diff options
Diffstat (limited to 'kernel/posix-timers.c')
-rw-r--r-- | kernel/posix-timers.c | 895 |
1 files changed, 173 insertions, 722 deletions
diff --git a/kernel/posix-timers.c b/kernel/posix-timers.c index 5870efb3e200..197208b3aa2a 100644 --- a/kernel/posix-timers.c +++ b/kernel/posix-timers.c | |||
@@ -48,21 +48,6 @@ | |||
48 | #include <linux/workqueue.h> | 48 | #include <linux/workqueue.h> |
49 | #include <linux/module.h> | 49 | #include <linux/module.h> |
50 | 50 | ||
51 | #ifndef div_long_long_rem | ||
52 | #include <asm/div64.h> | ||
53 | |||
54 | #define div_long_long_rem(dividend,divisor,remainder) ({ \ | ||
55 | u64 result = dividend; \ | ||
56 | *remainder = do_div(result,divisor); \ | ||
57 | result; }) | ||
58 | |||
59 | #endif | ||
60 | #define CLOCK_REALTIME_RES TICK_NSEC /* In nano seconds. */ | ||
61 | |||
62 | static inline u64 mpy_l_X_l_ll(unsigned long mpy1,unsigned long mpy2) | ||
63 | { | ||
64 | return (u64)mpy1 * mpy2; | ||
65 | } | ||
66 | /* | 51 | /* |
67 | * Management arrays for POSIX timers. Timers are kept in slab memory | 52 | * Management arrays for POSIX timers. Timers are kept in slab memory |
68 | * Timer ids are allocated by an external routine that keeps track of the | 53 | * Timer ids are allocated by an external routine that keeps track of the |
@@ -148,18 +133,18 @@ static DEFINE_SPINLOCK(idr_lock); | |||
148 | */ | 133 | */ |
149 | 134 | ||
150 | static struct k_clock posix_clocks[MAX_CLOCKS]; | 135 | static struct k_clock posix_clocks[MAX_CLOCKS]; |
136 | |||
151 | /* | 137 | /* |
152 | * We only have one real clock that can be set so we need only one abs list, | 138 | * These ones are defined below. |
153 | * even if we should want to have several clocks with differing resolutions. | ||
154 | */ | 139 | */ |
155 | static struct k_clock_abs abs_list = {.list = LIST_HEAD_INIT(abs_list.list), | 140 | static int common_nsleep(const clockid_t, int flags, struct timespec *t, |
156 | .lock = SPIN_LOCK_UNLOCKED}; | 141 | struct timespec __user *rmtp); |
142 | static void common_timer_get(struct k_itimer *, struct itimerspec *); | ||
143 | static int common_timer_set(struct k_itimer *, int, | ||
144 | struct itimerspec *, struct itimerspec *); | ||
145 | static int common_timer_del(struct k_itimer *timer); | ||
157 | 146 | ||
158 | static void posix_timer_fn(unsigned long); | 147 | static int posix_timer_fn(void *data); |
159 | static u64 do_posix_clock_monotonic_gettime_parts( | ||
160 | struct timespec *tp, struct timespec *mo); | ||
161 | int do_posix_clock_monotonic_gettime(struct timespec *tp); | ||
162 | static int do_posix_clock_monotonic_get(clockid_t, struct timespec *tp); | ||
163 | 148 | ||
164 | static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags); | 149 | static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags); |
165 | 150 | ||
@@ -184,7 +169,7 @@ static inline void unlock_timer(struct k_itimer *timr, unsigned long flags) | |||
184 | * the function pointer CALL in struct k_clock. | 169 | * the function pointer CALL in struct k_clock. |
185 | */ | 170 | */ |
186 | 171 | ||
187 | static inline int common_clock_getres(clockid_t which_clock, | 172 | static inline int common_clock_getres(const clockid_t which_clock, |
188 | struct timespec *tp) | 173 | struct timespec *tp) |
189 | { | 174 | { |
190 | tp->tv_sec = 0; | 175 | tp->tv_sec = 0; |
@@ -192,39 +177,33 @@ static inline int common_clock_getres(clockid_t which_clock, | |||
192 | return 0; | 177 | return 0; |
193 | } | 178 | } |
194 | 179 | ||
195 | static inline int common_clock_get(clockid_t which_clock, struct timespec *tp) | 180 | /* |
181 | * Get real time for posix timers | ||
182 | */ | ||
183 | static int common_clock_get(clockid_t which_clock, struct timespec *tp) | ||
196 | { | 184 | { |
197 | getnstimeofday(tp); | 185 | ktime_get_real_ts(tp); |
198 | return 0; | 186 | return 0; |
199 | } | 187 | } |
200 | 188 | ||
201 | static inline int common_clock_set(clockid_t which_clock, struct timespec *tp) | 189 | static inline int common_clock_set(const clockid_t which_clock, |
190 | struct timespec *tp) | ||
202 | { | 191 | { |
203 | return do_sys_settimeofday(tp, NULL); | 192 | return do_sys_settimeofday(tp, NULL); |
204 | } | 193 | } |
205 | 194 | ||
206 | static inline int common_timer_create(struct k_itimer *new_timer) | 195 | static int common_timer_create(struct k_itimer *new_timer) |
207 | { | 196 | { |
208 | INIT_LIST_HEAD(&new_timer->it.real.abs_timer_entry); | 197 | hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock); |
209 | init_timer(&new_timer->it.real.timer); | 198 | new_timer->it.real.timer.data = new_timer; |
210 | new_timer->it.real.timer.data = (unsigned long) new_timer; | ||
211 | new_timer->it.real.timer.function = posix_timer_fn; | 199 | new_timer->it.real.timer.function = posix_timer_fn; |
212 | return 0; | 200 | return 0; |
213 | } | 201 | } |
214 | 202 | ||
215 | /* | 203 | /* |
216 | * These ones are defined below. | 204 | * Return nonzero if we know a priori this clockid_t value is bogus. |
217 | */ | ||
218 | static int common_nsleep(clockid_t, int flags, struct timespec *t); | ||
219 | static void common_timer_get(struct k_itimer *, struct itimerspec *); | ||
220 | static int common_timer_set(struct k_itimer *, int, | ||
221 | struct itimerspec *, struct itimerspec *); | ||
222 | static int common_timer_del(struct k_itimer *timer); | ||
223 | |||
224 | /* | ||
225 | * Return nonzero iff we know a priori this clockid_t value is bogus. | ||
226 | */ | 205 | */ |
227 | static inline int invalid_clockid(clockid_t which_clock) | 206 | static inline int invalid_clockid(const clockid_t which_clock) |
228 | { | 207 | { |
229 | if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */ | 208 | if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */ |
230 | return 0; | 209 | return 0; |
@@ -232,26 +211,32 @@ static inline int invalid_clockid(clockid_t which_clock) | |||
232 | return 1; | 211 | return 1; |
233 | if (posix_clocks[which_clock].clock_getres != NULL) | 212 | if (posix_clocks[which_clock].clock_getres != NULL) |
234 | return 0; | 213 | return 0; |
235 | #ifndef CLOCK_DISPATCH_DIRECT | ||
236 | if (posix_clocks[which_clock].res != 0) | 214 | if (posix_clocks[which_clock].res != 0) |
237 | return 0; | 215 | return 0; |
238 | #endif | ||
239 | return 1; | 216 | return 1; |
240 | } | 217 | } |
241 | 218 | ||
219 | /* | ||
220 | * Get monotonic time for posix timers | ||
221 | */ | ||
222 | static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp) | ||
223 | { | ||
224 | ktime_get_ts(tp); | ||
225 | return 0; | ||
