diff options
Diffstat (limited to 'kernel/perf_event.c')
-rw-r--r-- | kernel/perf_event.c | 5000 |
1 files changed, 5000 insertions, 0 deletions
diff --git a/kernel/perf_event.c b/kernel/perf_event.c new file mode 100644 index 000000000000..6e8b99a04e1e --- /dev/null +++ b/kernel/perf_event.c | |||
@@ -0,0 +1,5000 @@ | |||
1 | /* | ||
2 | * Performance event core code | ||
3 | * | ||
4 | * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> | ||
5 | * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar | ||
6 | * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | ||
7 | * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> | ||
8 | * | ||
9 | * For licensing details see kernel-base/COPYING | ||
10 | */ | ||
11 | |||
12 | #include <linux/fs.h> | ||
13 | #include <linux/mm.h> | ||
14 | #include <linux/cpu.h> | ||
15 | #include <linux/smp.h> | ||
16 | #include <linux/file.h> | ||
17 | #include <linux/poll.h> | ||
18 | #include <linux/sysfs.h> | ||
19 | #include <linux/dcache.h> | ||
20 | #include <linux/percpu.h> | ||
21 | #include <linux/ptrace.h> | ||
22 | #include <linux/vmstat.h> | ||
23 | #include <linux/hardirq.h> | ||
24 | #include <linux/rculist.h> | ||
25 | #include <linux/uaccess.h> | ||
26 | #include <linux/syscalls.h> | ||
27 | #include <linux/anon_inodes.h> | ||
28 | #include <linux/kernel_stat.h> | ||
29 | #include <linux/perf_event.h> | ||
30 | |||
31 | #include <asm/irq_regs.h> | ||
32 | |||
33 | /* | ||
34 | * Each CPU has a list of per CPU events: | ||
35 | */ | ||
36 | DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); | ||
37 | |||
38 | int perf_max_events __read_mostly = 1; | ||
39 | static int perf_reserved_percpu __read_mostly; | ||
40 | static int perf_overcommit __read_mostly = 1; | ||
41 | |||
42 | static atomic_t nr_events __read_mostly; | ||
43 | static atomic_t nr_mmap_events __read_mostly; | ||
44 | static atomic_t nr_comm_events __read_mostly; | ||
45 | static atomic_t nr_task_events __read_mostly; | ||
46 | |||
47 | /* | ||
48 | * perf event paranoia level: | ||
49 | * -1 - not paranoid at all | ||
50 | * 0 - disallow raw tracepoint access for unpriv | ||
51 | * 1 - disallow cpu events for unpriv | ||
52 | * 2 - disallow kernel profiling for unpriv | ||
53 | */ | ||
54 | int sysctl_perf_event_paranoid __read_mostly = 1; | ||
55 | |||
56 | static inline bool perf_paranoid_tracepoint_raw(void) | ||
57 | { | ||
58 | return sysctl_perf_event_paranoid > -1; | ||
59 | } | ||
60 | |||
61 | static inline bool perf_paranoid_cpu(void) | ||
62 | { | ||
63 | return sysctl_perf_event_paranoid > 0; | ||
64 | } | ||
65 | |||
66 | static inline bool perf_paranoid_kernel(void) | ||
67 | { | ||
68 | return sysctl_perf_event_paranoid > 1; | ||
69 | } | ||
70 | |||
71 | int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */ | ||
72 | |||
73 | /* | ||
74 | * max perf event sample rate | ||
75 | */ | ||
76 | int sysctl_perf_event_sample_rate __read_mostly = 100000; | ||
77 | |||
78 | static atomic64_t perf_event_id; | ||
79 | |||
80 | /* | ||
81 | * Lock for (sysadmin-configurable) event reservations: | ||
82 | */ | ||
83 | static DEFINE_SPINLOCK(perf_resource_lock); | ||
84 | |||
85 | /* | ||
86 | * Architecture provided APIs - weak aliases: | ||
87 | */ | ||
88 | extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event) | ||
89 | { | ||
90 | return NULL; | ||
91 | } | ||
92 | |||
93 | void __weak hw_perf_disable(void) { barrier(); } | ||
94 | void __weak hw_perf_enable(void) { barrier(); } | ||
95 | |||
96 | void __weak hw_perf_event_setup(int cpu) { barrier(); } | ||
97 | void __weak hw_perf_event_setup_online(int cpu) { barrier(); } | ||
98 | |||
99 | int __weak | ||
100 | hw_perf_group_sched_in(struct perf_event *group_leader, | ||
101 | struct perf_cpu_context *cpuctx, | ||
102 | struct perf_event_context *ctx, int cpu) | ||
103 | { | ||
104 | return 0; | ||
105 | } | ||
106 | |||
107 | void __weak perf_event_print_debug(void) { } | ||
108 | |||
109 | static DEFINE_PER_CPU(int, perf_disable_count); | ||
110 | |||
111 | void __perf_disable(void) | ||
112 | { | ||
113 | __get_cpu_var(perf_disable_count)++; | ||
114 | } | ||
115 | |||
116 | bool __perf_enable(void) | ||
117 | { | ||
118 | return !--__get_cpu_var(perf_disable_count); | ||
119 | } | ||
120 | |||
121 | void perf_disable(void) | ||
122 | { | ||
123 | __perf_disable(); | ||
124 | hw_perf_disable(); | ||
125 | } | ||
126 | |||
127 | void perf_enable(void) | ||
128 | { | ||
129 | if (__perf_enable()) | ||
130 | hw_perf_enable(); | ||
131 | } | ||
132 | |||
133 | static void get_ctx(struct perf_event_context *ctx) | ||
134 | { | ||
135 | WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); | ||
136 | } | ||
137 | |||
138 | static void free_ctx(struct rcu_head *head) | ||
139 | { | ||
140 | struct perf_event_context *ctx; | ||
141 | |||
142 | ctx = container_of(head, struct perf_event_context, rcu_head); | ||
143 | kfree(ctx); | ||
144 | } | ||
145 | |||
146 | static void put_ctx(struct perf_event_context *ctx) | ||
147 | { | ||
148 | if (atomic_dec_and_test(&ctx->refcount)) { | ||
149 | if (ctx->parent_ctx) | ||
150 | put_ctx(ctx->parent_ctx); | ||
151 | if (ctx->task) | ||
152 | put_task_struct(ctx->task); | ||
153 | call_rcu(&ctx->rcu_head, free_ctx); | ||
154 | } | ||
155 | } | ||
156 | |||
157 | static void unclone_ctx(struct perf_event_context *ctx) | ||
158 | { | ||
159 | if (ctx->parent_ctx) { | ||
160 | put_ctx(ctx->parent_ctx); | ||
161 | ctx->parent_ctx = NULL; | ||
162 | } | ||
163 | } | ||
164 | |||
165 | /* | ||
166 | * If we inherit events we want to return the parent event id | ||
167 | * to userspace. | ||
168 | */ | ||
169 | static u64 primary_event_id(struct perf_event *event) | ||
170 | { | ||
171 | u64 id = event->id; | ||
172 | |||
173 | if (event->parent) | ||
174 | id = event->parent->id; | ||
175 | |||
176 | return id; | ||
177 | } | ||
178 | |||
179 | /* | ||
180 | * Get the perf_event_context for a task and lock it. | ||
181 | * This has to cope with with the fact that until it is locked, | ||
182 | * the context could get moved to another task. | ||
183 | */ | ||
184 | static struct perf_event_context * | ||
185 | perf_lock_task_context(struct task_struct *task, unsigned long *flags) | ||
186 | { | ||
187 | struct perf_event_context *ctx; | ||
188 | |||
189 | rcu_read_lock(); | ||
190 | retry: | ||
