diff options
Diffstat (limited to 'kernel/power/main.c')
-rw-r--r-- | kernel/power/main.c | 55 |
1 files changed, 55 insertions, 0 deletions
diff --git a/kernel/power/main.c b/kernel/power/main.c index b58800b21fc0..62b0bc6e4983 100644 --- a/kernel/power/main.c +++ b/kernel/power/main.c | |||
@@ -204,6 +204,60 @@ static ssize_t state_store(struct kobject *kobj, struct kobj_attribute *attr, | |||
204 | 204 | ||
205 | power_attr(state); | 205 | power_attr(state); |
206 | 206 | ||
207 | #ifdef CONFIG_PM_SLEEP | ||
208 | /* | ||
209 | * The 'wakeup_count' attribute, along with the functions defined in | ||
210 | * drivers/base/power/wakeup.c, provides a means by which wakeup events can be | ||
211 | * handled in a non-racy way. | ||
212 | * | ||
213 | * If a wakeup event occurs when the system is in a sleep state, it simply is | ||
214 | * woken up. In turn, if an event that would wake the system up from a sleep | ||
215 | * state occurs when it is undergoing a transition to that sleep state, the | ||
216 | * transition should be aborted. Moreover, if such an event occurs when the | ||
217 | * system is in the working state, an attempt to start a transition to the | ||
218 | * given sleep state should fail during certain period after the detection of | ||
219 | * the event. Using the 'state' attribute alone is not sufficient to satisfy | ||
220 | * these requirements, because a wakeup event may occur exactly when 'state' | ||
221 | * is being written to and may be delivered to user space right before it is | ||
222 | * frozen, so the event will remain only partially processed until the system is | ||
223 | * woken up by another event. In particular, it won't cause the transition to | ||
224 | * a sleep state to be aborted. | ||
225 | * | ||
226 | * This difficulty may be overcome if user space uses 'wakeup_count' before | ||
227 | * writing to 'state'. It first should read from 'wakeup_count' and store | ||
228 | * the read value. Then, after carrying out its own preparations for the system | ||
229 | * transition to a sleep state, it should write the stored value to | ||
230 | * 'wakeup_count'. If that fails, at least one wakeup event has occured since | ||
231 | * 'wakeup_count' was read and 'state' should not be written to. Otherwise, it | ||
232 | * is allowed to write to 'state', but the transition will be aborted if there | ||
233 | * are any wakeup events detected after 'wakeup_count' was written to. | ||
234 | */ | ||
235 | |||
236 | static ssize_t wakeup_count_show(struct kobject *kobj, | ||
237 | struct kobj_attribute *attr, | ||
238 | char *buf) | ||
239 | { | ||
240 | unsigned long val; | ||
241 | |||
242 | return pm_get_wakeup_count(&val) ? sprintf(buf, "%lu\n", val) : -EINTR; | ||
243 | } | ||
244 | |||
245 | static ssize_t wakeup_count_store(struct kobject *kobj, | ||
246 | struct kobj_attribute *attr, | ||
247 | const char *buf, size_t n) | ||
248 | { | ||
249 | unsigned long val; | ||
250 | |||
251 | if (sscanf(buf, "%lu", &val) == 1) { | ||
252 | if (pm_save_wakeup_count(val)) | ||
253 | return n; | ||
254 | } | ||
255 | return -EINVAL; | ||
256 | } | ||
257 | |||
258 | power_attr(wakeup_count); | ||
259 | #endif /* CONFIG_PM_SLEEP */ | ||
260 | |||
207 | #ifdef CONFIG_PM_TRACE | 261 | #ifdef CONFIG_PM_TRACE |
208 | int pm_trace_enabled; | 262 | int pm_trace_enabled; |
209 | 263 | ||
@@ -236,6 +290,7 @@ static struct attribute * g[] = { | |||
236 | #endif | 290 | #endif |
237 | #ifdef CONFIG_PM_SLEEP | 291 | #ifdef CONFIG_PM_SLEEP |
238 | &pm_async_attr.attr, | 292 | &pm_async_attr.attr, |
293 | &wakeup_count_attr.attr, | ||
239 | #ifdef CONFIG_PM_DEBUG | 294 | #ifdef CONFIG_PM_DEBUG |
240 | &pm_test_attr.attr, | 295 | &pm_test_attr.attr, |
241 | #endif | 296 | #endif |