226 | } | ||
242 | 227 | ||
243 | /* | 228 | /* |
244 | * Initialize everything, well, just everything in Posix clocks/timers ;) | 229 | * Initialize everything, well, just everything in Posix clocks/timers ;) |
245 | */ | 230 | */ |
246 | static __init int init_posix_timers(void) | 231 | static __init int init_posix_timers(void) |
247 | { | 232 | { |
248 | struct k_clock clock_realtime = {.res = CLOCK_REALTIME_RES, | 233 | struct k_clock clock_realtime = { |
249 | .abs_struct = &abs_list | 234 | .clock_getres = hrtimer_get_res, |
250 | }; | 235 | }; |
251 | struct k_clock clock_monotonic = {.res = CLOCK_REALTIME_RES, | 236 | struct k_clock clock_monotonic = { |
252 | .abs_struct = NULL, | 237 | .clock_getres = hrtimer_get_res, |
253 | .clock_get = do_posix_clock_monotonic_get, | 238 | .clock_get = posix_ktime_get_ts, |
254 | .clock_set = do_posix_clock_nosettime | 239 | .clock_set = do_posix_clock_nosettime, |
255 | }; | 240 | }; |
256 | 241 | ||
257 | register_posix_clock(CLOCK_REALTIME, &clock_realtime); | 242 | register_posix_clock(CLOCK_REALTIME, &clock_realtime); |
@@ -265,117 +250,17 @@ static __init int init_posix_timers(void) | |||
265 | 250 | ||
266 | __initcall(init_posix_timers); | 251 | __initcall(init_posix_timers); |
267 | 252 | ||
268 | static void tstojiffie(struct timespec *tp, int res, u64 *jiff) | ||
269 | { | ||
270 | long sec = tp->tv_sec; | ||
271 | long nsec = tp->tv_nsec + res - 1; | ||
272 | |||
273 | if (nsec >= NSEC_PER_SEC) { | ||
274 | sec++; | ||
275 | nsec -= NSEC_PER_SEC; | ||
276 | } | ||
277 | |||
278 | /* | ||
279 | * The scaling constants are defined in <linux/time.h> | ||
280 | * The difference between there and here is that we do the | ||
281 | * res rounding and compute a 64-bit result (well so does that | ||
282 | * but it then throws away the high bits). | ||
283 | */ | ||
284 | *jiff = (mpy_l_X_l_ll(sec, SEC_CONVERSION) + | ||
285 | (mpy_l_X_l_ll(nsec, NSEC_CONVERSION) >> | ||
286 | (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; | ||
287 | } | ||
288 | |||
289 | /* | ||
290 | * This function adjusts the timer as needed as a result of the clock | ||
291 | * being set. It should only be called for absolute timers, and then | ||
292 | * under the abs_list lock. It computes the time difference and sets | ||
293 | * the new jiffies value in the timer. It also updates the timers | ||
294 | * reference wall_to_monotonic value. It is complicated by the fact | ||
295 | * that tstojiffies() only handles positive times and it needs to work | ||
296 | * with both positive and negative times. Also, for negative offsets, | ||
297 | * we need to defeat the res round up. | ||
298 | * | ||
299 | * Return is true if there is a new time, else false. | ||
300 | */ | ||
301 | static long add_clockset_delta(struct k_itimer *timr, | ||
302 | struct timespec *new_wall_to) | ||
303 | { | ||
304 | struct timespec delta; | ||
305 | int sign = 0; | ||
306 | u64 exp; | ||
307 | |||
308 | set_normalized_timespec(&delta, | ||
309 | new_wall_to->tv_sec - | ||
310 | timr->it.real.wall_to_prev.tv_sec, | ||
311 | new_wall_to->tv_nsec - | ||
312 | timr->it.real.wall_to_prev.tv_nsec); | ||
313 | if (likely(!(delta.tv_sec | delta.tv_nsec))) | ||
314 | return 0; | ||
315 | if (delta.tv_sec < 0) { | ||
316 | set_normalized_timespec(&delta, | ||
317 | -delta.tv_sec, | ||
318 | 1 - delta.tv_nsec - | ||
319 | posix_clocks[timr->it_clock].res); | ||
320 | sign++; | ||
321 | } | ||
322 | tstojiffie(&delta, posix_clocks[timr->it_clock].res, &exp); | ||
323 | timr->it.real.wall_to_prev = *new_wall_to; | ||
324 | timr->it.real.timer.expires += (sign ? -exp : exp); | ||
325 | return 1; | ||
326 | } | ||
327 | |||
328 | static void remove_from_abslist(struct k_itimer *timr) | ||
329 | { | ||
330 | if (!list_empty(&timr->it.real.abs_timer_entry)) { | ||
331 | spin_lock(&abs_list.lock); | ||
332 | list_del_init(&timr->it.real.abs_timer_entry); | ||
333 | spin_unlock(&abs_list.lock); | ||
334 | } | ||
335 | } | ||
336 | |||
337 | static void schedule_next_timer(struct k_itimer *timr) | 253 | static void schedule_next_timer(struct k_itimer *timr) |
338 | { | 254 | { |
339 | struct timespec new_wall_to; | 255 | if (timr->it.real.interval.tv64 == 0) |
340 | struct now_struct now; | ||
341 | unsigned long seq; | ||
342 | |||
343 | /* | ||
344 | * Set up the timer for the next interval (if there is one). | ||
345 | * Note: this code uses the abs_timer_lock to protect | ||
346 | * it.real.wall_to_prev and must hold it until exp is set, not exactly | ||
347 | * obvious... | ||
348 | |||
349 | * This function is used for CLOCK_REALTIME* and | ||
350 | * CLOCK_MONOTONIC* timers. If we ever want to handle other | ||
351 | * CLOCKs, the calling code (do_schedule_next_timer) would need | ||
352 | * to pull the "clock" info from the timer and dispatch the | ||
353 | * "other" CLOCKs "next timer" code (which, I suppose should | ||
354 | * also be added to the k_clock structure). | ||
355 | */ | ||
356 | if (!timr->it.real.incr) | ||
357 | return; | 256 | return; |
358 | 257 | ||
359 | do { | 258 | timr->it_overrun += hrtimer_forward(&timr->it.real.timer, |
360 | seq = read_seqbegin(&xtime_lock); | 259 | timr->it.real.interval); |
361 | new_wall_to = wall_to_monotonic; | ||
362 | posix_get_now(&now); | ||
363 | } while (read_seqretry(&xtime_lock, seq)); | ||
364 | |||
365 | if (!list_empty(&timr->it.real.abs_timer_entry)) { | ||
366 | spin_lock(&abs_list.lock); | ||
367 | add_clockset_delta(timr, &new_wall_to); | ||
368 | |||
369 | posix_bump_timer(timr, now); | ||
370 | |||
371 | spin_unlock(&abs_list.lock); | ||
372 | } else { | ||
373 | posix_bump_timer(timr, now); | ||
374 | } | ||
375 | timr->it_overrun_last = timr->it_overrun; | 260 | timr->it_overrun_last = timr->it_overrun; |
376 | timr->it_overrun = -1; | 261 | timr->it_overrun = -1; |
377 | ++timr->it_requeue_pending; | 262 | ++timr->it_requeue_pending; |
378 | add_timer(&timr->it.real.timer); | 263 | hrtimer_restart(&timr->it.real.timer); |
379 | } | 264 | } |
380 | 265 | ||
381 | /* | 266 | /* |
@@ -396,31 +281,23 @@ void do_schedule_next_timer(struct siginfo *info) | |||
396 | 281 | ||
397 | timr = lock_timer(info->si_tid, &flags); | 282 | timr = lock_timer(info->si_tid, &flags); |
398 | 283 | ||
399 | if (!timr || timr->it_requeue_pending != info->si_sys_private) | 284 | if (timr && timr->it_requeue_pending == info->si_sys_private) { |
400 | goto exit; | 285 | if (timr->it_clock < 0) |
286 | posix_cpu_timer_schedule(timr); | ||
287 | else | ||
288 | schedule_next_timer(timr); | ||
401 | 289 | ||
