diff options
Diffstat (limited to 'kernel/pid.c')
-rw-r--r-- | kernel/pid.c | 292 |
1 files changed, 292 insertions, 0 deletions
diff --git a/kernel/pid.c b/kernel/pid.c new file mode 100644 index 000000000000..edba31c681ac --- /dev/null +++ b/kernel/pid.c | |||
@@ -0,0 +1,292 @@ | |||
1 | /* | ||
2 | * Generic pidhash and scalable, time-bounded PID allocator | ||
3 | * | ||
4 | * (C) 2002-2003 William Irwin, IBM | ||
5 | * (C) 2004 William Irwin, Oracle | ||
6 | * (C) 2002-2004 Ingo Molnar, Red Hat | ||
7 | * | ||
8 | * pid-structures are backing objects for tasks sharing a given ID to chain | ||
9 | * against. There is very little to them aside from hashing them and | ||
10 | * parking tasks using given ID's on a list. | ||
11 | * | ||
12 | * The hash is always changed with the tasklist_lock write-acquired, | ||
13 | * and the hash is only accessed with the tasklist_lock at least | ||
14 | * read-acquired, so there's no additional SMP locking needed here. | ||
15 | * | ||
16 | * We have a list of bitmap pages, which bitmaps represent the PID space. | ||
17 | * Allocating and freeing PIDs is completely lockless. The worst-case | ||
18 | * allocation scenario when all but one out of 1 million PIDs possible are | ||
19 | * allocated already: the scanning of 32 list entries and at most PAGE_SIZE | ||
20 | * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). | ||
21 | */ | ||
22 | |||
23 | #include <linux/mm.h> | ||
24 | #include <linux/module.h> | ||
25 | #include <linux/slab.h> | ||
26 | #include <linux/init.h> | ||
27 | #include <linux/bootmem.h> | ||
28 | #include <linux/hash.h> | ||
29 | |||
30 | #define pid_hashfn(nr) hash_long((unsigned long)nr, pidhash_shift) | ||
31 | static struct hlist_head *pid_hash[PIDTYPE_MAX]; | ||
32 | static int pidhash_shift; | ||
33 | |||
34 | int pid_max = PID_MAX_DEFAULT; | ||
35 | int last_pid; | ||
36 | |||
37 | #define RESERVED_PIDS 300 | ||
38 | |||
39 | int pid_max_min = RESERVED_PIDS + 1; | ||
40 | int pid_max_max = PID_MAX_LIMIT; | ||
41 | |||
42 | #define PIDMAP_ENTRIES ((PID_MAX_LIMIT + 8*PAGE_SIZE - 1)/PAGE_SIZE/8) | ||
43 | #define BITS_PER_PAGE (PAGE_SIZE*8) | ||
44 | #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1) | ||
45 | #define mk_pid(map, off) (((map) - pidmap_array)*BITS_PER_PAGE + (off)) | ||
46 | #define find_next_offset(map, off) \ | ||
47 | find_next_zero_bit((map)->page, BITS_PER_PAGE, off) | ||
48 | |||
49 | /* | ||
50 | * PID-map pages start out as NULL, they get allocated upon | ||
51 | * first use and are never deallocated. This way a low pid_max | ||
52 | * value does not cause lots of bitmaps to be allocated, but | ||
53 | * the scheme scales to up to 4 million PIDs, runtime. | ||
54 | */ | ||
55 | typedef struct pidmap { | ||
56 | atomic_t nr_free; | ||
57 | void *page; | ||
58 | } pidmap_t; | ||
59 | |||
60 | static pidmap_t pidmap_array[PIDMAP_ENTRIES] = | ||
61 | { [ 0 ... PIDMAP_ENTRIES-1 ] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } }; | ||
62 | |||
63 | static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); | ||
64 | |||
65 | fastcall void free_pidmap(int pid) | ||
66 | { | ||
67 | pidmap_t *map = pidmap_array + pid / BITS_PER_PAGE; | ||
68 | int offset = pid & BITS_PER_PAGE_MASK; | ||
69 | |||
70 | clear_bit(offset, map->page); | ||
71 | atomic_inc(&map->nr_free); | ||
72 | } | ||
73 | |||
74 | int alloc_pidmap(void) | ||
75 | { | ||
76 | int i, offset, max_scan, pid, last = last_pid; | ||
77 | pidmap_t *map; | ||
78 | |||
79 | pid = last + 1; | ||
80 | if (pid >= pid_max) | ||
