aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/pid_namespace.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/pid_namespace.c')
-rw-r--r--kernel/pid_namespace.c113
1 files changed, 90 insertions, 23 deletions
diff --git a/kernel/pid_namespace.c b/kernel/pid_namespace.c
index 7b07cc0dfb75..fdbd0cdf271a 100644
--- a/kernel/pid_namespace.c
+++ b/kernel/pid_namespace.c
@@ -10,6 +10,7 @@
10 10
11#include <linux/pid.h> 11#include <linux/pid.h>
12#include <linux/pid_namespace.h> 12#include <linux/pid_namespace.h>
13#include <linux/user_namespace.h>
13#include <linux/syscalls.h> 14#include <linux/syscalls.h>
14#include <linux/err.h> 15#include <linux/err.h>
15#include <linux/acct.h> 16#include <linux/acct.h>
@@ -71,10 +72,17 @@ err_alloc:
71 return NULL; 72 return NULL;
72} 73}
73 74
75static void proc_cleanup_work(struct work_struct *work)
76{
77 struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
78 pid_ns_release_proc(ns);
79}
80
74/* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */ 81/* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
75#define MAX_PID_NS_LEVEL 32 82#define MAX_PID_NS_LEVEL 32
76 83
77static struct pid_namespace *create_pid_namespace(struct pid_namespace *parent_pid_ns) 84static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
85 struct pid_namespace *parent_pid_ns)
78{ 86{
79 struct pid_namespace *ns; 87 struct pid_namespace *ns;
80 unsigned int level = parent_pid_ns->level + 1; 88 unsigned int level = parent_pid_ns->level + 1;
@@ -99,9 +107,15 @@ static struct pid_namespace *create_pid_namespace(struct pid_namespace *parent_p
99 if (ns->pid_cachep == NULL) 107 if (ns->pid_cachep == NULL)
100 goto out_free_map; 108 goto out_free_map;
101 109
110 err = proc_alloc_inum(&ns->proc_inum);
111 if (err)
112 goto out_free_map;
113
102 kref_init(&ns->kref); 114 kref_init(&ns->kref);
103 ns->level = level; 115 ns->level = level;
104 ns->parent = get_pid_ns(parent_pid_ns); 116 ns->parent = get_pid_ns(parent_pid_ns);
117 ns->user_ns = get_user_ns(user_ns);
118 INIT_WORK(&ns->proc_work, proc_cleanup_work);
105 119
106 set_bit(0, ns->pidmap[0].page); 120 set_bit(0, ns->pidmap[0].page);
107 atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1); 121 atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
@@ -109,14 +123,8 @@ static struct pid_namespace *create_pid_namespace(struct pid_namespace *parent_p
109 for (i = 1; i < PIDMAP_ENTRIES; i++) 123 for (i = 1; i < PIDMAP_ENTRIES; i++)
110 atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE); 124 atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
111 125
112 err = pid_ns_prepare_proc(ns);
113 if (err)
114 goto out_put_parent_pid_ns;
115
116 return ns; 126 return ns;
117 127
118out_put_parent_pid_ns:
119 put_pid_ns(parent_pid_ns);
120out_free_map: 128out_free_map:
121 kfree(ns->pidmap[0].page); 129 kfree(ns->pidmap[0].page);
122out_free: 130out_free:
@@ -129,18 +137,21 @@ static void destroy_pid_namespace(struct pid_namespace *ns)
129{ 137{
130 int i; 138 int i;
131 139
140 proc_free_inum(ns->proc_inum);
132 for (i = 0; i < PIDMAP_ENTRIES; i++) 141 for (i = 0; i < PIDMAP_ENTRIES; i++)
133 kfree(ns->pidmap[i].page); 142 kfree(ns->pidmap[i].page);
143 put_user_ns(ns->user_ns);
134 kmem_cache_free(pid_ns_cachep, ns); 144 kmem_cache_free(pid_ns_cachep, ns);
135} 145}
136 146
137struct pid_namespace *copy_pid_ns(unsigned long flags, struct pid_namespace *old_ns) 147struct pid_namespace *copy_pid_ns(unsigned long flags,
148 struct user_namespace *user_ns, struct pid_namespace *old_ns)
138{ 149{
139 if (!(flags & CLONE_NEWPID)) 150 if (!(flags & CLONE_NEWPID))
140 return get_pid_ns(old_ns); 151 return get_pid_ns(old_ns);
141 if (flags & (CLONE_THREAD|CLONE_PARENT)) 152 if (task_active_pid_ns(current) != old_ns)
142 return ERR_PTR(-EINVAL); 153 return ERR_PTR(-EINVAL);
143 return create_pid_namespace(old_ns); 154 return create_pid_namespace(user_ns, old_ns);
144} 155}
145 156
146static void free_pid_ns(struct kref *kref) 157static void free_pid_ns(struct kref *kref)
@@ -211,22 +222,15 @@ void zap_pid_ns_processes(struct pid_namespace *pid_ns)
211 222
212 /* 223 /*
213 * sys_wait4() above can't reap the TASK_DEAD children. 224 * sys_wait4() above can't reap the TASK_DEAD children.