402 | if (timr->it_clock < 0) /* CPU clock */ | 290 | info->si_overrun = timr->it_overrun_last; |
403 | posix_cpu_timer_schedule(timr); | 291 | } |
404 | else | 292 | |
405 | schedule_next_timer(timr); | 293 | unlock_timer(timr, flags); |
406 | info->si_overrun = timr->it_overrun_last; | ||
407 | exit: | ||
408 | if (timr) | ||
409 | unlock_timer(timr, flags); | ||
410 | } | 294 | } |
411 | 295 | ||
412 | int posix_timer_event(struct k_itimer *timr,int si_private) | 296 | int posix_timer_event(struct k_itimer *timr,int si_private) |
413 | { | 297 | { |
414 | memset(&timr->sigq->info, 0, sizeof(siginfo_t)); | 298 | memset(&timr->sigq->info, 0, sizeof(siginfo_t)); |
415 | timr->sigq->info.si_sys_private = si_private; | 299 | timr->sigq->info.si_sys_private = si_private; |
416 | /* | 300 | /* Send signal to the process that owns this timer.*/ |
417 | * Send signal to the process that owns this timer. | ||
418 | |||
419 | * This code assumes that all the possible abs_lists share the | ||
420 | * same lock (there is only one list at this time). If this is | ||
421 | * not the case, the CLOCK info would need to be used to find | ||
422 | * the proper abs list lock. | ||
423 | */ | ||
424 | 301 | ||
425 | timr->sigq->info.si_signo = timr->it_sigev_signo; | 302 | timr->sigq->info.si_signo = timr->it_sigev_signo; |
426 | timr->sigq->info.si_errno = 0; | 303 | timr->sigq->info.si_errno = 0; |
@@ -454,66 +331,37 @@ EXPORT_SYMBOL_GPL(posix_timer_event); | |||
454 | 331 | ||
455 | * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. | 332 | * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. |
456 | */ | 333 | */ |
457 | static void posix_timer_fn(unsigned long __data) | 334 | static int posix_timer_fn(void *data) |
458 | { | 335 | { |
459 | struct k_itimer *timr = (struct k_itimer *) __data; | 336 | struct k_itimer *timr = data; |
460 | unsigned long flags; | 337 | unsigned long flags; |
461 | unsigned long seq; | 338 | int si_private = 0; |
462 | struct timespec delta, new_wall_to; | 339 | int ret = HRTIMER_NORESTART; |
463 | u64 exp = 0; | ||
464 | int do_notify = 1; | ||
465 | 340 | ||
466 | spin_lock_irqsave(&timr->it_lock, flags); | 341 | spin_lock_irqsave(&timr->it_lock, flags); |
467 | if (!list_empty(&timr->it.real.abs_timer_entry)) { | ||
468 | spin_lock(&abs_list.lock); | ||
469 | do { | ||
470 | seq = read_seqbegin(&xtime_lock); | ||
471 | new_wall_to = wall_to_monotonic; | ||
472 | } while (read_seqretry(&xtime_lock, seq)); | ||
473 | set_normalized_timespec(&delta, | ||
474 | new_wall_to.tv_sec - | ||
475 | timr->it.real.wall_to_prev.tv_sec, | ||
476 | new_wall_to.tv_nsec - | ||
477 | timr->it.real.wall_to_prev.tv_nsec); | ||
478 | if (likely((delta.tv_sec | delta.tv_nsec ) == 0)) { | ||
479 | /* do nothing, timer is on time */ | ||
480 | } else if (delta.tv_sec < 0) { | ||
481 | /* do nothing, timer is already late */ | ||
482 | } else { | ||
483 | /* timer is early due to a clock set */ | ||
484 | tstojiffie(&delta, | ||
485 | posix_clocks[timr->it_clock].res, | ||
486 | &exp); | ||
487 | timr->it.real.wall_to_prev = new_wall_to; | ||
488 | timr->it.real.timer.expires += exp; | ||
489 | add_timer(&timr->it.real.timer); | ||
490 | do_notify = 0; | ||
491 | } | ||
492 | spin_unlock(&abs_list.lock); | ||
493 | 342 | ||
494 | } | 343 | if (timr->it.real.interval.tv64 != 0) |
495 | if (do_notify) { | 344 | si_private = ++timr->it_requeue_pending; |
496 | int si_private=0; | ||
497 | 345 | ||
498 | if (timr->it.real.incr) | 346 | if (posix_timer_event(timr, si_private)) { |
499 | si_private = ++timr->it_requeue_pending; | 347 | /* |
500 | else { | 348 | * signal was not sent because of sig_ignor |
501 | remove_from_abslist(timr); | 349 | * we will not get a call back to restart it AND |
350 | * it should be restarted. | ||
351 | */ | ||
352 | if (timr->it.real.interval.tv64 != 0) { | ||
353 | timr->it_overrun += | ||
354 | hrtimer_forward(&timr->it.real.timer, | ||
355 | timr->it.real.interval); | ||
356 | ret = HRTIMER_RESTART; | ||
502 | } | 357 | } |
503 | |||
504 | if (posix_timer_event(timr, si_private)) | ||
505 | /* | ||
506 | * signal was not sent because of sig_ignor | ||
507 | * we will not get a call back to restart it AND | ||
508 | * it should be restarted. | ||
509 | */ | ||
510 | schedule_next_timer(timr); | ||
511 | } | 358 | } |
512 | unlock_timer(timr, flags); /* hold thru abs lock to keep irq off */ | ||
513 | } | ||
514 | 359 | ||
360 | unlock_timer(timr, flags); | ||
361 | return ret; | ||
362 | } | ||
515 | 363 | ||
516 | static inline struct task_struct * good_sigevent(sigevent_t * event) | 364 | static struct task_struct * good_sigevent(sigevent_t * event) |
517 | { | 365 | { |
518 | struct task_struct *rtn = current->group_leader; | 366 | struct task_struct *rtn = current->group_leader; |
519 | 367 | ||
@@ -530,7 +378,7 @@ static inline struct task_struct * good_sigevent(sigevent_t * event) | |||
530 | return rtn; | 378 | return rtn; |
531 | } | 379 | } |
532 | 380 | ||
533 | void register_posix_clock(clockid_t clock_id, struct k_clock *new_clock) | 381 | void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock) |
534 | { | 382 | { |
535 | if ((unsigned) clock_id >= MAX_CLOCKS) { | 383 | if ((unsigned) clock_id >= MAX_CLOCKS) { |
536 | printk("POSIX clock register failed for clock_id %d\n", | 384 | printk("POSIX clock register failed for clock_id %d\n", |
@@ -576,7 +424,7 @@ static void release_posix_timer(struct k_itimer *tmr, int it_id_set) | |||
576 | /* Create a POSIX.1b interval timer. */ | 424 | /* Create a POSIX.1b interval timer. */ |
577 | 425 | ||
578 | asmlinkage long | 426 | asmlinkage long |
579 | sys_timer_create(clockid_t which_clock, | 427 | sys_timer_create(const clockid_t which_clock, |
580 | struct sigevent __user *timer_event_spec, | 428 | struct sigevent __user *timer_event_spec, |
581 | timer_t __user * created_timer_id) | 429 | timer_t __user * created_timer_id) |
582 | { | 430 | { |
@@ -602,8 +450,7 @@ sys_timer_create(clockid_t which_clock, | |||
602 | goto out; | 450 | goto out; |
603 | } | 451 | } |
604 | spin_lock_irq(&idr_lock); | 452 | spin_lock_irq(&idr_lock); |
605 | error = idr_get_new(&posix_timers_id, | 453 | error = idr_get_new(&posix_timers_id, (void *) new_timer, |
606 | (void *) new_timer, | ||
607 | &new_timer_id); | 454 | &new_timer_id); |
608 | spin_unlock_irq(&idr_lock); | 455 | spin_unlock_irq(&idr_lock); |
609 | if (error == -EAGAIN) | 456 | if (error == -EAGAIN) |
@@ -704,27 +551,6 @@ out: | |||
704 | } | 551 | } |
705 | 552 | ||
706 | /* | 553 | /* |
707 | * good_timespec | ||
708 | * | ||
