aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/perf_event.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/perf_event.c')
-rw-r--r--kernel/perf_event.c5000
1 files changed, 5000 insertions, 0 deletions
diff --git a/kernel/perf_event.c b/kernel/perf_event.c
new file mode 100644
index 000000000000..76ac4db405e9
--- /dev/null
+++ b/kernel/perf_event.c
@@ -0,0 +1,5000 @@
1/*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/cpu.h>
15#include <linux/smp.h>
16#include <linux/file.h>
17#include <linux/poll.h>
18#include <linux/sysfs.h>
19#include <linux/dcache.h>
20#include <linux/percpu.h>
21#include <linux/ptrace.h>
22#include <linux/vmstat.h>
23#include <linux/hardirq.h>
24#include <linux/rculist.h>
25#include <linux/uaccess.h>
26#include <linux/syscalls.h>
27#include <linux/anon_inodes.h>
28#include <linux/kernel_stat.h>
29#include <linux/perf_event.h>
30
31#include <asm/irq_regs.h>
32
33/*
34 * Each CPU has a list of per CPU events:
35 */
36DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38int perf_max_events __read_mostly = 1;
39static int perf_reserved_percpu __read_mostly;
40static int perf_overcommit __read_mostly = 1;
41
42static atomic_t nr_events __read_mostly;
43static atomic_t nr_mmap_events __read_mostly;
44static atomic_t nr_comm_events __read_mostly;
45static atomic_t nr_task_events __read_mostly;
46
47/*
48 * perf event paranoia level:
49 * -1 - not paranoid at all
50 * 0 - disallow raw tracepoint access for unpriv
51 * 1 - disallow cpu events for unpriv
52 * 2 - disallow kernel profiling for unpriv
53 */
54int sysctl_perf_event_paranoid __read_mostly = 1;
55
56static inline bool perf_paranoid_tracepoint_raw(void)
57{
58 return sysctl_perf_event_paranoid > -1;
59}
60
61static inline bool perf_paranoid_cpu(void)
62{
63 return sysctl_perf_event_paranoid > 0;
64}
65
66static inline bool perf_paranoid_kernel(void)
67{
68 return sysctl_perf_event_paranoid > 1;
69}
70
71int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
72
73/*
74 * max perf event sample rate
75 */
76int sysctl_perf_event_sample_rate __read_mostly = 100000;
77
78static atomic64_t perf_event_id;
79
80/*
81 * Lock for (sysadmin-configurable) event reservations:
82 */
83static DEFINE_SPINLOCK(perf_resource_lock);
84
85/*
86 * Architecture provided APIs - weak aliases:
87 */
88extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
89{
90 return NULL;
91}
92
93void __weak hw_perf_disable(void) { barrier(); }
94void __weak hw_perf_enable(void) { barrier(); }
95
96void __weak hw_perf_event_setup(int cpu) { barrier(); }
97void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
98
99int __weak
100hw_perf_group_sched_in(struct perf_event *group_leader,
101 struct perf_cpu_context *cpuctx,
102 struct perf_event_context *ctx, int cpu)
103{
104 return 0;
105}
106
107void __weak perf_event_print_debug(void) { }
108
109static DEFINE_PER_CPU(int, perf_disable_count);
110
111void __perf_disable(void)
112{
113 __get_cpu_var(perf_disable_count)++;
114}
115
116bool __perf_enable(void)
117{
118 return !--__get_cpu_var(perf_disable_count);
119}
120
121void perf_disable(void)
122{
123 __perf_disable();
124 hw_perf_disable();
125}
126
127void perf_enable(void)
128{
129 if (__perf_enable())
130 hw_perf_enable();
131}
132
133static void get_ctx(struct perf_event_context *ctx)
134{
135 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
136}
137
138static void free_ctx(struct rcu_head *head)
139{
140 struct perf_event_context *ctx;
141
142 ctx = container_of(head, struct perf_event_context, rcu_head);
143 kfree(ctx);
144}
145
146static void put_ctx(struct perf_event_context *ctx)
147{
148 if (atomic_dec_and_test(&ctx->refcount)) {
149 if (ctx->parent_ctx)
150 put_ctx(ctx->parent_ctx);
151 if (ctx->task)
152 put_task_struct(ctx->task);
153 call_rcu(&ctx->rcu_head, free_ctx);
154 }
155}
156
157static void unclone_ctx(struct perf_event_context *ctx)
158{
159 if (ctx->parent_ctx) {
160 put_ctx(ctx->parent_ctx);
161 ctx->parent_ctx = NULL;
162 }
163}
164
165/*
166 * If we inherit events we want to return the parent event id
167 * to userspace.
168 */
169static u64 primary_event_id(struct perf_event *event)
170{
171 u64 id = event->id;
172
173 if (event->parent)
174 id = event->parent->id;
175
176 return id;
177}
178
179/*
180 * Get the perf_event_context for a task and lock it.
181 * This has to cope with with the fact that until it is locked,
182 * the context could get moved to another task.
183 */
184static struct perf_event_context *
185perf_lock_task_context(struct task_struct *task, unsigned long *flags)
186{
187 struct perf_event_context *ctx;
188
189 rcu_read_lock();
190 retry:
191 ctx = rcu_dereference(task->perf_event_ctxp);
192 if (ctx) {
193 /*
194 * If this context is a clone of another, it might
195 * get swapped for another underneath us by
196 * perf_event_task_sched_out, though the
197 * rcu_read_lock() protects us from any context
198 * getting freed. Lock the context and check if it
199 * got swapped before we could get the lock, and retry
200 * if so. If we locked the right context, then it
201 * can't get swapped on us any more.
202 */
203 spin_lock_irqsave(&ctx->lock, *flags);
204 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
205 spin_unlock_irqrestore(&ctx->lock, *flags);
206 goto retry;
207 }
208
209 if (!atomic_inc_not_zero(&ctx->refcount)) {
210 spin_unlock_irqrestore(&ctx->lock, *flags);
211 ctx = NULL;
212 }
213 }
214 rcu_read_unlock();
215 return ctx;
216}
217
218/*
219 * Get the context for a task and increment its pin_count so it
220 * can't get swapped to another task. This also increments its
221 * reference count so that the context can't get freed.
222 */
223static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
224{
225 struct perf_event_context *ctx;
226 unsigned long flags;
227
228 ctx = perf_lock_task_context(task, &flags);
229 if (ctx) {
230 ++ctx->pin_count;
231 spin_unlock_irqrestore(&ctx->lock, flags);
232 }
233 return ctx;
234}
235
236static void perf_unpin_context(struct perf_event_context *ctx)
237{
238 unsigned long flags;
239
240 spin_lock_irqsave(&ctx->lock, flags);
241 --ctx->pin_count;
242 spin_unlock_irqrestore(&ctx->lock, flags);
243 put_ctx(ctx);
244}
245
246/*
247 * Add a event from the lists for its context.
248 * Must be called with ctx->mutex and ctx->lock held.
249 */
250static void
251list_add_event(struct perf_event *event, struct perf_event_context *ctx)
252{
253 struct perf_event *group_leader = event->group_leader;
254
255 /*
256 * Depending on whether it is a standalone or sibling event,
257 * add it straight to the context's event list, or to the group
258 * leader's sibling list:
259 */
260 if (group_leader == event)
261 list_add_tail(&event->group_entry, &ctx->group_list);
262 else {
263 list_add_tail(&event->group_entry, &group_leader->sibling_list);
264 group_leader->nr_siblings++;
265 }
266
267 list_add_rcu(&event->event_entry, &ctx->event_list);
268 ctx->nr_events++;
269 if (event->attr.inherit_stat)
270 ctx->nr_stat++;
271}
272
273/*
274 * Remove a event from the lists for its context.
275 * Must be called with ctx->mutex and ctx->lock held.
276 */
277static void
278list_del_event(struct perf_event *event, struct perf_event_context *ctx)
279{
280 struct perf_event *sibling, *tmp;
281
282 if (list_empty(&event->group_entry))
283 return;
284 ctx->nr_events--;
285 if (event->attr.inherit_stat)
286 ctx->nr_stat--;
287
288 list_del_init(&event->group_entry);
289 list_del_rcu(&event->event_entry);
290
291 if (event->group_leader != event)
292 event->group_leader->nr_siblings--;
293
294 /*
295 * If this was a group event with sibling events then
296 * upgrade the siblings to singleton events by adding them
297 * to the context list directly:
298 */
299 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
300
301 list_move_tail(&sibling->group_entry, &ctx->group_list);
302 sibling->group_leader = sibling;
303 }
304}
305
306static void
307event_sched_out(struct perf_event *event,
308 struct perf_cpu_context *cpuctx,
309 struct perf_event_context *ctx)
310{
311 if (event->state != PERF_EVENT_STATE_ACTIVE)
312 return;
313
314 event->state = PERF_EVENT_STATE_INACTIVE;
315 if (event->pending_disable) {
316 event->pending_disable = 0;
317 event->state = PERF_EVENT_STATE_OFF;
318 }
319 event->tstamp_stopped = ctx->time;
320 event->pmu->disable(event);
321 event->oncpu = -1;
322
323 if (!is_software_event(event))
324 cpuctx->active_oncpu--;
325 ctx->nr_active--;
326 if (event->attr.exclusive || !cpuctx->active_oncpu)
327 cpuctx->exclusive = 0;
328}
329
330static void
331group_sched_out(struct perf_event *group_event,
332 struct perf_cpu_context *cpuctx,
333 struct perf_event_context *ctx)
334{
335 struct perf_event *event;
336
337 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
338 return;
339
340 event_sched_out(group_event, cpuctx, ctx);
341
342 /*
343 * Schedule out siblings (if any):
344 */
345 list_for_each_entry(event, &group_event->sibling_list, group_entry)
346 event_sched_out(event, cpuctx, ctx);
347
348 if (group_event->attr.exclusive)
349 cpuctx->exclusive = 0;
350}
351
352/*
353 * Cross CPU call to remove a performance event
354 *
355 * We disable the event on the hardware level first. After that we
356 * remove it from the context list.
357 */
358static void __perf_event_remove_from_context(void *info)
359{
360 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
361 struct perf_event *event = info;
362 struct perf_event_context *ctx = event->ctx;
363
364 /*
365 * If this is a task context, we need to check whether it is
366 * the current task context of this cpu. If not it has been
367 * scheduled out before the smp call arrived.
368 */
369 if (ctx->task && cpuctx->task_ctx != ctx)
370 return;
371
372 spin_lock(&ctx->lock);
373 /*
374 * Protect the list operation against NMI by disabling the
375 * events on a global level.
376 */
377 perf_disable();
378
379 event_sched_out(event, cpuctx, ctx);
380
381 list_del_event(event, ctx);
382
383 if (!ctx->task) {
384 /*
385 * Allow more per task events with respect to the
386 * reservation:
387 */
388 cpuctx->max_pertask =
389 min(perf_max_events - ctx->nr_events,
390 perf_max_events - perf_reserved_percpu);
391 }
392
393 perf_enable();
394 spin_unlock(&ctx->lock);
395}
396
397
398/*
399 * Remove the event from a task's (or a CPU's) list of events.
400 *
401 * Must be called with ctx->mutex held.
402 *
403 * CPU events are removed with a smp call. For task events we only
404 * call when the task is on a CPU.
405 *
406 * If event->ctx is a cloned context, callers must make sure that
407 * every task struct that event->ctx->task could possibly point to
408 * remains valid. This is OK when called from perf_release since
409 * that only calls us on the top-level context, which can't be a clone.
410 * When called from perf_event_exit_task, it's OK because the
411 * context has been detached from its task.
412 */
413static void perf_event_remove_from_context(struct perf_event *event)
414{
415 struct perf_event_context *ctx = event->ctx;
416 struct task_struct *task = ctx->task;
417
418 if (!task) {
419 /*
420 * Per cpu events are removed via an smp call and
421 * the removal is always sucessful.
422 */
423 smp_call_function_single(event->cpu,
424 __perf_event_remove_from_context,
425 event, 1);
426 return;
427 }
428
429retry:
430 task_oncpu_function_call(task, __perf_event_remove_from_context,
431 event);
432
433 spin_lock_irq(&ctx->lock);
434 /*
435 * If the context is active we need to retry the smp call.
436 */
437 if (ctx->nr_active && !list_empty(&event->group_entry)) {
438 spin_unlock_irq(&ctx->lock);
439 goto retry;
440 }
441
442 /*
443 * The lock prevents that this context is scheduled in so we
444 * can remove the event safely, if the call above did not
445 * succeed.
446 */
447 if (!list_empty(&event->group_entry)) {
448 list_del_event(event, ctx);
449 }
450 spin_unlock_irq(&ctx->lock);
451}
452
453static inline u64 perf_clock(void)
454{
455 return cpu_clock(smp_processor_id());
456}
457
458/*
459 * Update the record of the current time in a context.
460 */
461static void update_context_time(struct perf_event_context *ctx)
462{
463 u64 now = perf_clock();
464
465 ctx->time += now - ctx->timestamp;
466 ctx->timestamp = now;
467}
468
469/*
470 * Update the total_time_enabled and total_time_running fields for a event.
471 */
472static void update_event_times(struct perf_event *event)
473{
474 struct perf_event_context *ctx = event->ctx;
475 u64 run_end;
476
477 if (event->state < PERF_EVENT_STATE_INACTIVE ||
478 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
479 return;
480
481 event->total_time_enabled = ctx->time - event->tstamp_enabled;
482
483 if (event->state == PERF_EVENT_STATE_INACTIVE)
484 run_end = event->tstamp_stopped;
485 else
486 run_end = ctx->time;
487
488 event->total_time_running = run_end - event->tstamp_running;
489}
490
491/*
492 * Update total_time_enabled and total_time_running for all events in a group.
493 */
494static void update_group_times(struct perf_event *leader)
495{
496 struct perf_event *event;
497
498 update_event_times(leader);
499 list_for_each_entry(event, &leader->sibling_list, group_entry)
500 update_event_times(event);
501}
502
503/*
504 * Cross CPU call to disable a performance event
505 */
506static void __perf_event_disable(void *info)
507{
508 struct perf_event *event = info;
509 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
510 struct perf_event_context *ctx = event->ctx;
511
512 /*
513 * If this is a per-task event, need to check whether this
514 * event's task is the current task on this cpu.
515 */
516 if (ctx->task && cpuctx->task_ctx != ctx)
517 return;
518
519 spin_lock(&ctx->lock);
520
521 /*
522 * If the event is on, turn it off.
523 * If it is in error state, leave it in error state.
524 */
525 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
526 update_context_time(ctx);
527 update_group_times(event);
528 if (event == event->group_leader)
529 group_sched_out(event, cpuctx, ctx);
530 else
531 event_sched_out(event, cpuctx, ctx);
532 event->state = PERF_EVENT_STATE_OFF;
533 }
534
535 spin_unlock(&ctx->lock);
536}
537
538/*
539 * Disable a event.
540 *
541 * If event->ctx is a cloned context, callers must make sure that
542 * every task struct that event->ctx->task could possibly point to
543 * remains valid. This condition is satisifed when called through
544 * perf_event_for_each_child or perf_event_for_each because they
545 * hold the top-level event's child_mutex, so any descendant that
546 * goes to exit will block in sync_child_event.
547 * When called from perf_pending_event it's OK because event->ctx
548 * is the current context on this CPU and preemption is disabled,
549 * hence we can't get into perf_event_task_sched_out for this context.
550 */
551static void perf_event_disable(struct perf_event *event)
552{
553 struct perf_event_context *ctx = event->ctx;
554 struct task_struct *task = ctx->task;
555
556 if (!task) {
557 /*
558 * Disable the event on the cpu that it's on
559 */
560 smp_call_function_single(event->cpu, __perf_event_disable,
561 event, 1);
562 return;
563 }
564
565 retry:
566 task_oncpu_function_call(task, __perf_event_disable, event);
567
568 spin_lock_irq(&ctx->lock);
569 /*
570 * If the event is still active, we need to retry the cross-call.
571 */
572 if (event->state == PERF_EVENT_STATE_ACTIVE) {
573 spin_unlock_irq(&ctx->lock);
574 goto retry;
575 }
576
577 /*
578 * Since we have the lock this context can't be scheduled
579 * in, so we can change the state safely.
580 */
581 if (event->state == PERF_EVENT_STATE_INACTIVE) {
582 update_group_times(event);
583 event->state = PERF_EVENT_STATE_OFF;
584 }
585
586 spin_unlock_irq(&ctx->lock);
587}
588
589static int
590event_sched_in(struct perf_event *event,
591 struct perf_cpu_context *cpuctx,
592 struct perf_event_context *ctx,
593 int cpu)
594{
595 if (event->state <= PERF_EVENT_STATE_OFF)
596 return 0;
597
598 event->state = PERF_EVENT_STATE_ACTIVE;
599 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
600 /*
601 * The new state must be visible before we turn it on in the hardware:
602 */
603 smp_wmb();
604
605 if (event->pmu->enable(event)) {
606 event->state = PERF_EVENT_STATE_INACTIVE;
607 event->oncpu = -1;
608 return -EAGAIN;
609 }
610
611 event->tstamp_running += ctx->time - event->tstamp_stopped;
612
613 if (!is_software_event(event))
614 cpuctx->active_oncpu++;
615 ctx->nr_active++;
616
617 if (event->attr.exclusive)
618 cpuctx->exclusive = 1;
619
620 return 0;
621}
622
623static int
624group_sched_in(struct perf_event *group_event,
625 struct perf_cpu_context *cpuctx,
626 struct perf_event_context *ctx,
627 int cpu)
628{
629 struct perf_event *event, *partial_group;
630 int ret;
631
632 if (group_event->state == PERF_EVENT_STATE_OFF)
633 return 0;
634
635 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
636 if (ret)
637 return ret < 0 ? ret : 0;
638
639 if (event_sched_in(group_event, cpuctx, ctx, cpu))
640 return -EAGAIN;
641
642 /*
643 * Schedule in siblings as one group (if any):
644 */
645 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
646 if (event_sched_in(event, cpuctx, ctx, cpu)) {
647 partial_group = event;
648 goto group_error;
649 }
650 }
651
652 return 0;
653
654group_error:
655 /*
656 * Groups can be scheduled in as one unit only, so undo any
657 * partial group before returning:
658 */
659 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
660 if (event == partial_group)
661 break;
662 event_sched_out(event, cpuctx, ctx);
663 }
664 event_sched_out(group_event, cpuctx, ctx);
665
666 return -EAGAIN;
667}
668
669/*
670 * Return 1 for a group consisting entirely of software events,
671 * 0 if the group contains any hardware events.
