aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/power/snapshot.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/power/snapshot.c')
-rw-r--r--kernel/power/snapshot.c860
1 files changed, 642 insertions, 218 deletions
diff --git a/kernel/power/snapshot.c b/kernel/power/snapshot.c
index 99f9b7d177d6..c024606221c4 100644
--- a/kernel/power/snapshot.c
+++ b/kernel/power/snapshot.c
@@ -1,15 +1,15 @@
1/* 1/*
2 * linux/kernel/power/snapshot.c 2 * linux/kernel/power/snapshot.c
3 * 3 *
4 * This file provide system snapshot/restore functionality. 4 * This file provides system snapshot/restore functionality for swsusp.
5 * 5 *
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz> 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
7 * 8 *
8 * This file is released under the GPLv2, and is based on swsusp.c. 9 * This file is released under the GPLv2.
9 * 10 *
10 */ 11 */
11 12
12
13#include <linux/version.h> 13#include <linux/version.h>
14#include <linux/module.h> 14#include <linux/module.h>
15#include <linux/mm.h> 15#include <linux/mm.h>
@@ -34,137 +34,24 @@
34 34
35#include "power.h" 35#include "power.h"
36 36
37/* List of PBEs used for creating and restoring the suspend image */ 37/* List of PBEs needed for restoring the pages that were allocated before
38 * the suspend and included in the suspend image, but have also been
39 * allocated by the "resume" kernel, so their contents cannot be written
40 * directly to their "original" page frames.
41 */
38struct pbe *restore_pblist; 42struct pbe *restore_pblist;
39 43
40static unsigned int nr_copy_pages; 44/* Pointer to an auxiliary buffer (1 page) */
41static unsigned int nr_meta_pages;
42static void *buffer; 45static void *buffer;
43 46
44#ifdef CONFIG_HIGHMEM
45unsigned int count_highmem_pages(void)
46{
47 struct zone *zone;
48 unsigned long zone_pfn;
49 unsigned int n = 0;
50
51 for_each_zone (zone)
52 if (is_highmem(zone)) {
53 mark_free_pages(zone);
54 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; zone_pfn++) {
55 struct page *page;
56 unsigned long pfn = zone_pfn + zone->zone_start_pfn;
57 if (!pfn_valid(pfn))
58 continue;
59 page = pfn_to_page(pfn);
60 if (PageReserved(page))
61 continue;
62 if (PageNosaveFree(page))
63 continue;
64 n++;
65 }
66 }
67 return n;
68}
69
70struct highmem_page {
71 char *data;
72 struct page *page;
73 struct highmem_page *next;
74};
75
76static struct highmem_page *highmem_copy;
77
78static int save_highmem_zone(struct zone *zone)
79{
80 unsigned long zone_pfn;
81 mark_free_pages(zone);
82 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
83 struct page *page;
84 struct highmem_page *save;
85 void *kaddr;
86 unsigned long pfn = zone_pfn + zone->zone_start_pfn;
87
88 if (!(pfn%10000))
89 printk(".");
90 if (!pfn_valid(pfn))
91 continue;
92 page = pfn_to_page(pfn);
93 /*
94 * This condition results from rvmalloc() sans vmalloc_32()
95 * and architectural memory reservations. This should be
96 * corrected eventually when the cases giving rise to this
97 * are better understood.
98 */
99 if (PageReserved(page))
100 continue;
101 BUG_ON(PageNosave(page));
102 if (PageNosaveFree(page))
103 continue;
104 save = kmalloc(sizeof(struct highmem_page), GFP_ATOMIC);
105 if (!save)
106 return -ENOMEM;
107 save->next = highmem_copy;
108 save->page = page;
109 save->data = (void *) get_zeroed_page(GFP_ATOMIC);
110 if (!save->data) {
111 kfree(save);
112 return -ENOMEM;
113 }
114 kaddr = kmap_atomic(page, KM_USER0);
115 memcpy(save->data, kaddr, PAGE_SIZE);
116 kunmap_atomic(kaddr, KM_USER0);
117 highmem_copy = save;
118 }
119 return 0;
120}
121
122int save_highmem(void)
123{
124 struct zone *zone;
125 int res = 0;
126
127 pr_debug("swsusp: Saving Highmem");
128 drain_local_pages();
129 for_each_zone (zone) {
130 if (is_highmem(zone))
131 res = save_highmem_zone(zone);
132 if (res)
133 return res;
134 }
135 printk("\n");
136 return 0;
137}
138
139int restore_highmem(void)
140{
141 printk("swsusp: Restoring Highmem\n");
142 while (highmem_copy) {
143 struct highmem_page *save = highmem_copy;
144 void *kaddr;
145 highmem_copy = save->next;
146
147 kaddr = kmap_atomic(save->page, KM_USER0);
148 memcpy(kaddr, save->data, PAGE_SIZE);
149 kunmap_atomic(kaddr, KM_USER0);
150 free_page((long) save->data);
151 kfree(save);
152 }
153 return 0;
154}
155#else
156static inline unsigned int count_highmem_pages(void) {return 0;}
157static inline int save_highmem(void) {return 0;}
158static inline int restore_highmem(void) {return 0;}
159#endif
160
161/** 47/**
162 * @safe_needed - on resume, for storing the PBE list and the image, 48 * @safe_needed - on resume, for storing the PBE list and the image,
163 * we can only use memory pages that do not conflict with the pages 49 * we can only use memory pages that do not conflict with the pages
164 * used before suspend. 50 * used before suspend. The unsafe pages have PageNosaveFree set
51 * and we count them using unsafe_pages.
165 * 52 *
166 * The unsafe pages are marked with the PG_nosave_free flag 53 * Each allocated image page is marked as PageNosave and PageNosaveFree
167 * and we count them using unsafe_pages 54 * so that swsusp_free() can release it.