709 | * This function checks the elements of a timespec structure. | ||
710 | * | ||
711 | * Arguments: | ||
712 | * ts : Pointer to the timespec structure to check | ||
713 | * | ||
714 | * Return value: | ||
715 | * If a NULL pointer was passed in, or the tv_nsec field was less than 0 | ||
716 | * or greater than NSEC_PER_SEC, or the tv_sec field was less than 0, | ||
717 | * this function returns 0. Otherwise it returns 1. | ||
718 | */ | ||
719 | static int good_timespec(const struct timespec *ts) | ||
720 | { | ||
721 | if ((!ts) || (ts->tv_sec < 0) || | ||
722 | ((unsigned) ts->tv_nsec >= NSEC_PER_SEC)) | ||
723 | return 0; | ||
724 | return 1; | ||
725 | } | ||
726 | |||
727 | /* | ||
728 | * Locking issues: We need to protect the result of the id look up until | 554 | * Locking issues: We need to protect the result of the id look up until |
729 | * we get the timer locked down so it is not deleted under us. The | 555 | * we get the timer locked down so it is not deleted under us. The |
730 | * removal is done under the idr spinlock so we use that here to bridge | 556 | * removal is done under the idr spinlock so we use that here to bridge |
@@ -776,39 +602,39 @@ static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags) | |||
776 | static void | 602 | static void |
777 | common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting) | 603 | common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting) |
778 | { | 604 | { |
779 | unsigned long expires; | 605 | ktime_t remaining; |
780 | struct now_struct now; | 606 | struct hrtimer *timer = &timr->it.real.timer; |
781 | 607 | ||
782 | do | 608 | memset(cur_setting, 0, sizeof(struct itimerspec)); |
783 | expires = timr->it.real.timer.expires; | 609 | remaining = hrtimer_get_remaining(timer); |
784 | while ((volatile long) (timr->it.real.timer.expires) != expires); | ||
785 | |||
786 | posix_get_now(&now); | ||
787 | |||
788 | if (expires && | ||
789 | ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) && | ||
790 | !timr->it.real.incr && | ||
791 | posix_time_before(&timr->it.real.timer, &now)) | ||
792 | timr->it.real.timer.expires = expires = 0; | ||
793 | if (expires) { | ||
794 | if (timr->it_requeue_pending & REQUEUE_PENDING || | ||
795 | (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { | ||
796 | posix_bump_timer(timr, now); | ||
797 | expires = timr->it.real.timer.expires; | ||
798 | } | ||
799 | else | ||
800 | if (!timer_pending(&timr->it.real.timer)) | ||
801 | expires = 0; | ||
802 | if (expires) | ||
803 | expires -= now.jiffies; | ||
804 | } | ||
805 | jiffies_to_timespec(expires, &cur_setting->it_value); | ||
806 | jiffies_to_timespec(timr->it.real.incr, &cur_setting->it_interval); | ||
807 | 610 | ||
808 | if (cur_setting->it_value.tv_sec < 0) { | 611 | /* Time left ? or timer pending */ |
612 | if (remaining.tv64 > 0 || hrtimer_active(timer)) | ||
613 | goto calci; | ||
614 | /* interval timer ? */ | ||
615 | if (timr->it.real.interval.tv64 == 0) | ||
616 | return; | ||
617 | /* | ||
618 | * When a requeue is pending or this is a SIGEV_NONE timer | ||
619 | * move the expiry time forward by intervals, so expiry is > | ||
620 | * now. | ||
621 | */ | ||
622 | if (timr->it_requeue_pending & REQUEUE_PENDING || | ||
623 | (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { | ||
624 | timr->it_overrun += | ||
625 | hrtimer_forward(timer, timr->it.real.interval); | ||
626 | remaining = hrtimer_get_remaining(timer); | ||
627 | } | ||
628 | calci: | ||
629 | /* interval timer ? */ | ||
630 | if (timr->it.real.interval.tv64 != 0) | ||
631 | cur_setting->it_interval = | ||
632 | ktime_to_timespec(timr->it.real.interval); | ||
633 | /* Return 0 only, when the timer is expired and not pending */ | ||
634 | if (remaining.tv64 <= 0) | ||
809 | cur_setting->it_value.tv_nsec = 1; | 635 | cur_setting->it_value.tv_nsec = 1; |
810 | cur_setting->it_value.tv_sec = 0; | 636 | else |
811 | } | 637 | cur_setting->it_value = ktime_to_timespec(remaining); |
812 | } | 638 | } |
813 | 639 | ||
814 | /* Get the time remaining on a POSIX.1b interval timer. */ | 640 | /* Get the time remaining on a POSIX.1b interval timer. */ |
@@ -832,6 +658,7 @@ sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting) | |||
832 | 658 | ||
833 | return 0; | 659 | return 0; |
834 | } | 660 | } |
661 | |||
835 | /* | 662 | /* |
836 | * Get the number of overruns of a POSIX.1b interval timer. This is to | 663 | * Get the number of overruns of a POSIX.1b interval timer. This is to |
837 | * be the overrun of the timer last delivered. At the same time we are | 664 | * be the overrun of the timer last delivered. At the same time we are |
@@ -841,7 +668,6 @@ sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting) | |||
841 | * the call back to do_schedule_next_timer(). So all we need to do is | 668 | * the call back to do_schedule_next_timer(). So all we need to do is |
842 | * to pick up the frozen overrun. | 669 | * to pick up the frozen overrun. |
843 | */ | 670 | */ |
844 | |||
845 | asmlinkage long | 671 | asmlinkage long |
846 | sys_timer_getoverrun(timer_t timer_id) | 672 | sys_timer_getoverrun(timer_t timer_id) |
847 | { | 673 | { |
@@ -858,153 +684,55 @@ sys_timer_getoverrun(timer_t timer_id) | |||
858 | 684 | ||
859 | return overrun; | 685 | return overrun; |
860 | } | 686 | } |
861 | /* | ||
862 | * Adjust for absolute time | ||
863 | * | ||
864 | * If absolute time is given and it is not CLOCK_MONOTONIC, we need to | ||
865 | * adjust for the offset between the timer clock (CLOCK_MONOTONIC) and | ||
866 | * what ever clock he is using. | ||
867 | * | ||
868 | * If it is relative time, we need to add the current (CLOCK_MONOTONIC) | ||
869 | * time to it to get the proper time for the timer. | ||
870 | */ | ||
871 | static int adjust_abs_time(struct k_clock *clock, struct timespec *tp, | ||
872 | int abs, u64 *exp, struct timespec *wall_to) | ||
873 | { | ||
874 | struct timespec now; | ||
875 | struct timespec oc = *tp; | ||
876 | u64 jiffies_64_f; | ||
877 | int rtn =0; | ||
878 | |||
879 | if (abs) { | ||
880 | /* | ||
881 | * The mask pick up the 4 basic clocks | ||
882 | */ | ||
883 | if (!((clock - &posix_clocks[0]) & ~CLOCKS_MASK)) { | ||
884 | jiffies_64_f = do_posix_clock_monotonic_gettime_parts( | ||
885 | &now, wall_to); | ||
886 | /* | ||
887 | * If we are doing a MONOTONIC clock | ||
888 | */ | ||
889 | if((clock - &posix_clocks[0]) & CLOCKS_MONO){ | ||
890 | now.tv_sec += wall_to->tv_sec; | ||
891 | now.tv_nsec += wall_to->tv_nsec; | ||
892 | } | ||
893 | } else { | ||
894 | /* | ||
895 | * Not one of the basic clocks | ||