672 */
673static int is_software_only_group(struct perf_event *leader)
674{
675 struct perf_event *event;
676
677 if (!is_software_event(leader))
678 return 0;
679
680 list_for_each_entry(event, &leader->sibling_list, group_entry)
681 if (!is_software_event(event))
682 return 0;
683
684 return 1;
685}
686
687/*
688 * Work out whether we can put this event group on the CPU now.
689 */
690static int group_can_go_on(struct perf_event *event,
691 struct perf_cpu_context *cpuctx,
692 int can_add_hw)
693{
694 /*
695 * Groups consisting entirely of software events can always go on.
696 */
697 if (is_software_only_group(event))
698 return 1;
699 /*
700 * If an exclusive group is already on, no other hardware
701 * events can go on.
702 */
703 if (cpuctx->exclusive)
704 return 0;
705 /*
706 * If this group is exclusive and there are already
707 * events on the CPU, it can't go on.
708 */
709 if (event->attr.exclusive && cpuctx->active_oncpu)
710 return 0;
711 /*
712 * Otherwise, try to add it if all previous groups were able
713 * to go on.
714 */
715 return can_add_hw;
716}
717
718static void add_event_to_ctx(struct perf_event *event,
719 struct perf_event_context *ctx)
720{
721 list_add_event(event, ctx);
722 event->tstamp_enabled = ctx->time;
723 event->tstamp_running = ctx->time;
724 event->tstamp_stopped = ctx->time;
725}
726
727/*
728 * Cross CPU call to install and enable a performance event
729 *
730 * Must be called with ctx->mutex held
731 */
732static void __perf_install_in_context(void *info)
733{
734 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
735 struct perf_event *event = info;
736 struct perf_event_context *ctx = event->ctx;
737 struct perf_event *leader = event->group_leader;
738 int cpu = smp_processor_id();
739 int err;
740
741 /*
742 * If this is a task context, we need to check whether it is
743 * the current task context of this cpu. If not it has been
744 * scheduled out before the smp call arrived.
745 * Or possibly this is the right context but it isn't
746 * on this cpu because it had no events.
747 */
748 if (ctx->task && cpuctx->task_ctx != ctx) {
749 if (cpuctx->task_ctx || ctx->task != current)
750 return;
751 cpuctx->task_ctx = ctx;
752 }
753
754 spin_lock(&ctx->lock);
755 ctx->is_active = 1;
756 update_context_time(ctx);
757
758 /*
759 * Protect the list operation against NMI by disabling the
760 * events on a global level. NOP for non NMI based events.
761 */
762 perf_disable();
763
764 add_event_to_ctx(event, ctx);
765
766 /*
767 * Don't put the event on if it is disabled or if
768 * it is in a group and the group isn't on.
769 */
770 if (event->state != PERF_EVENT_STATE_INACTIVE ||
771 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
772 goto unlock;
773
774 /*
775 * An exclusive event can't go on if there are already active
776 * hardware events, and no hardware event can go on if there
777 * is already an exclusive event on.
778 */
779 if (!group_can_go_on(event, cpuctx, 1))
780 err = -EEXIST;
781 else
782 err = event_sched_in(event, cpuctx, ctx, cpu);
783
784 if (err) {
785 /*
786 * This event couldn't go on. If it is in a group
787 * then we have to pull the whole group off.
788 * If the event group is pinned then put it in error state.
789 */
790 if (leader != event)
791 group_sched_out(leader, cpuctx, ctx);
792 if (leader->attr.pinned) {
793 update_group_times(leader);
794 leader->state = PERF_EVENT_STATE_ERROR;
795 }
796 }
797
798 if (!err && !ctx->task && cpuctx->max_pertask)
799 cpuctx->max_pertask--;
800
801 unlock:
802 perf_enable();
803
804 spin_unlock(&ctx->lock);
805}
806
807/*
808 * Attach a performance event to a context
809 *
810 * First we add the event to the list with the hardware enable bit
811 * in event->hw_config cleared.
812 *
813 * If the event is attached to a task which is on a CPU we use a smp
814 * call to enable it in the task context. The task might have been
815 * scheduled away, but we check this in the smp call again.
816 *
817 * Must be called with ctx->mutex held.
818 */
819static void
820perf_install_in_context(struct perf_event_context *ctx,
821 struct perf_event *event,
822 int cpu)
823{
824 struct task_struct *task = ctx->task;
825
826 if (!task) {
827 /*
828 * Per cpu events are installed via an smp call and
829 * the install is always sucessful.
830 */
831 smp_call_function_single(cpu, __perf_install_in_context,
832 event, 1);
833 return;
834 }
835
836retry:
837 task_oncpu_function_call(task, __perf_install_in_context,
838 event);
839
840 spin_lock_irq(&ctx->lock);
841 /*
842 * we need to retry the smp call.
843 */
844 if (ctx->is_active && list_empty(&event->group_entry)) {
845 spin_unlock_irq(&ctx->lock);
846 goto retry;
847 }
848
849 /*
850 * The lock prevents that this context is scheduled in so we
851 * can add the event safely, if it the call above did not
852 * succeed.
853 */
854 if (list_empty(&event->group_entry))
855 add_event_to_ctx(event, ctx);
856 spin_unlock_irq(&ctx->lock);
857}
858
859/*
860 * Put a event into inactive state and update time fields.
861 * Enabling the leader of a group effectively enables all
862 * the group members that aren't explicitly disabled, so we
863 * have to update their ->tstamp_enabled also.
864 * Note: this works for group members as well as group leaders
865 * since the non-leader members' sibling_lists will be empty.
866 */
867static void __perf_event_mark_enabled(struct perf_event *event,
868 struct perf_event_context *ctx)
869{
870 struct perf_event *sub;
871
872 event->state = PERF_EVENT_STATE_INACTIVE;
873 event->tstamp_enabled = ctx->time - event->total_time_enabled;
874 list_for_each_entry(sub, &event->sibling_list, group_entry)
875 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
876 sub->tstamp_enabled =
877 ctx->time - sub->total_time_enabled;
878}
879
880/*
881 * Cross CPU call to enable a performance event
882 */
883static void __perf_event_enable(void *info)
884{
885 struct perf_event *event = info;
886 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
887 struct perf_event_context *ctx = event->ctx;
888 struct perf_event *leader = event->group_leader;
889 int err;
890
891 /*
892 * If this is a per-task event, need to check whether this
893 * event's task is the current task on this cpu.
894 */
895 if (ctx->task && cpuctx->task_ctx != ctx) {
896 if (cpuctx->task_ctx || ctx->task != current)
897 return;
898 cpuctx->task_ctx = ctx;
899 }
900
901 spin_lock(&ctx->lock);
902 ctx->is_active = 1;
903 update_context_time(ctx);
904
905 if (event->state >= PERF_EVENT_STATE_INACTIVE)
906 goto unlock;
907 __perf_event_mark_enabled(event, ctx);
908
909 /*
910 * If the event is in a group and isn't the group leader,
911 * then don't put it on unless the group is on.
912 */
913 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
914 goto unlock;
915
916 if (!group_can_go_on(event, cpuctx, 1)) {
917 err = -EEXIST;
918 } else {
919 perf_disable();
920 if (event == leader)
921 err = group_sched_in(event, cpuctx, ctx,
922 smp_processor_id());
923 else
924 err = event_sched_in(event, cpuctx, ctx,
925 smp_processor_id());
926 perf_enable();
927 }
928
929 if (err) {
930 /*
931 * If this event can't go on and it's part of a
932 * group, then the whole group has to come off.
933 */
934 if (leader != event)
935 group_sched_out(leader, cpuctx, ctx);
936 if (leader->attr.pinned) {
937 update_group_times(leader);
938 leader->state = PERF_EVENT_STATE_ERROR;
939 }
940 }
941
942 unlock:
943 spin_unlock(&ctx->lock);
944}
945
946/*
947 * Enable a event.
948 *
949 * If event->ctx is a cloned context, callers must make sure that
950 * every task struct that event->ctx->task could possibly point to
951 * remains valid. This condition is satisfied when called through
952 * perf_event_for_each_child or perf_event_for_each as described
953 * for perf_event_disable.
954 */
955static void perf_event_enable(struct perf_event *event)
956{
957 struct perf_event_context *ctx = event->ctx;
958 struct task_struct *task = ctx->task;
959
960 if (!task) {
961 /*
962 * Enable the event on the cpu that it's on
963 */
964 smp_call_function_single(event->cpu, __perf_event_enable,
965 event, 1);
966 return;
967 }
968
969 spin_lock_irq(&ctx->lock);
970 if (event->state >= PERF_EVENT_STATE_INACTIVE)
971 goto out;
972
973 /*
974 * If the event is in error state, clear that first.
975 * That way, if we see the event in error state below, we
976 * know that it has gone back into error state, as distinct
977 * from the task having been scheduled away before the
978 * cross-call arrived.
979 */
980 if (event->state == PERF_EVENT_STATE_ERROR)
981 event->state = PERF_EVENT_STATE_OFF;
982
983 retry:
984 spin_unlock_irq(&ctx->lock);
985 task_oncpu_function_call(task, __perf_event_enable, event);
986
987 spin_lock_irq(&ctx->lock);
988
989 /*
990 * If the context is active and the event is still off,
991 * we need to retry the cross-call.
992 */
993 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
994 goto retry;
995
996 /*
997 * Since we have the lock this context can't be scheduled
998 * in, so we can change the state safely.
999 */
1000 if (event->state == PERF_EVENT_STATE_OFF)
1001 __perf_event_mark_enabled(event, ctx);
1002
1003 out:
1004 spin_unlock_irq(&ctx->lock);
1005}
1006
1007static int perf_event_refresh(struct perf_event *event, int refresh)
1008{
1009 /*
1010 * not supported on inherited events
1011 */
1012 if (event->attr.inherit)
1013 return -EINVAL;
1014
1015 atomic_add(refresh, &event->event_limit);
1016 perf_event_enable(event);
1017
1018 return 0;
1019}
1020
1021void __perf_event_sched_out(struct perf_event_context *ctx,
1022 struct perf_cpu_context *cpuctx)
1023{
1024 struct perf_event *event;
1025
1026 spin_lock(&ctx->lock);
1027 ctx->is_active = 0;
1028 if (likely(!ctx->nr_events))
1029 goto out;
1030 update_context_time(ctx);
1031
1032 perf_disable();
1033 if (ctx->nr_active) {
1034 list_for_each_entry(event, &ctx->group_list, group_entry) {
1035 if (event != event->group_leader)
1036 event_sched_out(event, cpuctx, ctx);
1037 else
1038 group_sched_out(event, cpuctx, ctx);
1039 }
1040 }
1041 perf_enable();
1042 out:
1043 spin_unlock(&ctx->lock);
1044}
1045
1046/*
1047 * Test whether two contexts are equivalent, i.e. whether they
1048 * have both been cloned from the same version of the same context
1049 * and they both have the same number of enabled events.
1050 * If the number of enabled events is the same, then the set
1051 * of enabled events should be the same, because these are both
1052 * inherited contexts, therefore we can't access individual events
1053 * in them directly with an fd; we can only enable/disable all
1054 * events via prctl, or enable/disable all events in a family
1055 * via ioctl, which will have the same effect on both contexts.
1056 */
1057static int context_equiv(struct perf_event_context *ctx1,
1058 struct perf_event_context *ctx2)
1059{
1060 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1061 && ctx1->parent_gen == ctx2->parent_gen
1062 && !ctx1->pin_count && !ctx2->pin_count;
1063}
1064
1065static void __perf_event_read(void *event);
1066
1067static void __perf_event_sync_stat(struct perf_event *event,
1068 struct perf_event *next_event)
1069{
1070 u64 value;
1071
1072 if (!event->attr.inherit_stat)
1073 return;
1074
1075 /*
1076 * Update the event value, we cannot use perf_event_read()
1077 * because we're in the middle of a context switch and have IRQs
1078 * disabled, which upsets smp_call_function_single(), however
1079 * we know the event must be on the current CPU, therefore we
1080 * don't need to use it.
1081 */
1082 switch (event->state) {
1083 case PERF_EVENT_STATE_ACTIVE:
1084 __perf_event_read(event);
1085 break;
1086
1087 case PERF_EVENT_STATE_INACTIVE:
1088 update_event_times(event);
1089 break;
1090
1091 default:
1092 break;
1093 }
1094
1095 /*
1096 * In order to keep per-task stats reliable we need to flip the event
1097 * values when we flip the contexts.
1098 */
1099 value = atomic64_read(&next_event->count);
1100 value = atomic64_xchg(&event->count, value);
1101 atomic64_set(&next_event->count, value);
1102
1103 swap(event->total_time_enabled, next_event->total_time_enabled);
1104 swap(event->total_time_running, next_event->total_time_running);
1105
1106 /*
1107 * Since we swizzled the values, update the user visible data too.
1108 */
1109 perf_event_update_userpage(event);
1110 perf_event_update_userpage(next_event);
1111}
1112
1113#define list_next_entry(pos, member) \
1114 list_entry(pos->member.next, typeof(*pos), member)
1115
1116static void perf_event_sync_stat(struct perf_event_context *ctx,
1117 struct perf_event_context *next_ctx)
1118{
1119 struct perf_event *event, *next_event;
1120
1121 if (!ctx->nr_stat)
1122 return;
1123
1124 event = list_first_entry(&ctx->event_list,
1125 struct perf_event, event_entry);
1126
1127 next_event = list_first_entry(&next_ctx->event_list,
1128 struct perf_event, event_entry);
1129
1130 while (&event->event_entry != &ctx->event_list &&
1131 &next_event->event_entry != &next_ctx->event_list) {
1132
1133 __perf_event_sync_stat(event, next_event);
1134
1135 event = list_next_entry(event, event_entry);
1136 next_event = list_next_entry(next_event, event_entry);
1137 }
1138}
1139
1140/*
1141 * Called from scheduler to remove the events of the current task,
1142 * with interrupts disabled.
1143 *
1144 * We stop each event and update the event value in event->count.
1145 *
1146 * This does not protect us against NMI, but disable()
1147 * sets the disabled bit in the control field of event _before_
1148 * accessing the event control register. If a NMI hits, then it will
1149 * not restart the event.
1150 */
1151void perf_event_task_sched_out(struct task_struct *task,
1152 struct task_struct *next, int cpu)
1153{
1154 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1155 struct perf_event_context *ctx = task->perf_event_ctxp;
1156 struct perf_event_context *next_ctx;
1157 struct perf_event_context *parent;
1158 struct pt_regs *regs;
1159 int do_switch = 1;
1160
1161 regs = task_pt_regs(task);
1162 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1163
1164 if (likely(!ctx || !cpuctx->task_ctx))
1165 return;
1166
1167 update_context_time(ctx);
1168
1169 rcu_read_lock();
1170 parent = rcu_dereference(ctx->parent_ctx);
1171 next_ctx = next->perf_event_ctxp;
1172 if (parent && next_ctx &&
1173 rcu_dereference(next_ctx->parent_ctx) == parent) {
1174 /*
1175 * Looks like the two contexts are clones, so we might be
1176 * able to optimize the context switch. We lock both
1177 * contexts and check that they are clones under the
1178 * lock (including re-checking that neither has been
1179 * uncloned in the meantime). It doesn't matter which
1180 * order we take the locks because no other cpu could
1181 * be trying to lock both of these tasks.
1182 */
1183 spin_lock(&ctx->lock);
1184 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1185 if (context_equiv(ctx, next_ctx)) {
1186 /*
1187 * XXX do we need a memory barrier of sorts
1188 * wrt to rcu_dereference() of perf_event_ctxp
1189 */
1190 task->perf_event_ctxp = next_ctx;
1191 next->perf_event_ctxp = ctx;
1192 ctx->task = next;
1193 next_ctx->task = task;
1194 do_switch = 0;
1195
1196 perf_event_sync_stat(ctx, next_ctx);
1197 }
1198 spin_unlock(&next_ctx->lock);
1199 spin_unlock(&ctx->lock);
1200 }
1201 rcu_read_unlock();
1202
1203 if (do_switch) {
1204 __perf_event_sched_out(ctx, cpuctx);
1205 cpuctx->task_ctx = NULL;
1206 }
1207}
1208
1209/*
1210 * Called with IRQs disabled
1211 */
1212static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1213{
1214 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1215
1216 if (!cpuctx->task_ctx)
1217 return;
1218
1219 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1220 return;
1221
1222 __perf_event_sched_out(ctx, cpuctx);
1223 cpuctx->task_ctx = NULL;
1224}
1225
1226/*
1227 * Called with IRQs disabled
1228 */
1229static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1230{
1231 __perf_event_sched_out(&cpuctx->ctx, cpuctx);
1232}
1233
1234static void
1235__perf_event_sched_in(struct perf_event_context *ctx,
1236 struct perf_cpu_context *cpuctx, int cpu)
1237{
1238 struct perf_event *event;
1239 int can_add_hw = 1;
1240
1241 spin_lock(&ctx->lock);
1242 ctx->is_active = 1;
1243 if (likely(!ctx->nr_events))
1244 goto out;
1245
1246 ctx->timestamp = perf_clock();
1247
1248 perf_disable();
1249
1250 /*
1251 * First go through the list and put on any pinned groups
1252 * in order to give them the best chance of going on.
