aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/rcupdate.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/rcupdate.c')
-rw-r--r--kernel/rcupdate.c190
1 files changed, 73 insertions, 117 deletions
diff --git a/kernel/rcupdate.c b/kernel/rcupdate.c
index a967c9feb90a..400183346ad2 100644
--- a/kernel/rcupdate.c
+++ b/kernel/rcupdate.c
@@ -19,7 +19,7 @@
19 * 19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com> 21 * Manfred Spraul <manfred@colorfullife.com>
22 * 22 *
23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
25 * Papers: 25 * Papers:
@@ -27,7 +27,7 @@
27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
28 * 28 *
29 * For detailed explanation of Read-Copy Update mechanism see - 29 * For detailed explanation of Read-Copy Update mechanism see -
30 * http://lse.sourceforge.net/locking/rcupdate.html 30 * http://lse.sourceforge.net/locking/rcupdate.html
31 * 31 *
32 */ 32 */
33#include <linux/types.h> 33#include <linux/types.h>
@@ -46,22 +46,15 @@
46#include <linux/module.h> 46#include <linux/module.h>
47#include <linux/kernel_stat.h> 47#include <linux/kernel_stat.h>
48 48
49enum rcu_barrier { 49#ifdef CONFIG_DEBUG_LOCK_ALLOC
50 RCU_BARRIER_STD, 50static struct lock_class_key rcu_lock_key;
51 RCU_BARRIER_BH, 51struct lockdep_map rcu_lock_map =
52 RCU_BARRIER_SCHED, 52 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
53}; 53EXPORT_SYMBOL_GPL(rcu_lock_map);
54#endif
54 55
55static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
56static atomic_t rcu_barrier_cpu_count;
57static DEFINE_MUTEX(rcu_barrier_mutex);
58static struct completion rcu_barrier_completion;
59int rcu_scheduler_active __read_mostly; 56int rcu_scheduler_active __read_mostly;
60 57
61static atomic_t rcu_migrate_type_count = ATOMIC_INIT(0);
62static struct rcu_head rcu_migrate_head[3];
63static DECLARE_WAIT_QUEUE_HEAD(rcu_migrate_wq);
64
65/* 58/*
66 * Awaken the corresponding synchronize_rcu() instance now that a 59 * Awaken the corresponding synchronize_rcu() instance now that a
67 * grace period has elapsed. 60 * grace period has elapsed.
@@ -74,6 +67,8 @@ void wakeme_after_rcu(struct rcu_head *head)
74 complete(&rcu->completion); 67 complete(&rcu->completion);
75} 68}
76 69
70#ifdef CONFIG_TREE_PREEMPT_RCU
71
77/** 72/**
78 * synchronize_rcu - wait until a grace period has elapsed. 73 * synchronize_rcu - wait until a grace period has elapsed.
79 * 74 *
@@ -87,7 +82,7 @@ void synchronize_rcu(void)
87{ 82{
88 struct rcu_synchronize rcu; 83 struct rcu_synchronize rcu;
89 84
90 if (rcu_blocking_is_gp()) 85 if (!rcu_scheduler_active)
91 return; 86 return;
92 87
93 init_completion(&rcu.completion); 88 init_completion(&rcu.completion);
@@ -98,129 +93,90 @@ void synchronize_rcu(void)
98} 93}
99EXPORT_SYMBOL_GPL(synchronize_rcu); 94EXPORT_SYMBOL_GPL(synchronize_rcu);
100 95
101static void rcu_barrier_callback(struct rcu_head *notused) 96#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
102{
103 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
104 complete(&rcu_barrier_completion);
105}
106 97
107/* 98/**
108 * Called with preemption disabled, and from cross-cpu IRQ context. 99 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
100 *
101 * Control will return to the caller some time after a full rcu-sched
102 * grace period has elapsed, in other words after all currently executing
103 * rcu-sched read-side critical sections have completed. These read-side
104 * critical sections are delimited by rcu_read_lock_sched() and
105 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
106 * local_irq_disable(), and so on may be used in place of
107 * rcu_read_lock_sched().
108 *
109 * This means that all preempt_disable code sequences, including NMI and
110 * hardware-interrupt handlers, in progress on entry will have completed
111 * before this primitive returns. However, this does not guarantee that
112 * softirq handlers will have completed, since in some kernels, these
113 * handlers can run in process context, and can block.
114 *
115 * This primitive provides the guarantees made by the (now removed)
116 * synchronize_kernel() API. In contrast, synchronize_rcu() only
117 * guarantees that rcu_read_lock() sections will have completed.
118 * In "classic RCU", these two guarantees happen to be one and
119 * the same, but can differ in realtime RCU implementations.
109 */ 120 */
110static void rcu_barrier_func(void *type) 121void synchronize_sched(void)
111{
112 int cpu = smp_processor_id();
113 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
114
115 atomic_inc(&rcu_barrier_cpu_count);
116 switch ((enum rcu_barrier)type) {
117 case RCU_BARRIER_STD:
118 call_rcu(head, rcu_barrier_callback);
119 break;
120 case RCU_BARRIER_BH:
121 call_rcu_bh(head, rcu_barrier_callback);
122 break;
123 case RCU_BARRIER_SCHED:
124 call_rcu_sched(head, rcu_barrier_callback);
125 break;
126 }
127}
128
129static inline void wait_migrated_callbacks(void)
130{ 122{
131 wait_event(rcu_migrate_wq, !atomic_read(&rcu_migrate_type_count)); 123 struct rcu_synchronize rcu;
132}
133 124
134/* 125 if (rcu_blocking_is_gp())
135 * Orchestrate the specified type of RCU barrier, waiting for all 126 return;
136 * RCU callbacks of the specified type to complete.