896 | */ | ||
897 | clock->clock_get(clock - posix_clocks, &now); | ||
898 | jiffies_64_f = get_jiffies_64(); | ||
899 | } | ||
900 | /* | ||
901 | * Take away now to get delta and normalize | ||
902 | */ | ||
903 | set_normalized_timespec(&oc, oc.tv_sec - now.tv_sec, | ||
904 | oc.tv_nsec - now.tv_nsec); | ||
905 | }else{ | ||
906 | jiffies_64_f = get_jiffies_64(); | ||
907 | } | ||
908 | /* | ||
909 | * Check if the requested time is prior to now (if so set now) | ||
910 | */ | ||
911 | if (oc.tv_sec < 0) | ||
912 | oc.tv_sec = oc.tv_nsec = 0; | ||
913 | |||
914 | if (oc.tv_sec | oc.tv_nsec) | ||
915 | set_normalized_timespec(&oc, oc.tv_sec, | ||
916 | oc.tv_nsec + clock->res); | ||
917 | tstojiffie(&oc, clock->res, exp); | ||
918 | |||
919 | /* | ||
920 | * Check if the requested time is more than the timer code | ||
921 | * can handle (if so we error out but return the value too). | ||
922 | */ | ||
923 | if (*exp > ((u64)MAX_JIFFY_OFFSET)) | ||
924 | /* | ||
925 | * This is a considered response, not exactly in | ||
926 | * line with the standard (in fact it is silent on | ||
927 | * possible overflows). We assume such a large | ||
928 | * value is ALMOST always a programming error and | ||
929 | * try not to compound it by setting a really dumb | ||
930 | * value. | ||
931 | */ | ||
932 | rtn = -EINVAL; | ||
933 | /* | ||
934 | * return the actual jiffies expire time, full 64 bits | ||
935 | */ | ||
936 | *exp += jiffies_64_f; | ||
937 | return rtn; | ||
938 | } | ||
939 | 687 | ||
940 | /* Set a POSIX.1b interval timer. */ | 688 | /* Set a POSIX.1b interval timer. */ |
941 | /* timr->it_lock is taken. */ | 689 | /* timr->it_lock is taken. */ |
942 | static inline int | 690 | static int |
943 | common_timer_set(struct k_itimer *timr, int flags, | 691 | common_timer_set(struct k_itimer *timr, int flags, |
944 | struct itimerspec *new_setting, struct itimerspec *old_setting) | 692 | struct itimerspec *new_setting, struct itimerspec *old_setting) |
945 | { | 693 | { |
946 | struct k_clock *clock = &posix_clocks[timr->it_clock]; | 694 | struct hrtimer *timer = &timr->it.real.timer; |
947 | u64 expire_64; | ||
948 | 695 | ||
949 | if (old_setting) | 696 | if (old_setting) |
950 | common_timer_get(timr, old_setting); | 697 | common_timer_get(timr, old_setting); |
951 | 698 | ||
952 | /* disable the timer */ | 699 | /* disable the timer */ |
953 | timr->it.real.incr = 0; | 700 | timr->it.real.interval.tv64 = 0; |
954 | /* | 701 | /* |
955 | * careful here. If smp we could be in the "fire" routine which will | 702 | * careful here. If smp we could be in the "fire" routine which will |
956 | * be spinning as we hold the lock. But this is ONLY an SMP issue. | 703 | * be spinning as we hold the lock. But this is ONLY an SMP issue. |
957 | */ | 704 | */ |
958 | if (try_to_del_timer_sync(&timr->it.real.timer) < 0) { | 705 | if (hrtimer_try_to_cancel(timer) < 0) |
959 | #ifdef CONFIG_SMP | ||
960 | /* | ||
961 | * It can only be active if on an other cpu. Since | ||
962 | * we have cleared the interval stuff above, it should | ||
963 | * clear once we release the spin lock. Of course once | ||
964 | * we do that anything could happen, including the | ||
965 | * complete melt down of the timer. So return with | ||
966 | * a "retry" exit status. | ||
967 | */ | ||
968 | return TIMER_RETRY; | 706 | return TIMER_RETRY; |
969 | #endif | ||
970 | } | ||
971 | |||
972 | remove_from_abslist(timr); | ||
973 | 707 | ||
974 | timr->it_requeue_pending = (timr->it_requeue_pending + 2) & | 708 | timr->it_requeue_pending = (timr->it_requeue_pending + 2) & |
975 | ~REQUEUE_PENDING; | 709 | ~REQUEUE_PENDING; |
976 | timr->it_overrun_last = 0; | 710 | timr->it_overrun_last = 0; |
977 | timr->it_overrun = -1; | ||
978 | /* | ||
979 | *switch off the timer when it_value is zero | ||
980 | */ | ||
981 | if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) { | ||
982 | timr->it.real.timer.expires = 0; | ||
983 | return 0; | ||
984 | } | ||
985 | 711 | ||
986 | if (adjust_abs_time(clock, | 712 | /* switch off the timer when it_value is zero */ |
987 | &new_setting->it_value, flags & TIMER_ABSTIME, | 713 | if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) |
988 | &expire_64, &(timr->it.real.wall_to_prev))) { | 714 | return 0; |
989 | return -EINVAL; | ||
990 | } | ||
991 | timr->it.real.timer.expires = (unsigned long)expire_64; | ||
992 | tstojiffie(&new_setting->it_interval, clock->res, &expire_64); | ||
993 | timr->it.real.incr = (unsigned long)expire_64; | ||
994 | 715 | ||
995 | /* | 716 | /* Posix madness. Only absolute CLOCK_REALTIME timers |
996 | * We do not even queue SIGEV_NONE timers! But we do put them | 717 | * are affected by clock sets. So we must reiniatilize |
997 | * in the abs list so we can do that right. | 718 | * the timer. |
998 | */ | 719 | */ |
999 | if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)) | 720 | if (timr->it_clock == CLOCK_REALTIME && (flags & TIMER_ABSTIME)) |
1000 | add_timer(&timr->it.real.timer); | 721 | hrtimer_rebase(timer, CLOCK_REALTIME); |
1001 | 722 | else | |
1002 | if (flags & TIMER_ABSTIME && clock->abs_struct) { | 723 | hrtimer_rebase(timer, CLOCK_MONOTONIC); |
1003 | spin_lock(&clock->abs_struct->lock); | 724 | |
1004 | list_add_tail(&(timr->it.real.abs_timer_entry), | 725 | timer->expires = timespec_to_ktime(new_setting->it_value); |
1005 | &(clock->abs_struct->list)); | 726 | |
1006 | spin_unlock(&clock->abs_struct->lock); | 727 | /* Convert interval */ |
1007 | } | 728 | timr->it.real.interval = timespec_to_ktime(new_setting->it_interval); |
729 | |||
730 | /* SIGEV_NONE timers are not queued ! See common_timer_get */ | ||
731 | if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) | ||
732 | return 0; | ||
733 | |||
734 | hrtimer_start(timer, timer->expires, (flags & TIMER_ABSTIME) ? | ||
735 | HRTIMER_ABS : HRTIMER_REL); | ||
1008 | return 0; | 736 | return 0; |
1009 | } | 737 | } |
1010 | 738 | ||
@@ -1026,8 +754,8 @@ sys_timer_settime(timer_t timer_id, int flags, | |||
1026 | if (copy_from_user(&new_spec, new_setting, sizeof (new_spec))) | 754 | if (copy_from_user(&new_spec, new_setting, sizeof (new_spec))) |
1027 | return -EFAULT; | 755 | return -EFAULT; |
1028 | 756 | ||
1029 | if ((!good_timespec(&new_spec.it_interval)) || | 757 | if (!timespec_valid(&new_spec.it_interval) || |
1030 | (!good_timespec(&new_spec.it_value))) | 758 | !timespec_valid(&new_spec.it_value)) |
1031 | return -EINVAL; | 759 | return -EINVAL; |
1032 | retry: | 760 | retry: |
1033 | timr = lock_timer(timer_id, &flag); | 761 | timr = lock_timer(timer_id, &flag); |