1253 */
1254 list_for_each_entry(event, &ctx->group_list, group_entry) {
1255 if (event->state <= PERF_EVENT_STATE_OFF ||
1256 !event->attr.pinned)
1257 continue;
1258 if (event->cpu != -1 && event->cpu != cpu)
1259 continue;
1260
1261 if (event != event->group_leader)
1262 event_sched_in(event, cpuctx, ctx, cpu);
1263 else {
1264 if (group_can_go_on(event, cpuctx, 1))
1265 group_sched_in(event, cpuctx, ctx, cpu);
1266 }
1267
1268 /*
1269 * If this pinned group hasn't been scheduled,
1270 * put it in error state.
1271 */
1272 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1273 update_group_times(event);
1274 event->state = PERF_EVENT_STATE_ERROR;
1275 }
1276 }
1277
1278 list_for_each_entry(event, &ctx->group_list, group_entry) {
1279 /*
1280 * Ignore events in OFF or ERROR state, and
1281 * ignore pinned events since we did them already.
1282 */
1283 if (event->state <= PERF_EVENT_STATE_OFF ||
1284 event->attr.pinned)
1285 continue;
1286
1287 /*
1288 * Listen to the 'cpu' scheduling filter constraint
1289 * of events:
1290 */
1291 if (event->cpu != -1 && event->cpu != cpu)
1292 continue;
1293
1294 if (event != event->group_leader) {
1295 if (event_sched_in(event, cpuctx, ctx, cpu))
1296 can_add_hw = 0;
1297 } else {
1298 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1299 if (group_sched_in(event, cpuctx, ctx, cpu))
1300 can_add_hw = 0;
1301 }
1302 }
1303 }
1304 perf_enable();
1305 out:
1306 spin_unlock(&ctx->lock);
1307}
1308
1309/*
1310 * Called from scheduler to add the events of the current task
1311 * with interrupts disabled.
1312 *
1313 * We restore the event value and then enable it.
1314 *
1315 * This does not protect us against NMI, but enable()
1316 * sets the enabled bit in the control field of event _before_
1317 * accessing the event control register. If a NMI hits, then it will
1318 * keep the event running.
1319 */
1320void perf_event_task_sched_in(struct task_struct *task, int cpu)
1321{
1322 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1323 struct perf_event_context *ctx = task->perf_event_ctxp;
1324
1325 if (likely(!ctx))
1326 return;
1327 if (cpuctx->task_ctx == ctx)
1328 return;
1329 __perf_event_sched_in(ctx, cpuctx, cpu);
1330 cpuctx->task_ctx = ctx;
1331}
1332
1333static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1334{
1335 struct perf_event_context *ctx = &cpuctx->ctx;
1336
1337 __perf_event_sched_in(ctx, cpuctx, cpu);
1338}
1339
1340#define MAX_INTERRUPTS (~0ULL)
1341
1342static void perf_log_throttle(struct perf_event *event, int enable);
1343
1344static void perf_adjust_period(struct perf_event *event, u64 events)
1345{
1346 struct hw_perf_event *hwc = &event->hw;
1347 u64 period, sample_period;
1348 s64 delta;
1349
1350 events *= hwc->sample_period;
1351 period = div64_u64(events, event->attr.sample_freq);
1352
1353 delta = (s64)(period - hwc->sample_period);
1354 delta = (delta + 7) / 8; /* low pass filter */
1355
1356 sample_period = hwc->sample_period + delta;
1357
1358 if (!sample_period)
1359 sample_period = 1;
1360
1361 hwc->sample_period = sample_period;
1362}
1363
1364static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1365{
1366 struct perf_event *event;
1367 struct hw_perf_event *hwc;
1368 u64 interrupts, freq;
1369
1370 spin_lock(&ctx->lock);
1371 list_for_each_entry(event, &ctx->group_list, group_entry) {
1372 if (event->state != PERF_EVENT_STATE_ACTIVE)
1373 continue;
1374
1375 hwc = &event->hw;
1376
1377 interrupts = hwc->interrupts;
1378 hwc->interrupts = 0;
1379
1380 /*
1381 * unthrottle events on the tick
1382 */
1383 if (interrupts == MAX_INTERRUPTS) {
1384 perf_log_throttle(event, 1);
1385 event->pmu->unthrottle(event);
1386 interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1387 }
1388
1389 if (!event->attr.freq || !event->attr.sample_freq)
1390 continue;
1391
1392 /*
1393 * if the specified freq < HZ then we need to skip ticks
1394 */
1395 if (event->attr.sample_freq < HZ) {
1396 freq = event->attr.sample_freq;
1397
1398 hwc->freq_count += freq;
1399 hwc->freq_interrupts += interrupts;
1400
1401 if (hwc->freq_count < HZ)
1402 continue;
1403
1404 interrupts = hwc->freq_interrupts;
1405 hwc->freq_interrupts = 0;
1406 hwc->freq_count -= HZ;
1407 } else
1408 freq = HZ;
1409
1410 perf_adjust_period(event, freq * interrupts);
1411
1412 /*
1413 * In order to avoid being stalled by an (accidental) huge
1414 * sample period, force reset the sample period if we didn't
1415 * get any events in this freq period.
1416 */
1417 if (!interrupts) {
1418 perf_disable();
1419 event->pmu->disable(event);
1420 atomic64_set(&hwc->period_left, 0);
1421 event->pmu->enable(event);
1422 perf_enable();
1423 }
1424 }
1425 spin_unlock(&ctx->lock);
1426}
1427
1428/*
1429 * Round-robin a context's events:
1430 */
1431static void rotate_ctx(struct perf_event_context *ctx)
1432{
1433 struct perf_event *event;
1434
1435 if (!ctx->nr_events)
1436 return;
1437
1438 spin_lock(&ctx->lock);
1439 /*
1440 * Rotate the first entry last (works just fine for group events too):
1441 */
1442 perf_disable();
1443 list_for_each_entry(event, &ctx->group_list, group_entry) {
1444 list_move_tail(&event->group_entry, &ctx->group_list);
1445 break;
1446 }
1447 perf_enable();
1448
1449 spin_unlock(&ctx->lock);
1450}
1451
1452void perf_event_task_tick(struct task_struct *curr, int cpu)
1453{
1454 struct perf_cpu_context *cpuctx;
1455 struct perf_event_context *ctx;
1456
1457 if (!atomic_read(&nr_events))
1458 return;
1459
1460 cpuctx = &per_cpu(perf_cpu_context, cpu);
1461 ctx = curr->perf_event_ctxp;
1462
1463 perf_ctx_adjust_freq(&cpuctx->ctx);
1464 if (ctx)
1465 perf_ctx_adjust_freq(ctx);
1466
1467 perf_event_cpu_sched_out(cpuctx);
1468 if (ctx)
1469 __perf_event_task_sched_out(ctx);
1470
1471 rotate_ctx(&cpuctx->ctx);
1472 if (ctx)
1473 rotate_ctx(ctx);
1474
1475 perf_event_cpu_sched_in(cpuctx, cpu);
1476 if (ctx)
1477 perf_event_task_sched_in(curr, cpu);
1478}
1479
1480/*
1481 * Enable all of a task's events that have been marked enable-on-exec.
1482 * This expects task == current.
1483 */
1484static void perf_event_enable_on_exec(struct task_struct *task)
1485{
1486 struct perf_event_context *ctx;
1487 struct perf_event *event;
1488 unsigned long flags;
1489 int enabled = 0;
1490
1491 local_irq_save(flags);
1492 ctx = task->perf_event_ctxp;
1493 if (!ctx || !ctx->nr_events)
1494 goto out;
1495
1496 __perf_event_task_sched_out(ctx);
1497
1498 spin_lock(&ctx->lock);
1499
1500 list_for_each_entry(event, &ctx->group_list, group_entry) {
1501 if (!event->attr.enable_on_exec)
1502 continue;
1503 event->attr.enable_on_exec = 0;
1504 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1505 continue;
1506 __perf_event_mark_enabled(event, ctx);
1507 enabled = 1;
1508 }
1509
1510 /*
1511 * Unclone this context if we enabled any event.
1512 */
1513 if (enabled)
1514 unclone_ctx(ctx);
1515
1516 spin_unlock(&ctx->lock);
1517
1518 perf_event_task_sched_in(task, smp_processor_id());
1519 out:
1520 local_irq_restore(flags);
1521}
1522
1523/*
1524 * Cross CPU call to read the hardware event
1525 */
1526static void __perf_event_read(void *info)
1527{
1528 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1529 struct perf_event *event = info;
1530 struct perf_event_context *ctx = event->ctx;
1531 unsigned long flags;
1532
1533 /*
1534 * If this is a task context, we need to check whether it is
1535 * the current task context of this cpu. If not it has been
1536 * scheduled out before the smp call arrived. In that case
1537 * event->count would have been updated to a recent sample
1538 * when the event was scheduled out.
1539 */
1540 if (ctx->task && cpuctx->task_ctx != ctx)
1541 return;
1542
1543 local_irq_save(flags);
1544 if (ctx->is_active)
1545 update_context_time(ctx);
1546 event->pmu->read(event);
1547 update_event_times(event);
1548 local_irq_restore(flags);
1549}
1550
1551static u64 perf_event_read(struct perf_event *event)
1552{
1553 /*
1554 * If event is enabled and currently active on a CPU, update the
1555 * value in the event structure:
1556 */
1557 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1558 smp_call_function_single(event->oncpu,
1559 __perf_event_read, event, 1);
1560 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1561 update_event_times(event);
1562 }
1563
1564 return atomic64_read(&event->count);
1565}
1566
1567/*
1568 * Initialize the perf_event context in a task_struct:
1569 */
1570static void
1571__perf_event_init_context(struct perf_event_context *ctx,
1572 struct task_struct *task)
1573{
1574 memset(ctx, 0, sizeof(*ctx));
1575 spin_lock_init(&ctx->lock);
1576 mutex_init(&ctx->mutex);
1577 INIT_LIST_HEAD(&ctx->group_list);
1578 INIT_LIST_HEAD(&ctx->event_list);
1579 atomic_set(&ctx->refcount, 1);
1580 ctx->task = task;
1581}
1582
1583static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1584{
1585 struct perf_event_context *ctx;
1586 struct perf_cpu_context *cpuctx;
1587 struct task_struct *task;
1588 unsigned long flags;
1589 int err;
1590
1591 /*
1592 * If cpu is not a wildcard then this is a percpu event:
1593 */
1594 if (cpu != -1) {
1595 /* Must be root to operate on a CPU event: */
1596 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1597 return ERR_PTR(-EACCES);
1598
1599 if (cpu < 0 || cpu > num_possible_cpus())
1600 return ERR_PTR(-EINVAL);
1601
1602 /*
1603 * We could be clever and allow to attach a event to an
1604 * offline CPU and activate it when the CPU comes up, but
1605 * that's for later.
1606 */
1607 if (!cpu_isset(cpu, cpu_online_map))
1608 return ERR_PTR(-ENODEV);
1609
1610 cpuctx = &per_cpu(perf_cpu_context, cpu);
1611 ctx = &cpuctx->ctx;
1612 get_ctx(ctx);
1613
1614 return ctx;
1615 }
1616
1617 rcu_read_lock();
1618 if (!pid)
1619 task = current;
1620 else
1621 task = find_task_by_vpid(pid);
1622 if (task)
1623 get_task_struct(task);
1624 rcu_read_unlock();
1625
1626 if (!task)
1627 return ERR_PTR(-ESRCH);
1628
1629 /*
1630 * Can't attach events to a dying task.
1631 */
1632 err = -ESRCH;
1633 if (task->flags & PF_EXITING)
1634 goto errout;
1635
1636 /* Reuse ptrace permission checks for now. */
1637 err = -EACCES;
1638 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1639 goto errout;
1640
1641 retry:
1642 ctx = perf_lock_task_context(task, &flags);
1643 if (ctx) {
1644 unclone_ctx(ctx);
1645 spin_unlock_irqrestore(&ctx->lock, flags);
1646 }
1647
1648 if (!ctx) {
1649 ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1650 err = -ENOMEM;
1651 if (!ctx)
1652 goto errout;
1653 __perf_event_init_context(ctx, task);
1654 get_ctx(ctx);
1655 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1656 /*
1657 * We raced with some other task; use
1658 * the context they set.
1659 */
1660 kfree(ctx);
1661 goto retry;
1662 }
1663 get_task_struct(task);
1664 }
1665
1666 put_task_struct(task);
1667 return ctx;
1668
1669 errout:
1670 put_task_struct(task);
1671 return ERR_PTR(err);
1672}
1673
1674static void free_event_rcu(struct rcu_head *head)
1675{
1676 struct perf_event *event;
1677
1678 event = container_of(head, struct perf_event, rcu_head);
1679 if (event->ns)
1680 put_pid_ns(event->ns);
1681 kfree(event);
1682}
1683
1684static void perf_pending_sync(struct perf_event *event);
1685
1686static void free_event(struct perf_event *event)
1687{
1688 perf_pending_sync(event);
1689
1690 if (!event->parent) {
1691 atomic_dec(&nr_events);
1692 if (event->attr.mmap)
1693 atomic_dec(&nr_mmap_events);
1694 if (event->attr.comm)
1695 atomic_dec(&nr_comm_events);
1696 if (event->attr.task)
1697 atomic_dec(&nr_task_events);
1698 }
1699
1700 if (event->output) {
1701 fput(event->output->filp);
1702 event->output = NULL;
1703 }
1704
1705 if (event->destroy)
1706 event->destroy(event);
1707
1708 put_ctx(event->ctx);
1709 call_rcu(&event->rcu_head, free_event_rcu);
1710}
1711
1712/*
1713 * Called when the last reference to the file is gone.
1714 */
1715static int perf_release(struct inode *inode, struct file *file)
1716{
1717 struct perf_event *event = file->private_data;
1718 struct perf_event_context *ctx = event->ctx;
1719
1720 file->private_data = NULL;
1721
1722 WARN_ON_ONCE(ctx->parent_ctx);
1723 mutex_lock(&ctx->mutex);
1724 perf_event_remove_from_context(event);
1725 mutex_unlock(&ctx->mutex);
1726
1727 mutex_lock(&event->owner->perf_event_mutex);
1728 list_del_init(&event->owner_entry);
1729 mutex_unlock(&event->owner->perf_event_mutex);
1730 put_task_struct(event->owner);
1731
1732 free_event(event);
1733
1734 return 0;
1735}
1736
1737static int perf_event_read_size(struct perf_event *event)
1738{
1739 int entry = sizeof(u64); /* value */
1740 int size = 0;
1741 int nr = 1;
1742
1743 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1744 size += sizeof(u64);
1745
1746 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1747 size += sizeof(u64);
1748
1749 if (event->attr.read_format & PERF_FORMAT_ID)
1750 entry += sizeof(u64);
1751
1752 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1753 nr += event->group_leader->nr_siblings;
1754 size += sizeof(u64);
1755 }
1756
1757 size += entry * nr;
1758
1759 return size;
1760}
1761
1762static u64 perf_event_read_value(struct perf_event *event)
1763{
1764 struct perf_event *child;
1765 u64 total = 0;
1766
1767 total += perf_event_read(event);
1768 list_for_each_entry(child, &event->child_list, child_list)
1769 total += perf_event_read(child);
1770
1771 return total;
1772}
1773
1774static int perf_event_read_entry(struct perf_event *event,
1775 u64 read_format, char __user *buf)
1776{
1777 int n = 0, count = 0;
1778 u64 values[2];
1779
1780 values[n++] = perf_event_read_value(event);
1781 if (read_format & PERF_FORMAT_ID)
1782 values[n++] = primary_event_id(event);
1783
1784 count = n * sizeof(u64);
1785
1786 if (copy_to_user(buf, values, count))
1787 return -EFAULT;
1788
1789 return count;
1790}
1791
1792static int perf_event_read_group(struct perf_event *event,
1793 u64 read_format, char __user *buf)
1794{
1795 struct perf_event *leader = event->group_leader, *sub;
1796 int n = 0, size = 0, err = -EFAULT;
1797 u64 values[3];
1798
1799 values[n++] = 1 + leader->nr_siblings;
1800 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1801 values[n++] = leader->total_time_enabled +
1802 atomic64_read(&leader->child_total_time_enabled);
1803 }
1804 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1805 values[n++] = leader->total_time_running +
1806 atomic64_read(&leader->child_total_time_running);
1807 }
1808
1809 size = n * sizeof(u64);
1810
1811 if (copy_to_user(buf, values, size))
1812 return -EFAULT;
1813
1814 err = perf_event_read_entry(leader, read_format, buf + size);
1815 if (err < 0)
1816 return err;
1817
1818 size += err;
1819
1820 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1821 err = perf_event_read_entry(sub, read_format,
1822 buf + size);
1823 if (err < 0)
1824 return err;
1825
1826 size += err;
1827 }
1828
1829 return size;
1830}
1831
1832static int perf_event_read_one(struct perf_event *event,
1833 u64 read_format, char __user *buf)
1834{
1835 u64 values[4];
1836 int n = 0;
1837
1838 values[n++] = perf_event_read_value(event);
1839 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1840 values[n++] = event->total_time_enabled +
1841 atomic64_read(&event->child_total_time_enabled);
1842 }
1843 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1844 values[n++] = event->total_time_running +
1845 atomic64_read(&event->child_total_time_running);
1846 }
1847 if (read_format & PERF_FORMAT_ID)
1848 values[n++] = primary_event_id(event);
1849
1850 if (copy_to_user(buf, values, n * sizeof(u64)))
1851 return -EFAULT;
1852
1853 return n * sizeof(u64);
1854}
1855
1856/*
1857 * Read the performance event - simple non blocking version for now
1858 */
1859static ssize_t
1860perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1861{
1862 u64 read_format = event->attr.read_format;
1863 int ret;
1864
1865 /*
1866 * Return end-of-file for a read on a event that is in
1867 * error state (i.e. because it was pinned but it couldn't be
1868 * scheduled on to the CPU at some point).