168 */ 55 */
169 56
170#define PG_ANY 0 57#define PG_ANY 0
@@ -174,7 +61,7 @@ static inline int restore_highmem(void) {return 0;}
174 61
175static unsigned int allocated_unsafe_pages; 62static unsigned int allocated_unsafe_pages;
176 63
177static void *alloc_image_page(gfp_t gfp_mask, int safe_needed) 64static void *get_image_page(gfp_t gfp_mask, int safe_needed)
178{ 65{
179 void *res; 66 void *res;
180 67
@@ -195,20 +82,39 @@ static void *alloc_image_page(gfp_t gfp_mask, int safe_needed)
195 82
196unsigned long get_safe_page(gfp_t gfp_mask) 83unsigned long get_safe_page(gfp_t gfp_mask)
197{ 84{
198 return (unsigned long)alloc_image_page(gfp_mask, PG_SAFE); 85 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
86}
87
88static struct page *alloc_image_page(gfp_t gfp_mask)
89{
90 struct page *page;
91
92 page = alloc_page(gfp_mask);
93 if (page) {
94 SetPageNosave(page);
95 SetPageNosaveFree(page);
96 }
97 return page;
199} 98}
200 99
201/** 100/**
202 * free_image_page - free page represented by @addr, allocated with 101 * free_image_page - free page represented by @addr, allocated with
203 * alloc_image_page (page flags set by it must be cleared) 102 * get_image_page (page flags set by it must be cleared)
204 */ 103 */
205 104
206static inline void free_image_page(void *addr, int clear_nosave_free) 105static inline void free_image_page(void *addr, int clear_nosave_free)
207{ 106{
208 ClearPageNosave(virt_to_page(addr)); 107 struct page *page;
108
109 BUG_ON(!virt_addr_valid(addr));
110
111 page = virt_to_page(addr);
112
113 ClearPageNosave(page);
209 if (clear_nosave_free) 114 if (clear_nosave_free)
210 ClearPageNosaveFree(virt_to_page(addr)); 115 ClearPageNosaveFree(page);
211 free_page((unsigned long)addr); 116
117 __free_page(page);
212} 118}
213 119
214/* struct linked_page is used to build chains of pages */ 120/* struct linked_page is used to build chains of pages */
@@ -269,7 +175,7 @@ static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
269 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { 175 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
270 struct linked_page *lp; 176 struct linked_page *lp;
271 177
272 lp = alloc_image_page(ca->gfp_mask, ca->safe_needed); 178 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
273 if (!lp) 179 if (!lp)
274 return NULL; 180 return NULL;
275 181
@@ -446,8 +352,8 @@ memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
446 352
447 /* Compute the number of zones */ 353 /* Compute the number of zones */
448 nr = 0; 354 nr = 0;
449 for_each_zone (zone) 355 for_each_zone(zone)
450 if (populated_zone(zone) && !is_highmem(zone)) 356 if (populated_zone(zone))
451 nr++; 357 nr++;
452 358
453 /* Allocate the list of zones bitmap objects */ 359 /* Allocate the list of zones bitmap objects */
@@ -459,10 +365,10 @@ memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
459 } 365 }
460 366
461 /* Initialize the zone bitmap objects */ 367 /* Initialize the zone bitmap objects */
462 for_each_zone (zone) { 368 for_each_zone(zone) {
463 unsigned long pfn; 369 unsigned long pfn;
464 370
465 if (!populated_zone(zone) || is_highmem(zone)) 371 if (!populated_zone(zone))
466 continue; 372 continue;
467 373
468 zone_bm->start_pfn = zone->zone_start_pfn; 374 zone_bm->start_pfn = zone->zone_start_pfn;
@@ -481,7 +387,7 @@ memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
481 while (bb) { 387 while (bb) {
482 unsigned long *ptr; 388 unsigned long *ptr;
483 389
484 ptr = alloc_image_page(gfp_mask, safe_needed); 390 ptr = get_image_page(gfp_mask, safe_needed);
485 bb->data = ptr; 391 bb->data = ptr;
486 if (!ptr) 392 if (!ptr)
487 goto Free; 393 goto Free;
@@ -505,7 +411,7 @@ memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
505 memory_bm_position_reset(bm); 411 memory_bm_position_reset(bm);
506 return 0; 412 return 0;
507 413
508Free: 414 Free:
509 bm->p_list = ca.chain; 415 bm->p_list = ca.chain;
510 memory_bm_free(bm, PG_UNSAFE_CLEAR); 416 memory_bm_free(bm, PG_UNSAFE_CLEAR);
511 return -ENOMEM; 417 return -ENOMEM;
@@ -651,7 +557,7 @@ static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
651 memory_bm_position_reset(bm); 557 memory_bm_position_reset(bm);
652 return BM_END_OF_MAP; 558 return BM_END_OF_MAP;
653 559
654Return_pfn: 560 Return_pfn:
655 bm->cur.chunk = chunk; 561 bm->cur.chunk = chunk;
656 bm->cur.bit = bit; 562 bm->cur.bit = bit;
657 return bb->start_pfn + chunk * BM_BITS_PER_CHUNK + bit; 563 return bb->start_pfn + chunk * BM_BITS_PER_CHUNK + bit;
@@ -669,10 +575,82 @@ unsigned int snapshot_additional_pages(struct zone *zone)
669 575
670 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 576 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
671 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE); 577 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
672 return res; 578 return 2 * res;
579}
580
581#ifdef CONFIG_HIGHMEM
582/**
583 * count_free_highmem_pages - compute the total number of free highmem
584 * pages, system-wide.
585 */
586
587static unsigned int count_free_highmem_pages(void)
588{
589 struct zone *zone;
590 unsigned int cnt = 0;
591
592 for_each_zone(zone)
593 if (populated_zone(zone) && is_highmem(zone))
594 cnt += zone->free_pages;
595
596 return cnt;
597}
598
599/**
600 * saveable_highmem_page - Determine whether a highmem page should be
601 * included in the suspend image.
602 *
603 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
604 * and it isn't a part of a free chunk of pages.