81 | pid = RESERVED_PIDS; | ||
82 | offset = pid & BITS_PER_PAGE_MASK; | ||
83 | map = &pidmap_array[pid/BITS_PER_PAGE]; | ||
84 | max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset; | ||
85 | for (i = 0; i <= max_scan; ++i) { | ||
86 | if (unlikely(!map->page)) { | ||
87 | unsigned long page = get_zeroed_page(GFP_KERNEL); | ||
88 | /* | ||
89 | * Free the page if someone raced with us | ||
90 | * installing it: | ||
91 | */ | ||
92 | spin_lock(&pidmap_lock); | ||
93 | if (map->page) | ||
94 | free_page(page); | ||
95 | else | ||
96 | map->page = (void *)page; | ||
97 | spin_unlock(&pidmap_lock); | ||
98 | if (unlikely(!map->page)) | ||
99 | break; | ||
100 | } | ||
101 | if (likely(atomic_read(&map->nr_free))) { | ||
102 | do { | ||
103 | if (!test_and_set_bit(offset, map->page)) { | ||
104 | atomic_dec(&map->nr_free); | ||
105 | last_pid = pid; | ||
106 | return pid; | ||
107 | } | ||
108 | offset = find_next_offset(map, offset); | ||
109 | pid = mk_pid(map, offset); | ||
110 | /* | ||
111 | * find_next_offset() found a bit, the pid from it | ||
112 | * is in-bounds, and if we fell back to the last | ||
113 | * bitmap block and the final block was the same | ||
114 | * as the starting point, pid is before last_pid. | ||
115 | */ | ||
116 | } while (offset < BITS_PER_PAGE && pid < pid_max && | ||
117 | (i != max_scan || pid < last || | ||
118 | !((last+1) & BITS_PER_PAGE_MASK))); | ||
119 | } | ||
120 | if (map < &pidmap_array[(pid_max-1)/BITS_PER_PAGE]) { | ||
121 | ++map; | ||
122 | offset = 0; | ||
123 | } else { | ||
124 | map = &pidmap_array[0]; | ||
125 | offset = RESERVED_PIDS; | ||
126 | if (unlikely(last == offset)) | ||
127 | break; | ||
128 | } | ||
129 | pid = mk_pid(map, offset); | ||
130 | } | ||
131 | return -1; | ||
132 | } | ||
133 | |||
134 | struct pid * fastcall find_pid(enum pid_type type, int nr) | ||
135 | { | ||
136 | struct hlist_node *elem; | ||
137 | struct pid *pid; | ||
138 | |||
139 | hlist_for_each_entry(pid, elem, | ||
140 | &pid_hash[type][pid_hashfn(nr)], pid_chain) { | ||
141 | if (pid->nr == nr) | ||
142 | return pid; | ||
143 | } | ||
144 | return NULL; | ||
145 | } | ||
146 | |||
147 | int fastcall attach_pid(task_t *task, enum pid_type type, int nr) | ||
148 | { | ||
149 | struct pid *pid, *task_pid; | ||
150 | |||
151 | task_pid = &task->pids[type]; | ||
152 | pid = find_pid(type, nr); | ||
153 | if (pid == NULL) { | ||
154 | hlist_add_head(&task_pid->pid_chain, | ||
155 | &pid_hash[type][pid_hashfn(nr)]); | ||
156 | INIT_LIST_HEAD(&task_pid->pid_list); | ||
157 | } else { | ||
158 | INIT_HLIST_NODE(&task_pid->pid_chain); | ||
159 | list_add_tail(&task_pid->pid_list, &pid->pid_list); | ||
160 | } | ||
161 | task_pid->nr = nr; | ||
162 | |||
163 | return 0; | ||
164 | } | ||
165 | |||
166 | static fastcall int __detach_pid(task_t *task, enum pid_type type) | ||
167 | { | ||
168 | struct pid *pid, *pid_next; | ||
169 | int nr = 0; | ||
170 | |||
171 | pid = &task->pids[type]; | ||
172 | if (!hlist_unhashed(&pid->pid_chain)) { | ||
173 | hlist_del(&pid->pid_chain); | ||
174 | |||
175 | if (list_empty(&pid->pid_list)) | ||
176 | nr = pid->nr; | ||
177 | else { | ||
178 | pid_next = list_entry(pid->pid_list.next, | ||
179 | struct pid, pid_list); | ||
180 | /* insert next pid from pid_list to hash */ | ||
181 | hlist_add_head(&pid_next->pid_chain, | ||
182 | &pid_hash[type][pid_hashfn(pid_next->nr)]); | ||
183 | } | ||
184 | } | ||
185 | |||
186 | list_del(&pid->pid_list); | ||
187 | pid->nr = 0; | ||
188 | |||
189 | return nr; | ||
190 | } | ||