1869 */
1870 if (event->state == PERF_EVENT_STATE_ERROR)
1871 return 0;
1872
1873 if (count < perf_event_read_size(event))
1874 return -ENOSPC;
1875
1876 WARN_ON_ONCE(event->ctx->parent_ctx);
1877 mutex_lock(&event->child_mutex);
1878 if (read_format & PERF_FORMAT_GROUP)
1879 ret = perf_event_read_group(event, read_format, buf);
1880 else
1881 ret = perf_event_read_one(event, read_format, buf);
1882 mutex_unlock(&event->child_mutex);
1883
1884 return ret;
1885}
1886
1887static ssize_t
1888perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1889{
1890 struct perf_event *event = file->private_data;
1891
1892 return perf_read_hw(event, buf, count);
1893}
1894
1895static unsigned int perf_poll(struct file *file, poll_table *wait)
1896{
1897 struct perf_event *event = file->private_data;
1898 struct perf_mmap_data *data;
1899 unsigned int events = POLL_HUP;
1900
1901 rcu_read_lock();
1902 data = rcu_dereference(event->data);
1903 if (data)
1904 events = atomic_xchg(&data->poll, 0);
1905 rcu_read_unlock();
1906
1907 poll_wait(file, &event->waitq, wait);
1908
1909 return events;
1910}
1911
1912static void perf_event_reset(struct perf_event *event)
1913{
1914 (void)perf_event_read(event);
1915 atomic64_set(&event->count, 0);
1916 perf_event_update_userpage(event);
1917}
1918
1919/*
1920 * Holding the top-level event's child_mutex means that any
1921 * descendant process that has inherited this event will block
1922 * in sync_child_event if it goes to exit, thus satisfying the
1923 * task existence requirements of perf_event_enable/disable.
1924 */
1925static void perf_event_for_each_child(struct perf_event *event,
1926 void (*func)(struct perf_event *))
1927{
1928 struct perf_event *child;
1929
1930 WARN_ON_ONCE(event->ctx->parent_ctx);
1931 mutex_lock(&event->child_mutex);
1932 func(event);
1933 list_for_each_entry(child, &event->child_list, child_list)
1934 func(child);
1935 mutex_unlock(&event->child_mutex);
1936}
1937
1938static void perf_event_for_each(struct perf_event *event,
1939 void (*func)(struct perf_event *))
1940{
1941 struct perf_event_context *ctx = event->ctx;
1942 struct perf_event *sibling;
1943
1944 WARN_ON_ONCE(ctx->parent_ctx);
1945 mutex_lock(&ctx->mutex);
1946 event = event->group_leader;
1947
1948 perf_event_for_each_child(event, func);
1949 func(event);
1950 list_for_each_entry(sibling, &event->sibling_list, group_entry)
1951 perf_event_for_each_child(event, func);
1952 mutex_unlock(&ctx->mutex);
1953}
1954
1955static int perf_event_period(struct perf_event *event, u64 __user *arg)
1956{
1957 struct perf_event_context *ctx = event->ctx;
1958 unsigned long size;
1959 int ret = 0;
1960 u64 value;
1961
1962 if (!event->attr.sample_period)
1963 return -EINVAL;
1964
1965 size = copy_from_user(&value, arg, sizeof(value));
1966 if (size != sizeof(value))
1967 return -EFAULT;
1968
1969 if (!value)
1970 return -EINVAL;
1971
1972 spin_lock_irq(&ctx->lock);
1973 if (event->attr.freq) {
1974 if (value > sysctl_perf_event_sample_rate) {
1975 ret = -EINVAL;
1976 goto unlock;
1977 }
1978
1979 event->attr.sample_freq = value;
1980 } else {
1981 event->attr.sample_period = value;
1982 event->hw.sample_period = value;
1983 }
1984unlock:
1985 spin_unlock_irq(&ctx->lock);
1986
1987 return ret;
1988}
1989
1990int perf_event_set_output(struct perf_event *event, int output_fd);
1991
1992static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1993{
1994 struct perf_event *event = file->private_data;
1995 void (*func)(struct perf_event *);
1996 u32 flags = arg;
1997
1998 switch (cmd) {
1999 case PERF_EVENT_IOC_ENABLE:
2000 func = perf_event_enable;
2001 break;
2002 case PERF_EVENT_IOC_DISABLE:
2003 func = perf_event_disable;
2004 break;
2005 case PERF_EVENT_IOC_RESET:
2006 func = perf_event_reset;
2007 break;
2008
2009 case PERF_EVENT_IOC_REFRESH:
2010 return perf_event_refresh(event, arg);
2011
2012 case PERF_EVENT_IOC_PERIOD:
2013 return perf_event_period(event, (u64 __user *)arg);
2014
2015 case PERF_EVENT_IOC_SET_OUTPUT:
2016 return perf_event_set_output(event, arg);
2017
2018 default:
2019 return -ENOTTY;
2020 }
2021
2022 if (flags & PERF_IOC_FLAG_GROUP)
2023 perf_event_for_each(event, func);
2024 else
2025 perf_event_for_each_child(event, func);
2026
2027 return 0;
2028}
2029
2030int perf_event_task_enable(void)
2031{
2032 struct perf_event *event;
2033
2034 mutex_lock(&current->perf_event_mutex);
2035 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2036 perf_event_for_each_child(event, perf_event_enable);
2037 mutex_unlock(&current->perf_event_mutex);
2038
2039 return 0;
2040}
2041
2042int perf_event_task_disable(void)
2043{
2044 struct perf_event *event;
2045
2046 mutex_lock(&current->perf_event_mutex);
2047 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2048 perf_event_for_each_child(event, perf_event_disable);
2049 mutex_unlock(&current->perf_event_mutex);
2050
2051 return 0;
2052}
2053
2054#ifndef PERF_EVENT_INDEX_OFFSET
2055# define PERF_EVENT_INDEX_OFFSET 0
2056#endif
2057
2058static int perf_event_index(struct perf_event *event)
2059{
2060 if (event->state != PERF_EVENT_STATE_ACTIVE)
2061 return 0;
2062
2063 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2064}
2065
2066/*
2067 * Callers need to ensure there can be no nesting of this function, otherwise
2068 * the seqlock logic goes bad. We can not serialize this because the arch
2069 * code calls this from NMI context.
2070 */
2071void perf_event_update_userpage(struct perf_event *event)
2072{
2073 struct perf_event_mmap_page *userpg;
2074 struct perf_mmap_data *data;
2075
2076 rcu_read_lock();
2077 data = rcu_dereference(event->data);
2078 if (!data)
2079 goto unlock;
2080
2081 userpg = data->user_page;
2082
2083 /*
2084 * Disable preemption so as to not let the corresponding user-space
2085 * spin too long if we get preempted.
2086 */
2087 preempt_disable();
2088 ++userpg->lock;
2089 barrier();
2090 userpg->index = perf_event_index(event);
2091 userpg->offset = atomic64_read(&event->count);
2092 if (event->state == PERF_EVENT_STATE_ACTIVE)
2093 userpg->offset -= atomic64_read(&event->hw.prev_count);
2094
2095 userpg->time_enabled = event->total_time_enabled +
2096 atomic64_read(&event->child_total_time_enabled);
2097
2098 userpg->time_running = event->total_time_running +
2099 atomic64_read(&event->child_total_time_running);
2100
2101 barrier();
2102 ++userpg->lock;
2103 preempt_enable();
2104unlock:
2105 rcu_read_unlock();
2106}
2107
2108static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2109{
2110 struct perf_event *event = vma->vm_file->private_data;
2111 struct perf_mmap_data *data;
2112 int ret = VM_FAULT_SIGBUS;
2113
2114 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2115 if (vmf->pgoff == 0)
2116 ret = 0;
2117 return ret;
2118 }
2119
2120 rcu_read_lock();
2121 data = rcu_dereference(event->data);
2122 if (!data)
2123 goto unlock;
2124
2125 if (vmf->pgoff == 0) {
2126 vmf->page = virt_to_page(data->user_page);
2127 } else {
2128 int nr = vmf->pgoff - 1;
2129
2130 if ((unsigned)nr > data->nr_pages)
2131 goto unlock;
2132
2133 if (vmf->flags & FAULT_FLAG_WRITE)
2134 goto unlock;
2135
2136 vmf->page = virt_to_page(data->data_pages[nr]);
2137 }
2138
2139 get_page(vmf->page);
2140 vmf->page->mapping = vma->vm_file->f_mapping;
2141 vmf->page->index = vmf->pgoff;
2142
2143 ret = 0;
2144unlock:
2145 rcu_read_unlock();
2146
2147 return ret;
2148}
2149
2150static int perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2151{
2152 struct perf_mmap_data *data;
2153 unsigned long size;
2154 int i;
2155
2156 WARN_ON(atomic_read(&event->mmap_count));
2157
2158 size = sizeof(struct perf_mmap_data);
2159 size += nr_pages * sizeof(void *);
2160
2161 data = kzalloc(size, GFP_KERNEL);
2162 if (!data)
2163 goto fail;
2164
2165 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2166 if (!data->user_page)
2167 goto fail_user_page;
2168
2169 for (i = 0; i < nr_pages; i++) {
2170 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2171 if (!data->data_pages[i])
2172 goto fail_data_pages;
2173 }
2174
2175 data->nr_pages = nr_pages;
2176 atomic_set(&data->lock, -1);
2177
2178 if (event->attr.watermark) {
2179 data->watermark = min_t(long, PAGE_SIZE * nr_pages,
2180 event->attr.wakeup_watermark);
2181 }
2182 if (!data->watermark)
2183 data->watermark = max(PAGE_SIZE, PAGE_SIZE * nr_pages / 4);
2184
2185 rcu_assign_pointer(event->data, data);
2186
2187 return 0;
2188
2189fail_data_pages:
2190 for (i--; i >= 0; i--)
2191 free_page((unsigned long)data->data_pages[i]);
2192
2193 free_page((unsigned long)data->user_page);
2194
2195fail_user_page:
2196 kfree(data);
2197
2198fail:
2199 return -ENOMEM;
2200}
2201
2202static void perf_mmap_free_page(unsigned long addr)
2203{
2204 struct page *page = virt_to_page((void *)addr);
2205
2206 page->mapping = NULL;
2207 __free_page(page);
2208}
2209
2210static void __perf_mmap_data_free(struct rcu_head *rcu_head)
2211{
2212 struct perf_mmap_data *data;
2213 int i;
2214
2215 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2216
2217 perf_mmap_free_page((unsigned long)data->user_page);
2218 for (i = 0; i < data->nr_pages; i++)
2219 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2220
2221 kfree(data);
2222}
2223
2224static void perf_mmap_data_free(struct perf_event *event)
2225{
2226 struct perf_mmap_data *data = event->data;
2227
2228 WARN_ON(atomic_read(&event->mmap_count));
2229
2230 rcu_assign_pointer(event->data, NULL);
2231 call_rcu(&data->rcu_head, __perf_mmap_data_free);
2232}
2233
2234static void perf_mmap_open(struct vm_area_struct *vma)
2235{
2236 struct perf_event *event = vma->vm_file->private_data;
2237
2238 atomic_inc(&event->mmap_count);
2239}
2240
2241static void perf_mmap_close(struct vm_area_struct *vma)
2242{
2243 struct perf_event *event = vma->vm_file->private_data;
2244
2245 WARN_ON_ONCE(event->ctx->parent_ctx);
2246 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2247 struct user_struct *user = current_user();
2248
2249 atomic_long_sub(event->data->nr_pages + 1, &user->locked_vm);
2250 vma->vm_mm->locked_vm -= event->data->nr_locked;
2251 perf_mmap_data_free(event);
2252 mutex_unlock(&event->mmap_mutex);
2253 }
2254}
2255
2256static struct vm_operations_struct perf_mmap_vmops = {
2257 .open = perf_mmap_open,
2258 .close = perf_mmap_close,
2259 .fault = perf_mmap_fault,
2260 .page_mkwrite = perf_mmap_fault,
2261};
2262
2263static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2264{
2265 struct perf_event *event = file->private_data;
2266 unsigned long user_locked, user_lock_limit;
2267 struct user_struct *user = current_user();
2268 unsigned long locked, lock_limit;
2269 unsigned long vma_size;
2270 unsigned long nr_pages;
2271 long user_extra, extra;
2272 int ret = 0;
2273
2274 if (!(vma->vm_flags & VM_SHARED))
2275 return -EINVAL;
2276
2277 vma_size = vma->vm_end - vma->vm_start;
2278 nr_pages = (vma_size / PAGE_SIZE) - 1;
2279
2280 /*
2281 * If we have data pages ensure they're a power-of-two number, so we
2282 * can do bitmasks instead of modulo.
2283 */
2284 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2285 return -EINVAL;
2286
2287 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2288 return -EINVAL;
2289
2290 if (vma->vm_pgoff != 0)
2291 return -EINVAL;
2292
2293 WARN_ON_ONCE(event->ctx->parent_ctx);
2294 mutex_lock(&event->mmap_mutex);
2295 if (event->output) {
2296 ret = -EINVAL;
2297 goto unlock;
2298 }
2299
2300 if (atomic_inc_not_zero(&event->mmap_count)) {
2301 if (nr_pages != event->data->nr_pages)
2302 ret = -EINVAL;
2303 goto unlock;
2304 }
2305
2306 user_extra = nr_pages + 1;
2307 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2308
2309 /*
2310 * Increase the limit linearly with more CPUs:
2311 */
2312 user_lock_limit *= num_online_cpus();
2313
2314 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2315
2316 extra = 0;
2317 if (user_locked > user_lock_limit)
2318 extra = user_locked - user_lock_limit;
2319
2320 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2321 lock_limit >>= PAGE_SHIFT;
2322 locked = vma->vm_mm->locked_vm + extra;
2323
2324 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2325 !capable(CAP_IPC_LOCK)) {
2326 ret = -EPERM;
2327 goto unlock;
2328 }
2329
2330 WARN_ON(event->data);
2331 ret = perf_mmap_data_alloc(event, nr_pages);
2332 if (ret)
2333 goto unlock;
2334
2335 atomic_set(&event->mmap_count, 1);
2336 atomic_long_add(user_extra, &user->locked_vm);
2337 vma->vm_mm->locked_vm += extra;
2338 event->data->nr_locked = extra;
2339 if (vma->vm_flags & VM_WRITE)
2340 event->data->writable = 1;
2341
2342unlock:
2343 mutex_unlock(&event->mmap_mutex);
2344
2345 vma->vm_flags |= VM_RESERVED;
2346 vma->vm_ops = &perf_mmap_vmops;
2347
2348 return ret;
2349}
2350
2351static int perf_fasync(int fd, struct file *filp, int on)
2352{
2353 struct inode *inode = filp->f_path.dentry->d_inode;
2354 struct perf_event *event = filp->private_data;
2355 int retval;
2356
2357 mutex_lock(&inode->i_mutex);
2358 retval = fasync_helper(fd, filp, on, &event->fasync);
2359 mutex_unlock(&inode->i_mutex);
2360
2361 if (retval < 0)
2362 return retval;
2363
2364 return 0;
2365}
2366
2367static const struct file_operations perf_fops = {
2368 .release = perf_release,
2369 .read = perf_read,
2370 .poll = perf_poll,
2371 .unlocked_ioctl = perf_ioctl,
2372 .compat_ioctl = perf_ioctl,
2373 .mmap = perf_mmap,
2374 .fasync = perf_fasync,
2375};
2376
2377/*
2378 * Perf event wakeup
2379 *
2380 * If there's data, ensure we set the poll() state and publish everything
2381 * to user-space before waking everybody up.
2382 */
2383
2384void perf_event_wakeup(struct perf_event *event)
2385{
2386 wake_up_all(&event->waitq);
2387
2388 if (event->pending_kill) {
2389 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2390 event->pending_kill = 0;
2391 }
2392}
2393
2394/*
2395 * Pending wakeups
2396 *
2397 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2398 *
2399 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2400 * single linked list and use cmpxchg() to add entries lockless.
2401 */
2402
2403static void perf_pending_event(struct perf_pending_entry *entry)
2404{
2405 struct perf_event *event = container_of(entry,
2406 struct perf_event, pending);
2407
2408 if (event->pending_disable) {
2409 event->pending_disable = 0;
2410 __perf_event_disable(event);
2411 }
2412
2413 if (event->pending_wakeup) {
2414 event->pending_wakeup = 0;
2415 perf_event_wakeup(event);
2416 }
2417}
2418
2419#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2420
2421static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2422 PENDING_TAIL,
2423};
2424
2425static void perf_pending_queue(struct perf_pending_entry *entry,
2426 void (*func)(struct perf_pending_entry *))
2427{
2428 struct perf_pending_entry **head;
2429
2430 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2431 return;
2432
2433 entry->func = func;
2434
2435 head = &get_cpu_var(perf_pending_head);
2436
2437 do {
2438 entry->next = *head;
2439 } while (cmpxchg(head, entry->next, entry) != entry->next);
2440
2441 set_perf_event_pending();
2442
2443 put_cpu_var(perf_pending_head);
2444}
2445
2446static int __perf_pending_run(void)
2447{
2448 struct perf_pending_entry *list;
2449 int nr = 0;
2450
2451 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2452 while (list != PENDING_TAIL) {
2453 void (*func)(struct perf_pending_entry *);
2454 struct perf_pending_entry *entry = list;
2455
2456 list = list->next;
2457
2458 func = entry->func;
2459 entry->next = NULL;
2460 /*
2461 * Ensure we observe the unqueue before we issue the wakeup,
2462 * so that we won't be waiting forever.
2463 * -- see perf_not_pending().
2464 */
2465 smp_wmb();
2466
2467 func(entry);
2468 nr++;
2469 }
2470
2471 return nr;
2472}
2473
2474static inline int perf_not_pending(struct perf_event *event)
2475{
2476 /*
2477 * If we flush on whatever cpu we run, there is a chance we don't
2478 * need to wait.