605 */
606
607static struct page *saveable_highmem_page(unsigned long pfn)
608{
609 struct page *page;
610
611 if (!pfn_valid(pfn))
612 return NULL;
613
614 page = pfn_to_page(pfn);
615
616 BUG_ON(!PageHighMem(page));
617
618 if (PageNosave(page) || PageReserved(page) || PageNosaveFree(page))
619 return NULL;
620
621 return page;
673} 622}
674 623
675/** 624/**
625 * count_highmem_pages - compute the total number of saveable highmem
626 * pages.
627 */
628
629unsigned int count_highmem_pages(void)
630{
631 struct zone *zone;
632 unsigned int n = 0;
633
634 for_each_zone(zone) {
635 unsigned long pfn, max_zone_pfn;
636
637 if (!is_highmem(zone))
638 continue;
639
640 mark_free_pages(zone);
641 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
642 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
643 if (saveable_highmem_page(pfn))
644 n++;
645 }
646 return n;
647}
648#else
649static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; }
650static inline unsigned int count_highmem_pages(void) { return 0; }
651#endif /* CONFIG_HIGHMEM */
652
653/**
676 * pfn_is_nosave - check if given pfn is in the 'nosave' section 654 * pfn_is_nosave - check if given pfn is in the 'nosave' section
677 */ 655 */
678 656
@@ -684,12 +662,12 @@ static inline int pfn_is_nosave(unsigned long pfn)
684} 662}
685 663
686/** 664/**
687 * saveable - Determine whether a page should be cloned or not. 665 * saveable - Determine whether a non-highmem page should be included in
688 * @pfn: The page 666 * the suspend image.
689 * 667 *
690 * We save a page if it isn't Nosave, and is not in the range of pages 668 * We should save the page if it isn't Nosave, and is not in the range
691 * statically defined as 'unsaveable', and it 669 * of pages statically defined as 'unsaveable', and it isn't a part of
692 * isn't a part of a free chunk of pages. 670 * a free chunk of pages.
693 */ 671 */
694 672
695static struct page *saveable_page(unsigned long pfn) 673static struct page *saveable_page(unsigned long pfn)
@@ -701,76 +679,130 @@ static struct page *saveable_page(unsigned long pfn)
701 679
702 page = pfn_to_page(pfn); 680 page = pfn_to_page(pfn);
703 681
704 if (PageNosave(page)) 682 BUG_ON(PageHighMem(page));
683
684 if (PageNosave(page) || PageNosaveFree(page))
705 return NULL; 685 return NULL;
686
706 if (PageReserved(page) && pfn_is_nosave(pfn)) 687 if (PageReserved(page) && pfn_is_nosave(pfn))
707 return NULL; 688 return NULL;
708 if (PageNosaveFree(page))
709 return NULL;
710 689
711 return page; 690 return page;
712} 691}
713 692
693/**
694 * count_data_pages - compute the total number of saveable non-highmem
695 * pages.
696 */
697
714unsigned int count_data_pages(void) 698unsigned int count_data_pages(void)
715{ 699{
716 struct zone *zone; 700 struct zone *zone;
717 unsigned long pfn, max_zone_pfn; 701 unsigned long pfn, max_zone_pfn;
718 unsigned int n = 0; 702 unsigned int n = 0;
719 703
720 for_each_zone (zone) { 704 for_each_zone(zone) {
721 if (is_highmem(zone)) 705 if (is_highmem(zone))
722 continue; 706 continue;
707
723 mark_free_pages(zone); 708 mark_free_pages(zone);
724 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 709 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
725 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 710 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
726 n += !!saveable_page(pfn); 711 if(saveable_page(pfn))
712 n++;
727 } 713 }
728 return n; 714 return n;
729} 715}
730 716
731static inline void copy_data_page(long *dst, long *src) 717/* This is needed, because copy_page and memcpy are not usable for copying
718 * task structs.
719 */
720static inline void do_copy_page(long *dst, long *src)
732{ 721{
733 int n; 722 int n;
734 723
735 /* copy_page and memcpy are not usable for copying task structs. */
736 for (n = PAGE_SIZE / sizeof(long); n; n--) 724 for (n = PAGE_SIZE / sizeof(long); n; n--)
737 *dst++ = *src++; 725 *dst++ = *src++;
738} 726}
739 727
728#ifdef CONFIG_HIGHMEM
729static inline struct page *
730page_is_saveable(struct zone *zone, unsigned long pfn)
731{
732 return is_highmem(zone) ?
