
| 1109 | |||
| 1110 | void __cpuinit rcu_online_cpu(int cpu) | ||
| 1111 | { | ||
| 1112 | unsigned long flags; | ||
| 1113 | struct rcu_data *rdp; | ||
| 1114 | |||
| 1115 | spin_lock_irqsave(&rcu_ctrlblk.fliplock, flags); | ||
| 1116 | cpumask_set_cpu(cpu, to_cpumask(rcu_cpu_online_map)); | ||
| 1117 | spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags); | ||
| 1118 | |||
| 1119 | /* | ||
| 1120 | * The rcu_sched grace-period processing might have bypassed | ||
| 1121 | * this CPU, given that it was not in the rcu_cpu_online_map | ||
| 1122 | * when the grace-period scan started. This means that the | ||
| 1123 | * grace-period task might sleep. So make sure that if this | ||
| 1124 | * should happen, the first callback posted to this CPU will | ||
| 1125 | * wake up the grace-period task if need be. | ||
| 1126 | */ | ||
| 1127 | |||
| 1128 | rdp = RCU_DATA_CPU(cpu); | ||
| 1129 | spin_lock_irqsave(&rdp->lock, flags); | ||
| 1130 | rdp->rcu_sched_sleeping = 1; | ||
| 1131 | spin_unlock_irqrestore(&rdp->lock, flags); | ||
| 1132 | } | ||
| 1133 | |||
| 1134 | static void rcu_process_callbacks(struct softirq_action *unused) | ||
| 1135 | { | ||
| 1136 | unsigned long flags; | ||
| 1137 | struct rcu_head *next, *list; | ||
| 1138 | struct rcu_data *rdp; | ||
| 1139 | |||
| 1140 | local_irq_save(flags); | ||
| 1141 | rdp = RCU_DATA_ME(); | ||
| 1142 | spin_lock(&rdp->lock); | ||
| 1143 | list = rdp->donelist; | ||
| 1144 | if (list == NULL) { | ||
| 1145 | spin_unlock_irqrestore(&rdp->lock, flags); | ||
| 1146 | return; | ||
| 1147 | } | ||
| 1148 | rdp->donelist = NULL; | ||
| 1149 | rdp->donetail = &rdp->donelist; | ||
| 1150 | RCU_TRACE_RDP(rcupreempt_trace_done_remove, rdp); | ||
| 1151 | spin_unlock_irqrestore(&rdp->lock, flags); | ||
| 1152 | while (list) { | ||
| 1153 | next = list->next; | ||
| 1154 | list->func(list); | ||
| 1155 | list = next; | ||
| 1156 | RCU_TRACE_ME(rcupreempt_trace_invoke); | ||
| 1157 | } | ||
| 1158 | } | ||
| 1159 | |||
| 1160 | void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | ||
| 1161 | { | ||
| 1162 | unsigned long flags; | ||
| 1163 | struct rcu_data *rdp; | ||
| 1164 | |||
| 1165 | head->func = func; | ||
| 1166 | head->next = NULL; | ||
| 1167 | local_irq_save(flags); | ||
| 1168 | rdp = RCU_DATA_ME(); | ||
| 1169 | spin_lock(&rdp->lock); | ||
| 1170 | __rcu_advance_callbacks(rdp); | ||
| 1171 | *rdp->nexttail = head; | ||
| 1172 | rdp->nexttail = &head->next; | ||
| 1173 | RCU_TRACE_RDP(rcupreempt_trace_next_add, rdp); | ||
| 1174 | spin_unlock_irqrestore(&rdp->lock, flags); | ||
| 1175 | } | ||
| 1176 | EXPORT_SYMBOL_GPL(call_rcu); | ||
| 1177 | |||
| 1178 | void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | ||
| 1179 | { | ||
| 1180 | unsigned long flags; | ||
| 1181 | struct rcu_data *rdp; | ||
| 1182 | int wake_gp = 0; | ||
| 1183 | |||
| 1184 | head->func = func; | ||
| 1185 | head->next = NULL; | ||
| 1186 | local_irq_save(flags); | ||
| 1187 | rdp = RCU_DATA_ME(); | ||
| 1188 | spin_lock(&rdp->lock); | ||
| 1189 | *rdp->nextschedtail = head; | ||
| 1190 | rdp->nextschedtail = &head->next; | ||
| 1191 | if (rdp->rcu_sched_sleeping) { | ||
| 1192 | |||
| 1193 | /* Grace-period processing might be sleeping... */ | ||