137 */
138static void _rcu_barrier(enum rcu_barrier type)
139{
140 BUG_ON(in_interrupt());
141 /* Take cpucontrol mutex to protect against CPU hotplug */
142 mutex_lock(&rcu_barrier_mutex);
143 init_completion(&rcu_barrier_completion);
144 /*
145 * Initialize rcu_barrier_cpu_count to 1, then invoke
146 * rcu_barrier_func() on each CPU, so that each CPU also has
147 * incremented rcu_barrier_cpu_count. Only then is it safe to
148 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
149 * might complete its grace period before all of the other CPUs
150 * did their increment, causing this function to return too
151 * early.
152 */
153 atomic_set(&rcu_barrier_cpu_count, 1);
154 on_each_cpu(rcu_barrier_func, (void *)type, 1);
155 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
156 complete(&rcu_barrier_completion);
157 wait_for_completion(&rcu_barrier_completion);
158 mutex_unlock(&rcu_barrier_mutex);
159 wait_migrated_callbacks();
160}
161 127
162/** 128 init_completion(&rcu.completion);
163 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 129 /* Will wake me after RCU finished. */
164 */ 130 call_rcu_sched(&rcu.head, wakeme_after_rcu);
165void rcu_barrier(void) 131 /* Wait for it. */
166{ 132 wait_for_completion(&rcu.completion);
167 _rcu_barrier(RCU_BARRIER_STD);
168} 133}
169EXPORT_SYMBOL_GPL(rcu_barrier); 134EXPORT_SYMBOL_GPL(synchronize_sched);
170 135
171/** 136/**
172 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. 137 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
138 *
139 * Control will return to the caller some time after a full rcu_bh grace
140 * period has elapsed, in other words after all currently executing rcu_bh
141 * read-side critical sections have completed. RCU read-side critical
142 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
143 * and may be nested.
173 */ 144 */
174void rcu_barrier_bh(void) 145void synchronize_rcu_bh(void)
175{ 146{
176 _rcu_barrier(RCU_BARRIER_BH); 147 struct rcu_synchronize rcu;
177}
178EXPORT_SYMBOL_GPL(rcu_barrier_bh);
179 148
180/** 149 if (rcu_blocking_is_gp())
181 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. 150 return;
182 */
183void rcu_barrier_sched(void)
184{
185 _rcu_barrier(RCU_BARRIER_SCHED);
186}
187EXPORT_SYMBOL_GPL(rcu_barrier_sched);
188 151
189static void rcu_migrate_callback(struct rcu_head *notused) 152 init_completion(&rcu.completion);
190{ 153 /* Will wake me after RCU finished. */
191 if (atomic_dec_and_test(&rcu_migrate_type_count)) 154 call_rcu_bh(&rcu.head, wakeme_after_rcu);
192 wake_up(&rcu_migrate_wq); 155 /* Wait for it. */
156 wait_for_completion(&rcu.completion);
193} 157}
158EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
194 159
195static int __cpuinit rcu_barrier_cpu_hotplug(struct notifier_block *self, 160static int __cpuinit rcu_barrier_cpu_hotplug(struct notifier_block *self,
196 unsigned long action, void *hcpu) 161 unsigned long action, void *hcpu)
197{ 162{
198 if (action == CPU_DYING) { 163 return rcu_cpu_notify(self, action, hcpu);
199 /*
200 * preempt_disable() in on_each_cpu() prevents stop_machine(),
201 * so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);"
202 * returns, all online cpus have queued rcu_barrier_func(),
203 * and the dead cpu(if it exist) queues rcu_migrate_callback()s.
204 *
205 * These callbacks ensure _rcu_barrier() waits for all
206 * RCU callbacks of the specified type to complete.
207 */
208 atomic_set(&rcu_migrate_type_count, 3);
209 call_rcu_bh(rcu_migrate_head, rcu_migrate_callback);
210 call_rcu_sched(rcu_migrate_head + 1, rcu_migrate_callback);
211 call_rcu(rcu_migrate_head + 2, rcu_migrate_callback);
212 } else if (action == CPU_POST_DEAD) {
213 /* rcu_migrate_head is protected by cpu_add_remove_lock */
214 wait_migrated_callbacks();
215 }
216
217 return NOTIFY_OK;
218} 164}
219 165
220void __init rcu_init(void) 166void __init rcu_init(void)
221{ 167{
168 int i;
169
222 __rcu_init(); 170 __rcu_init();
223 hotcpu_notifier(rcu_barrier_cpu_hotplug, 0); 171 cpu_notifier(rcu_barrier_cpu_hotplug, 0);
172
173 /*
174 * We don't need protection against CPU-hotplug here because
175 * this is called early in boot, before either interrupts
176 * or the scheduler are operational.
177 */
178 for_each_online_cpu(i)
179 rcu_barrier_cpu_hotplug(NULL, CPU_UP_PREPARE, (void *)(long)i);
224} 180}
225 181
226void rcu_scheduler_starting(void) 182void rcu_scheduler_starting(void)