733 saveable_highmem_page(pfn) : saveable_page(pfn);
734}
735
736static inline void
737copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
738{
739 struct page *s_page, *d_page;
740 void *src, *dst;
741
742 s_page = pfn_to_page(src_pfn);
743 d_page = pfn_to_page(dst_pfn);
744 if (PageHighMem(s_page)) {
745 src = kmap_atomic(s_page, KM_USER0);
746 dst = kmap_atomic(d_page, KM_USER1);
747 do_copy_page(dst, src);
748 kunmap_atomic(src, KM_USER0);
749 kunmap_atomic(dst, KM_USER1);
750 } else {
751 src = page_address(s_page);
752 if (PageHighMem(d_page)) {
753 /* Page pointed to by src may contain some kernel
754 * data modified by kmap_atomic()
755 */
756 do_copy_page(buffer, src);
757 dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0);
758 memcpy(dst, buffer, PAGE_SIZE);
759 kunmap_atomic(dst, KM_USER0);
760 } else {
761 dst = page_address(d_page);
762 do_copy_page(dst, src);
763 }
764 }
765}
766#else
767#define page_is_saveable(zone, pfn) saveable_page(pfn)
768
769static inline void
770copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
771{
772 do_copy_page(page_address(pfn_to_page(dst_pfn)),
773 page_address(pfn_to_page(src_pfn)));
774}
775#endif /* CONFIG_HIGHMEM */
776
740static void 777static void
741copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm) 778copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
742{ 779{
743 struct zone *zone; 780 struct zone *zone;
744 unsigned long pfn; 781 unsigned long pfn;
745 782
746 for_each_zone (zone) { 783 for_each_zone(zone) {
747 unsigned long max_zone_pfn; 784 unsigned long max_zone_pfn;
748 785
749 if (is_highmem(zone))
750 continue;
751
752 mark_free_pages(zone); 786 mark_free_pages(zone);
753 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 787 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
754 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 788 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
755 if (saveable_page(pfn)) 789 if (page_is_saveable(zone, pfn))
756 memory_bm_set_bit(orig_bm, pfn); 790 memory_bm_set_bit(orig_bm, pfn);
757 } 791 }
758 memory_bm_position_reset(orig_bm); 792 memory_bm_position_reset(orig_bm);
759 memory_bm_position_reset(copy_bm); 793 memory_bm_position_reset(copy_bm);
760 do { 794 do {
761 pfn = memory_bm_next_pfn(orig_bm); 795 pfn = memory_bm_next_pfn(orig_bm);
762 if (likely(pfn != BM_END_OF_MAP)) { 796 if (likely(pfn != BM_END_OF_MAP))
763 struct page *page; 797 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
764 void *src;
765
766 page = pfn_to_page(pfn);
767 src = page_address(page);
768 page = pfn_to_page(memory_bm_next_pfn(copy_bm));
769 copy_data_page(page_address(page), src);
770 }
771 } while (pfn != BM_END_OF_MAP); 798 } while (pfn != BM_END_OF_MAP);
772} 799}
773 800
801/* Total number of image pages */
802static unsigned int nr_copy_pages;
803/* Number of pages needed for saving the original pfns of the image pages */
804static unsigned int nr_meta_pages;
805
774/** 806/**
775 * swsusp_free - free pages allocated for the suspend. 807 * swsusp_free - free pages allocated for the suspend.
776 * 808 *
@@ -792,7 +824,7 @@ void swsusp_free(void)
792 if (PageNosave(page) && PageNosaveFree(page)) { 824 if (PageNosave(page) && PageNosaveFree(page)) {
793 ClearPageNosave(page); 825 ClearPageNosave(page);
794 ClearPageNosaveFree(page); 826 ClearPageNosaveFree(page);
795 free_page((long) page_address(page)); 827 __free_page(page);
796 } 828 }
797 } 829 }
798 } 830 }
@@ -802,34 +834,108 @@ void swsusp_free(void)
802 buffer = NULL; 834 buffer = NULL;
803} 835}
804 836
837#ifdef CONFIG_HIGHMEM
838/**
839 * count_pages_for_highmem - compute the number of non-highmem pages
840 * that will be necessary for creating copies of highmem pages.
841 */
842
843static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
844{
845 unsigned int free_highmem = count_free_highmem_pages();
846
847 if (free_highmem >= nr_highmem)
848 nr_highmem = 0;
849 else
850 nr_highmem -= free_highmem;
851
852 return nr_highmem;
853}
854#else
855static unsigned int
856count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
857#endif /* CONFIG_HIGHMEM */
805 858
806/** 859/**
807 * enough_free_mem - Make sure we enough free memory to snapshot. 860 * enough_free_mem - Make sure we have enough free memory for the
808 * 861 * snapshot image.
809 * Returns TRUE or FALSE after checking the number of available
810 * free pages.
811 */ 862 */
812 863
813static int enough_free_mem(unsigned int nr_pages) 864static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
814{ 865{
815 struct zone *zone; 866 struct zone *zone;
816 unsigned int free = 0, meta = 0; 867 unsigned int free = 0, meta = 0;
817 868
818 for_each_zone (zone) 869 for_each_zone(zone) {
819 if (!is_highmem(zone)) { 870 meta += snapshot_additional_pages(zone);
871 if (!is_highmem(zone))
820 free += zone->free_pages; 872 free += zone->free_pages;
821 meta += snapshot_additional_pages(zone); 873 }
822 }
823 874
824 pr_debug("swsusp: pages needed: %u + %u + %u, available pages: %u\n", 875 nr_pages += count_pages_for_highmem(nr_highmem);
876 pr_debug("swsusp: Normal pages needed: %u + %u + %u, available pages: %u\n",
825 nr_pages, PAGES_FOR_IO, meta, free); 877 nr_pages, PAGES_FOR_IO, meta, free);
826 878
827 return free > nr_pages + PAGES_FOR_IO + meta; 879 return free > nr_pages + PAGES_FOR_IO + meta;
828} 880}
829 881
882#ifdef CONFIG_HIGHMEM
883/**
884 * get_highmem_buffer - if there are some highmem pages in the suspend
885 * image, we may need the buffer to copy them and/or load their data.
886 */
887
888static inline int get_highmem_buffer(int safe_needed)
889{
890 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
891 return buffer ? 0 : -ENOMEM;
892}
893
894/**
895 * alloc_highmem_image_pages - allocate some highmem pages for the image.
896 * Try to allocate as many pages as needed, but if the number of free
897 * highmem pages is lesser than that, allocate them all.
898 */
899
900static inline unsigned int
901alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
902{
903 unsigned int to_alloc = count_free_highmem_pages();
904
905 if (to_alloc > nr_highmem)
906 to_alloc = nr_highmem;
907
908 nr_highmem -= to_alloc;
909 while (to_alloc-- > 0) {
910 struct page *page;
911
912 page = alloc_image_page(__GFP_HIGHMEM);
913 memory_bm_set_bit(bm, page_to_pfn(page));
914 }
915 return nr_highmem;
916}
917#else
918static inline int get_highmem_buffer(int safe_needed) { return 0; }
919
920static inline unsigned int
921alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
922#endif /* CONFIG_HIGHMEM */
923
924/**
925 * swsusp_alloc - allocate memory for the suspend image
926 *
927 * We first try to allocate as many highmem pages as there are
928 * saveable highmem pages in the system. If that fails, we allocate
929 * non-highmem pages for the copies of the remaining highmem ones.