2479 */
2480 get_cpu();
2481 __perf_pending_run();
2482 put_cpu();
2483
2484 /*
2485 * Ensure we see the proper queue state before going to sleep
2486 * so that we do not miss the wakeup. -- see perf_pending_handle()
2487 */
2488 smp_rmb();
2489 return event->pending.next == NULL;
2490}
2491
2492static void perf_pending_sync(struct perf_event *event)
2493{
2494 wait_event(event->waitq, perf_not_pending(event));
2495}
2496
2497void perf_event_do_pending(void)
2498{
2499 __perf_pending_run();
2500}
2501
2502/*
2503 * Callchain support -- arch specific
2504 */
2505
2506__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2507{
2508 return NULL;
2509}
2510
2511/*
2512 * Output
2513 */
2514static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2515 unsigned long offset, unsigned long head)
2516{
2517 unsigned long mask;
2518
2519 if (!data->writable)
2520 return true;
2521
2522 mask = (data->nr_pages << PAGE_SHIFT) - 1;
2523
2524 offset = (offset - tail) & mask;
2525 head = (head - tail) & mask;
2526
2527 if ((int)(head - offset) < 0)
2528 return false;
2529
2530 return true;
2531}
2532
2533static void perf_output_wakeup(struct perf_output_handle *handle)
2534{
2535 atomic_set(&handle->data->poll, POLL_IN);
2536
2537 if (handle->nmi) {
2538 handle->event->pending_wakeup = 1;
2539 perf_pending_queue(&handle->event->pending,
2540 perf_pending_event);
2541 } else
2542 perf_event_wakeup(handle->event);
2543}
2544
2545/*
2546 * Curious locking construct.
2547 *
2548 * We need to ensure a later event_id doesn't publish a head when a former
2549 * event_id isn't done writing. However since we need to deal with NMIs we
2550 * cannot fully serialize things.
2551 *
2552 * What we do is serialize between CPUs so we only have to deal with NMI
2553 * nesting on a single CPU.
2554 *
2555 * We only publish the head (and generate a wakeup) when the outer-most
2556 * event_id completes.
2557 */
2558static void perf_output_lock(struct perf_output_handle *handle)
2559{
2560 struct perf_mmap_data *data = handle->data;
2561 int cpu;
2562
2563 handle->locked = 0;
2564
2565 local_irq_save(handle->flags);
2566 cpu = smp_processor_id();
2567
2568 if (in_nmi() && atomic_read(&data->lock) == cpu)
2569 return;
2570
2571 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2572 cpu_relax();
2573
2574 handle->locked = 1;
2575}
2576
2577static void perf_output_unlock(struct perf_output_handle *handle)
2578{
2579 struct perf_mmap_data *data = handle->data;
2580 unsigned long head;
2581 int cpu;
2582
2583 data->done_head = data->head;
2584
2585 if (!handle->locked)
2586 goto out;
2587
2588again:
2589 /*
2590 * The xchg implies a full barrier that ensures all writes are done
2591 * before we publish the new head, matched by a rmb() in userspace when
2592 * reading this position.
2593 */
2594 while ((head = atomic_long_xchg(&data->done_head, 0)))
2595 data->user_page->data_head = head;
2596
2597 /*
2598 * NMI can happen here, which means we can miss a done_head update.
2599 */
2600
2601 cpu = atomic_xchg(&data->lock, -1);
2602 WARN_ON_ONCE(cpu != smp_processor_id());
2603
2604 /*
2605 * Therefore we have to validate we did not indeed do so.
2606 */
2607 if (unlikely(atomic_long_read(&data->done_head))) {
2608 /*
2609 * Since we had it locked, we can lock it again.
2610 */
2611 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2612 cpu_relax();
2613
2614 goto again;
2615 }
2616
2617 if (atomic_xchg(&data->wakeup, 0))
2618 perf_output_wakeup(handle);
2619out:
2620 local_irq_restore(handle->flags);
2621}
2622
2623void perf_output_copy(struct perf_output_handle *handle,
2624 const void *buf, unsigned int len)
2625{
2626 unsigned int pages_mask;
2627 unsigned int offset;
2628 unsigned int size;
2629 void **pages;
2630
2631 offset = handle->offset;
2632 pages_mask = handle->data->nr_pages - 1;
2633 pages = handle->data->data_pages;
2634
2635 do {
2636 unsigned int page_offset;
2637 int nr;
2638
2639 nr = (offset >> PAGE_SHIFT) & pages_mask;
2640 page_offset = offset & (PAGE_SIZE - 1);
2641 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2642
2643 memcpy(pages[nr] + page_offset, buf, size);
2644
2645 len -= size;
2646 buf += size;
2647 offset += size;
2648 } while (len);
2649
2650 handle->offset = offset;
2651
2652 /*
2653 * Check we didn't copy past our reservation window, taking the
2654 * possible unsigned int wrap into account.
2655 */
2656 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2657}
2658
2659int perf_output_begin(struct perf_output_handle *handle,
2660 struct perf_event *event, unsigned int size,
2661 int nmi, int sample)
2662{
2663 struct perf_event *output_event;
2664 struct perf_mmap_data *data;
2665 unsigned long tail, offset, head;
2666 int have_lost;
2667 struct {
2668 struct perf_event_header header;
2669 u64 id;
2670 u64 lost;
2671 } lost_event;
2672
2673 rcu_read_lock();
2674 /*
2675 * For inherited events we send all the output towards the parent.
2676 */
2677 if (event->parent)
2678 event = event->parent;
2679
2680 output_event = rcu_dereference(event->output);
2681 if (output_event)
2682 event = output_event;
2683
2684 data = rcu_dereference(event->data);
2685 if (!data)
2686 goto out;
2687
2688 handle->data = data;
2689 handle->event = event;
2690 handle->nmi = nmi;
2691 handle->sample = sample;
2692
2693 if (!data->nr_pages)
2694 goto fail;
2695
2696 have_lost = atomic_read(&data->lost);
2697 if (have_lost)
2698 size += sizeof(lost_event);
2699
2700 perf_output_lock(handle);
2701
2702 do {
2703 /*
2704 * Userspace could choose to issue a mb() before updating the
2705 * tail pointer. So that all reads will be completed before the
2706 * write is issued.
2707 */
2708 tail = ACCESS_ONCE(data->user_page->data_tail);
2709 smp_rmb();
2710 offset = head = atomic_long_read(&data->head);
2711 head += size;
2712 if (unlikely(!perf_output_space(data, tail, offset, head)))
2713 goto fail;
2714 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2715
2716 handle->offset = offset;
2717 handle->head = head;
2718
2719 if (head - tail > data->watermark)
2720 atomic_set(&data->wakeup, 1);
2721
2722 if (have_lost) {
2723 lost_event.header.type = PERF_RECORD_LOST;
2724 lost_event.header.misc = 0;
2725 lost_event.header.size = sizeof(lost_event);
2726 lost_event.id = event->id;
2727 lost_event.lost = atomic_xchg(&data->lost, 0);
2728
2729 perf_output_put(handle, lost_event);
2730 }
2731
2732 return 0;
2733
2734fail:
2735 atomic_inc(&data->lost);
2736 perf_output_unlock(handle);
2737out:
2738 rcu_read_unlock();
2739
2740 return -ENOSPC;
2741}
2742
2743void perf_output_end(struct perf_output_handle *handle)
2744{
2745 struct perf_event *event = handle->event;
2746 struct perf_mmap_data *data = handle->data;
2747
2748 int wakeup_events = event->attr.wakeup_events;
2749
2750 if (handle->sample && wakeup_events) {
2751 int events = atomic_inc_return(&data->events);
2752 if (events >= wakeup_events) {
2753 atomic_sub(wakeup_events, &data->events);
2754 atomic_set(&data->wakeup, 1);
2755 }
2756 }
2757
2758 perf_output_unlock(handle);
2759 rcu_read_unlock();
2760}
2761
2762static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2763{
2764 /*
2765 * only top level events have the pid namespace they were created in
2766 */
2767 if (event->parent)
2768 event = event->parent;
2769
2770 return task_tgid_nr_ns(p, event->ns);
2771}
2772
2773static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2774{
2775 /*
2776 * only top level events have the pid namespace they were created in
2777 */
2778 if (event->parent)
2779 event = event->parent;
2780
2781 return task_pid_nr_ns(p, event->ns);
2782}
2783
2784static void perf_output_read_one(struct perf_output_handle *handle,
2785 struct perf_event *event)
2786{
2787 u64 read_format = event->attr.read_format;
2788 u64 values[4];
2789 int n = 0;
2790
2791 values[n++] = atomic64_read(&event->count);
2792 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2793 values[n++] = event->total_time_enabled +
2794 atomic64_read(&event->child_total_time_enabled);
2795 }
2796 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2797 values[n++] = event->total_time_running +
2798 atomic64_read(&event->child_total_time_running);
2799 }
2800 if (read_format & PERF_FORMAT_ID)
2801 values[n++] = primary_event_id(event);
2802
2803 perf_output_copy(handle, values, n * sizeof(u64));
2804}
2805
2806/*
2807 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2808 */
2809static void perf_output_read_group(struct perf_output_handle *handle,
2810 struct perf_event *event)
2811{
2812 struct perf_event *leader = event->group_leader, *sub;
2813 u64 read_format = event->attr.read_format;
2814 u64 values[5];
2815 int n = 0;
2816
2817 values[n++] = 1 + leader->nr_siblings;
2818
2819 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2820 values[n++] = leader->total_time_enabled;
2821
2822 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2823 values[n++] = leader->total_time_running;
2824
2825 if (leader != event)
2826 leader->pmu->read(leader);
2827
2828 values[n++] = atomic64_read(&leader->count);
2829 if (read_format & PERF_FORMAT_ID)
2830 values[n++] = primary_event_id(leader);
2831
2832 perf_output_copy(handle, values, n * sizeof(u64));
2833
2834 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2835 n = 0;
2836
2837 if (sub != event)
2838 sub->pmu->read(sub);
2839
2840 values[n++] = atomic64_read(&sub->count);
2841 if (read_format & PERF_FORMAT_ID)
2842 values[n++] = primary_event_id(sub);
2843
2844 perf_output_copy(handle, values, n * sizeof(u64));
2845 }
2846}
2847
2848static void perf_output_read(struct perf_output_handle *handle,
2849 struct perf_event *event)
2850{
2851 if (event->attr.read_format & PERF_FORMAT_GROUP)
2852 perf_output_read_group(handle, event);
2853 else
2854 perf_output_read_one(handle, event);
2855}
2856
2857void perf_output_sample(struct perf_output_handle *handle,
2858 struct perf_event_header *header,
2859 struct perf_sample_data *data,
2860 struct perf_event *event)
2861{
2862 u64 sample_type = data->type;
2863
2864 perf_output_put(handle, *header);
2865
2866 if (sample_type & PERF_SAMPLE_IP)
2867 perf_output_put(handle, data->ip);
2868
2869 if (sample_type & PERF_SAMPLE_TID)
2870 perf_output_put(handle, data->tid_entry);
2871
2872 if (sample_type & PERF_SAMPLE_TIME)
2873 perf_output_put(handle, data->time);
2874
2875 if (sample_type & PERF_SAMPLE_ADDR)
2876 perf_output_put(handle, data->addr);
2877
2878 if (sample_type & PERF_SAMPLE_ID)
2879 perf_output_put(handle, data->id);
2880
2881 if (sample_type & PERF_SAMPLE_STREAM_ID)
2882 perf_output_put(handle, data->stream_id);
2883
2884 if (sample_type & PERF_SAMPLE_CPU)
2885 perf_output_put(handle, data->cpu_entry);
2886
2887 if (sample_type & PERF_SAMPLE_PERIOD)
2888 perf_output_put(handle, data->period);
2889
2890 if (sample_type & PERF_SAMPLE_READ)
2891 perf_output_read(handle, event);
2892
2893 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2894 if (data->callchain) {
2895 int size = 1;
2896
2897 if (data->callchain)
2898 size += data->callchain->nr;
2899
2900 size *= sizeof(u64);
2901
2902 perf_output_copy(handle, data->callchain, size);
2903 } else {
2904 u64 nr = 0;
2905 perf_output_put(handle, nr);
2906 }
2907 }
2908
2909 if (sample_type & PERF_SAMPLE_RAW) {
2910 if (data->raw) {
2911 perf_output_put(handle, data->raw->size);
2912 perf_output_copy(handle, data->raw->data,
2913 data->raw->size);
2914 } else {
2915 struct {
2916 u32 size;
2917 u32 data;
2918 } raw = {
2919 .size = sizeof(u32),
2920 .data = 0,
2921 };
2922 perf_output_put(handle, raw);
2923 }
2924 }
2925}
2926
2927void perf_prepare_sample(struct perf_event_header *header,
2928 struct perf_sample_data *data,
2929 struct perf_event *event,
2930 struct pt_regs *regs)
2931{
2932 u64 sample_type = event->attr.sample_type;
2933
2934 data->type = sample_type;
2935
2936 header->type = PERF_RECORD_SAMPLE;
2937 header->size = sizeof(*header);
2938
2939 header->misc = 0;
2940 header->misc |= perf_misc_flags(regs);
2941
2942 if (sample_type & PERF_SAMPLE_IP) {
2943 data->ip = perf_instruction_pointer(regs);
2944
2945 header->size += sizeof(data->ip);
2946 }
2947
2948 if (sample_type & PERF_SAMPLE_TID) {
2949 /* namespace issues */
2950 data->tid_entry.pid = perf_event_pid(event, current);
2951 data->tid_entry.tid = perf_event_tid(event, current);
2952
2953 header->size += sizeof(data->tid_entry);
2954 }
2955
2956 if (sample_type & PERF_SAMPLE_TIME) {
2957 data->time = perf_clock();
2958
2959 header->size += sizeof(data->time);
2960 }
2961
2962 if (sample_type & PERF_SAMPLE_ADDR)
2963 header->size += sizeof(data->addr);
2964
2965 if (sample_type & PERF_SAMPLE_ID) {
2966 data->id = primary_event_id(event);
2967
2968 header->size += sizeof(data->id);
2969 }
2970
2971 if (sample_type & PERF_SAMPLE_STREAM_ID) {
2972 data->stream_id = event->id;
2973
2974 header->size += sizeof(data->stream_id);
2975 }
2976
2977 if (sample_type & PERF_SAMPLE_CPU) {
2978 data->cpu_entry.cpu = raw_smp_processor_id();
2979 data->cpu_entry.reserved = 0;
2980
2981 header->size += sizeof(data->cpu_entry);
2982 }
2983
2984 if (sample_type & PERF_SAMPLE_PERIOD)
2985 header->size += sizeof(data->period);
2986
2987 if (sample_type & PERF_SAMPLE_READ)
2988 header->size += perf_event_read_size(event);
2989
2990 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2991 int size = 1;
2992
2993 data->callchain = perf_callchain(regs);
2994
2995 if (data->callchain)
2996 size += data->callchain->nr;
2997
2998 header->size += size * sizeof(u64);
2999 }
3000
3001 if (sample_type & PERF_SAMPLE_RAW) {
3002 int size = sizeof(u32);
3003
3004 if (data->raw)
3005 size += data->raw->size;
3006 else
3007 size += sizeof(u32);
3008
3009 WARN_ON_ONCE(size & (sizeof(u64)-1));
3010 header->size += size;
3011 }
3012}
3013
3014static void perf_event_output(struct perf_event *event, int nmi,
3015 struct perf_sample_data *data,
3016 struct pt_regs *regs)
3017{
3018 struct perf_output_handle handle;
3019 struct perf_event_header header;
3020
3021 perf_prepare_sample(&header, data, event, regs);
3022
3023 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3024 return;
3025
3026 perf_output_sample(&handle, &header, data, event);
3027
3028 perf_output_end(&handle);
3029}
3030
3031/*
3032 * read event_id
3033 */
3034
3035struct perf_read_event {
3036 struct perf_event_header header;
3037
3038 u32 pid;
3039 u32 tid;
3040};
3041
3042static void
3043perf_event_read_event(struct perf_event *event,
3044 struct task_struct *task)
3045{
3046 struct perf_output_handle handle;
3047 struct perf_read_event read_event = {
3048 .header = {
3049 .type = PERF_RECORD_READ,
3050 .misc = 0,
3051 .size = sizeof(read_event) + perf_event_read_size(event),
3052 },
3053 .pid = perf_event_pid(event, task),
3054 .tid = perf_event_tid(event, task),
3055 };
3056 int ret;
3057
3058 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3059 if (ret)
3060 return;
3061
3062 perf_output_put(&handle, read_event);
3063 perf_output_read(&handle, event);
3064
3065 perf_output_end(&handle);
3066}
3067
3068/*
3069 * task tracking -- fork/exit
3070 *
3071 * enabled by: attr.comm | attr.mmap | attr.task
3072 */
3073
3074struct perf_task_event {
3075 struct task_struct *task;
3076 struct perf_event_context *task_ctx;
3077
3078 struct {
3079 struct perf_event_header header;
3080
3081 u32 pid;
3082 u32 ppid;
3083 u32 tid;
3084 u32 ptid;
3085 u64 time;
3086 } event_id;
3087};
3088
3089static void perf_event_task_output(struct perf_event *event,
3090 struct perf_task_event *task_event)
3091{
3092 struct perf_output_handle handle;
3093 int size;
3094 struct task_struct *task = task_event->task;
3095 int ret;
3096
3097 size = task_event->event_id.header.size;
3098 ret = perf_output_begin(&handle, event, size, 0, 0);
3099
3100 if (ret)
3101 return;
3102
3103 task_event->event_id.pid = perf_event_pid(event, task);
3104 task_event->event_id.ppid = perf_event_pid(event, current);
3105
3106 task_event->event_id.tid = perf_event_tid(event, task);
3107 task_event->event_id.ptid = perf_event_tid(event, current);
3108
3109 task_event->event_id.time = perf_clock();
3110
3111 perf_output_put(&handle, task_event->event_id);
3112
3113 perf_output_end(&handle);
3114}
3115
3116static int perf_event_task_match(struct perf_event *event)
3117{
3118 if (event->attr.comm || event->attr.mmap || event->attr.task)
3119 return 1;
3120
3121 return 0;
3122}
3123
3124static void perf_event_task_ctx(struct perf_event_context *ctx,
3125 struct perf_task_event *task_event)
3126{
3127 struct perf_event *event;
3128
3129 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3130 return;
3131
3132 rcu_read_lock();
3133 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3134 if (perf_event_task_match(event))
3135 perf_event_task_output(event, task_event);
3136 }
3137 rcu_read_unlock();
3138}
3139
3140static void perf_event_task_event(struct perf_task_event *task_event)
3141{
3142 struct perf_cpu_context *cpuctx;
3143 struct perf_event_context *ctx = task_event->task_ctx;
3144
3145 cpuctx = &get_cpu_var(perf_cpu_context);
3146 perf_event_task_ctx(&cpuctx->ctx, task_event);
3147 put_cpu_var(perf_cpu_context);
3148
3149 rcu_read_lock();
3150 if (!ctx)
3151 ctx = rcu_dereference(task_event->task->perf_event_ctxp);
3152 if (ctx)
3153 perf_event_task_ctx(ctx, task_event);
3154 rcu_read_unlock();
3155}
3156
3157static void perf_event_task(struct task_struct *task,
3158 struct perf_event_context *task_ctx,
3159 int new)
3160{
3161 struct perf_task_event task_event;
3162
3163 if (!atomic_read(&nr_comm_events) &&
3164 !atomic_read(&nr_mmap_events) &&
3165 !atomic_read(&nr_task_events))
3166 return;
3167
3168 task_event = (struct perf_task_event){
3169 .task = task,
3170 .task_ctx = task_ctx,
3171 .event_id = {
3172 .header = {
3173 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3174 .misc = 0,
3175 .size = sizeof(task_event.event_id),
3176 },
3177 /* .pid */
3178 /* .ppid */
3179 /* .tid */
3180 /* .ptid */
3181 },
3182 };
3183
3184 perf_event_task_event(&task_event);
3185}
3186
3187void perf_event_fork(struct task_struct *task)
3188{
3189 perf_event_task(task, NULL, 1);
3190}
3191
3192/*
3193 * comm tracking
3194 */
3195
3196struct perf_comm_event {
3197 struct task_struct *task;
3198 char *comm;
3199 int comm_size;
3200
3201 struct {
3202 struct perf_event_header header;
3203
3204 u32 pid;
3205 u32 tid;
3206 } event_id;
3207};
3208
3209static void perf_event_comm_output(struct perf_event *event,
3210 struct perf_comm_event *comm_event)
3211{
3212 struct perf_output_handle handle;
3213 int size = comm_event->event_id.header.size;
3214 int ret = perf_output_begin(&handle, event, size, 0, 0);
3215
3216 if (ret)
3217 return;
3218
3219 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3220 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3221
3222 perf_output_put(&handle, comm_event->event_id);
3223 perf_output_copy(&handle, comm_event->comm,
3224 comm_event->comm_size);
3225 perf_output_end(&handle);
3226}
3227
3228static int perf_event_comm_match(struct perf_event *event)
3229{
3230 if (event->attr.comm)
3231 return 1;
3232
3233 return 0;
3234}
3235
3236static void perf_event_comm_ctx(struct perf_event_context *ctx,
3237 struct perf_comm_event *comm_event)
3238{
3239 struct perf_event *event;
3240
3241 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3242 return;
3243
3244 rcu_read_lock();
3245 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3246 if (perf_event_comm_match(event))
3247 perf_event_comm_output(event, comm_event);
3248 }
3249 rcu_read_unlock();
3250}
3251
3252static void perf_event_comm_event(struct perf_comm_event *comm_event)
3253{
3254 struct perf_cpu_context *cpuctx;
3255 struct perf_event_context *ctx;
3256 unsigned int size;
3257 char comm[TASK_COMM_LEN];
3258
3259 memset(comm, 0, sizeof(comm));
3260 strncpy(comm, comm_event->task->comm, sizeof(comm));
3261 size = ALIGN(strlen(comm)+1, sizeof(u64));
3262
3263 comm_event->comm = comm;
3264 comm_event->comm_size = size;
3265
3266 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3267
3268 cpuctx = &get_cpu_var(perf_cpu_context);
3269 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3270 put_cpu_var(perf_cpu_context);
3271
3272 rcu_read_lock();
3273 /*
3274 * doesn't really matter which of the child contexts the
3275 * events ends up in.