191 | ctx = rcu_dereference(task->perf_event_ctxp); | ||
192 | if (ctx) { | ||
193 | /* | ||
194 | * If this context is a clone of another, it might | ||
195 | * get swapped for another underneath us by | ||
196 | * perf_event_task_sched_out, though the | ||
197 | * rcu_read_lock() protects us from any context | ||
198 | * getting freed. Lock the context and check if it | ||
199 | * got swapped before we could get the lock, and retry | ||
200 | * if so. If we locked the right context, then it | ||
201 | * can't get swapped on us any more. | ||
202 | */ | ||
203 | spin_lock_irqsave(&ctx->lock, *flags); | ||
204 | if (ctx != rcu_dereference(task->perf_event_ctxp)) { | ||
205 | spin_unlock_irqrestore(&ctx->lock, *flags); | ||
206 | goto retry; | ||
207 | } | ||
208 | |||
209 | if (!atomic_inc_not_zero(&ctx->refcount)) { | ||
210 | spin_unlock_irqrestore(&ctx->lock, *flags); | ||
211 | ctx = NULL; | ||
212 | } | ||
213 | } | ||
214 | rcu_read_unlock(); | ||
215 | return ctx; | ||
216 | } | ||
217 | |||
218 | /* | ||
219 | * Get the context for a task and increment its pin_count so it | ||
220 | * can't get swapped to another task. This also increments its | ||
221 | * reference count so that the context can't get freed. | ||
222 | */ | ||
223 | static struct perf_event_context *perf_pin_task_context(struct task_struct *task) | ||
224 | { | ||
225 | struct perf_event_context *ctx; | ||
226 | unsigned long flags; | ||
227 | |||
228 | ctx = perf_lock_task_context(task, &flags); | ||
229 | if (ctx) { | ||
230 | ++ctx->pin_count; | ||
231 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
232 | } | ||
233 | return ctx; | ||
234 | } | ||
235 | |||
236 | static void perf_unpin_context(struct perf_event_context *ctx) | ||
237 | { | ||
238 | unsigned long flags; | ||
239 | |||
240 | spin_lock_irqsave(&ctx->lock, flags); | ||
241 | --ctx->pin_count; | ||
242 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
243 | put_ctx(ctx); | ||
244 | } | ||
245 | |||
246 | /* | ||
247 | * Add a event from the lists for its context. | ||
248 | * Must be called with ctx->mutex and ctx->lock held. | ||
249 | */ | ||
250 | static void | ||
251 | list_add_event(struct perf_event *event, struct perf_event_context *ctx) | ||
252 | { | ||
253 | struct perf_event *group_leader = event->group_leader; | ||
254 | |||
255 | /* | ||
256 | * Depending on whether it is a standalone or sibling event, | ||
257 | * add it straight to the context's event list, or to the group | ||
258 | * leader's sibling list: | ||
259 | */ | ||
260 | if (group_leader == event) | ||
261 | list_add_tail(&event->group_entry, &ctx->group_list); | ||
262 | else { | ||
263 | list_add_tail(&event->group_entry, &group_leader->sibling_list); | ||
264 | group_leader->nr_siblings++; | ||
265 | } | ||
266 | |||
267 | list_add_rcu(&event->event_entry, &ctx->event_list); | ||
268 | ctx->nr_events++; | ||
269 | if (event->attr.inherit_stat) | ||
270 | ctx->nr_stat++; | ||
271 | } | ||
272 | |||
273 | /* | ||
274 | * Remove a event from the lists for its context. | ||
275 | * Must be called with ctx->mutex and ctx->lock held. | ||
276 | */ | ||
277 | static void | ||
278 | list_del_event(struct perf_event *event, struct perf_event_context *ctx) | ||
279 | { | ||
280 | struct perf_event *sibling, *tmp; | ||
281 | |||
282 | if (list_empty(&event->group_entry)) | ||
283 | return; | ||
284 | ctx->nr_events--; | ||
285 | if (event->attr.inherit_stat) | ||
286 | ctx->nr_stat--; | ||
287 | |||
288 | list_del_init(&event->group_entry); | ||
289 | list_del_rcu(&event->event_entry); | ||
290 | |||
291 | if (event->group_leader != event) | ||
292 | event->group_leader->nr_siblings--; | ||
293 | |||
294 | /* | ||
295 | * If this was a group event with sibling events then | ||
296 | * upgrade the siblings to singleton events by adding them | ||
297 | * to the context list directly: | ||
298 | */ | ||
299 | list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { | ||
300 | |||
301 | list_move_tail(&sibling->group_entry, &ctx->group_list); | ||
302 | sibling->group_leader = sibling; | ||
303 | } | ||
304 | } | ||
305 | |||
306 | static void | ||
307 | event_sched_out(struct perf_event *event, | ||
308 | struct perf_cpu_context *cpuctx, | ||
309 | struct perf_event_context *ctx) | ||
310 | { | ||
311 | if (event->state != PERF_EVENT_STATE_ACTIVE) | ||
312 | return; | ||
313 | |||
314 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
315 | if (event->pending_disable) { | ||
316 | event->pending_disable = 0; | ||
317 | event->state = PERF_EVENT_STATE_OFF; | ||
318 | } | ||
319 | event->tstamp_stopped = ctx->time; | ||
320 | event->pmu->disable(event); | ||
321 | event->oncpu = -1; | ||
322 | |||
323 | if (!is_software_event(event)) | ||
324 | cpuctx->active_oncpu--; | ||
325 | ctx->nr_active--; | ||
326 | if (event->attr.exclusive || !cpuctx->active_oncpu) | ||
327 | cpuctx->exclusive = 0; | ||
328 | } | ||
329 | |||
330 | static void | ||
331 | group_sched_out(struct perf_event *group_event, | ||
332 | struct perf_cpu_context *cpuctx, | ||
333 | struct perf_event_context *ctx) | ||
334 | { | ||
335 | struct perf_event *event; | ||
336 | |||
337 | if (group_event->state != PERF_EVENT_STATE_ACTIVE) | ||
338 | return; | ||
339 | |||
340 | event_sched_out(group_event, cpuctx, ctx); | ||
341 | |||
342 | /* | ||
343 | * Schedule out siblings (if any): | ||
344 | */ | ||
345 | list_for_each_entry(event, &group_event->sibling_list, group_entry) | ||
346 | event_sched_out(event, cpuctx, ctx); | ||
347 | |||
348 | if (group_event->attr.exclusive) | ||
349 | cpuctx->exclusive = 0; | ||
350 | } | ||
351 | |||
352 | /* | ||
353 | * Cross CPU call to remove a performance event | ||
354 | * | ||
355 | * We disable the event on the hardware level first. After that we | ||
356 | * remove it from the context list. | ||
357 | */ | ||
358 | static void __perf_event_remove_from_context(void *info) | ||
359 | { | ||
360 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
361 | struct perf_event *event = info; | ||
362 | struct perf_event_context *ctx = event->ctx; | ||
363 | |||
364 | /* | ||
365 | * If this is a task context, we need to check whether it is | ||
366 | * the current task context of this cpu. If not it has been | ||
367 | * scheduled out before the smp call arrived. | ||
368 | */ | ||