930 *
931 * In this approach it is likely that the copies of highmem pages will
932 * also be located in the high memory, because of the way in which
933 * copy_data_pages() works.
934 */
935
830static int 936static int
831swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm, 937swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
832 unsigned int nr_pages) 938 unsigned int nr_pages, unsigned int nr_highmem)
833{ 939{
834 int error; 940 int error;
835 941
@@ -841,46 +947,61 @@ swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
841 if (error) 947 if (error)
842 goto Free; 948 goto Free;
843 949
950 if (nr_highmem > 0) {
951 error = get_highmem_buffer(PG_ANY);
952 if (error)
953 goto Free;
954
955 nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem);
956 }
844 while (nr_pages-- > 0) { 957 while (nr_pages-- > 0) {
845 struct page *page = alloc_page(GFP_ATOMIC | __GFP_COLD); 958 struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
959
846 if (!page) 960 if (!page)
847 goto Free; 961 goto Free;
848 962
849 SetPageNosave(page);
850 SetPageNosaveFree(page);
851 memory_bm_set_bit(copy_bm, page_to_pfn(page)); 963 memory_bm_set_bit(copy_bm, page_to_pfn(page));
852 } 964 }
853 return 0; 965 return 0;
854 966
855Free: 967 Free:
856 swsusp_free(); 968 swsusp_free();
857 return -ENOMEM; 969 return -ENOMEM;
858} 970}
859 971
860/* Memory bitmap used for marking saveable pages */ 972/* Memory bitmap used for marking saveable pages (during suspend) or the
973 * suspend image pages (during resume)
974 */
861static struct memory_bitmap orig_bm; 975static struct memory_bitmap orig_bm;
862/* Memory bitmap used for marking allocated pages that will contain the copies 976/* Memory bitmap used on suspend for marking allocated pages that will contain
863 * of saveable pages 977 * the copies of saveable pages. During resume it is initially used for
978 * marking the suspend image pages, but then its set bits are duplicated in
979 * @orig_bm and it is released. Next, on systems with high memory, it may be
980 * used for marking "safe" highmem pages, but it has to be reinitialized for
981 * this purpose.
864 */ 982 */
865static struct memory_bitmap copy_bm; 983static struct memory_bitmap copy_bm;
866 984
867asmlinkage int swsusp_save(void) 985asmlinkage int swsusp_save(void)
868{ 986{
869 unsigned int nr_pages; 987 unsigned int nr_pages, nr_highmem;
870 988
871 pr_debug("swsusp: critical section: \n"); 989 printk("swsusp: critical section: \n");
872 990
873 drain_local_pages(); 991 drain_local_pages();
874 nr_pages = count_data_pages(); 992 nr_pages = count_data_pages();
875 printk("swsusp: Need to copy %u pages\n", nr_pages); 993 nr_highmem = count_highmem_pages();
994 printk("swsusp: Need to copy %u pages\n", nr_pages + nr_highmem);
876 995
877 if (!enough_free_mem(nr_pages)) { 996 if (!enough_free_mem(nr_pages, nr_highmem)) {
878 printk(KERN_ERR "swsusp: Not enough free memory\n"); 997 printk(KERN_ERR "swsusp: Not enough free memory\n");
879 return -ENOMEM; 998 return -ENOMEM;
880 } 999 }
881 1000
882 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages)) 1001 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1002 printk(KERN_ERR "swsusp: Memory allocation failed\n");
883 return -ENOMEM; 1003 return -ENOMEM;
1004 }
884 1005
885 /* During allocating of suspend pagedir, new cold pages may appear. 1006 /* During allocating of suspend pagedir, new cold pages may appear.
886 * Kill them. 1007 * Kill them.
@@ -894,10 +1015,12 @@ asmlinkage int swsusp_save(void)
894 * touch swap space! Except we must write out our image of course. 1015 * touch swap space! Except we must write out our image of course.
895 */ 1016 */
896 1017
1018 nr_pages += nr_highmem;
897 nr_copy_pages = nr_pages; 1019 nr_copy_pages = nr_pages;
898 nr_meta_pages = (nr_pages * sizeof(long) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1020 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
899 1021
900 printk("swsusp: critical section/: done (%d pages copied)\n", nr_pages); 1022 printk("swsusp: critical section/: done (%d pages copied)\n", nr_pages);
1023
901 return 0; 1024 return 0;
902} 1025}
903 1026
@@ -960,7 +1083,7 @@ int snapshot_read_next(struct snapshot_handle *handle, size_t count)
960 1083
961 if (!buffer) { 1084 if (!buffer) {
962 /* This makes the buffer be freed by swsusp_free() */ 1085 /* This makes the buffer be freed by swsusp_free() */
963 buffer = alloc_image_page(GFP_ATOMIC, PG_ANY); 1086 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
964 if (!buffer) 1087 if (!buffer)
965 return -ENOMEM; 1088 return -ENOMEM;
966 } 1089 }
@@ -975,9 +1098,23 @@ int snapshot_read_next(struct snapshot_handle *handle, size_t count)
975 memset(buffer, 0, PAGE_SIZE); 1098 memset(buffer, 0, PAGE_SIZE);
976 pack_pfns(buffer, &orig_bm); 1099 pack_pfns(buffer, &orig_bm);
977 } else { 1100 } else {
978 unsigned long pfn = memory_bm_next_pfn(&copy_bm); 1101 struct page *page;
979 1102
980 handle->buffer = page_address(pfn_to_page(pfn)); 1103 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1104 if (PageHighMem(page)) {
1105 /* Highmem pages are copied to the buffer,
1106 * because we can't return with a kmapped
1107 * highmem page (we may not be called again).