@@ -1043,8 +771,8 @@ retry: | |||
1043 | goto retry; | 771 | goto retry; |
1044 | } | 772 | } |
1045 | 773 | ||
1046 | if (old_setting && !error && copy_to_user(old_setting, | 774 | if (old_setting && !error && |
1047 | &old_spec, sizeof (old_spec))) | 775 | copy_to_user(old_setting, &old_spec, sizeof (old_spec))) |
1048 | error = -EFAULT; | 776 | error = -EFAULT; |
1049 | 777 | ||
1050 | return error; | 778 | return error; |
@@ -1052,24 +780,10 @@ retry: | |||
1052 | 780 | ||
1053 | static inline int common_timer_del(struct k_itimer *timer) | 781 | static inline int common_timer_del(struct k_itimer *timer) |
1054 | { | 782 | { |
1055 | timer->it.real.incr = 0; | 783 | timer->it.real.interval.tv64 = 0; |
1056 | 784 | ||
1057 | if (try_to_del_timer_sync(&timer->it.real.timer) < 0) { | 785 | if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0) |
1058 | #ifdef CONFIG_SMP | ||
1059 | /* | ||
1060 | * It can only be active if on an other cpu. Since | ||
1061 | * we have cleared the interval stuff above, it should | ||
1062 | * clear once we release the spin lock. Of course once | ||
1063 | * we do that anything could happen, including the | ||
1064 | * complete melt down of the timer. So return with | ||
1065 | * a "retry" exit status. | ||
1066 | */ | ||
1067 | return TIMER_RETRY; | 786 | return TIMER_RETRY; |
1068 | #endif | ||
1069 | } | ||
1070 | |||
1071 | remove_from_abslist(timer); | ||
1072 | |||
1073 | return 0; | 787 | return 0; |
1074 | } | 788 | } |
1075 | 789 | ||
@@ -1085,24 +799,16 @@ sys_timer_delete(timer_t timer_id) | |||
1085 | struct k_itimer *timer; | 799 | struct k_itimer *timer; |
1086 | long flags; | 800 | long flags; |
1087 | 801 | ||
1088 | #ifdef CONFIG_SMP | ||
1089 | int error; | ||
1090 | retry_delete: | 802 | retry_delete: |
1091 | #endif | ||
1092 | timer = lock_timer(timer_id, &flags); | 803 | timer = lock_timer(timer_id, &flags); |
1093 | if (!timer) | 804 | if (!timer) |
1094 | return -EINVAL; | 805 | return -EINVAL; |
1095 | 806 | ||
1096 | #ifdef CONFIG_SMP | 807 | if (timer_delete_hook(timer) == TIMER_RETRY) { |
1097 | error = timer_delete_hook(timer); | ||
1098 | |||
1099 | if (error == TIMER_RETRY) { | ||
1100 | unlock_timer(timer, flags); | 808 | unlock_timer(timer, flags); |
1101 | goto retry_delete; | 809 | goto retry_delete; |
1102 | } | 810 | } |
1103 | #else | 811 | |
1104 | timer_delete_hook(timer); | ||
1105 | #endif | ||
1106 | spin_lock(¤t->sighand->siglock); | 812 | spin_lock(¤t->sighand->siglock); |
1107 | list_del(&timer->list); | 813 | list_del(&timer->list); |
1108 | spin_unlock(¤t->sighand->siglock); | 814 | spin_unlock(¤t->sighand->siglock); |
@@ -1119,29 +825,21 @@ retry_delete: | |||
1119 | release_posix_timer(timer, IT_ID_SET); | 825 | release_posix_timer(timer, IT_ID_SET); |
1120 | return 0; | 826 | return 0; |
1121 | } | 827 | } |
828 | |||
1122 | /* | 829 | /* |
1123 | * return timer owned by the process, used by exit_itimers | 830 | * return timer owned by the process, used by exit_itimers |
1124 | */ | 831 | */ |
1125 | static inline void itimer_delete(struct k_itimer *timer) | 832 | static void itimer_delete(struct k_itimer *timer) |
1126 | { | 833 | { |
1127 | unsigned long flags; | 834 | unsigned long flags; |
1128 | 835 | ||
1129 | #ifdef CONFIG_SMP | ||
1130 | int error; | ||
1131 | retry_delete: | 836 | retry_delete: |
1132 | #endif | ||
1133 | spin_lock_irqsave(&timer->it_lock, flags); | 837 | spin_lock_irqsave(&timer->it_lock, flags); |
1134 | 838 | ||
1135 | #ifdef CONFIG_SMP | 839 | if (timer_delete_hook(timer) == TIMER_RETRY) { |
1136 | error = timer_delete_hook(timer); | ||
1137 | |||
1138 | if (error == TIMER_RETRY) { | ||
1139 | unlock_timer(timer, flags); | 840 | unlock_timer(timer, flags); |
1140 | goto retry_delete; | 841 | goto retry_delete; |
1141 | } | 842 | } |
1142 | #else | ||
1143 | timer_delete_hook(timer); | ||
1144 | #endif | ||
1145 | list_del(&timer->list); | 843 | list_del(&timer->list); |
1146 | /* | 844 | /* |
1147 | * This keeps any tasks waiting on the spin lock from thinking | 845 | * This keeps any tasks waiting on the spin lock from thinking |
@@ -1170,57 +868,8 @@ void exit_itimers(struct signal_struct *sig) | |||
1170 | } | 868 | } |
1171 | } | 869 | } |
1172 | 870 | ||
1173 | /* | 871 | /* Not available / possible... functions */ |
1174 | * And now for the "clock" calls | 872 | int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp) |
1175 | * | ||
1176 | * These functions are called both from timer functions (with the timer | ||
1177 | * spin_lock_irq() held and from clock calls with no locking. They must | ||
1178 | * use the save flags versions of locks. | ||
1179 | */ | ||
1180 | |||
1181 | /* | ||
1182 | * We do ticks here to avoid the irq lock ( they take sooo long). | ||
1183 | * The seqlock is great here. Since we a reader, we don't really care | ||
1184 | * if we are interrupted since we don't take lock that will stall us or | ||
1185 | * any other cpu. Voila, no irq lock is needed. | ||
1186 | * | ||
1187 | */ | ||
1188 | |||
1189 | static u64 do_posix_clock_monotonic_gettime_parts( | ||
1190 | struct timespec *tp, struct timespec *mo) | ||
1191 | { | ||
1192 | u64 jiff; | ||
1193 | unsigned int seq; | ||
1194 | |||
1195 | do { | ||
1196 | seq = read_seqbegin(&xtime_lock); | ||
1197 | getnstimeofday(tp); | ||
1198 | *mo = wall_to_monotonic; | ||
1199 | jiff = jiffies_64; | ||
1200 | |||
1201 | } while(read_seqretry(&xtime_lock, seq)); | ||
1202 | |||
1203 | return jiff; | ||
1204 | } | ||
1205 | |||
1206 | static int do_posix_clock_monotonic_get(clockid_t clock, struct timespec *tp) | ||
1207 | { | ||
1208 | struct timespec wall_to_mono; | ||
1209 | |||
1210 | do_posix_clock_monotonic_gettime_parts(tp, &wall_to_mono); | ||
1211 | |||
1212 | set_normalized_timespec(tp, tp->tv_sec + wall_to_mono.tv_sec, | ||
1213 | tp->tv_nsec + wall_to_mono.tv_nsec); | ||
1214 | |||
1215 | return 0; | ||
1216 | } | ||
1217 | |||
1218 | int do_posix_clock_monotonic_gettime(struct timespec *tp) | ||
1219 | { | ||
1220 | return do_posix_clock_monotonic_get(CLOCK_MONOTONIC, tp); | ||
1221 | } | ||
1222 | |||
1223 | int do_posix_clock_nosettime(clockid_t clockid, struct timespec *tp) | ||
1224 | { | 873 | { |
1225 | return -EINVAL; | 874 | return -EINVAL; |
1226 | } | 875 | } |
@@ -1232,7 +881,8 @@ int do_posix_clock_notimer_create(struct k_itimer *timer) | |||
1232 | } | 881 | } |
1233 | EXPORT_SYMBOL_GPL(do_posix_clock_notimer_create); | 882 | EXPORT_SYMBOL_GPL(do_posix_clock_notimer_create); |
1234 | 883 | ||