| 1194 | |||
| 1195 | rdp->rcu_sched_sleeping = 0; | ||
| 1196 | wake_gp = 1; | ||
| 1197 | } | ||
| 1198 | spin_unlock_irqrestore(&rdp->lock, flags); | ||
| 1199 | if (wake_gp) { | ||
| 1200 | |||
| 1201 | /* Wake up grace-period processing, unless someone beat us. */ | ||
| 1202 | |||
| 1203 | spin_lock_irqsave(&rcu_ctrlblk.schedlock, flags); | ||
| 1204 | if (rcu_ctrlblk.sched_sleep != rcu_sched_sleeping) | ||
| 1205 | wake_gp = 0; | ||
| 1206 | rcu_ctrlblk.sched_sleep = rcu_sched_not_sleeping; | ||
| 1207 | spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags); | ||
| 1208 | if (wake_gp) | ||
| 1209 | wake_up_interruptible(&rcu_ctrlblk.sched_wq); | ||
| 1210 | } | ||
| 1211 | } | ||
| 1212 | EXPORT_SYMBOL_GPL(call_rcu_sched); | ||
| 1213 | |||
| 1214 | /* | ||
| 1215 | * Wait until all currently running preempt_disable() code segments | ||
| 1216 | * (including hardware-irq-disable segments) complete. Note that | ||
| 1217 | * in -rt this does -not- necessarily result in all currently executing | ||
| 1218 | * interrupt -handlers- having completed. | ||
| 1219 | */ | ||
| 1220 | void __synchronize_sched(void) | ||
| 1221 | { | ||
| 1222 | struct rcu_synchronize rcu; | ||
| 1223 | |||
| 1224 | if (num_online_cpus() == 1) | ||
| 1225 | return; /* blocking is gp if only one CPU! */ | ||
| 1226 | |||
| 1227 | init_completion(&rcu.completion); | ||
| 1228 | /* Will wake me after RCU finished. */ | ||
| 1229 | call_rcu_sched(&rcu.head, wakeme_after_rcu); | ||
| 1230 | /* Wait for it. */ | ||
| 1231 | wait_for_completion(&rcu.completion); | ||
| 1232 | } | ||
| 1233 | EXPORT_SYMBOL_GPL(__synchronize_sched); | ||
| 1234 | |||
| 1235 | /* | ||
| 1236 | * kthread function that manages call_rcu_sched grace periods. | ||
| 1237 | */ | ||
| 1238 | static int rcu_sched_grace_period(void *arg) | ||
| 1239 | { | ||
| 1240 | int couldsleep; /* might sleep after current pass. */ | ||
| 1241 | int couldsleepnext = 0; /* might sleep after next pass. */ | ||
| 1242 | int cpu; | ||
| 1243 | unsigned long flags; | ||
| 1244 | struct rcu_data *rdp; | ||
| 1245 | int ret; | ||
| 1246 | |||
| 1247 | /* | ||
| 1248 | * Each pass through the following loop handles one | ||
| 1249 | * rcu_sched grace period cycle. | ||
| 1250 | */ | ||
| 1251 | do { | ||
| 1252 | /* Save each CPU's current state. */ | ||
| 1253 | |||
| 1254 | for_each_online_cpu(cpu) { | ||
| 1255 | dyntick_save_progress_counter_sched(cpu); | ||
| 1256 | save_qsctr_sched(cpu); | ||
| 1257 | } | ||
| 1258 | |||
| 1259 | /* | ||
| 1260 | * Sleep for about an RCU grace-period's worth to | ||
| 1261 | * allow better batching and to consume less CPU. | ||
| 1262 | */ | ||
| 1263 | schedule_timeout_interruptible(RCU_SCHED_BATCH_TIME); | ||
| 1264 | |||
| 1265 | /* | ||
| 1266 | * If there was nothing to do last time, prepare to | ||
| 1267 | * sleep at the end of the current grace period cycle. | ||
| 1268 | */ | ||
| 1269 | couldsleep = couldsleepnext; | ||
| 1270 | couldsleepnext = 1; | ||
| 1271 | if (couldsleep) { | ||
| 1272 | spin_lock_irqsave(&rcu_ctrlblk.schedlock, flags); | ||
| 1273 | rcu_ctrlblk.sched_sleep = rcu_sched_sleep_prep; | ||
| 1274 | spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags); | ||
| 1275 | } | ||
| 1276 | |||