1108 */
1109 void *kaddr;
1110
1111 kaddr = kmap_atomic(page, KM_USER0);
1112 memcpy(buffer, kaddr, PAGE_SIZE);
1113 kunmap_atomic(kaddr, KM_USER0);
1114 handle->buffer = buffer;
1115 } else {
1116 handle->buffer = page_address(page);
1117 }
981 } 1118 }
982 handle->prev = handle->cur; 1119 handle->prev = handle->cur;
983 } 1120 }
@@ -1005,7 +1142,7 @@ static int mark_unsafe_pages(struct memory_bitmap *bm)
1005 unsigned long pfn, max_zone_pfn; 1142 unsigned long pfn, max_zone_pfn;
1006 1143
1007 /* Clear page flags */ 1144 /* Clear page flags */
1008 for_each_zone (zone) { 1145 for_each_zone(zone) {
1009 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1146 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1010 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1147 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1011 if (pfn_valid(pfn)) 1148 if (pfn_valid(pfn))
@@ -1101,6 +1238,218 @@ unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1101 } 1238 }
1102} 1239}
1103 1240
1241/* List of "safe" pages that may be used to store data loaded from the suspend
1242 * image
1243 */
1244static struct linked_page *safe_pages_list;
1245
1246#ifdef CONFIG_HIGHMEM
1247/* struct highmem_pbe is used for creating the list of highmem pages that
1248 * should be restored atomically during the resume from disk, because the page
1249 * frames they have occupied before the suspend are in use.
1250 */
1251struct highmem_pbe {
1252 struct page *copy_page; /* data is here now */
1253 struct page *orig_page; /* data was here before the suspend */
1254 struct highmem_pbe *next;
1255};
1256
1257/* List of highmem PBEs needed for restoring the highmem pages that were
1258 * allocated before the suspend and included in the suspend image, but have
1259 * also been allocated by the "resume" kernel, so their contents cannot be
1260 * written directly to their "original" page frames.
1261 */
1262static struct highmem_pbe *highmem_pblist;
1263
1264/**
1265 * count_highmem_image_pages - compute the number of highmem pages in the
1266 * suspend image. The bits in the memory bitmap @bm that correspond to the
1267 * image pages are assumed to be set.
1268 */
1269
1270static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1271{
1272 unsigned long pfn;
1273 unsigned int cnt = 0;
1274
1275 memory_bm_position_reset(bm);
1276 pfn = memory_bm_next_pfn(bm);
1277 while (pfn != BM_END_OF_MAP) {
1278 if (PageHighMem(pfn_to_page(pfn)))
1279 cnt++;
1280
1281 pfn = memory_bm_next_pfn(bm);
1282 }
1283 return cnt;
1284}
1285
1286/**
1287 * prepare_highmem_image - try to allocate as many highmem pages as
1288 * there are highmem image pages (@nr_highmem_p points to the variable
1289 * containing the number of highmem image pages). The pages that are
1290 * "safe" (ie. will not be overwritten when the suspend image is
1291 * restored) have the corresponding bits set in @bm (it must be
1292 * unitialized).
1293 *
1294 * NOTE: This function should not be called if there are no highmem
1295 * image pages.
1296 */
1297
1298static unsigned int safe_highmem_pages;
1299
1300static struct memory_bitmap *safe_highmem_bm;
1301
1302static int
1303prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1304{
1305 unsigned int to_alloc;
1306
1307 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1308 return -ENOMEM;
1309
1310 if (get_highmem_buffer(PG_SAFE))
1311 return -ENOMEM;
1312
1313 to_alloc = count_free_highmem_pages();
1314 if (to_alloc > *nr_highmem_p)
1315 to_alloc = *nr_highmem_p;
1316 else
1317 *nr_highmem_p = to_alloc;
1318
1319 safe_highmem_pages = 0;
1320 while (to_alloc-- > 0) {
1321 struct page *page;
1322
1323 page = alloc_page(__GFP_HIGHMEM);
1324 if (!PageNosaveFree(page)) {
1325 /* The page is "safe", set its bit the bitmap */
1326 memory_bm_set_bit(bm, page_to_pfn(page));
1327 safe_highmem_pages++;
1328 }
1329 /* Mark the page as allocated */
1330 SetPageNosave(page);
1331 SetPageNosaveFree(page);
1332 }
1333 memory_bm_position_reset(bm);
1334 safe_highmem_bm = bm;
1335 return 0;
1336}
1337
1338/**
1339 * get_highmem_page_buffer - for given highmem image page find the buffer
1340 * that suspend_write_next() should set for its caller to write to.
1341 *
1342 * If the page is to be saved to its "original" page frame or a copy of
1343 * the page is to be made in the highmem, @buffer is returned. Otherwise,
1344 * the copy of the page is to be made in normal memory, so the address of
1345 * the copy is returned.
1346 *
1347 * If @buffer is returned, the caller of suspend_write_next() will write
1348 * the page's contents to @buffer, so they will have to be copied to the
1349 * right location on the next call to suspend_write_next() and it is done
1350 * with the help of copy_last_highmem_page(). For this purpose, if
1351 * @buffer is returned, @last_highmem page is set to the page to which
1352 * the data will have to be copied from @buffer.
1353 */
1354
1355static struct page *last_highmem_page;
1356
1357static void *
1358get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1359{
1360 struct highmem_pbe *pbe;
1361 void *kaddr;
1362
1363 if (PageNosave(page) && PageNosaveFree(page)) {
1364 /* We have allocated the "original" page frame and we can
1365 * use it directly to store the loaded page.
1366 */
1367 last_highmem_page = page;
1368 return buffer;
1369 }
1370 /* The "original" page frame has not been allocated and we have to
1371 * use a "safe" page frame to store the loaded page.
1372 */
1373 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1374 if (!pbe) {
1375 swsusp_free();
1376 return NULL;
1377 }
1378 pbe->orig_page = page;
1379 if (safe_highmem_pages > 0) {
1380 struct page *tmp;
1381
1382 /* Copy of the page will be stored in high memory */
1383 kaddr = buffer;
1384 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1385 safe_highmem_pages--;
1386 last_highmem_page = tmp;
1387 pbe->copy_page = tmp;
1388 } else {
1389 /* Copy of the page will be stored in normal memory */
1390 kaddr = safe_pages_list;
1391 safe_pages_list = safe_pages_list->next;
1392 pbe->copy_page = virt_to_page(kaddr);
1393 }
1394 pbe->next = highmem_pblist;
1395 highmem_pblist = pbe;
1396 return kaddr;
1397}
1398
1399/**
1400 * copy_last_highmem_page - copy the contents of a highmem image from
1401 * @buffer, where the caller of snapshot_write_next() has place them,
1402 * to the right location represented by @last_highmem_page .