369 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
370 | return; | ||
371 | |||
372 | spin_lock(&ctx->lock); | ||
373 | /* | ||
374 | * Protect the list operation against NMI by disabling the | ||
375 | * events on a global level. | ||
376 | */ | ||
377 | perf_disable(); | ||
378 | |||
379 | event_sched_out(event, cpuctx, ctx); | ||
380 | |||
381 | list_del_event(event, ctx); | ||
382 | |||
383 | if (!ctx->task) { | ||
384 | /* | ||
385 | * Allow more per task events with respect to the | ||
386 | * reservation: | ||
387 | */ | ||
388 | cpuctx->max_pertask = | ||
389 | min(perf_max_events - ctx->nr_events, | ||
390 | perf_max_events - perf_reserved_percpu); | ||
391 | } | ||
392 | |||
393 | perf_enable(); | ||
394 | spin_unlock(&ctx->lock); | ||
395 | } | ||
396 | |||
397 | |||
398 | /* | ||
399 | * Remove the event from a task's (or a CPU's) list of events. | ||
400 | * | ||
401 | * Must be called with ctx->mutex held. | ||
402 | * | ||
403 | * CPU events are removed with a smp call. For task events we only | ||
404 | * call when the task is on a CPU. | ||
405 | * | ||
406 | * If event->ctx is a cloned context, callers must make sure that | ||
407 | * every task struct that event->ctx->task could possibly point to | ||
408 | * remains valid. This is OK when called from perf_release since | ||
409 | * that only calls us on the top-level context, which can't be a clone. | ||
410 | * When called from perf_event_exit_task, it's OK because the | ||
411 | * context has been detached from its task. | ||
412 | */ | ||
413 | static void perf_event_remove_from_context(struct perf_event *event) | ||
414 | { | ||
415 | struct perf_event_context *ctx = event->ctx; | ||
416 | struct task_struct *task = ctx->task; | ||
417 | |||
418 | if (!task) { | ||
419 | /* | ||
420 | * Per cpu events are removed via an smp call and | ||
421 | * the removal is always sucessful. | ||
422 | */ | ||
423 | smp_call_function_single(event->cpu, | ||
424 | __perf_event_remove_from_context, | ||
425 | event, 1); | ||
426 | return; | ||
427 | } | ||
428 | |||
429 | retry: | ||
430 | task_oncpu_function_call(task, __perf_event_remove_from_context, | ||
431 | event); | ||
432 | |||
433 | spin_lock_irq(&ctx->lock); | ||
434 | /* | ||
435 | * If the context is active we need to retry the smp call. | ||
436 | */ | ||
437 | if (ctx->nr_active && !list_empty(&event->group_entry)) { | ||
438 | spin_unlock_irq(&ctx->lock); | ||
439 | goto retry; | ||
440 | } | ||
441 | |||
442 | /* | ||
443 | * The lock prevents that this context is scheduled in so we | ||
444 | * can remove the event safely, if the call above did not | ||
445 | * succeed. | ||
446 | */ | ||
447 | if (!list_empty(&event->group_entry)) { | ||
448 | list_del_event(event, ctx); | ||
449 | } | ||
450 | spin_unlock_irq(&ctx->lock); | ||
451 | } | ||
452 | |||
453 | static inline u64 perf_clock(void) | ||
454 | { | ||
455 | return cpu_clock(smp_processor_id()); | ||
456 | } | ||
457 | |||
458 | /* | ||
459 | * Update the record of the current time in a context. | ||
460 | */ | ||
461 | static void update_context_time(struct perf_event_context *ctx) | ||
462 | { | ||
463 | u64 now = perf_clock(); | ||
464 | |||
465 | ctx->time += now - ctx->timestamp; | ||
466 | ctx->timestamp = now; | ||
467 | } | ||
468 | |||
469 | /* | ||
470 | * Update the total_time_enabled and total_time_running fields for a event. | ||
471 | */ | ||
472 | static void update_event_times(struct perf_event *event) | ||
473 | { | ||
474 | struct perf_event_context *ctx = event->ctx; | ||
475 | u64 run_end; | ||
476 | |||
477 | if (event->state < PERF_EVENT_STATE_INACTIVE || | ||
478 | event->group_leader->state < PERF_EVENT_STATE_INACTIVE) | ||
479 | return; | ||
480 | |||
481 | event->total_time_enabled = ctx->time - event->tstamp_enabled; | ||
482 | |||
483 | if (event->state == PERF_EVENT_STATE_INACTIVE) | ||
484 | run_end = event->tstamp_stopped; | ||
485 | else | ||
486 | run_end = ctx->time; | ||
487 | |||
488 | event->total_time_running = run_end - event->tstamp_running; | ||
489 | } | ||
490 | |||
491 | /* | ||
492 | * Update total_time_enabled and total_time_running for all events in a group. | ||
493 | */ | ||
494 | static void update_group_times(struct perf_event *leader) | ||
495 | { | ||
496 | struct perf_event *event; | ||
497 | |||
498 | update_event_times(leader); | ||
499 | list_for_each_entry(event, &leader->sibling_list, group_entry) | ||
500 | update_event_times(event); | ||
501 | } | ||
502 | |||
503 | /* | ||
504 | * Cross CPU call to disable a performance event | ||
505 | */ | ||
506 | static void __perf_event_disable(void *info) | ||
507 | { | ||
508 | struct perf_event *event = info; | ||
509 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
510 | struct perf_event_context *ctx = event->ctx; | ||
511 | |||
512 | /* | ||
513 | * If this is a per-task event, need to check whether this | ||
514 | * event's task is the current task on this cpu. | ||
515 | */ | ||
516 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
517 | return; | ||
518 | |||
519 | spin_lock(&ctx->lock); | ||
520 | |||
521 | /* | ||
522 | * If the event is on, turn it off. | ||
523 | * If it is in error state, leave it in error state. | ||
524 | */ | ||
525 | if (event->state >= PERF_EVENT_STATE_INACTIVE) { | ||
526 | update_context_time(ctx); | ||
527 | update_group_times(event); | ||
528 | if (event == event->group_leader) | ||
529 | group_sched_out(event, cpuctx, ctx); | ||
530 | else | ||
531 | event_sched_out(event, cpuctx, ctx); | ||
532 | event->state = PERF_EVENT_STATE_OFF; | ||
533 | } | ||
534 | |||
535 | spin_unlock(&ctx->lock); | ||
536 | } | ||
537 | |||
538 | /* | ||
539 | * Disable a event. | ||
540 | * | ||
541 | * If event->ctx is a cloned context, callers must make sure that | ||
542 | * every task struct that event->ctx->task could possibly point to | ||
543 | * remains valid. This condition is satisifed when called through | ||
544 | * perf_event_for_each_child or perf_event_for_each because they | ||
545 | * hold the top-level event's child_mutex, so any descendant that | ||
546 | * goes to exit will block in sync_child_event. | ||
547 | * When called from perf_pending_event it's OK because event->ctx | ||
548 | * is the current context on this CPU and preemption is disabled, | ||
549 | * hence we can't get into perf_event_task_sched_out for this context. | ||