3276 */
3277 ctx = rcu_dereference(current->perf_event_ctxp);
3278 if (ctx)
3279 perf_event_comm_ctx(ctx, comm_event);
3280 rcu_read_unlock();
3281}
3282
3283void perf_event_comm(struct task_struct *task)
3284{
3285 struct perf_comm_event comm_event;
3286
3287 if (task->perf_event_ctxp)
3288 perf_event_enable_on_exec(task);
3289
3290 if (!atomic_read(&nr_comm_events))
3291 return;
3292
3293 comm_event = (struct perf_comm_event){
3294 .task = task,
3295 /* .comm */
3296 /* .comm_size */
3297 .event_id = {
3298 .header = {
3299 .type = PERF_RECORD_COMM,
3300 .misc = 0,
3301 /* .size */
3302 },
3303 /* .pid */
3304 /* .tid */
3305 },
3306 };
3307
3308 perf_event_comm_event(&comm_event);
3309}
3310
3311/*
3312 * mmap tracking
3313 */
3314
3315struct perf_mmap_event {
3316 struct vm_area_struct *vma;
3317
3318 const char *file_name;
3319 int file_size;
3320
3321 struct {
3322 struct perf_event_header header;
3323
3324 u32 pid;
3325 u32 tid;
3326 u64 start;
3327 u64 len;
3328 u64 pgoff;
3329 } event_id;
3330};
3331
3332static void perf_event_mmap_output(struct perf_event *event,
3333 struct perf_mmap_event *mmap_event)
3334{
3335 struct perf_output_handle handle;
3336 int size = mmap_event->event_id.header.size;
3337 int ret = perf_output_begin(&handle, event, size, 0, 0);
3338
3339 if (ret)
3340 return;
3341
3342 mmap_event->event_id.pid = perf_event_pid(event, current);
3343 mmap_event->event_id.tid = perf_event_tid(event, current);
3344
3345 perf_output_put(&handle, mmap_event->event_id);
3346 perf_output_copy(&handle, mmap_event->file_name,
3347 mmap_event->file_size);
3348 perf_output_end(&handle);
3349}
3350
3351static int perf_event_mmap_match(struct perf_event *event,
3352 struct perf_mmap_event *mmap_event)
3353{
3354 if (event->attr.mmap)
3355 return 1;
3356
3357 return 0;
3358}
3359
3360static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3361 struct perf_mmap_event *mmap_event)
3362{
3363 struct perf_event *event;
3364
3365 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3366 return;
3367
3368 rcu_read_lock();
3369 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3370 if (perf_event_mmap_match(event, mmap_event))
3371 perf_event_mmap_output(event, mmap_event);
3372 }
3373 rcu_read_unlock();
3374}
3375
3376static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3377{
3378 struct perf_cpu_context *cpuctx;
3379 struct perf_event_context *ctx;
3380 struct vm_area_struct *vma = mmap_event->vma;
3381 struct file *file = vma->vm_file;
3382 unsigned int size;
3383 char tmp[16];
3384 char *buf = NULL;
3385 const char *name;
3386
3387 memset(tmp, 0, sizeof(tmp));
3388
3389 if (file) {
3390 /*
3391 * d_path works from the end of the buffer backwards, so we
3392 * need to add enough zero bytes after the string to handle
3393 * the 64bit alignment we do later.
3394 */
3395 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3396 if (!buf) {
3397 name = strncpy(tmp, "//enomem", sizeof(tmp));
3398 goto got_name;
3399 }
3400 name = d_path(&file->f_path, buf, PATH_MAX);
3401 if (IS_ERR(name)) {
3402 name = strncpy(tmp, "//toolong", sizeof(tmp));
3403 goto got_name;
3404 }
3405 } else {
3406 if (arch_vma_name(mmap_event->vma)) {
3407 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3408 sizeof(tmp));
3409 goto got_name;
3410 }
3411
3412 if (!vma->vm_mm) {
3413 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3414 goto got_name;
3415 }
3416
3417 name = strncpy(tmp, "//anon", sizeof(tmp));
3418 goto got_name;
3419 }
3420
3421got_name:
3422 size = ALIGN(strlen(name)+1, sizeof(u64));
3423
3424 mmap_event->file_name = name;
3425 mmap_event->file_size = size;
3426
3427 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3428
3429 cpuctx = &get_cpu_var(perf_cpu_context);
3430 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3431 put_cpu_var(perf_cpu_context);
3432
3433 rcu_read_lock();
3434 /*
3435 * doesn't really matter which of the child contexts the
3436 * events ends up in.
3437 */
3438 ctx = rcu_dereference(current->perf_event_ctxp);
3439 if (ctx)
3440 perf_event_mmap_ctx(ctx, mmap_event);
3441 rcu_read_unlock();
3442
3443 kfree(buf);
3444}
3445
3446void __perf_event_mmap(struct vm_area_struct *vma)
3447{
3448 struct perf_mmap_event mmap_event;
3449
3450 if (!atomic_read(&nr_mmap_events))
3451 return;
3452
3453 mmap_event = (struct perf_mmap_event){
3454 .vma = vma,
3455 /* .file_name */
3456 /* .file_size */
3457 .event_id = {
3458 .header = {
3459 .type = PERF_RECORD_MMAP,
3460 .misc = 0,
3461 /* .size */
3462 },
3463 /* .pid */
3464 /* .tid */
3465 .start = vma->vm_start,
3466 .len = vma->vm_end - vma->vm_start,
3467 .pgoff = vma->vm_pgoff,
3468 },
3469 };
3470
3471 perf_event_mmap_event(&mmap_event);
3472}
3473
3474/*
3475 * IRQ throttle logging
3476 */
3477
3478static void perf_log_throttle(struct perf_event *event, int enable)
3479{
3480 struct perf_output_handle handle;
3481 int ret;
3482
3483 struct {
3484 struct perf_event_header header;
3485 u64 time;
3486 u64 id;
3487 u64 stream_id;
3488 } throttle_event = {
3489 .header = {
3490 .type = PERF_RECORD_THROTTLE,
3491 .misc = 0,
3492 .size = sizeof(throttle_event),
3493 },
3494 .time = perf_clock(),
3495 .id = primary_event_id(event),
3496 .stream_id = event->id,
3497 };
3498
3499 if (enable)
3500 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3501
3502 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3503 if (ret)
3504 return;
3505
3506 perf_output_put(&handle, throttle_event);
3507 perf_output_end(&handle);
3508}
3509
3510/*
3511 * Generic event overflow handling, sampling.
3512 */
3513
3514static int __perf_event_overflow(struct perf_event *event, int nmi,
3515 int throttle, struct perf_sample_data *data,
3516 struct pt_regs *regs)
3517{
3518 int events = atomic_read(&event->event_limit);
3519 struct hw_perf_event *hwc = &event->hw;
3520 int ret = 0;
3521
3522 throttle = (throttle && event->pmu->unthrottle != NULL);
3523
3524 if (!throttle) {
3525 hwc->interrupts++;
3526 } else {
3527 if (hwc->interrupts != MAX_INTERRUPTS) {
3528 hwc->interrupts++;
3529 if (HZ * hwc->interrupts >
3530 (u64)sysctl_perf_event_sample_rate) {
3531 hwc->interrupts = MAX_INTERRUPTS;
3532 perf_log_throttle(event, 0);
3533 ret = 1;
3534 }
3535 } else {
3536 /*
3537 * Keep re-disabling events even though on the previous
3538 * pass we disabled it - just in case we raced with a
3539 * sched-in and the event got enabled again:
3540 */
3541 ret = 1;
3542 }
3543 }
3544
3545 if (event->attr.freq) {
3546 u64 now = perf_clock();
3547 s64 delta = now - hwc->freq_stamp;
3548
3549 hwc->freq_stamp = now;
3550
3551 if (delta > 0 && delta < TICK_NSEC)
3552 perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3553 }
3554
3555 /*
3556 * XXX event_limit might not quite work as expected on inherited
3557 * events
3558 */
3559
3560 event->pending_kill = POLL_IN;
3561 if (events && atomic_dec_and_test(&event->event_limit)) {
3562 ret = 1;
3563 event->pending_kill = POLL_HUP;
3564 if (nmi) {
3565 event->pending_disable = 1;
3566 perf_pending_queue(&event->pending,
3567 perf_pending_event);
3568 } else
3569 perf_event_disable(event);
3570 }
3571
3572 perf_event_output(event, nmi, data, regs);
3573 return ret;
3574}
3575
3576int perf_event_overflow(struct perf_event *event, int nmi,
3577 struct perf_sample_data *data,
3578 struct pt_regs *regs)
3579{
3580 return __perf_event_overflow(event, nmi, 1, data, regs);
3581}
3582
3583/*
3584 * Generic software event infrastructure
3585 */
3586
3587/*
3588 * We directly increment event->count and keep a second value in
3589 * event->hw.period_left to count intervals. This period event
3590 * is kept in the range [-sample_period, 0] so that we can use the
3591 * sign as trigger.
3592 */
3593
3594static u64 perf_swevent_set_period(struct perf_event *event)
3595{
3596 struct hw_perf_event *hwc = &event->hw;
3597 u64 period = hwc->last_period;
3598 u64 nr, offset;
3599 s64 old, val;
3600
3601 hwc->last_period = hwc->sample_period;
3602
3603again:
3604 old = val = atomic64_read(&hwc->period_left);
3605 if (val < 0)
3606 return 0;
3607
3608 nr = div64_u64(period + val, period);
3609 offset = nr * period;
3610 val -= offset;
3611 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3612 goto again;
3613
3614 return nr;
3615}
3616
3617static void perf_swevent_overflow(struct perf_event *event,
3618 int nmi, struct perf_sample_data *data,
3619 struct pt_regs *regs)
3620{
3621 struct hw_perf_event *hwc = &event->hw;
3622 int throttle = 0;
3623 u64 overflow;
3624
3625 data->period = event->hw.last_period;
3626 overflow = perf_swevent_set_period(event);
3627
3628 if (hwc->interrupts == MAX_INTERRUPTS)
3629 return;
3630
3631 for (; overflow; overflow--) {
3632 if (__perf_event_overflow(event, nmi, throttle,
3633 data, regs)) {
3634 /*
3635 * We inhibit the overflow from happening when
3636 * hwc->interrupts == MAX_INTERRUPTS.
3637 */
3638 break;
3639 }
3640 throttle = 1;
3641 }
3642}
3643
3644static void perf_swevent_unthrottle(struct perf_event *event)
3645{
3646 /*
3647 * Nothing to do, we already reset hwc->interrupts.
3648 */
3649}
3650
3651static void perf_swevent_add(struct perf_event *event, u64 nr,
3652 int nmi, struct perf_sample_data *data,
3653 struct pt_regs *regs)
3654{
3655 struct hw_perf_event *hwc = &event->hw;
3656
3657 atomic64_add(nr, &event->count);
3658
3659 if (!hwc->sample_period)
3660 return;
3661
3662 if (!regs)
3663 return;
3664
3665 if (!atomic64_add_negative(nr, &hwc->period_left))
3666 perf_swevent_overflow(event, nmi, data, regs);
3667}
3668
3669static int perf_swevent_is_counting(struct perf_event *event)
3670{
3671 /*
3672 * The event is active, we're good!
3673 */
3674 if (event->state == PERF_EVENT_STATE_ACTIVE)
3675 return 1;
3676
3677 /*
3678 * The event is off/error, not counting.
3679 */
3680 if (event->state != PERF_EVENT_STATE_INACTIVE)
3681 return 0;
3682
3683 /*
3684 * The event is inactive, if the context is active
3685 * we're part of a group that didn't make it on the 'pmu',
3686 * not counting.
3687 */
3688 if (event->ctx->is_active)
3689 return 0;
3690
3691 /*
3692 * We're inactive and the context is too, this means the
3693 * task is scheduled out, we're counting events that happen
3694 * to us, like migration events.
3695 */
3696 return 1;
3697}
3698
3699static int perf_swevent_match(struct perf_event *event,
3700 enum perf_type_id type,
3701 u32 event_id, struct pt_regs *regs)
3702{
3703 if (!perf_swevent_is_counting(event))
3704 return 0;
3705
3706 if (event->attr.type != type)
3707 return 0;
3708 if (event->attr.config != event_id)
3709 return 0;
3710
3711 if (regs) {
3712 if (event->attr.exclude_user && user_mode(regs))
3713 return 0;
3714
3715 if (event->attr.exclude_kernel && !user_mode(regs))
3716 return 0;
3717 }
3718
3719 return 1;
3720}
3721
3722static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3723 enum perf_type_id type,
3724 u32 event_id, u64 nr, int nmi,
3725 struct perf_sample_data *data,
3726 struct pt_regs *regs)
3727{
3728 struct perf_event *event;
3729
3730 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3731 return;
3732
3733 rcu_read_lock();
3734 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3735 if (perf_swevent_match(event, type, event_id, regs))
3736 perf_swevent_add(event, nr, nmi, data, regs);
3737 }
3738 rcu_read_unlock();
3739}
3740
3741static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx)
3742{
3743 if (in_nmi())
3744 return &cpuctx->recursion[3];
3745
3746 if (in_irq())
3747 return &cpuctx->recursion[2];
3748
3749 if (in_softirq())
3750 return &cpuctx->recursion[1];
3751
3752 return &cpuctx->recursion[0];
3753}
3754
3755static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3756 u64 nr, int nmi,
3757 struct perf_sample_data *data,
3758 struct pt_regs *regs)
3759{
3760 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3761 int *recursion = perf_swevent_recursion_context(cpuctx);
3762 struct perf_event_context *ctx;
3763
3764 if (*recursion)
3765 goto out;
3766
3767 (*recursion)++;
3768 barrier();
3769
3770 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3771 nr, nmi, data, regs);
3772 rcu_read_lock();
3773 /*
3774 * doesn't really matter which of the child contexts the
3775 * events ends up in.