1403 */
1404
1405static void copy_last_highmem_page(void)
1406{
1407 if (last_highmem_page) {
1408 void *dst;
1409
1410 dst = kmap_atomic(last_highmem_page, KM_USER0);
1411 memcpy(dst, buffer, PAGE_SIZE);
1412 kunmap_atomic(dst, KM_USER0);
1413 last_highmem_page = NULL;
1414 }
1415}
1416
1417static inline int last_highmem_page_copied(void)
1418{
1419 return !last_highmem_page;
1420}
1421
1422static inline void free_highmem_data(void)
1423{
1424 if (safe_highmem_bm)
1425 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
1426
1427 if (buffer)
1428 free_image_page(buffer, PG_UNSAFE_CLEAR);
1429}
1430#else
1431static inline int get_safe_write_buffer(void) { return 0; }
1432
1433static unsigned int
1434count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
1435
1436static inline int
1437prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1438{
1439 return 0;
1440}
1441
1442static inline void *
1443get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1444{
1445 return NULL;
1446}
1447
1448static inline void copy_last_highmem_page(void) {}
1449static inline int last_highmem_page_copied(void) { return 1; }
1450static inline void free_highmem_data(void) {}
1451#endif /* CONFIG_HIGHMEM */
1452
1104/** 1453/**
1105 * prepare_image - use the memory bitmap @bm to mark the pages that will 1454 * prepare_image - use the memory bitmap @bm to mark the pages that will
1106 * be overwritten in the process of restoring the system memory state 1455 * be overwritten in the process of restoring the system memory state
@@ -1110,20 +1459,25 @@ unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1110 * The idea is to allocate a new memory bitmap first and then allocate 1459 * The idea is to allocate a new memory bitmap first and then allocate
1111 * as many pages as needed for the image data, but not to assign these 1460 * as many pages as needed for the image data, but not to assign these
1112 * pages to specific tasks initially. Instead, we just mark them as 1461 * pages to specific tasks initially. Instead, we just mark them as
1113 * allocated and create a list of "safe" pages that will be used later. 1462 * allocated and create a lists of "safe" pages that will be used
1463 * later. On systems with high memory a list of "safe" highmem pages is
1464 * also created.
1114 */ 1465 */
1115 1466
1116#define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) 1467#define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
1117 1468
1118static struct linked_page *safe_pages_list;
1119
1120static int 1469static int
1121prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm) 1470prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
1122{ 1471{
1123 unsigned int nr_pages; 1472 unsigned int nr_pages, nr_highmem;
1124 struct linked_page *sp_list, *lp; 1473 struct linked_page *sp_list, *lp;
1125 int error; 1474 int error;
1126 1475
1476 /* If there is no highmem, the buffer will not be necessary */
1477 free_image_page(buffer, PG_UNSAFE_CLEAR);
1478 buffer = NULL;
1479
1480 nr_highmem = count_highmem_image_pages(bm);
1127 error = mark_unsafe_pages(bm); 1481 error = mark_unsafe_pages(bm);
1128 if (error) 1482 if (error)
1129 goto Free; 1483 goto Free;
@@ -1134,6 +1488,11 @@ prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
1134 1488
1135 duplicate_memory_bitmap(new_bm, bm); 1489 duplicate_memory_bitmap(new_bm, bm);
1136 memory_bm_free(bm, PG_UNSAFE_KEEP); 1490 memory_bm_free(bm, PG_UNSAFE_KEEP);
1491 if (nr_highmem > 0) {
1492 error = prepare_highmem_image(bm, &nr_highmem);
1493 if (error)
1494 goto Free;
1495 }
1137 /* Reserve some safe pages for potential later use. 1496 /* Reserve some safe pages for potential later use.
1138 * 1497 *
1139 * NOTE: This way we make sure there will be enough safe pages for the 1498 * NOTE: This way we make sure there will be enough safe pages for the
@@ -1142,10 +1501,10 @@ prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
1142 */ 1501 */
1143 sp_list = NULL; 1502 sp_list = NULL;
1144 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */ 1503 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
1145 nr_pages = nr_copy_pages - allocated_unsafe_pages; 1504 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1146 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); 1505 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
1147 while (nr_pages > 0) { 1506 while (nr_pages > 0) {
1148 lp = alloc_image_page(GFP_ATOMIC, PG_SAFE); 1507 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
1149 if (!lp) { 1508 if (!lp) {
1150 error = -ENOMEM; 1509 error = -ENOMEM;
1151 goto Free; 1510 goto Free;
@@ -1156,7 +1515,7 @@ prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
1156 } 1515 }
1157 /* Preallocate memory for the image */ 1516 /* Preallocate memory for the image */
1158 safe_pages_list = NULL; 1517 safe_pages_list = NULL;
1159 nr_pages = nr_copy_pages - allocated_unsafe_pages; 1518 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1160 while (nr_pages > 0) { 1519 while (nr_pages > 0) {
1161 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); 1520 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
1162 if (!lp) { 1521 if (!lp) {
@@ -1181,7 +1540,7 @@ prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
1181 } 1540 }
1182 return 0; 1541 return 0;
1183 1542
1184Free: 1543 Free:
1185 swsusp_free(); 1544 swsusp_free();
1186 return error; 1545 return error;
1187} 1546}
@@ -1196,6 +1555,9 @@ static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
1196 struct pbe *pbe; 1555 struct pbe *pbe;
1197 struct page *page = pfn_to_page(memory_bm_next_pfn(bm)); 1556 struct page *page = pfn_to_page(memory_bm_next_pfn(bm));
1198 1557
1558 if (PageHighMem(page))
1559 return get_highmem_page_buffer(page, ca);
1560
1199 if (PageNosave(page) && PageNosaveFree(page)) 1561 if (PageNosave(page) && PageNosaveFree(page))
1200 /* We have allocated the "original" page frame and we can 1562 /* We have allocated the "original" page frame and we can
1201 * use it directly to store the loaded page. 1563 * use it directly to store the loaded page.