214 * Make sure they all go away, see __unhash_process(). 225 * Make sure they all go away, see free_pid().
215 */ 226 */
216 for (;;) { 227 for (;;) {
217 bool need_wait = false; 228 set_current_state(TASK_UNINTERRUPTIBLE);
218 229 if (pid_ns->nr_hashed == 1)
219 read_lock(&tasklist_lock);
220 if (!list_empty(&current->children)) {
221 __set_current_state(TASK_UNINTERRUPTIBLE);
222 need_wait = true;
223 }
224 read_unlock(&tasklist_lock);
225
226 if (!need_wait)
227 break; 230 break;
228 schedule(); 231 schedule();
229 } 232 }
233 __set_current_state(TASK_RUNNING);
230 234
231 if (pid_ns->reboot) 235 if (pid_ns->reboot)
232 current->signal->group_exit_code = pid_ns->reboot; 236 current->signal->group_exit_code = pid_ns->reboot;
@@ -239,9 +243,10 @@ void zap_pid_ns_processes(struct pid_namespace *pid_ns)
239static int pid_ns_ctl_handler(struct ctl_table *table, int write, 243static int pid_ns_ctl_handler(struct ctl_table *table, int write,
240 void __user *buffer, size_t *lenp, loff_t *ppos) 244 void __user *buffer, size_t *lenp, loff_t *ppos)
241{ 245{
246 struct pid_namespace *pid_ns = task_active_pid_ns(current);
242 struct ctl_table tmp = *table; 247 struct ctl_table tmp = *table;
243 248
244 if (write && !capable(CAP_SYS_ADMIN)) 249 if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
245 return -EPERM; 250 return -EPERM;
246 251
247 /* 252 /*
@@ -250,7 +255,7 @@ static int pid_ns_ctl_handler(struct ctl_table *table, int write,
250 * it should synchronize its usage with external means. 255 * it should synchronize its usage with external means.
251 */ 256 */
252 257
253 tmp.data = &current->nsproxy->pid_ns->last_pid; 258 tmp.data = &pid_ns->last_pid;
254 return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 259 return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
255} 260}
256 261
@@ -299,6 +304,68 @@ int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
299 return 0; 304 return 0;
300} 305}
301 306
307static void *pidns_get(struct task_struct *task)
308{
309 struct pid_namespace *ns;
310
311 rcu_read_lock();
312 ns = get_pid_ns(task_active_pid_ns(task));
313 rcu_read_unlock();
314
315 return ns;
316}
317
318static void pidns_put(void *ns)
319{
320 put_pid_ns(ns);
321}
322
323static int pidns_install(struct nsproxy *nsproxy, void *ns)
324{
325 struct pid_namespace *active = task_active_pid_ns(current);
326 struct pid_namespace *ancestor, *new = ns;
327
328 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
329 !nsown_capable(CAP_SYS_ADMIN))
330 return -EPERM;
331
332 /*
333 * Only allow entering the current active pid namespace
334 * or a child of the current active pid namespace.
335 *
336 * This is required for fork to return a usable pid value and
337 * this maintains the property that processes and their
338 * children can not escape their current pid namespace.
339 */
340 if (new->level < active->level)
341 return -EINVAL;
342
343 ancestor = new;
344 while (ancestor->level > active->level)
345 ancestor = ancestor->parent;
346 if (ancestor != active)
347 return -EINVAL;
348
349 put_pid_ns(nsproxy->pid_ns);
350 nsproxy->pid_ns = get_pid_ns(new);
351 return 0;
352}
353
354static unsigned int pidns_inum(void *ns)
355{
356 struct pid_namespace *pid_ns = ns;
357 return pid_ns->proc_inum;
358}
359
360const struct proc_ns_operations pidns_operations = {
361 .name = "pid",
362 .type = CLONE_NEWPID,
363 .get = pidns_get,
364 .put = pidns_put,
365 .install = pidns_install,
366 .inum = pidns_inum,
367};
368
302static __init int pid_namespaces_init(void) 369static __init int pid_namespaces_init(void)
303{ 370{
304 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC); 371 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);