550 | */ | ||
551 | static void perf_event_disable(struct perf_event *event) | ||
552 | { | ||
553 | struct perf_event_context *ctx = event->ctx; | ||
554 | struct task_struct *task = ctx->task; | ||
555 | |||
556 | if (!task) { | ||
557 | /* | ||
558 | * Disable the event on the cpu that it's on | ||
559 | */ | ||
560 | smp_call_function_single(event->cpu, __perf_event_disable, | ||
561 | event, 1); | ||
562 | return; | ||
563 | } | ||
564 | |||
565 | retry: | ||
566 | task_oncpu_function_call(task, __perf_event_disable, event); | ||
567 | |||
568 | spin_lock_irq(&ctx->lock); | ||
569 | /* | ||
570 | * If the event is still active, we need to retry the cross-call. | ||
571 | */ | ||
572 | if (event->state == PERF_EVENT_STATE_ACTIVE) { | ||
573 | spin_unlock_irq(&ctx->lock); | ||
574 | goto retry; | ||
575 | } | ||
576 | |||
577 | /* | ||
578 | * Since we have the lock this context can't be scheduled | ||
579 | * in, so we can change the state safely. | ||
580 | */ | ||
581 | if (event->state == PERF_EVENT_STATE_INACTIVE) { | ||
582 | update_group_times(event); | ||
583 | event->state = PERF_EVENT_STATE_OFF; | ||
584 | } | ||
585 | |||
586 | spin_unlock_irq(&ctx->lock); | ||
587 | } | ||
588 | |||
589 | static int | ||
590 | event_sched_in(struct perf_event *event, | ||
591 | struct perf_cpu_context *cpuctx, | ||
592 | struct perf_event_context *ctx, | ||
593 | int cpu) | ||
594 | { | ||
595 | if (event->state <= PERF_EVENT_STATE_OFF) | ||
596 | return 0; | ||
597 | |||
598 | event->state = PERF_EVENT_STATE_ACTIVE; | ||
599 | event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */ | ||
600 | /* | ||
601 | * The new state must be visible before we turn it on in the hardware: | ||
602 | */ | ||
603 | smp_wmb(); | ||
604 | |||
605 | if (event->pmu->enable(event)) { | ||
606 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
607 | event->oncpu = -1; | ||
608 | return -EAGAIN; | ||
609 | } | ||
610 | |||
611 | event->tstamp_running += ctx->time - event->tstamp_stopped; | ||
612 | |||
613 | if (!is_software_event(event)) | ||
614 | cpuctx->active_oncpu++; | ||
615 | ctx->nr_active++; | ||
616 | |||
617 | if (event->attr.exclusive) | ||
618 | cpuctx->exclusive = 1; | ||
619 | |||
620 | return 0; | ||
621 | } | ||
622 | |||
623 | static int | ||
624 | group_sched_in(struct perf_event *group_event, | ||
625 | struct perf_cpu_context *cpuctx, | ||
626 | struct perf_event_context *ctx, | ||
627 | int cpu) | ||
628 | { | ||
629 | struct perf_event *event, *partial_group; | ||
630 | int ret; | ||
631 | |||
632 | if (group_event->state == PERF_EVENT_STATE_OFF) | ||
633 | return 0; | ||
634 | |||
635 | ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu); | ||
636 | if (ret) | ||
637 | return ret < 0 ? ret : 0; | ||
638 | |||
639 | if (event_sched_in(group_event, cpuctx, ctx, cpu)) | ||
640 | return -EAGAIN; | ||
641 | |||
642 | /* | ||
643 | * Schedule in siblings as one group (if any): | ||
644 | */ | ||
645 | list_for_each_entry(event, &group_event->sibling_list, group_entry) { | ||
646 | if (event_sched_in(event, cpuctx, ctx, cpu)) { | ||
647 | partial_group = event; | ||
648 | goto group_error; | ||
649 | } | ||
650 | } | ||
651 | |||
652 | return 0; | ||
653 | |||
654 | group_error: | ||
655 | /* | ||
656 | * Groups can be scheduled in as one unit only, so undo any | ||
657 | * partial group before returning: | ||
658 | */ | ||
659 | list_for_each_entry(event, &group_event->sibling_list, group_entry) { | ||
660 | if (event == partial_group) | ||
661 | break; | ||
662 | event_sched_out(event, cpuctx, ctx); | ||
663 | } | ||
664 | event_sched_out(group_event, cpuctx, ctx); | ||
665 | |||
666 | return -EAGAIN; | ||
667 | } | ||
668 | |||
669 | /* | ||
670 | * Return 1 for a group consisting entirely of software events, | ||
671 | * 0 if the group contains any hardware events. | ||
672 | */ | ||
673 | static int is_software_only_group(struct perf_event *leader) | ||
674 | { | ||
675 | struct perf_event *event; | ||
676 | |||
677 | if (!is_software_event(leader)) | ||
678 | return 0; | ||
679 | |||
680 | list_for_each_entry(event, &leader->sibling_list, group_entry) | ||
681 | if (!is_software_event(event)) | ||
682 | return 0; | ||
683 | |||
684 | return 1; | ||
685 | } | ||
686 | |||
687 | /* | ||
688 | * Work out whether we can put this event group on the CPU now. | ||
689 | */ | ||
690 | static int group_can_go_on(struct perf_event *event, | ||
691 | struct perf_cpu_context *cpuctx, | ||
692 | int can_add_hw) | ||
693 | { | ||
694 | /* | ||
695 | * Groups consisting entirely of software events can always go on. | ||
696 | */ | ||
697 | if (is_software_only_group(event)) | ||
698 | return 1; | ||
699 | /* | ||
700 | * If an exclusive group is already on, no other hardware | ||
701 | * events can go on. | ||
702 | */ | ||
703 | if (cpuctx->exclusive) | ||
704 | return 0; | ||
705 | /* | ||
706 | * If this group is exclusive and there are already | ||
707 | * events on the CPU, it can't go on. | ||
708 | */ | ||
709 | if (event->attr.exclusive && cpuctx->active_oncpu) | ||
710 | return 0; | ||
711 | /* | ||
712 | * Otherwise, try to add it if all previous groups were able | ||
713 | * to go on. | ||
714 | */ | ||
715 | return can_add_hw; | ||
716 | } | ||
717 | |||
718 | static void add_event_to_ctx(struct perf_event *event, | ||
719 | struct perf_event_context *ctx) | ||
720 | { | ||
721 | list_add_event(event, ctx); | ||
722 | event->tstamp_enabled = ctx->time; | ||
723 | event->tstamp_running = ctx->time; | ||
724 | event->tstamp_stopped = ctx->time; | ||
725 | } | ||
726 | |||
727 | /* | ||
728 | * Cross CPU call to install and enable a performance event | ||
729 | * | ||
730 | * Must be called with ctx->mutex held | ||
731 | */ | ||
732 | static void __perf_install_in_context(void *info) | ||
733 | { | ||
734 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
735 | struct perf_event *event = info; | ||
736 | struct perf_event_context *ctx = event->ctx; | ||
737 | struct perf_event *leader = event->group_leader; | ||
738 | int cpu = smp_processor_id(); | ||
739 | int err; | ||
740 | |||
741 | /* | ||
742 | * If this is a task context, we need to check whether it is | ||
743 | * the current task context of this cpu. If not it has been | ||
744 | * scheduled out before the smp call arrived. | ||