@@ -1210,12 +1572,12 @@ static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
1210 swsusp_free(); 1572 swsusp_free();
1211 return NULL; 1573 return NULL;
1212 } 1574 }
1213 pbe->orig_address = (unsigned long)page_address(page); 1575 pbe->orig_address = page_address(page);
1214 pbe->address = (unsigned long)safe_pages_list; 1576 pbe->address = safe_pages_list;
1215 safe_pages_list = safe_pages_list->next; 1577 safe_pages_list = safe_pages_list->next;
1216 pbe->next = restore_pblist; 1578 pbe->next = restore_pblist;
1217 restore_pblist = pbe; 1579 restore_pblist = pbe;
1218 return (void *)pbe->address; 1580 return pbe->address;
1219} 1581}
1220 1582
1221/** 1583/**
@@ -1249,14 +1611,16 @@ int snapshot_write_next(struct snapshot_handle *handle, size_t count)
1249 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) 1611 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
1250 return 0; 1612 return 0;
1251 1613
1252 if (!buffer) { 1614 if (handle->offset == 0) {
1253 /* This makes the buffer be freed by swsusp_free() */ 1615 if (!buffer)
1254 buffer = alloc_image_page(GFP_ATOMIC, PG_ANY); 1616 /* This makes the buffer be freed by swsusp_free() */
1617 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1618
1255 if (!buffer) 1619 if (!buffer)
1256 return -ENOMEM; 1620 return -ENOMEM;
1257 } 1621
1258 if (!handle->offset)
1259 handle->buffer = buffer; 1622 handle->buffer = buffer;
1623 }
1260 handle->sync_read = 1; 1624 handle->sync_read = 1;
1261 if (handle->prev < handle->cur) { 1625 if (handle->prev < handle->cur) {
1262 if (handle->prev == 0) { 1626 if (handle->prev == 0) {
@@ -1284,8 +1648,10 @@ int snapshot_write_next(struct snapshot_handle *handle, size_t count)
1284 return -ENOMEM; 1648 return -ENOMEM;
1285 } 1649 }
1286 } else { 1650 } else {
1651 copy_last_highmem_page();
1287 handle->buffer = get_buffer(&orig_bm, &ca); 1652 handle->buffer = get_buffer(&orig_bm, &ca);
1288 handle->sync_read = 0; 1653 if (handle->buffer != buffer)
1654 handle->sync_read = 0;
1289 } 1655 }
1290 handle->prev = handle->cur; 1656 handle->prev = handle->cur;
1291 } 1657 }
@@ -1301,15 +1667,73 @@ int snapshot_write_next(struct snapshot_handle *handle, size_t count)
1301 return count; 1667 return count;
1302} 1668}
1303 1669
1670/**
1671 * snapshot_write_finalize - must be called after the last call to
1672 * snapshot_write_next() in case the last page in the image happens
1673 * to be a highmem page and its contents should be stored in the
1674 * highmem. Additionally, it releases the memory that will not be
1675 * used any more.
1676 */
1677
1678void snapshot_write_finalize(struct snapshot_handle *handle)
1679{
1680 copy_last_highmem_page();
1681 /* Free only if we have loaded the image entirely */
1682 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
1683 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
1684 free_highmem_data();
1685 }
1686}
1687
1304int snapshot_image_loaded(struct snapshot_handle *handle) 1688int snapshot_image_loaded(struct snapshot_handle *handle)
1305{ 1689{
1306 return !(!nr_copy_pages || 1690 return !(!nr_copy_pages || !last_highmem_page_copied() ||
1307 handle->cur <= nr_meta_pages + nr_copy_pages); 1691 handle->cur <= nr_meta_pages + nr_copy_pages);
1308} 1692}
1309 1693
1310void snapshot_free_unused_memory(struct snapshot_handle *handle) 1694#ifdef CONFIG_HIGHMEM
1695/* Assumes that @buf is ready and points to a "safe" page */
1696static inline void
1697swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
1311{ 1698{
1312 /* Free only if we have loaded the image entirely */ 1699 void *kaddr1, *kaddr2;
1313 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) 1700
1314 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR); 1701 kaddr1 = kmap_atomic(p1, KM_USER0);
1702 kaddr2 = kmap_atomic(p2, KM_USER1);
1703 memcpy(buf, kaddr1, PAGE_SIZE);
1704 memcpy(kaddr1, kaddr2, PAGE_SIZE);
1705 memcpy(kaddr2, buf, PAGE_SIZE);
1706 kunmap_atomic(kaddr1, KM_USER0);
1707 kunmap_atomic(kaddr2, KM_USER1);
1708}
1709
1710/**
1711 * restore_highmem - for each highmem page that was allocated before
1712 * the suspend and included in the suspend image, and also has been
1713 * allocated by the "resume" kernel swap its current (ie. "before
1714 * resume") contents with the previous (ie. "before suspend") one.
1715 *
1716 * If the resume eventually fails, we can call this function once
1717 * again and restore the "before resume" highmem state.
1718 */
1719
1720int restore_highmem(void)
1721{
1722 struct highmem_pbe *pbe = highmem_pblist;
1723 void *buf;
1724
1725 if (!pbe)
1726 return 0;
1727
1728 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
1729 if (!buf)
1730 return -ENOMEM;
1731
1732 while (pbe) {
1733 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
1734 pbe = pbe->next;
1735 }
1736 free_image_page(buf, PG_UNSAFE_CLEAR);
1737 return 0;
1315} 1738}
1739#endif /* CONFIG_HIGHMEM */