1235 | int do_posix_clock_nonanosleep(clockid_t clock, int flags, struct timespec *t) | 884 | int do_posix_clock_nonanosleep(const clockid_t clock, int flags, |
885 | struct timespec *t, struct timespec __user *r) | ||
1236 | { | 886 | { |
1237 | #ifndef ENOTSUP | 887 | #ifndef ENOTSUP |
1238 | return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */ | 888 | return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */ |
@@ -1242,8 +892,8 @@ int do_posix_clock_nonanosleep(clockid_t clock, int flags, struct timespec *t) | |||
1242 | } | 892 | } |
1243 | EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep); | 893 | EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep); |
1244 | 894 | ||
1245 | asmlinkage long | 895 | asmlinkage long sys_clock_settime(const clockid_t which_clock, |
1246 | sys_clock_settime(clockid_t which_clock, const struct timespec __user *tp) | 896 | const struct timespec __user *tp) |
1247 | { | 897 | { |
1248 | struct timespec new_tp; | 898 | struct timespec new_tp; |
1249 | 899 | ||
@@ -1256,7 +906,7 @@ sys_clock_settime(clockid_t which_clock, const struct timespec __user *tp) | |||
1256 | } | 906 | } |
1257 | 907 | ||
1258 | asmlinkage long | 908 | asmlinkage long |
1259 | sys_clock_gettime(clockid_t which_clock, struct timespec __user *tp) | 909 | sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp) |
1260 | { | 910 | { |
1261 | struct timespec kernel_tp; | 911 | struct timespec kernel_tp; |
1262 | int error; | 912 | int error; |
@@ -1273,7 +923,7 @@ sys_clock_gettime(clockid_t which_clock, struct timespec __user *tp) | |||
1273 | } | 923 | } |
1274 | 924 | ||
1275 | asmlinkage long | 925 | asmlinkage long |
1276 | sys_clock_getres(clockid_t which_clock, struct timespec __user *tp) | 926 | sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp) |
1277 | { | 927 | { |
1278 | struct timespec rtn_tp; | 928 | struct timespec rtn_tp; |
1279 | int error; | 929 | int error; |
@@ -1292,117 +942,34 @@ sys_clock_getres(clockid_t which_clock, struct timespec __user *tp) | |||
1292 | } | 942 | } |
1293 | 943 | ||
1294 | /* | 944 | /* |
1295 | * The standard says that an absolute nanosleep call MUST wake up at | 945 | * nanosleep for monotonic and realtime clocks |
1296 | * the requested time in spite of clock settings. Here is what we do: | ||
1297 | * For each nanosleep call that needs it (only absolute and not on | ||
1298 | * CLOCK_MONOTONIC* (as it can not be set)) we thread a little structure | ||
1299 | * into the "nanosleep_abs_list". All we need is the task_struct pointer. | ||
1300 | * When ever the clock is set we just wake up all those tasks. The rest | ||
1301 | * is done by the while loop in clock_nanosleep(). | ||
1302 | * | ||
1303 | * On locking, clock_was_set() is called from update_wall_clock which | ||
1304 | * holds (or has held for it) a write_lock_irq( xtime_lock) and is | ||
1305 | * called from the timer bh code. Thus we need the irq save locks. | ||
1306 | * | ||
1307 | * Also, on the call from update_wall_clock, that is done as part of a | ||
1308 | * softirq thing. We don't want to delay the system that much (possibly | ||
1309 | * long list of timers to fix), so we defer that work to keventd. | ||
1310 | */ | 946 | */ |
1311 | 947 | static int common_nsleep(const clockid_t which_clock, int flags, | |
1312 | static DECLARE_WAIT_QUEUE_HEAD(nanosleep_abs_wqueue); | 948 | struct timespec *tsave, struct timespec __user *rmtp) |
1313 | static DECLARE_WORK(clock_was_set_work, (void(*)(void*))clock_was_set, NULL); | 949 | { |
1314 | 950 | int mode = flags & TIMER_ABSTIME ? HRTIMER_ABS : HRTIMER_REL; | |
1315 | static DECLARE_MUTEX(clock_was_set_lock); | 951 | int clockid = which_clock; |
1316 | 952 | ||
1317 | void clock_was_set(void) | 953 | switch (which_clock) { |
1318 | { | 954 | case CLOCK_REALTIME: |
1319 | struct k_itimer *timr; | 955 | /* Posix madness. Only absolute timers on clock realtime |
1320 | struct timespec new_wall_to; | 956 | are affected by clock set. */ |
1321 | LIST_HEAD(cws_list); | 957 | if (mode != HRTIMER_ABS) |
1322 | unsigned long seq; | 958 | clockid = CLOCK_MONOTONIC; |
1323 | 959 | case CLOCK_MONOTONIC: | |
1324 | 960 | break; | |
1325 | if (unlikely(in_interrupt())) { | 961 | default: |
1326 | schedule_work(&clock_was_set_work); | 962 | return -EINVAL; |
1327 | return; | ||
1328 | } | 963 | } |
1329 | wake_up_all(&nanosleep_abs_wqueue); | 964 | return hrtimer_nanosleep(tsave, rmtp, mode, clockid); |
1330 | |||
1331 | /* | ||
1332 | * Check if there exist TIMER_ABSTIME timers to correct. | ||
1333 | * | ||
1334 | * Notes on locking: This code is run in task context with irq | ||
1335 | * on. We CAN be interrupted! All other usage of the abs list | ||
1336 | * lock is under the timer lock which holds the irq lock as | ||
1337 | * well. We REALLY don't want to scan the whole list with the | ||
1338 | * interrupt system off, AND we would like a sequence lock on | ||
1339 | * this code as well. Since we assume that the clock will not | ||
1340 | * be set often, it seems ok to take and release the irq lock | ||
1341 | * for each timer. In fact add_timer will do this, so this is | ||
1342 | * not an issue. So we know when we are done, we will move the | ||
1343 | * whole list to a new location. Then as we process each entry, | ||
1344 | * we will move it to the actual list again. This way, when our | ||
1345 | * copy is empty, we are done. We are not all that concerned | ||
1346 | * about preemption so we will use a semaphore lock to protect | ||
1347 | * aginst reentry. This way we will not stall another | ||
1348 | * processor. It is possible that this may delay some timers | ||
1349 | * that should have expired, given the new clock, but even this | ||
1350 | * will be minimal as we will always update to the current time, | ||
1351 | * even if it was set by a task that is waiting for entry to | ||
1352 | * this code. Timers that expire too early will be caught by | ||
1353 | * the expire code and restarted. | ||
1354 | |||
1355 | * Absolute timers that repeat are left in the abs list while | ||
1356 | * waiting for the task to pick up the signal. This means we | ||
1357 | * may find timers that are not in the "add_timer" list, but are | ||
1358 | * in the abs list. We do the same thing for these, save | ||
1359 | * putting them back in the "add_timer" list. (Note, these are | ||
1360 | * left in the abs list mainly to indicate that they are | ||
1361 | * ABSOLUTE timers, a fact that is used by the re-arm code, and | ||
1362 | * for which we have no other flag.) | ||
1363 | |||
1364 | */ | ||
1365 | |||
1366 | down(&clock_was_set_lock); | ||