191 | |||
192 | void fastcall detach_pid(task_t *task, enum pid_type type) | ||
193 | { | ||
194 | int tmp, nr; | ||
195 | |||
196 | nr = __detach_pid(task, type); | ||
197 | if (!nr) | ||
198 | return; | ||
199 | |||
200 | for (tmp = PIDTYPE_MAX; --tmp >= 0; ) | ||
201 | if (tmp != type && find_pid(tmp, nr)) | ||
202 | return; | ||
203 | |||
204 | free_pidmap(nr); | ||
205 | } | ||
206 | |||
207 | task_t *find_task_by_pid_type(int type, int nr) | ||
208 | { | ||
209 | struct pid *pid; | ||
210 | |||
211 | pid = find_pid(type, nr); | ||
212 | if (!pid) | ||
213 | return NULL; | ||
214 | |||
215 | return pid_task(&pid->pid_list, type); | ||
216 | } | ||
217 | |||
218 | EXPORT_SYMBOL(find_task_by_pid_type); | ||
219 | |||
220 | /* | ||
221 | * This function switches the PIDs if a non-leader thread calls | ||
222 | * sys_execve() - this must be done without releasing the PID. | ||
223 | * (which a detach_pid() would eventually do.) | ||
224 | */ | ||
225 | void switch_exec_pids(task_t *leader, task_t *thread) | ||
226 | { | ||
227 | __detach_pid(leader, PIDTYPE_PID); | ||
228 | __detach_pid(leader, PIDTYPE_TGID); | ||
229 | __detach_pid(leader, PIDTYPE_PGID); | ||
230 | __detach_pid(leader, PIDTYPE_SID); | ||
231 | |||
232 | __detach_pid(thread, PIDTYPE_PID); | ||
233 | __detach_pid(thread, PIDTYPE_TGID); | ||
234 | |||
235 | leader->pid = leader->tgid = thread->pid; | ||
236 | thread->pid = thread->tgid; | ||
237 | |||
238 | attach_pid(thread, PIDTYPE_PID, thread->pid); | ||
239 | attach_pid(thread, PIDTYPE_TGID, thread->tgid); | ||
240 | attach_pid(thread, PIDTYPE_PGID, thread->signal->pgrp); | ||
241 | attach_pid(thread, PIDTYPE_SID, thread->signal->session); | ||
242 | list_add_tail(&thread->tasks, &init_task.tasks); | ||
243 | |||
244 | attach_pid(leader, PIDTYPE_PID, leader->pid); | ||
245 | attach_pid(leader, PIDTYPE_TGID, leader->tgid); | ||
246 | attach_pid(leader, PIDTYPE_PGID, leader->signal->pgrp); | ||
247 | attach_pid(leader, PIDTYPE_SID, leader->signal->session); | ||
248 | } | ||
249 | |||
250 | /* | ||
251 | * The pid hash table is scaled according to the amount of memory in the | ||
252 | * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or | ||
253 | * more. | ||
254 | */ | ||
255 | void __init pidhash_init(void) | ||
256 | { | ||
257 | int i, j, pidhash_size; | ||
258 | unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT); | ||
259 | |||
260 | pidhash_shift = max(4, fls(megabytes * 4)); | ||
261 | pidhash_shift = min(12, pidhash_shift); | ||
262 | pidhash_size = 1 << pidhash_shift; | ||
263 | |||
264 | printk("PID hash table entries: %d (order: %d, %Zd bytes)\n", | ||
265 | pidhash_size, pidhash_shift, | ||
266 | PIDTYPE_MAX * pidhash_size * sizeof(struct hlist_head)); | ||
267 | |||
268 | for (i = 0; i < PIDTYPE_MAX; i++) { | ||
269 | pid_hash[i] = alloc_bootmem(pidhash_size * | ||
270 | sizeof(*(pid_hash[i]))); | ||
271 | if (!pid_hash[i]) | ||
272 | panic("Could not alloc pidhash!\n"); | ||
273 | for (j = 0; j < pidhash_size; j++) | ||
274 | INIT_HLIST_HEAD(&pid_hash[i][j]); | ||
275 | } | ||
276 | } | ||
277 | |||
278 | void __init pidmap_init(void) | ||
279 | { | ||
280 | int i; | ||
281 | |||
282 | pidmap_array->page = (void *)get_zeroed_page(GFP_KERNEL); | ||
283 | set_bit(0, pidmap_array->page); | ||
284 | atomic_dec(&pidmap_array->nr_free); | ||
285 | |||
286 | /* | ||
287 | * Allocate PID 0, and hash it via all PID types: | ||
288 | */ | ||
289 | |||
290 | for (i = 0; i < PIDTYPE_MAX; i++) | ||
291 | attach_pid(current, i, 0); | ||
292 | } | ||