745 | * Or possibly this is the right context but it isn't | ||
746 | * on this cpu because it had no events. | ||
747 | */ | ||
748 | if (ctx->task && cpuctx->task_ctx != ctx) { | ||
749 | if (cpuctx->task_ctx || ctx->task != current) | ||
750 | return; | ||
751 | cpuctx->task_ctx = ctx; | ||
752 | } | ||
753 | |||
754 | spin_lock(&ctx->lock); | ||
755 | ctx->is_active = 1; | ||
756 | update_context_time(ctx); | ||
757 | |||
758 | /* | ||
759 | * Protect the list operation against NMI by disabling the | ||
760 | * events on a global level. NOP for non NMI based events. | ||
761 | */ | ||
762 | perf_disable(); | ||
763 | |||
764 | add_event_to_ctx(event, ctx); | ||
765 | |||
766 | /* | ||
767 | * Don't put the event on if it is disabled or if | ||
768 | * it is in a group and the group isn't on. | ||
769 | */ | ||
770 | if (event->state != PERF_EVENT_STATE_INACTIVE || | ||
771 | (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)) | ||
772 | goto unlock; | ||
773 | |||
774 | /* | ||
775 | * An exclusive event can't go on if there are already active | ||
776 | * hardware events, and no hardware event can go on if there | ||
777 | * is already an exclusive event on. | ||
778 | */ | ||
779 | if (!group_can_go_on(event, cpuctx, 1)) | ||
780 | err = -EEXIST; | ||
781 | else | ||
782 | err = event_sched_in(event, cpuctx, ctx, cpu); | ||
783 | |||
784 | if (err) { | ||
785 | /* | ||
786 | * This event couldn't go on. If it is in a group | ||
787 | * then we have to pull the whole group off. | ||
788 | * If the event group is pinned then put it in error state. | ||
789 | */ | ||
790 | if (leader != event) | ||
791 | group_sched_out(leader, cpuctx, ctx); | ||
792 | if (leader->attr.pinned) { | ||
793 | update_group_times(leader); | ||
794 | leader->state = PERF_EVENT_STATE_ERROR; | ||
795 | } | ||
796 | } | ||
797 | |||
798 | if (!err && !ctx->task && cpuctx->max_pertask) | ||
799 | cpuctx->max_pertask--; | ||
800 | |||
801 | unlock: | ||
802 | perf_enable(); | ||
803 | |||
804 | spin_unlock(&ctx->lock); | ||
805 | } | ||
806 | |||
807 | /* | ||
808 | * Attach a performance event to a context | ||
809 | * | ||
810 | * First we add the event to the list with the hardware enable bit | ||
811 | * in event->hw_config cleared. | ||
812 | * | ||
813 | * If the event is attached to a task which is on a CPU we use a smp | ||
814 | * call to enable it in the task context. The task might have been | ||
815 | * scheduled away, but we check this in the smp call again. | ||
816 | * | ||
817 | * Must be called with ctx->mutex held. | ||
818 | */ | ||
819 | static void | ||
820 | perf_install_in_context(struct perf_event_context *ctx, | ||
821 | struct perf_event *event, | ||
822 | int cpu) | ||
823 | { | ||
824 | struct task_struct *task = ctx->task; | ||
825 | |||
826 | if (!task) { | ||
827 | /* | ||
828 | * Per cpu events are installed via an smp call and | ||
829 | * the install is always sucessful. | ||
830 | */ | ||
831 | smp_call_function_single(cpu, __perf_install_in_context, | ||
832 | event, 1); | ||
833 | return; | ||
834 | } | ||
835 | |||
836 | retry: | ||
837 | task_oncpu_function_call(task, __perf_install_in_context, | ||
838 | event); | ||
839 | |||
840 | spin_lock_irq(&ctx->lock); | ||
841 | /* | ||
842 | * we need to retry the smp call. | ||
843 | */ | ||
844 | if (ctx->is_active && list_empty(&event->group_entry)) { | ||
845 | spin_unlock_irq(&ctx->lock); | ||
846 | goto retry; | ||
847 | } | ||
848 | |||
849 | /* | ||
850 | * The lock prevents that this context is scheduled in so we | ||
851 | * can add the event safely, if it the call above did not | ||
852 | * succeed. | ||
853 | */ | ||
854 | if (list_empty(&event->group_entry)) | ||
855 | add_event_to_ctx(event, ctx); | ||
856 | spin_unlock_irq(&ctx->lock); | ||
857 | } | ||
858 | |||
859 | /* | ||
860 | * Put a event into inactive state and update time fields. | ||
861 | * Enabling the leader of a group effectively enables all | ||
862 | * the group members that aren't explicitly disabled, so we | ||
863 | * have to update their ->tstamp_enabled also. | ||
864 | * Note: this works for group members as well as group leaders | ||
865 | * since the non-leader members' sibling_lists will be empty. | ||
866 | */ | ||
867 | static void __perf_event_mark_enabled(struct perf_event *event, | ||
868 | struct perf_event_context *ctx) | ||
869 | { | ||
870 | struct perf_event *sub; | ||
871 | |||
872 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
873 | event->tstamp_enabled = ctx->time - event->total_time_enabled; | ||
874 | list_for_each_entry(sub, &event->sibling_list, group_entry) | ||
875 | if (sub->state >= PERF_EVENT_STATE_INACTIVE) | ||
876 | sub->tstamp_enabled = | ||
877 | ctx->time - sub->total_time_enabled; | ||
878 | } | ||
879 | |||
880 | /* | ||
881 | * Cross CPU call to enable a performance event | ||
882 | */ | ||
883 | static void __perf_event_enable(void *info) | ||
884 | { | ||
885 | struct perf_event *event = info; | ||
886 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
887 | struct perf_event_context *ctx = event->ctx; | ||
888 | struct perf_event *leader = event->group_leader; | ||
889 | int err; | ||
890 | |||
891 | /* | ||
892 | * If this is a per-task event, need to check whether this | ||
893 | * event's task is the current task on this cpu. | ||
894 | */ | ||
895 | if (ctx->task && cpuctx->task_ctx != ctx) { | ||
896 | if (cpuctx->task_ctx || ctx->task != current) | ||
897 | return; | ||
898 | cpuctx->task_ctx = ctx; | ||
899 | } | ||
900 | |||
901 | spin_lock(&ctx->lock); | ||
902 | ctx->is_active = 1; | ||
903 | update_context_time(ctx); | ||
904 | |||
905 | if (event->state >= PERF_EVENT_STATE_INACTIVE) | ||
906 | goto unlock; | ||
907 | __perf_event_mark_enabled(event, ctx); | ||
908 | |||
909 | /* | ||
910 | * If the event is in a group and isn't the group leader, | ||
911 | * then don't put it on unless the group is on. | ||
912 | */ | ||
913 | if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) | ||
914 | goto unlock; | ||
915 | |||
916 | if (!group_can_go_on(event, cpuctx, 1)) { | ||
917 | err = -EEXIST; | ||
918 | } else { | ||
919 | perf_disable(); | ||
920 | if (event == leader) | ||
921 | err = group_sched_in(event, cpuctx, ctx, | ||
922 | smp_processor_id()); | ||
923 | else | ||
924 | err = event_sched_in(event, cpuctx, ctx, | ||