| 1277 | /* | ||
| 1278 | * Wait on each CPU in turn to have either visited | ||
| 1279 | * a quiescent state or been in dynticks-idle mode. | ||
| 1280 | */ | ||
| 1281 | for_each_online_cpu(cpu) { | ||
| 1282 | while (rcu_qsctr_inc_needed(cpu) && | ||
| 1283 | rcu_qsctr_inc_needed_dyntick(cpu)) { | ||
| 1284 | /* resched_cpu(cpu); @@@ */ | ||
| 1285 | schedule_timeout_interruptible(1); | ||
| 1286 | } | ||
| 1287 | } | ||
| 1288 | |||
| 1289 | /* Advance callbacks for each CPU. */ | ||
| 1290 | |||
| 1291 | for_each_online_cpu(cpu) { | ||
| 1292 | |||
| 1293 | rdp = RCU_DATA_CPU(cpu); | ||
| 1294 | spin_lock_irqsave(&rdp->lock, flags); | ||
| 1295 | |||
| 1296 | /* | ||
| 1297 | * We are running on this CPU irq-disabled, so no | ||
| 1298 | * CPU can go offline until we re-enable irqs. | ||
| 1299 | * The current CPU might have already gone | ||
| 1300 | * offline (between the for_each_offline_cpu and | ||
| 1301 | * the spin_lock_irqsave), but in that case all its | ||
| 1302 | * callback lists will be empty, so no harm done. | ||
| 1303 | * | ||
| 1304 | * Advance the callbacks! We share normal RCU's | ||
| 1305 | * donelist, since callbacks are invoked the | ||
| 1306 | * same way in either case. | ||
| 1307 | */ | ||
| 1308 | if (rdp->waitschedlist != NULL) { | ||
| 1309 | *rdp->donetail = rdp->waitschedlist; | ||
| 1310 | rdp->donetail = rdp->waitschedtail; | ||
| 1311 | |||
| 1312 | /* | ||
| 1313 | * Next rcu_check_callbacks() will | ||
| 1314 | * do the required raise_softirq(). | ||
| 1315 | */ | ||
| 1316 | } | ||
| 1317 | if (rdp->nextschedlist != NULL) { | ||
| 1318 | rdp->waitschedlist = rdp->nextschedlist; | ||
| 1319 | rdp->waitschedtail = rdp->nextschedtail; | ||
| 1320 | couldsleep = 0; | ||
| 1321 | couldsleepnext = 0; | ||
| 1322 | } else { | ||
| 1323 | rdp->waitschedlist = NULL; | ||
| 1324 | rdp->waitschedtail = &rdp->waitschedlist; | ||
| 1325 | } | ||
| 1326 | rdp->nextschedlist = NULL; | ||
| 1327 | rdp->nextschedtail = &rdp->nextschedlist; | ||
| 1328 | |||
| 1329 | /* Mark sleep intention. */ | ||
| 1330 | |||
| 1331 | rdp->rcu_sched_sleeping = couldsleep; | ||
| 1332 | |||
| 1333 | spin_unlock_irqrestore(&rdp->lock, flags); | ||
| 1334 | } | ||
| 1335 | |||
| 1336 | /* If we saw callbacks on the last scan, go deal with them. */ | ||
| 1337 | |||
| 1338 | if (!couldsleep) | ||
| 1339 | continue; | ||
| 1340 | |||
| 1341 | /* Attempt to block... */ | ||
| 1342 | |||
| 1343 | spin_lock_irqsave(&rcu_ctrlblk.schedlock, flags); | ||
| 1344 | if (rcu_ctrlblk.sched_sleep != rcu_sched_sleep_prep) { | ||
| 1345 | |||
| 1346 | /* | ||
| 1347 | * Someone posted a callback after we scanned. | ||
| 1348 | * Go take care of it. | ||
| 1349 | */ | ||
| 1350 | spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags); | ||
| 1351 | couldsleepnext = 0; | ||
| 1352 | continue; | ||
| 1353 | } | ||
| 1354 | |||
| 1355 | /* Block until the next person posts a callback. */ | ||
| 1356 | |||
| 1357 | rcu_ctrlblk.sched_sleep = rcu_sched_sleeping; | ||
| 1358 | spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags); | ||
| 1359 | ret = 0; /* unused */ | ||
| 1360 | __wait_event_interruptible(rcu_ctrlblk.sched_wq, | ||
| 1361 | rcu_ctrlblk.sched_sleep != rcu_sched_sleeping, | ||