3776 */
3777 ctx = rcu_dereference(current->perf_event_ctxp);
3778 if (ctx)
3779 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3780 rcu_read_unlock();
3781
3782 barrier();
3783 (*recursion)--;
3784
3785out:
3786 put_cpu_var(perf_cpu_context);
3787}
3788
3789void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3790 struct pt_regs *regs, u64 addr)
3791{
3792 struct perf_sample_data data = {
3793 .addr = addr,
3794 };
3795
3796 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi,
3797 &data, regs);
3798}
3799
3800static void perf_swevent_read(struct perf_event *event)
3801{
3802}
3803
3804static int perf_swevent_enable(struct perf_event *event)
3805{
3806 struct hw_perf_event *hwc = &event->hw;
3807
3808 if (hwc->sample_period) {
3809 hwc->last_period = hwc->sample_period;
3810 perf_swevent_set_period(event);
3811 }
3812 return 0;
3813}
3814
3815static void perf_swevent_disable(struct perf_event *event)
3816{
3817}
3818
3819static const struct pmu perf_ops_generic = {
3820 .enable = perf_swevent_enable,
3821 .disable = perf_swevent_disable,
3822 .read = perf_swevent_read,
3823 .unthrottle = perf_swevent_unthrottle,
3824};
3825
3826/*
3827 * hrtimer based swevent callback
3828 */
3829
3830static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
3831{
3832 enum hrtimer_restart ret = HRTIMER_RESTART;
3833 struct perf_sample_data data;
3834 struct pt_regs *regs;
3835 struct perf_event *event;
3836 u64 period;
3837
3838 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
3839 event->pmu->read(event);
3840
3841 data.addr = 0;
3842 regs = get_irq_regs();
3843 /*
3844 * In case we exclude kernel IPs or are somehow not in interrupt
3845 * context, provide the next best thing, the user IP.
3846 */
3847 if ((event->attr.exclude_kernel || !regs) &&
3848 !event->attr.exclude_user)
3849 regs = task_pt_regs(current);
3850
3851 if (regs) {
3852 if (perf_event_overflow(event, 0, &data, regs))
3853 ret = HRTIMER_NORESTART;
3854 }
3855
3856 period = max_t(u64, 10000, event->hw.sample_period);
3857 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3858
3859 return ret;
3860}
3861
3862/*
3863 * Software event: cpu wall time clock
3864 */
3865
3866static void cpu_clock_perf_event_update(struct perf_event *event)
3867{
3868 int cpu = raw_smp_processor_id();
3869 s64 prev;
3870 u64 now;
3871
3872 now = cpu_clock(cpu);
3873 prev = atomic64_read(&event->hw.prev_count);
3874 atomic64_set(&event->hw.prev_count, now);
3875 atomic64_add(now - prev, &event->count);
3876}
3877
3878static int cpu_clock_perf_event_enable(struct perf_event *event)
3879{
3880 struct hw_perf_event *hwc = &event->hw;
3881 int cpu = raw_smp_processor_id();
3882
3883 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3884 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3885 hwc->hrtimer.function = perf_swevent_hrtimer;
3886 if (hwc->sample_period) {
3887 u64 period = max_t(u64, 10000, hwc->sample_period);
3888 __hrtimer_start_range_ns(&hwc->hrtimer,
3889 ns_to_ktime(period), 0,
3890 HRTIMER_MODE_REL, 0);
3891 }
3892
3893 return 0;
3894}
3895
3896static void cpu_clock_perf_event_disable(struct perf_event *event)
3897{
3898 if (event->hw.sample_period)
3899 hrtimer_cancel(&event->hw.hrtimer);
3900 cpu_clock_perf_event_update(event);
3901}
3902
3903static void cpu_clock_perf_event_read(struct perf_event *event)
3904{
3905 cpu_clock_perf_event_update(event);
3906}
3907
3908static const struct pmu perf_ops_cpu_clock = {
3909 .enable = cpu_clock_perf_event_enable,
3910 .disable = cpu_clock_perf_event_disable,
3911 .read = cpu_clock_perf_event_read,
3912};
3913
3914/*
3915 * Software event: task time clock
3916 */
3917
3918static void task_clock_perf_event_update(struct perf_event *event, u64 now)
3919{
3920 u64 prev;
3921 s64 delta;
3922
3923 prev = atomic64_xchg(&event->hw.prev_count, now);
3924 delta = now - prev;
3925 atomic64_add(delta, &event->count);
3926}
3927
3928static int task_clock_perf_event_enable(struct perf_event *event)
3929{
3930 struct hw_perf_event *hwc = &event->hw;
3931 u64 now;
3932
3933 now = event->ctx->time;
3934
3935 atomic64_set(&hwc->prev_count, now);
3936 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3937 hwc->hrtimer.function = perf_swevent_hrtimer;
3938 if (hwc->sample_period) {
3939 u64 period = max_t(u64, 10000, hwc->sample_period);
3940 __hrtimer_start_range_ns(&hwc->hrtimer,
3941 ns_to_ktime(period), 0,
3942 HRTIMER_MODE_REL, 0);
3943 }
3944
3945 return 0;
3946}
3947
3948static void task_clock_perf_event_disable(struct perf_event *event)
3949{
3950 if (event->hw.sample_period)
3951 hrtimer_cancel(&event->hw.hrtimer);
3952 task_clock_perf_event_update(event, event->ctx->time);
3953
3954}
3955
3956static void task_clock_perf_event_read(struct perf_event *event)
3957{
3958 u64 time;
3959
3960 if (!in_nmi()) {
3961 update_context_time(event->ctx);
3962 time = event->ctx->time;
3963 } else {
3964 u64 now = perf_clock();
3965 u64 delta = now - event->ctx->timestamp;
3966 time = event->ctx->time + delta;
3967 }
3968
3969 task_clock_perf_event_update(event, time);
3970}
3971
3972static const struct pmu perf_ops_task_clock = {
3973 .enable = task_clock_perf_event_enable,
3974 .disable = task_clock_perf_event_disable,
3975 .read = task_clock_perf_event_read,
3976};
3977
3978#ifdef CONFIG_EVENT_PROFILE
3979void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
3980 int entry_size)
3981{
3982 struct perf_raw_record raw = {
3983 .size = entry_size,
3984 .data = record,
3985 };
3986
3987 struct perf_sample_data data = {
3988 .addr = addr,
3989 .raw = &raw,
3990 };
3991
3992 struct pt_regs *regs = get_irq_regs();
3993
3994 if (!regs)
3995 regs = task_pt_regs(current);
3996
3997 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
3998 &data, regs);
3999}
4000EXPORT_SYMBOL_GPL(perf_tp_event);
4001
4002extern int ftrace_profile_enable(int);
4003extern void ftrace_profile_disable(int);
4004
4005static void tp_perf_event_destroy(struct perf_event *event)
4006{
4007 ftrace_profile_disable(event->attr.config);
4008}
4009
4010static const struct pmu *tp_perf_event_init(struct perf_event *event)
4011{
4012 /*
4013 * Raw tracepoint data is a severe data leak, only allow root to
4014 * have these.
4015 */
4016 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4017 perf_paranoid_tracepoint_raw() &&
4018 !capable(CAP_SYS_ADMIN))
4019 return ERR_PTR(-EPERM);
4020
4021 if (ftrace_profile_enable(event->attr.config))
4022 return NULL;
4023
4024 event->destroy = tp_perf_event_destroy;
4025
4026 return &perf_ops_generic;
4027}
4028#else
4029static const struct pmu *tp_perf_event_init(struct perf_event *event)
4030{
4031 return NULL;
4032}
4033#endif
4034
4035atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4036
4037static void sw_perf_event_destroy(struct perf_event *event)
4038{
4039 u64 event_id = event->attr.config;
4040
4041 WARN_ON(event->parent);
4042
4043 atomic_dec(&perf_swevent_enabled[event_id]);
4044}
4045
4046static const struct pmu *sw_perf_event_init(struct perf_event *event)
4047{
4048 const struct pmu *pmu = NULL;
4049 u64 event_id = event->attr.config;
4050
4051 /*
4052 * Software events (currently) can't in general distinguish
4053 * between user, kernel and hypervisor events.
4054 * However, context switches and cpu migrations are considered
4055 * to be kernel events, and page faults are never hypervisor
4056 * events.
4057 */
4058 switch (event_id) {
4059 case PERF_COUNT_SW_CPU_CLOCK:
4060 pmu = &perf_ops_cpu_clock;
4061
4062 break;
4063 case PERF_COUNT_SW_TASK_CLOCK:
4064 /*
4065 * If the user instantiates this as a per-cpu event,
4066 * use the cpu_clock event instead.
4067 */
4068 if (event->ctx->task)
4069 pmu = &perf_ops_task_clock;
4070 else
4071 pmu = &perf_ops_cpu_clock;
4072
4073 break;
4074 case PERF_COUNT_SW_PAGE_FAULTS:
4075 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4076 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4077 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4078 case PERF_COUNT_SW_CPU_MIGRATIONS:
4079 if (!event->parent) {
4080 atomic_inc(&perf_swevent_enabled[event_id]);
4081 event->destroy = sw_perf_event_destroy;
4082 }
4083 pmu = &perf_ops_generic;
4084 break;
4085 }
4086
4087 return pmu;
4088}
4089
4090/*
4091 * Allocate and initialize a event structure
4092 */
4093static struct perf_event *
4094perf_event_alloc(struct perf_event_attr *attr,
4095 int cpu,
4096 struct perf_event_context *ctx,
4097 struct perf_event *group_leader,
4098 struct perf_event *parent_event,
4099 gfp_t gfpflags)
4100{
4101 const struct pmu *pmu;
4102 struct perf_event *event;
4103 struct hw_perf_event *hwc;
4104 long err;
4105
4106 event = kzalloc(sizeof(*event), gfpflags);
4107 if (!event)
4108 return ERR_PTR(-ENOMEM);
4109
4110 /*
4111 * Single events are their own group leaders, with an
4112 * empty sibling list:
4113 */
4114 if (!group_leader)
4115 group_leader = event;
4116
4117 mutex_init(&event->child_mutex);
4118 INIT_LIST_HEAD(&event->child_list);
4119
4120 INIT_LIST_HEAD(&event->group_entry);
4121 INIT_LIST_HEAD(&event->event_entry);
4122 INIT_LIST_HEAD(&event->sibling_list);
4123 init_waitqueue_head(&event->waitq);
4124
4125 mutex_init(&event->mmap_mutex);
4126
4127 event->cpu = cpu;
4128 event->attr = *attr;
4129 event->group_leader = group_leader;
4130 event->pmu = NULL;
4131 event->ctx = ctx;
4132 event->oncpu = -1;
4133
4134 event->parent = parent_event;
4135
4136 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4137 event->id = atomic64_inc_return(&perf_event_id);
4138
4139 event->state = PERF_EVENT_STATE_INACTIVE;
4140
4141 if (attr->disabled)
4142 event->state = PERF_EVENT_STATE_OFF;
4143
4144 pmu = NULL;
4145
4146 hwc = &event->hw;
4147 hwc->sample_period = attr->sample_period;
4148 if (attr->freq && attr->sample_freq)
4149 hwc->sample_period = 1;
4150 hwc->last_period = hwc->sample_period;
4151
4152 atomic64_set(&hwc->period_left, hwc->sample_period);
4153
4154 /*
4155 * we currently do not support PERF_FORMAT_GROUP on inherited events
4156 */
4157 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4158 goto done;
4159
4160 switch (attr->type) {
4161 case PERF_TYPE_RAW:
4162 case PERF_TYPE_HARDWARE:
4163 case PERF_TYPE_HW_CACHE:
4164 pmu = hw_perf_event_init(event);
4165 break;
4166
4167 case PERF_TYPE_SOFTWARE:
4168 pmu = sw_perf_event_init(event);
4169 break;
4170
4171 case PERF_TYPE_TRACEPOINT:
4172 pmu = tp_perf_event_init(event);
4173 break;
4174
4175 default:
4176 break;
4177 }
4178done:
4179 err = 0;
4180 if (!pmu)
4181 err = -EINVAL;
4182 else if (IS_ERR(pmu))
4183 err = PTR_ERR(pmu);
4184
4185 if (err) {
4186 if (event->ns)
4187 put_pid_ns(event->ns);
4188 kfree(event);
4189 return ERR_PTR(err);
4190 }
4191
4192 event->pmu = pmu;
4193
4194 if (!event->parent) {
4195 atomic_inc(&nr_events);
4196 if (event->attr.mmap)
4197 atomic_inc(&nr_mmap_events);
4198 if (event->attr.comm)
4199 atomic_inc(&nr_comm_events);
4200 if (event->attr.task)
4201 atomic_inc(&nr_task_events);
4202 }
4203
4204 return event;
4205}
4206
4207static int perf_copy_attr(struct perf_event_attr __user *uattr,
4208 struct perf_event_attr *attr)
4209{
4210 u32 size;
4211 int ret;
4212
4213 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4214 return -EFAULT;
4215
4216 /*
4217 * zero the full structure, so that a short copy will be nice.
4218 */
4219 memset(attr, 0, sizeof(*attr));
4220
4221 ret = get_user(size, &uattr->size);
4222 if (ret)
4223 return ret;
4224
4225 if (size > PAGE_SIZE) /* silly large */
4226 goto err_size;
4227
4228 if (!size) /* abi compat */
4229 size = PERF_ATTR_SIZE_VER0;
4230
4231 if (size < PERF_ATTR_SIZE_VER0)
4232 goto err_size;
4233
4234 /*
4235 * If we're handed a bigger struct than we know of,
4236 * ensure all the unknown bits are 0 - i.e. new
4237 * user-space does not rely on any kernel feature
4238 * extensions we dont know about yet.
4239 */
4240 if (size > sizeof(*attr)) {
4241 unsigned char __user *addr;
4242 unsigned char __user *end;
4243 unsigned char val;
4244
4245 addr = (void __user *)uattr + sizeof(*attr);
4246 end = (void __user *)uattr + size;
4247
4248 for (; addr < end; addr++) {
4249 ret = get_user(val, addr);
4250 if (ret)
4251 return ret;
4252 if (val)
4253 goto err_size;
4254 }
4255 size = sizeof(*attr);
4256 }
4257
4258 ret = copy_from_user(attr, uattr, size);
4259 if (ret)
4260 return -EFAULT;
4261
4262 /*
4263 * If the type exists, the corresponding creation will verify
4264 * the attr->config.
4265 */
4266 if (attr->type >= PERF_TYPE_MAX)
4267 return -EINVAL;
4268
4269 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
4270 return -EINVAL;
4271
4272 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4273 return -EINVAL;
4274
4275 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4276 return -EINVAL;
4277
4278out:
4279 return ret;
4280
4281err_size:
4282 put_user(sizeof(*attr), &uattr->size);
4283 ret = -E2BIG;
4284 goto out;
4285}
4286
4287int perf_event_set_output(struct perf_event *event, int output_fd)
4288{
4289 struct perf_event *output_event = NULL;
4290 struct file *output_file = NULL;
4291 struct perf_event *old_output;
4292 int fput_needed = 0;
4293 int ret = -EINVAL;
4294
4295 if (!output_fd)
4296 goto set;
4297
4298 output_file = fget_light(output_fd, &fput_needed);
4299 if (!output_file)
4300 return -EBADF;
4301
4302 if (output_file->f_op != &perf_fops)
4303 goto out;
4304
4305 output_event = output_file->private_data;
4306
4307 /* Don't chain output fds */
4308 if (output_event->output)
4309 goto out;
4310
4311 /* Don't set an output fd when we already have an output channel */
4312 if (event->data)
4313 goto out;
4314
4315 atomic_long_inc(&output_file->f_count);
4316
4317set:
4318 mutex_lock(&event->mmap_mutex);
4319 old_output = event->output;
4320 rcu_assign_pointer(event->output, output_event);
4321 mutex_unlock(&event->mmap_mutex);
4322
4323 if (old_output) {
4324 /*
4325 * we need to make sure no existing perf_output_*()
4326 * is still referencing this event.