925 | smp_processor_id()); | ||
926 | perf_enable(); | ||
927 | } | ||
928 | |||
929 | if (err) { | ||
930 | /* | ||
931 | * If this event can't go on and it's part of a | ||
932 | * group, then the whole group has to come off. | ||
933 | */ | ||
934 | if (leader != event) | ||
935 | group_sched_out(leader, cpuctx, ctx); | ||
936 | if (leader->attr.pinned) { | ||
937 | update_group_times(leader); | ||
938 | leader->state = PERF_EVENT_STATE_ERROR; | ||
939 | } | ||
940 | } | ||
941 | |||
942 | unlock: | ||
943 | spin_unlock(&ctx->lock); | ||
944 | } | ||
945 | |||
946 | /* | ||
947 | * Enable a event. | ||
948 | * | ||
949 | * If event->ctx is a cloned context, callers must make sure that | ||
950 | * every task struct that event->ctx->task could possibly point to | ||
951 | * remains valid. This condition is satisfied when called through | ||
952 | * perf_event_for_each_child or perf_event_for_each as described | ||
953 | * for perf_event_disable. | ||
954 | */ | ||
955 | static void perf_event_enable(struct perf_event *event) | ||
956 | { | ||
957 | struct perf_event_context *ctx = event->ctx; | ||
958 | struct task_struct *task = ctx->task; | ||
959 | |||
960 | if (!task) { | ||
961 | /* | ||
962 | * Enable the event on the cpu that it's on | ||
963 | */ | ||
964 | smp_call_function_single(event->cpu, __perf_event_enable, | ||
965 | event, 1); | ||
966 | return; | ||
967 | } | ||
968 | |||
969 | spin_lock_irq(&ctx->lock); | ||
970 | if (event->state >= PERF_EVENT_STATE_INACTIVE) | ||
971 | goto out; | ||
972 | |||
973 | /* | ||
974 | * If the event is in error state, clear that first. | ||
975 | * That way, if we see the event in error state below, we | ||
976 | * know that it has gone back into error state, as distinct | ||
977 | * from the task having been scheduled away before the | ||
978 | * cross-call arrived. | ||
979 | */ | ||
980 | if (event->state == PERF_EVENT_STATE_ERROR) | ||
981 | event->state = PERF_EVENT_STATE_OFF; | ||
982 | |||
983 | retry: | ||
984 | spin_unlock_irq(&ctx->lock); | ||
985 | task_oncpu_function_call(task, __perf_event_enable, event); | ||
986 | |||
987 | spin_lock_irq(&ctx->lock); | ||
988 | |||
989 | /* | ||
990 | * If the context is active and the event is still off, | ||
991 | * we need to retry the cross-call. | ||
992 | */ | ||
993 | if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) | ||
994 | goto retry; | ||
995 | |||
996 | /* | ||
997 | * Since we have the lock this context can't be scheduled | ||
998 | * in, so we can change the state safely. | ||
999 | */ | ||
1000 | if (event->state == PERF_EVENT_STATE_OFF) | ||
1001 | __perf_event_mark_enabled(event, ctx); | ||
1002 | |||
1003 | out: | ||
1004 | spin_unlock_irq(&ctx->lock); | ||
1005 | } | ||
1006 | |||
1007 | static int perf_event_refresh(struct perf_event *event, int refresh) | ||
1008 | { | ||
1009 | /* | ||
1010 | * not supported on inherited events | ||
1011 | */ | ||
1012 | if (event->attr.inherit) | ||
1013 | return -EINVAL; | ||
1014 | |||
1015 | atomic_add(refresh, &event->event_limit); | ||
1016 | perf_event_enable(event); | ||
1017 | |||
1018 | return 0; | ||
1019 | } | ||
1020 | |||
1021 | void __perf_event_sched_out(struct perf_event_context *ctx, | ||
1022 | struct perf_cpu_context *cpuctx) | ||
1023 | { | ||
1024 | struct perf_event *event; | ||
1025 | |||
1026 | spin_lock(&ctx->lock); | ||
1027 | ctx->is_active = 0; | ||
1028 | if (likely(!ctx->nr_events)) | ||
1029 | goto out; | ||
1030 | update_context_time(ctx); | ||
1031 | |||
1032 | perf_disable(); | ||
1033 | if (ctx->nr_active) { | ||
1034 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
1035 | if (event != event->group_leader) | ||
1036 | event_sched_out(event, cpuctx, ctx); | ||
1037 | else | ||
1038 | group_sched_out(event, cpuctx, ctx); | ||
1039 | } | ||
1040 | } | ||
1041 | perf_enable(); | ||
1042 | out: | ||
1043 | spin_unlock(&ctx->lock); | ||
1044 | } | ||
1045 | |||
1046 | /* | ||
1047 | * Test whether two contexts are equivalent, i.e. whether they | ||
1048 | * have both been cloned from the same version of the same context | ||
1049 | * and they both have the same number of enabled events. | ||
1050 | * If the number of enabled events is the same, then the set | ||
1051 | * of enabled events should be the same, because these are both | ||
1052 | * inherited contexts, therefore we can't access individual events | ||
1053 | * in them directly with an fd; we can only enable/disable all | ||
1054 | * events via prctl, or enable/disable all events in a family | ||
1055 | * via ioctl, which will have the same effect on both contexts. | ||
1056 | */ | ||
1057 | static int context_equiv(struct perf_event_context *ctx1, | ||
1058 | struct perf_event_context *ctx2) | ||
1059 | { | ||
1060 | return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx | ||
1061 | && ctx1->parent_gen == ctx2->parent_gen | ||
1062 | && !ctx1->pin_count && !ctx2->pin_count; | ||
1063 | } | ||
1064 | |||
1065 | static void __perf_event_read(void *event); | ||
1066 | |||
1067 | static void __perf_event_sync_stat(struct perf_event *event, | ||
1068 | struct perf_event *next_event) | ||
1069 | { | ||
1070 | u64 value; | ||
1071 | |||
1072 | if (!event->attr.inherit_stat) | ||
1073 | return; | ||
1074 | |||
1075 | /* | ||
1076 | * Update the event value, we cannot use perf_event_read() | ||
1077 | * because we're in the middle of a context switch and have IRQs | ||
1078 | * disabled, which upsets smp_call_function_single(), however | ||
1079 | * we know the event must be on the current CPU, therefore we | ||
1080 | * don't need to use it. | ||
1081 | */ | ||
1082 | switch (event->state) { | ||
1083 | case PERF_EVENT_STATE_ACTIVE: | ||
1084 | __perf_event_read(event); | ||
1085 | break; | ||
1086 | |||
1087 | case PERF_EVENT_STATE_INACTIVE: | ||
1088 | update_event_times(event); | ||
1089 | break; | ||
1090 | |||
1091 | default: | ||
1092 | break; | ||
1093 | } | ||
1094 | |||
1095 | /* | ||
1096 | * In order to keep per-task stats reliable we need to flip the event | ||
1097 | * values when we flip the contexts. | ||
1098 | */ | ||
1099 | value = atomic64_read(&next_event->count); | ||
1100 | value = atomic64_xchg(&event->count, value); | ||
1101 | atomic64_set(&next_event->count, value); | ||
1102 | |||
1103 | swap(event->total_time_enabled, next_event->total_time_enabled); | ||