| 1362 | ret); | ||
| 1363 | |||
| 1364 | couldsleepnext = 0; | ||
| 1365 | |||
| 1366 | } while (!kthread_should_stop()); | ||
| 1367 | |||
| 1368 | return (0); | ||
| 1369 | } | ||
| 1370 | |||
| 1371 | /* | ||
| 1372 | * Check to see if any future RCU-related work will need to be done | ||
| 1373 | * by the current CPU, even if none need be done immediately, returning | ||
| 1374 | * 1 if so. Assumes that notifiers would take care of handling any | ||
| 1375 | * outstanding requests from the RCU core. | ||
| 1376 | * | ||
| 1377 | * This function is part of the RCU implementation; it is -not- | ||
| 1378 | * an exported member of the RCU API. | ||
| 1379 | */ | ||
| 1380 | int rcu_needs_cpu(int cpu) | ||
| 1381 | { | ||
| 1382 | struct rcu_data *rdp = RCU_DATA_CPU(cpu); | ||
| 1383 | |||
| 1384 | return (rdp->donelist != NULL || | ||
| 1385 | !!rdp->waitlistcount || | ||
| 1386 | rdp->nextlist != NULL || | ||
| 1387 | rdp->nextschedlist != NULL || | ||
| 1388 | rdp->waitschedlist != NULL); | ||
| 1389 | } | ||
| 1390 | |||
| 1391 | int rcu_pending(int cpu) | ||
| 1392 | { | ||
| 1393 | struct rcu_data *rdp = RCU_DATA_CPU(cpu); | ||
| 1394 | |||
| 1395 | /* The CPU has at least one callback queued somewhere. */ | ||
| 1396 | |||
| 1397 | if (rdp->donelist != NULL || | ||
| 1398 | !!rdp->waitlistcount || | ||
| 1399 | rdp->nextlist != NULL || | ||
| 1400 | rdp->nextschedlist != NULL || | ||
| 1401 | rdp->waitschedlist != NULL) | ||
| 1402 | return 1; | ||
| 1403 | |||
| 1404 | /* The RCU core needs an acknowledgement from this CPU. */ | ||
| 1405 | |||
| 1406 | if ((per_cpu(rcu_flip_flag, cpu) == rcu_flipped) || | ||
| 1407 | (per_cpu(rcu_mb_flag, cpu) == rcu_mb_needed)) | ||
| 1408 | return 1; | ||
| 1409 | |||
| 1410 | /* This CPU has fallen behind the global grace-period number. */ | ||
| 1411 | |||
| 1412 | if (rdp->completed != rcu_ctrlblk.completed) | ||
| 1413 | return 1; | ||
| 1414 | |||
| 1415 | /* Nothing needed from this CPU. */ | ||
| 1416 | |||
| 1417 | return 0; | ||
| 1418 | } | ||
| 1419 | |||
| 1420 | static int __cpuinit rcu_cpu_notify(struct notifier_block *self, | ||
| 1421 | unsigned long action, void *hcpu) | ||
| 1422 | { | ||
| 1423 | long cpu = (long)hcpu; | ||
| 1424 | |||
| 1425 | switch (action) { | ||
| 1426 | case CPU_UP_PREPARE: | ||
| 1427 | case CPU_UP_PREPARE_FROZEN: | ||
| 1428 | rcu_online_cpu(cpu); | ||
| 1429 | break; | ||
| 1430 | case CPU_UP_CANCELED: | ||
| 1431 | case CPU_UP_CANCELED_FROZEN: | ||
| 1432 | case CPU_DEAD: | ||
| 1433 | case CPU_DEAD_FROZEN: | ||
| 1434 | rcu_offline_cpu(cpu); | ||
| 1435 | break; | ||
| 1436 | default: | ||
| 1437 | break; | ||
| 1438 | } | ||
| 1439 | return NOTIFY_OK; | ||
| 1440 | } | ||
| 1441 | |||
| 1442 | static struct notifier_block __cpuinitdata rcu_nb = { | ||
| 1443 | .notifier_call = rcu_cpu_notify, | ||
| 1444 | }; | ||
| 1445 | |||
| 1446 | void __init __rcu_init(void) | ||
| 1447 | { | ||
| 1448 | int cpu; | ||
| 1449 | int i; | ||
| 1450 | struct rcu_data *rdp; | ||
| 1451 | |||
| 1452 | printk(KERN_NOTICE "Preemptible RCU implementation.\n"); | ||
| 1453 | for_each_possible_cpu(cpu) { | ||
| 1454 | rdp = RCU_DATA_CPU(cpu); | ||
| 1455 | spin_lock_init(&rdp->lock); | ||
| 1456 | rdp->completed = 0; | ||