4327 */
4328 synchronize_rcu();
4329 fput(old_output->filp);
4330 }
4331
4332 ret = 0;
4333out:
4334 fput_light(output_file, fput_needed);
4335 return ret;
4336}
4337
4338/**
4339 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4340 *
4341 * @attr_uptr: event_id type attributes for monitoring/sampling
4342 * @pid: target pid
4343 * @cpu: target cpu
4344 * @group_fd: group leader event fd
4345 */
4346SYSCALL_DEFINE5(perf_event_open,
4347 struct perf_event_attr __user *, attr_uptr,
4348 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4349{
4350 struct perf_event *event, *group_leader;
4351 struct perf_event_attr attr;
4352 struct perf_event_context *ctx;
4353 struct file *event_file = NULL;
4354 struct file *group_file = NULL;
4355 int fput_needed = 0;
4356 int fput_needed2 = 0;
4357 int err;
4358
4359 /* for future expandability... */
4360 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4361 return -EINVAL;
4362
4363 err = perf_copy_attr(attr_uptr, &attr);
4364 if (err)
4365 return err;
4366
4367 if (!attr.exclude_kernel) {
4368 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4369 return -EACCES;
4370 }
4371
4372 if (attr.freq) {
4373 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4374 return -EINVAL;
4375 }
4376
4377 /*
4378 * Get the target context (task or percpu):
4379 */
4380 ctx = find_get_context(pid, cpu);
4381 if (IS_ERR(ctx))
4382 return PTR_ERR(ctx);
4383
4384 /*
4385 * Look up the group leader (we will attach this event to it):
4386 */
4387 group_leader = NULL;
4388 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4389 err = -EINVAL;
4390 group_file = fget_light(group_fd, &fput_needed);
4391 if (!group_file)
4392 goto err_put_context;
4393 if (group_file->f_op != &perf_fops)
4394 goto err_put_context;
4395
4396 group_leader = group_file->private_data;
4397 /*
4398 * Do not allow a recursive hierarchy (this new sibling
4399 * becoming part of another group-sibling):
4400 */
4401 if (group_leader->group_leader != group_leader)
4402 goto err_put_context;
4403 /*
4404 * Do not allow to attach to a group in a different
4405 * task or CPU context:
4406 */
4407 if (group_leader->ctx != ctx)
4408 goto err_put_context;
4409 /*
4410 * Only a group leader can be exclusive or pinned
4411 */
4412 if (attr.exclusive || attr.pinned)
4413 goto err_put_context;
4414 }
4415
4416 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4417 NULL, GFP_KERNEL);
4418 err = PTR_ERR(event);
4419 if (IS_ERR(event))
4420 goto err_put_context;
4421
4422 err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4423 if (err < 0)
4424 goto err_free_put_context;
4425
4426 event_file = fget_light(err, &fput_needed2);
4427 if (!event_file)
4428 goto err_free_put_context;
4429
4430 if (flags & PERF_FLAG_FD_OUTPUT) {
4431 err = perf_event_set_output(event, group_fd);
4432 if (err)
4433 goto err_fput_free_put_context;
4434 }
4435
4436 event->filp = event_file;
4437 WARN_ON_ONCE(ctx->parent_ctx);
4438 mutex_lock(&ctx->mutex);
4439 perf_install_in_context(ctx, event, cpu);
4440 ++ctx->generation;
4441 mutex_unlock(&ctx->mutex);
4442
4443 event->owner = current;
4444 get_task_struct(current);
4445 mutex_lock(&current->perf_event_mutex);
4446 list_add_tail(&event->owner_entry, &current->perf_event_list);
4447 mutex_unlock(&current->perf_event_mutex);
4448
4449err_fput_free_put_context:
4450 fput_light(event_file, fput_needed2);
4451
4452err_free_put_context:
4453 if (err < 0)
4454 kfree(event);
4455
4456err_put_context:
4457 if (err < 0)
4458 put_ctx(ctx);
4459
4460 fput_light(group_file, fput_needed);
4461
4462 return err;
4463}
4464
4465/*
4466 * inherit a event from parent task to child task:
4467 */
4468static struct perf_event *
4469inherit_event(struct perf_event *parent_event,
4470 struct task_struct *parent,
4471 struct perf_event_context *parent_ctx,
4472 struct task_struct *child,
4473 struct perf_event *group_leader,
4474 struct perf_event_context *child_ctx)
4475{
4476 struct perf_event *child_event;
4477
4478 /*
4479 * Instead of creating recursive hierarchies of events,
4480 * we link inherited events back to the original parent,
4481 * which has a filp for sure, which we use as the reference
4482 * count:
4483 */
4484 if (parent_event->parent)
4485 parent_event = parent_event->parent;
4486
4487 child_event = perf_event_alloc(&parent_event->attr,
4488 parent_event->cpu, child_ctx,
4489 group_leader, parent_event,
4490 GFP_KERNEL);
4491 if (IS_ERR(child_event))
4492 return child_event;
4493 get_ctx(child_ctx);
4494
4495 /*
4496 * Make the child state follow the state of the parent event,
4497 * not its attr.disabled bit. We hold the parent's mutex,
4498 * so we won't race with perf_event_{en, dis}able_family.
4499 */
4500 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4501 child_event->state = PERF_EVENT_STATE_INACTIVE;
4502 else
4503 child_event->state = PERF_EVENT_STATE_OFF;
4504
4505 if (parent_event->attr.freq)
4506 child_event->hw.sample_period = parent_event->hw.sample_period;
4507
4508 /*
4509 * Link it up in the child's context:
4510 */
4511 add_event_to_ctx(child_event, child_ctx);
4512
4513 /*
4514 * Get a reference to the parent filp - we will fput it
4515 * when the child event exits. This is safe to do because
4516 * we are in the parent and we know that the filp still
4517 * exists and has a nonzero count:
4518 */
4519 atomic_long_inc(&parent_event->filp->f_count);
4520
4521 /*
4522 * Link this into the parent event's child list
4523 */
4524 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4525 mutex_lock(&parent_event->child_mutex);
4526 list_add_tail(&child_event->child_list, &parent_event->child_list);
4527 mutex_unlock(&parent_event->child_mutex);
4528
4529 return child_event;
4530}
4531
4532static int inherit_group(struct perf_event *parent_event,
4533 struct task_struct *parent,
4534 struct perf_event_context *parent_ctx,
4535 struct task_struct *child,
4536 struct perf_event_context *child_ctx)
4537{
4538 struct perf_event *leader;
4539 struct perf_event *sub;
4540 struct perf_event *child_ctr;
4541
4542 leader = inherit_event(parent_event, parent, parent_ctx,
4543 child, NULL, child_ctx);
4544 if (IS_ERR(leader))
4545 return PTR_ERR(leader);
4546 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4547 child_ctr = inherit_event(sub, parent, parent_ctx,
4548 child, leader, child_ctx);
4549 if (IS_ERR(child_ctr))
4550 return PTR_ERR(child_ctr);
4551 }
4552 return 0;
4553}
4554
4555static void sync_child_event(struct perf_event *child_event,
4556 struct task_struct *child)
4557{
4558 struct perf_event *parent_event = child_event->parent;
4559 u64 child_val;
4560
4561 if (child_event->attr.inherit_stat)
4562 perf_event_read_event(child_event, child);
4563
4564 child_val = atomic64_read(&child_event->count);
4565
4566 /*
4567 * Add back the child's count to the parent's count:
4568 */
4569 atomic64_add(child_val, &parent_event->count);
4570 atomic64_add(child_event->total_time_enabled,
4571 &parent_event->child_total_time_enabled);
4572 atomic64_add(child_event->total_time_running,
4573 &parent_event->child_total_time_running);
4574
4575 /*
4576 * Remove this event from the parent's list
4577 */
4578 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4579 mutex_lock(&parent_event->child_mutex);
4580 list_del_init(&child_event->child_list);
4581 mutex_unlock(&parent_event->child_mutex);
4582
4583 /*
4584 * Release the parent event, if this was the last
4585 * reference to it.
4586 */
4587 fput(parent_event->filp);
4588}
4589
4590static void
4591__perf_event_exit_task(struct perf_event *child_event,
4592 struct perf_event_context *child_ctx,
4593 struct task_struct *child)
4594{
4595 struct perf_event *parent_event;
4596
4597 update_event_times(child_event);
4598 perf_event_remove_from_context(child_event);
4599
4600 parent_event = child_event->parent;
4601 /*
4602 * It can happen that parent exits first, and has events
4603 * that are still around due to the child reference. These
4604 * events need to be zapped - but otherwise linger.
4605 */
4606 if (parent_event) {
4607 sync_child_event(child_event, child);
4608 free_event(child_event);
4609 }
4610}
4611
4612/*
4613 * When a child task exits, feed back event values to parent events.
4614 */
4615void perf_event_exit_task(struct task_struct *child)
4616{
4617 struct perf_event *child_event, *tmp;
4618 struct perf_event_context *child_ctx;
4619 unsigned long flags;
4620
4621 if (likely(!child->perf_event_ctxp)) {
4622 perf_event_task(child, NULL, 0);
4623 return;
4624 }
4625
4626 local_irq_save(flags);
4627 /*
4628 * We can't reschedule here because interrupts are disabled,
4629 * and either child is current or it is a task that can't be
4630 * scheduled, so we are now safe from rescheduling changing
4631 * our context.
4632 */
4633 child_ctx = child->perf_event_ctxp;
4634 __perf_event_task_sched_out(child_ctx);
4635
4636 /*
4637 * Take the context lock here so that if find_get_context is
4638 * reading child->perf_event_ctxp, we wait until it has
4639 * incremented the context's refcount before we do put_ctx below.
4640 */
4641 spin_lock(&child_ctx->lock);
4642 child->perf_event_ctxp = NULL;
4643 /*
4644 * If this context is a clone; unclone it so it can't get
4645 * swapped to another process while we're removing all
4646 * the events from it.
4647 */
4648 unclone_ctx(child_ctx);
4649 spin_unlock_irqrestore(&child_ctx->lock, flags);
4650
4651 /*
4652 * Report the task dead after unscheduling the events so that we
4653 * won't get any samples after PERF_RECORD_EXIT. We can however still
4654 * get a few PERF_RECORD_READ events.
4655 */
4656 perf_event_task(child, child_ctx, 0);
4657
4658 /*
4659 * We can recurse on the same lock type through:
4660 *
4661 * __perf_event_exit_task()
4662 * sync_child_event()
4663 * fput(parent_event->filp)
4664 * perf_release()
4665 * mutex_lock(&ctx->mutex)
4666 *
4667 * But since its the parent context it won't be the same instance.
4668 */
4669 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4670
4671again:
4672 list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
4673 group_entry)
4674 __perf_event_exit_task(child_event, child_ctx, child);
4675
4676 /*
4677 * If the last event was a group event, it will have appended all
4678 * its siblings to the list, but we obtained 'tmp' before that which
4679 * will still point to the list head terminating the iteration.
4680 */
4681 if (!list_empty(&child_ctx->group_list))
4682 goto again;
4683
4684 mutex_unlock(&child_ctx->mutex);
4685
4686 put_ctx(child_ctx);
4687}
4688
4689/*
4690 * free an unexposed, unused context as created by inheritance by
4691 * init_task below, used by fork() in case of fail.
4692 */
4693void perf_event_free_task(struct task_struct *task)
4694{
4695 struct perf_event_context *ctx = task->perf_event_ctxp;
4696 struct perf_event *event, *tmp;
4697
4698 if (!ctx)
4699 return;
4700
4701 mutex_lock(&ctx->mutex);
4702again:
4703 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
4704 struct perf_event *parent = event->parent;
4705
4706 if (WARN_ON_ONCE(!parent))
4707 continue;
4708
4709 mutex_lock(&parent->child_mutex);
4710 list_del_init(&event->child_list);
4711 mutex_unlock(&parent->child_mutex);
4712
4713 fput(parent->filp);
4714
4715 list_del_event(event, ctx);
4716 free_event(event);
4717 }
4718
4719 if (!list_empty(&ctx->group_list))
4720 goto again;
4721
4722 mutex_unlock(&ctx->mutex);
4723
4724 put_ctx(ctx);
4725}
4726
4727/*
4728 * Initialize the perf_event context in task_struct
4729 */
4730int perf_event_init_task(struct task_struct *child)
4731{
4732 struct perf_event_context *child_ctx, *parent_ctx;
4733 struct perf_event_context *cloned_ctx;
4734 struct perf_event *event;
4735 struct task_struct *parent = current;
4736 int inherited_all = 1;
4737 int ret = 0;
4738
4739 child->perf_event_ctxp = NULL;
4740
4741 mutex_init(&child->perf_event_mutex);
4742 INIT_LIST_HEAD(&child->perf_event_list);
4743
4744 if (likely(!parent->perf_event_ctxp))
4745 return 0;
4746
4747 /*
4748 * This is executed from the parent task context, so inherit
4749 * events that have been marked for cloning.
4750 * First allocate and initialize a context for the child.
4751 */
4752
4753 child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4754 if (!child_ctx)
4755 return -ENOMEM;
4756
4757 __perf_event_init_context(child_ctx, child);
4758 child->perf_event_ctxp = child_ctx;
4759 get_task_struct(child);
4760
4761 /*
4762 * If the parent's context is a clone, pin it so it won't get
4763 * swapped under us.
4764 */
4765 parent_ctx = perf_pin_task_context(parent);
4766
4767 /*
4768 * No need to check if parent_ctx != NULL here; since we saw
4769 * it non-NULL earlier, the only reason for it to become NULL
4770 * is if we exit, and since we're currently in the middle of
4771 * a fork we can't be exiting at the same time.
4772 */
4773
4774 /*
4775 * Lock the parent list. No need to lock the child - not PID
4776 * hashed yet and not running, so nobody can access it.
4777 */
4778 mutex_lock(&parent_ctx->mutex);
4779
4780 /*
4781 * We dont have to disable NMIs - we are only looking at
4782 * the list, not manipulating it:
4783 */
4784 list_for_each_entry_rcu(event, &parent_ctx->event_list, event_entry) {
4785 if (event != event->group_leader)
4786 continue;
4787
4788 if (!event->attr.inherit) {
4789 inherited_all = 0;
4790 continue;
4791 }
4792
4793 ret = inherit_group(event, parent, parent_ctx,
4794 child, child_ctx);
4795 if (ret) {
4796 inherited_all = 0;
4797 break;
4798 }
4799 }
4800
4801 if (inherited_all) {
4802 /*
4803 * Mark the child context as a clone of the parent
4804 * context, or of whatever the parent is a clone of.
4805 * Note that if the parent is a clone, it could get
4806 * uncloned at any point, but that doesn't matter
4807 * because the list of events and the generation
4808 * count can't have changed since we took the mutex.
4809 */
4810 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
4811 if (cloned_ctx) {
4812 child_ctx->parent_ctx = cloned_ctx;
4813 child_ctx->parent_gen = parent_ctx->parent_gen;
4814 } else {
4815 child_ctx->parent_ctx = parent_ctx;
4816 child_ctx->parent_gen = parent_ctx->generation;
4817 }
4818 get_ctx(child_ctx->parent_ctx);
4819 }
4820
4821 mutex_unlock(&parent_ctx->mutex);
4822
4823 perf_unpin_context(parent_ctx);
4824
4825 return ret;
4826}
4827
4828static void __cpuinit perf_event_init_cpu(int cpu)
4829{
4830 struct perf_cpu_context *cpuctx;
4831
4832 cpuctx = &per_cpu(perf_cpu_context, cpu);
4833 __perf_event_init_context(&cpuctx->ctx, NULL);
4834
4835 spin_lock(&perf_resource_lock);
4836 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
4837 spin_unlock(&perf_resource_lock);
4838
4839 hw_perf_event_setup(cpu);
4840}
4841
4842#ifdef CONFIG_HOTPLUG_CPU
4843static void __perf_event_exit_cpu(void *info)
4844{
4845 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4846 struct perf_event_context *ctx = &cpuctx->ctx;
4847 struct perf_event *event, *tmp;
4848
4849 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
4850 __perf_event_remove_from_context(event);
4851}
4852static void perf_event_exit_cpu(int cpu)
4853{
4854 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4855 struct perf_event_context *ctx = &cpuctx->ctx;
4856
4857 mutex_lock(&ctx->mutex);
4858 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
4859 mutex_unlock(&ctx->mutex);
4860}
4861#else
4862static inline void perf_event_exit_cpu(int cpu) { }
4863#endif
4864
4865static int __cpuinit
4866perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
4867{
4868 unsigned int cpu = (long)hcpu;
4869
4870 switch (action) {
4871
4872 case CPU_UP_PREPARE:
4873 case CPU_UP_PREPARE_FROZEN:
4874 perf_event_init_cpu(cpu);
4875 break;
4876
4877 case CPU_ONLINE:
4878 case CPU_ONLINE_FROZEN:
4879 hw_perf_event_setup_online(cpu);
4880 break;
4881
4882 case CPU_DOWN_PREPARE:
4883 case CPU_DOWN_PREPARE_FROZEN:
4884 perf_event_exit_cpu(cpu);
4885 break;
4886
4887 default:
4888 break;
4889 }
4890
4891 return NOTIFY_OK;
4892}
4893
4894/*
4895 * This has to have a higher priority than migration_notifier in sched.c.
4896 */
4897static struct notifier_block __cpuinitdata perf_cpu_nb = {
4898 .notifier_call = perf_cpu_notify,
4899 .priority = 20,
4900};
4901
4902void __init perf_event_init(void)
4903{
4904 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
4905 (void *)(long)smp_processor_id());
4906 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
4907 (void *)(long)smp_processor_id());
4908 register_cpu_notifier(&perf_cpu_nb);
4909}
4910
4911static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
4912{
4913 return sprintf(buf, "%d\n", perf_reserved_percpu);
4914}
4915
4916static ssize_t
4917perf_set_reserve_percpu(struct sysdev_class *class,
4918 const char *buf,
4919 size_t count)
4920{
4921 struct perf_cpu_context *cpuctx;
4922 unsigned long val;
4923 int err, cpu, mpt;
4924
4925 err = strict_strtoul(buf, 10, &val);
4926 if (err)
4927 return err;
4928 if (val > perf_max_events)
4929 return -EINVAL;
4930
4931 spin_lock(&perf_resource_lock);
4932 perf_reserved_percpu = val;
4933 for_each_online_cpu(cpu) {
4934 cpuctx = &per_cpu(perf_cpu_context, cpu);
4935 spin_lock_irq(&cpuctx->ctx.lock);
4936 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
4937 perf_max_events - perf_reserved_percpu);
4938 cpuctx->max_pertask = mpt;
4939 spin_unlock_irq(&cpuctx->ctx.lock);
4940 }
4941 spin_unlock(&perf_resource_lock);
4942
4943 return count;
4944}
4945
4946static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
4947{
4948 return sprintf(buf, "%d\n", perf_overcommit);
4949}
4950
4951static ssize_t
4952perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
4953{
4954 unsigned long val;
4955 int err;
4956
4957 err = strict_strtoul(buf, 10, &val);
4958 if (err)
4959 return err;
4960 if (val > 1)
4961 return -EINVAL;
4962
4963 spin_lock(&perf_resource_lock);
4964 perf_overcommit = val;
4965 spin_unlock(&perf_resource_lock);
4966
4967 return count;
4968}
4969
4970static SYSDEV_CLASS_ATTR(
4971 reserve_percpu,
4972 0644,
4973 perf_show_reserve_percpu,
4974 perf_set_reserve_percpu
4975 );
4976
4977static SYSDEV_CLASS_ATTR(
4978 overcommit,
4979 0644,
4980 perf_show_overcommit,
4981 perf_set_overcommit
4982 );
4983
4984static struct attribute *perfclass_attrs[] = {
4985 &attr_reserve_percpu.attr,
4986 &attr_overcommit.attr,
4987 NULL
4988};
4989
4990static struct attribute_group perfclass_attr_group = {
4991 .attrs = perfclass_attrs,
4992 .name = "perf_events",
4993};
4994
4995static int __init perf_event_sysfs_init(void)
4996{
4997 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4998 &perfclass_attr_group);
4999}
5000device_initcall(perf_event_sysfs_init);