1104 | swap(event->total_time_running, next_event->total_time_running); | ||
1105 | |||
1106 | /* | ||
1107 | * Since we swizzled the values, update the user visible data too. | ||
1108 | */ | ||
1109 | perf_event_update_userpage(event); | ||
1110 | perf_event_update_userpage(next_event); | ||
1111 | } | ||
1112 | |||
1113 | #define list_next_entry(pos, member) \ | ||
1114 | list_entry(pos->member.next, typeof(*pos), member) | ||
1115 | |||
1116 | static void perf_event_sync_stat(struct perf_event_context *ctx, | ||
1117 | struct perf_event_context *next_ctx) | ||
1118 | { | ||
1119 | struct perf_event *event, *next_event; | ||
1120 | |||
1121 | if (!ctx->nr_stat) | ||
1122 | return; | ||
1123 | |||
1124 | event = list_first_entry(&ctx->event_list, | ||
1125 | struct perf_event, event_entry); | ||
1126 | |||
1127 | next_event = list_first_entry(&next_ctx->event_list, | ||
1128 | struct perf_event, event_entry); | ||
1129 | |||
1130 | while (&event->event_entry != &ctx->event_list && | ||
1131 | &next_event->event_entry != &next_ctx->event_list) { | ||
1132 | |||
1133 | __perf_event_sync_stat(event, next_event); | ||
1134 | |||
1135 | event = list_next_entry(event, event_entry); | ||
1136 | next_event = list_next_entry(next_event, event_entry); | ||
1137 | } | ||
1138 | } | ||
1139 | |||
1140 | /* | ||
1141 | * Called from scheduler to remove the events of the current task, | ||
1142 | * with interrupts disabled. | ||
1143 | * | ||
1144 | * We stop each event and update the event value in event->count. | ||
1145 | * | ||
1146 | * This does not protect us against NMI, but disable() | ||
1147 | * sets the disabled bit in the control field of event _before_ | ||
1148 | * accessing the event control register. If a NMI hits, then it will | ||
1149 | * not restart the event. | ||
1150 | */ | ||
1151 | void perf_event_task_sched_out(struct task_struct *task, | ||
1152 | struct task_struct *next, int cpu) | ||
1153 | { | ||
1154 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1155 | struct perf_event_context *ctx = task->perf_event_ctxp; | ||
1156 | struct perf_event_context *next_ctx; | ||
1157 | struct perf_event_context *parent; | ||
1158 | struct pt_regs *regs; | ||
1159 | int do_switch = 1; | ||
1160 | |||
1161 | regs = task_pt_regs(task); | ||
1162 | perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0); | ||
1163 | |||
1164 | if (likely(!ctx || !cpuctx->task_ctx)) | ||
1165 | return; | ||
1166 | |||
1167 | update_context_time(ctx); | ||
1168 | |||
1169 | rcu_read_lock(); | ||
1170 | parent = rcu_dereference(ctx->parent_ctx); | ||
1171 | next_ctx = next->perf_event_ctxp; | ||
1172 | if (parent && next_ctx && | ||
1173 | rcu_dereference(next_ctx->parent_ctx) == parent) { | ||
1174 | /* | ||
1175 | * Looks like the two contexts are clones, so we might be | ||
1176 | * able to optimize the context switch. We lock both | ||
1177 | * contexts and check that they are clones under the | ||
1178 | * lock (including re-checking that neither has been | ||
1179 | * uncloned in the meantime). It doesn't matter which | ||
1180 | * order we take the locks because no other cpu could | ||
1181 | * be trying to lock both of these tasks. | ||
1182 | */ | ||
1183 | spin_lock(&ctx->lock); | ||
1184 | spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); | ||
1185 | if (context_equiv(ctx, next_ctx)) { | ||
1186 | /* | ||
1187 | * XXX do we need a memory barrier of sorts | ||
1188 | * wrt to rcu_dereference() of perf_event_ctxp | ||
1189 | */ | ||
1190 | task->perf_event_ctxp = next_ctx; | ||
1191 | next->perf_event_ctxp = ctx; | ||
1192 | ctx->task = next; | ||
1193 | next_ctx->task = task; | ||
1194 | do_switch = 0; | ||
1195 | |||
1196 | perf_event_sync_stat(ctx, next_ctx); | ||
1197 | } | ||
1198 | spin_unlock(&next_ctx->lock); | ||
1199 | spin_unlock(&ctx->lock); | ||
1200 | } | ||
1201 | rcu_read_unlock(); | ||
1202 | |||
1203 | if (do_switch) { | ||
1204 | __perf_event_sched_out(ctx, cpuctx); | ||
1205 | cpuctx->task_ctx = NULL; | ||
1206 | } | ||
1207 | } | ||
1208 | |||
1209 | /* | ||
1210 | * Called with IRQs disabled | ||
1211 | */ | ||
1212 | static void __perf_event_task_sched_out(struct perf_event_context *ctx) | ||
1213 | { | ||
1214 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
1215 | |||
1216 | if (!cpuctx->task_ctx) | ||
1217 | return; | ||
1218 | |||
1219 | if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) | ||
1220 | return; | ||
1221 | |||
1222 | __perf_event_sched_out(ctx, cpuctx); | ||
1223 | cpuctx->task_ctx = NULL; | ||
1224 | } | ||
1225 | |||
1226 | /* | ||
1227 | * Called with IRQs disabled | ||
1228 | */ | ||
1229 | static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx) | ||
1230 | { | ||
1231 | __perf_event_sched_out(&cpuctx->ctx, cpuctx); | ||
1232 | } | ||
1233 | |||
1234 | static void | ||
1235 | __perf_event_sched_in(struct perf_event_context *ctx, | ||
1236 | struct perf_cpu_context *cpuctx, int cpu) | ||
1237 | { | ||
1238 | struct perf_event *event; | ||
1239 | int can_add_hw = 1; | ||
1240 | |||
1241 | spin_lock(&ctx->lock); | ||
1242 | ctx->is_active = 1; | ||
1243 | if (likely(!ctx->nr_events)) | ||
1244 | goto out; | ||
1245 | |||
1246 | ctx->timestamp = perf_clock(); | ||
1247 | |||
1248 | perf_disable(); | ||
1249 | |||
1250 | /* | ||
1251 | * First go through the list and put on any pinned groups | ||
1252 | * in order to give them the best chance of going on. | ||
1253 | */ | ||
1254 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
1255 | if (event->state <= PERF_EVENT_STATE_OFF || | ||
1256 | !event->attr.pinned) | ||
1257 | continue; | ||
1258 | if (event->cpu != -1 && event->cpu != cpu) | ||
1259 | continue; | ||
1260 | |||
1261 | if (event != event->group_leader) | ||
1262 | event_sched_in(event, cpuctx, ctx, cpu); | ||
1263 | else { | ||
1264 | if (group_can_go_on(event, cpuctx, 1)) | ||
1265 | group_sched_in(event, cpuctx, ctx, cpu); | ||
1266 | } | ||
1267 | |||
1268 | /* | ||
1269 | * If this pinned group hasn't been scheduled, | ||
1270 | * put it in error state. | ||
1271 | */ | ||
1272 | if (event->state == PERF_EVENT_STATE_INACTIVE) { | ||
1273 | update_group_times(event); | ||
1274 | event->state = PERF_EVENT_STATE_ERROR; | ||
1275 | } | ||
1276 | } | ||
1277 | |||
1278 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