| 1457 | rdp->waitlistcount = 0; | ||
| 1458 | rdp->nextlist = NULL; | ||
| 1459 | rdp->nexttail = &rdp->nextlist; | ||
| 1460 | for (i = 0; i < GP_STAGES; i++) { | ||
| 1461 | rdp->waitlist[i] = NULL; | ||
| 1462 | rdp->waittail[i] = &rdp->waitlist[i]; | ||
| 1463 | } | ||
| 1464 | rdp->donelist = NULL; | ||
| 1465 | rdp->donetail = &rdp->donelist; | ||
| 1466 | rdp->rcu_flipctr[0] = 0; | ||
| 1467 | rdp->rcu_flipctr[1] = 0; | ||
| 1468 | rdp->nextschedlist = NULL; | ||
| 1469 | rdp->nextschedtail = &rdp->nextschedlist; | ||
| 1470 | rdp->waitschedlist = NULL; | ||
| 1471 | rdp->waitschedtail = &rdp->waitschedlist; | ||
| 1472 | rdp->rcu_sched_sleeping = 0; | ||
| 1473 | } | ||
| 1474 | register_cpu_notifier(&rcu_nb); | ||
| 1475 | |||
| 1476 | /* | ||
| 1477 | * We don't need protection against CPU-Hotplug here | ||
| 1478 | * since | ||
| 1479 | * a) If a CPU comes online while we are iterating over the | ||
| 1480 | * cpu_online_mask below, we would only end up making a | ||
| 1481 | * duplicate call to rcu_online_cpu() which sets the corresponding | ||
| 1482 | * CPU's mask in the rcu_cpu_online_map. | ||
| 1483 | * | ||
| 1484 | * b) A CPU cannot go offline at this point in time since the user | ||
| 1485 | * does not have access to the sysfs interface, nor do we | ||
| 1486 | * suspend the system. | ||
| 1487 | */ | ||
| 1488 | for_each_online_cpu(cpu) | ||
| 1489 | rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, (void *)(long) cpu); | ||
| 1490 | |||
| 1491 | open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); | ||
| 1492 | } | ||
| 1493 | |||
| 1494 | /* | ||
| 1495 | * Late-boot-time RCU initialization that must wait until after scheduler | ||
| 1496 | * has been initialized. | ||
| 1497 | */ | ||
| 1498 | void __init rcu_init_sched(void) | ||
| 1499 | { | ||
| 1500 | rcu_sched_grace_period_task = kthread_run(rcu_sched_grace_period, | ||
| 1501 | NULL, | ||
| 1502 | "rcu_sched_grace_period"); | ||
| 1503 | WARN_ON(IS_ERR(rcu_sched_grace_period_task)); | ||
| 1504 | } | ||
| 1505 | |||
| 1506 | #ifdef CONFIG_RCU_TRACE | ||
| 1507 | long *rcupreempt_flipctr(int cpu) | ||
| 1508 | { | ||
| 1509 | return &RCU_DATA_CPU(cpu)->rcu_flipctr[0]; | ||
| 1510 | } | ||
| 1511 | EXPORT_SYMBOL_GPL(rcupreempt_flipctr); | ||
| 1512 | |||
| 1513 | int rcupreempt_flip_flag(int cpu) | ||
| 1514 | { | ||
| 1515 | return per_cpu(rcu_flip_flag, cpu); | ||
| 1516 | } | ||
| 1517 | EXPORT_SYMBOL_GPL(rcupreempt_flip_flag); | ||
| 1518 | |||
| 1519 | int rcupreempt_mb_flag(int cpu) | ||
| 1520 | { | ||
| 1521 | return per_cpu(rcu_mb_flag, cpu); | ||
| 1522 | } | ||
| 1523 | EXPORT_SYMBOL_GPL(rcupreempt_mb_flag); | ||
| 1524 | |||
| 1525 | char *rcupreempt_try_flip_state_name(void) | ||
| 1526 | { | ||
| 1527 | return rcu_try_flip_state_names[rcu_ctrlblk.rcu_try_flip_state]; | ||
| 1528 | } | ||
| 1529 | EXPORT_SYMBOL_GPL(rcupreempt_try_flip_state_name); | ||
| 1530 | |||
| 1531 | struct rcupreempt_trace *rcupreempt_trace_cpu(int cpu) | ||
| 1532 | { | ||
| 1533 | struct rcu_data *rdp = RCU_DATA_CPU(cpu); | ||
| 1534 | |||
| 1535 | return &rdp->trace; | ||
| 1536 | } | ||
| 1537 | EXPORT_SYMBOL_GPL(rcupreempt_trace_cpu); | ||
| 1538 | |||
| 1539 | #endif /* #ifdef RCU_TRACE */ | ||