1367 | spin_lock_irq(&abs_list.lock); | ||
1368 | list_splice_init(&abs_list.list, &cws_list); | ||
1369 | spin_unlock_irq(&abs_list.lock); | ||
1370 | do { | ||
1371 | do { | ||
1372 | seq = read_seqbegin(&xtime_lock); | ||
1373 | new_wall_to = wall_to_monotonic; | ||
1374 | } while (read_seqretry(&xtime_lock, seq)); | ||
1375 | |||
1376 | spin_lock_irq(&abs_list.lock); | ||
1377 | if (list_empty(&cws_list)) { | ||
1378 | spin_unlock_irq(&abs_list.lock); | ||
1379 | break; | ||
1380 | } | ||
1381 | timr = list_entry(cws_list.next, struct k_itimer, | ||
1382 | it.real.abs_timer_entry); | ||
1383 | |||
1384 | list_del_init(&timr->it.real.abs_timer_entry); | ||
1385 | if (add_clockset_delta(timr, &new_wall_to) && | ||
1386 | del_timer(&timr->it.real.timer)) /* timer run yet? */ | ||
1387 | add_timer(&timr->it.real.timer); | ||
1388 | list_add(&timr->it.real.abs_timer_entry, &abs_list.list); | ||
1389 | spin_unlock_irq(&abs_list.lock); | ||
1390 | } while (1); | ||
1391 | |||
1392 | up(&clock_was_set_lock); | ||
1393 | } | 965 | } |
1394 | 966 | ||
1395 | long clock_nanosleep_restart(struct restart_block *restart_block); | ||
1396 | |||
1397 | asmlinkage long | 967 | asmlinkage long |
1398 | sys_clock_nanosleep(clockid_t which_clock, int flags, | 968 | sys_clock_nanosleep(const clockid_t which_clock, int flags, |
1399 | const struct timespec __user *rqtp, | 969 | const struct timespec __user *rqtp, |
1400 | struct timespec __user *rmtp) | 970 | struct timespec __user *rmtp) |
1401 | { | 971 | { |
1402 | struct timespec t; | 972 | struct timespec t; |
1403 | struct restart_block *restart_block = | ||
1404 | &(current_thread_info()->restart_block); | ||
1405 | int ret; | ||
1406 | 973 | ||
1407 | if (invalid_clockid(which_clock)) | 974 | if (invalid_clockid(which_clock)) |
1408 | return -EINVAL; | 975 | return -EINVAL; |
@@ -1410,125 +977,9 @@ sys_clock_nanosleep(clockid_t which_clock, int flags, | |||
1410 | if (copy_from_user(&t, rqtp, sizeof (struct timespec))) | 977 | if (copy_from_user(&t, rqtp, sizeof (struct timespec))) |
1411 | return -EFAULT; | 978 | return -EFAULT; |
1412 | 979 | ||
1413 | if ((unsigned) t.tv_nsec >= NSEC_PER_SEC || t.tv_sec < 0) | 980 | if (!timespec_valid(&t)) |
1414 | return -EINVAL; | 981 | return -EINVAL; |
1415 | 982 | ||
1416 | /* | 983 | return CLOCK_DISPATCH(which_clock, nsleep, |
1417 | * Do this here as nsleep function does not have the real address. | 984 | (which_clock, flags, &t, rmtp)); |
1418 | */ | ||
1419 | restart_block->arg1 = (unsigned long)rmtp; | ||
1420 | |||
1421 | ret = CLOCK_DISPATCH(which_clock, nsleep, (which_clock, flags, &t)); | ||
1422 | |||
1423 | if ((ret == -ERESTART_RESTARTBLOCK) && rmtp && | ||
1424 | copy_to_user(rmtp, &t, sizeof (t))) | ||
1425 | return -EFAULT; | ||
1426 | return ret; | ||
1427 | } | ||
1428 | |||
1429 | |||
1430 | static int common_nsleep(clockid_t which_clock, | ||
1431 | int flags, struct timespec *tsave) | ||
1432 | { | ||
1433 | struct timespec t, dum; | ||
1434 | DECLARE_WAITQUEUE(abs_wqueue, current); | ||
1435 | u64 rq_time = (u64)0; | ||
1436 | s64 left; | ||
1437 | int abs; | ||
1438 | struct restart_block *restart_block = | ||
1439 | ¤t_thread_info()->restart_block; | ||
1440 | |||
1441 | abs_wqueue.flags = 0; | ||
1442 | abs = flags & TIMER_ABSTIME; | ||
1443 | |||
1444 | if (restart_block->fn == clock_nanosleep_restart) { | ||
1445 | /* | ||
1446 | * Interrupted by a non-delivered signal, pick up remaining | ||
1447 | * time and continue. Remaining time is in arg2 & 3. | ||
1448 | */ | ||
1449 | restart_block->fn = do_no_restart_syscall; | ||
1450 | |||
1451 | rq_time = restart_block->arg3; | ||
1452 | rq_time = (rq_time << 32) + restart_block->arg2; | ||
1453 | if (!rq_time) | ||
1454 | return -EINTR; | ||
1455 | left = rq_time - get_jiffies_64(); | ||
1456 | if (left <= (s64)0) | ||
1457 | return 0; /* Already passed */ | ||
1458 | } | ||
1459 | |||
1460 | if (abs && (posix_clocks[which_clock].clock_get != | ||
1461 | posix_clocks[CLOCK_MONOTONIC].clock_get)) | ||
1462 | add_wait_queue(&nanosleep_abs_wqueue, &abs_wqueue); | ||
1463 | |||
1464 | do { | ||
1465 | t = *tsave; | ||
1466 | if (abs || !rq_time) { | ||
1467 | adjust_abs_time(&posix_clocks[which_clock], &t, abs, | ||
1468 | &rq_time, &dum); | ||
1469 | } | ||
1470 | |||
1471 | left = rq_time - get_jiffies_64(); | ||
1472 | if (left >= (s64)MAX_JIFFY_OFFSET) | ||
1473 | left = (s64)MAX_JIFFY_OFFSET; | ||
1474 | if (left < (s64)0) | ||
1475 | break; | ||
1476 | |||
1477 | schedule_timeout_interruptible(left); | ||
1478 | |||
1479 | left = rq_time - get_jiffies_64(); | ||
1480 | } while (left > (s64)0 && !test_thread_flag(TIF_SIGPENDING)); | ||
1481 | |||
1482 | if (abs_wqueue.task_list.next) | ||
1483 | finish_wait(&nanosleep_abs_wqueue, &abs_wqueue); | ||
1484 | |||
1485 | if (left > (s64)0) { | ||
1486 | |||
1487 | /* | ||
1488 | * Always restart abs calls from scratch to pick up any | ||
1489 | * clock shifting that happened while we are away. | ||
1490 | */ | ||
1491 | if (abs) | ||
1492 | return -ERESTARTNOHAND; | ||
1493 | |||
1494 | left *= TICK_NSEC; | ||
1495 | tsave->tv_sec = div_long_long_rem(left, | ||
1496 | NSEC_PER_SEC, | ||
1497 | &tsave->tv_nsec); | ||
1498 | /* | ||
1499 | * Restart works by saving the time remaing in | ||
1500 | * arg2 & 3 (it is 64-bits of jiffies). The other | ||
1501 | * info we need is the clock_id (saved in arg0). | ||
1502 | * The sys_call interface needs the users | ||
1503 | * timespec return address which _it_ saves in arg1. | ||
1504 | * Since we have cast the nanosleep call to a clock_nanosleep | ||
1505 | * both can be restarted with the same code. | ||
1506 | */ | ||
1507 | restart_block->fn = clock_nanosleep_restart; | ||
1508 | restart_block->arg0 = which_clock; | ||
1509 | /* | ||
1510 | * Caller sets arg1 | ||
1511 | */ | ||
1512 | restart_block->arg2 = rq_time & 0xffffffffLL; | ||
1513 | restart_block->arg3 = rq_time >> 32; | ||
1514 | |||
1515 | return -ERESTART_RESTARTBLOCK; | ||
1516 | } | ||
1517 | |||
1518 | return 0; | ||
1519 | } | ||
1520 | /* | ||
1521 | * This will restart clock_nanosleep. | ||
1522 | */ | ||
1523 | long | ||
1524 | clock_nanosleep_restart(struct restart_block *restart_block) | ||
1525 | { | ||
1526 | struct timespec t; | ||
1527 | int ret = common_nsleep(restart_block->arg0, 0, &t); | ||
1528 | |||
1529 | if ((ret == -ERESTART_RESTARTBLOCK) && restart_block->arg1 && | ||
1530 | copy_to_user((struct timespec __user *)(restart_block->arg1), &t, | ||
1531 | sizeof (t))) | ||
1532 | return -EFAULT; | ||
1533 | return ret; | ||
1534 | } | 985 | } |