1279 | /* | ||
1280 | * Ignore events in OFF or ERROR state, and | ||
1281 | * ignore pinned events since we did them already. | ||
1282 | */ | ||
1283 | if (event->state <= PERF_EVENT_STATE_OFF || | ||
1284 | event->attr.pinned) | ||
1285 | continue; | ||
1286 | |||
1287 | /* | ||
1288 | * Listen to the 'cpu' scheduling filter constraint | ||
1289 | * of events: | ||
1290 | */ | ||
1291 | if (event->cpu != -1 && event->cpu != cpu) | ||
1292 | continue; | ||
1293 | |||
1294 | if (event != event->group_leader) { | ||
1295 | if (event_sched_in(event, cpuctx, ctx, cpu)) | ||
1296 | can_add_hw = 0; | ||
1297 | } else { | ||
1298 | if (group_can_go_on(event, cpuctx, can_add_hw)) { | ||
1299 | if (group_sched_in(event, cpuctx, ctx, cpu)) | ||
1300 | can_add_hw = 0; | ||
1301 | } | ||
1302 | } | ||
1303 | } | ||
1304 | perf_enable(); | ||
1305 | out: | ||
1306 | spin_unlock(&ctx->lock); | ||
1307 | } | ||
1308 | |||
1309 | /* | ||
1310 | * Called from scheduler to add the events of the current task | ||
1311 | * with interrupts disabled. | ||
1312 | * | ||
1313 | * We restore the event value and then enable it. | ||
1314 | * | ||
1315 | * This does not protect us against NMI, but enable() | ||
1316 | * sets the enabled bit in the control field of event _before_ | ||
1317 | * accessing the event control register. If a NMI hits, then it will | ||
1318 | * keep the event running. | ||
1319 | */ | ||
1320 | void perf_event_task_sched_in(struct task_struct *task, int cpu) | ||
1321 | { | ||
1322 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1323 | struct perf_event_context *ctx = task->perf_event_ctxp; | ||
1324 | |||
1325 | if (likely(!ctx)) | ||
1326 | return; | ||
1327 | if (cpuctx->task_ctx == ctx) | ||
1328 | return; | ||
1329 | __perf_event_sched_in(ctx, cpuctx, cpu); | ||
1330 | cpuctx->task_ctx = ctx; | ||
1331 | } | ||
1332 | |||
1333 | static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu) | ||
1334 | { | ||
1335 | struct perf_event_context *ctx = &cpuctx->ctx; | ||
1336 | |||
1337 | __perf_event_sched_in(ctx, cpuctx, cpu); | ||
1338 | } | ||
1339 | |||
1340 | #define MAX_INTERRUPTS (~0ULL) | ||
1341 | |||
1342 | static void perf_log_throttle(struct perf_event *event, int enable); | ||
1343 | |||
1344 | static void perf_adjust_period(struct perf_event *event, u64 events) | ||
1345 | { | ||
1346 | struct hw_perf_event *hwc = &event->hw; | ||
1347 | u64 period, sample_period; | ||
1348 | s64 delta; | ||
1349 | |||
1350 | events *= hwc->sample_period; | ||
1351 | period = div64_u64(events, event->attr.sample_freq); | ||
1352 | |||
1353 | delta = (s64)(period - hwc->sample_period); | ||
1354 | delta = (delta + 7) / 8; /* low pass filter */ | ||
1355 | |||
1356 | sample_period = hwc->sample_period + delta; | ||
1357 | |||
1358 | if (!sample_period) | ||
1359 | sample_period = 1; | ||
1360 | |||
1361 | hwc->sample_period = sample_period; | ||
1362 | } | ||
1363 | |||
1364 | static void perf_ctx_adjust_freq(struct perf_event_context *ctx) | ||
1365 | { | ||
1366 | struct perf_event *event; | ||
1367 | struct hw_perf_event *hwc; | ||
1368 | u64 interrupts, freq; | ||
1369 | |||
1370 | spin_lock(&ctx->lock); | ||
1371 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
1372 | if (event->state != PERF_EVENT_STATE_ACTIVE) | ||
1373 | continue; | ||
1374 | |||
1375 | hwc = &event->hw; | ||
1376 | |||
1377 | interrupts = hwc->interrupts; | ||
1378 | hwc->interrupts = 0; | ||
1379 | |||
1380 | /* | ||
1381 | * unthrottle events on the tick | ||
1382 | */ | ||
1383 | if (interrupts == MAX_INTERRUPTS) { | ||
1384 | perf_log_throttle(event, 1); | ||
1385 | event->pmu->unthrottle(event); | ||
1386 | interrupts = 2*sysctl_perf_event_sample_rate/HZ; | ||
1387 | } | ||
1388 | |||
1389 | if (!event->attr.freq || !event->attr.sample_freq) | ||
1390 | continue; | ||
1391 | |||
1392 | /* | ||
1393 | * if the specified freq < HZ then we need to skip ticks | ||
1394 | */ | ||
1395 | if (event->attr.sample_freq < HZ) { | ||
1396 | freq = event->attr.sample_freq; | ||
1397 | |||
1398 | hwc->freq_count += freq; | ||
1399 | hwc->freq_interrupts += interrupts; | ||
1400 | |||
1401 | if (hwc->freq_count < HZ) | ||
1402 | continue; | ||
1403 | |||
1404 | interrupts = hwc->freq_interrupts; | ||
1405 | hwc->freq_interrupts = 0; | ||
1406 | hwc->freq_count -= HZ; | ||
1407 | } else | ||
1408 | freq = HZ; | ||
1409 | |||
1410 | perf_adjust_period(event, freq * interrupts); | ||
1411 | |||
1412 | /* | ||
1413 | * In order to avoid being stalled by an (accidental) huge | ||
1414 | * sample period, force reset the sample period if we didn't | ||
1415 | * get any events in this freq period. | ||
1416 | */ | ||
1417 | if (!interrupts) { | ||
1418 | perf_disable(); | ||
1419 | event->pmu->disable(event); | ||
1420 | atomic64_set(&hwc->period_left, 0); | ||
1421 | event->pmu->enable(event); | ||
1422 | perf_enable(); | ||
1423 | } | ||
1424 | } | ||
1425 | spin_unlock(&ctx->lock); | ||
1426 | } | ||
1427 | |||
1428 | /* | ||
1429 | * Round-robin a context's events: | ||
1430 | */ | ||
1431 | static void rotate_ctx(struct perf_event_context *ctx) | ||
1432 | { | ||
1433 | struct perf_event *event; | ||
1434 | |||
1435 | if (!ctx->nr_events) | ||
1436 | return; | ||
1437 | |||
1438 | spin_lock(&ctx->lock); | ||
1439 | /* | ||
1440 | * Rotate the first entry last (works just fine for group events too): | ||
1441 | */ | ||
1442 | perf_disable(); | ||
1443 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
1444 | list_move_tail(&event->group_entry, &ctx->group_list); | ||
1445 | break; | ||
1446 | } | ||
1447 | perf_enable(); | ||
1448 | |||
1449 | spin_unlock(&ctx->lock); | ||
1450 | } | ||
1451 | |||
1452 | void perf_event_task_tick(struct task_struct *curr, int cpu) | ||
1453 | { | ||
1454 | struct perf_cpu_context *cpuctx; | ||
1455 | struct perf_event_context *ctx; | ||
1456 | |||
1457 | if (!atomic_read(&nr_events)) | ||
1458 | return; | ||
1459 | |||
1460 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1461 | ctx = curr->perf_event_ctxp; | ||
1462 | |||
1463 | perf_ctx_adjust_freq(&cpuctx->ctx); | ||
1464 | if (ctx) | ||
1465 | perf_ctx_adjust_freq(ctx); | ||
1466 | |||
1467 | perf_event_cpu_sched_out(cpuctx); | ||
1468 | if (ctx) | ||
1469 | __perf_event_task_sched_out(ctx); | ||
1470 | |||
1471 | rotate_ctx(&cpuctx->ctx); | ||
1472 | if (ctx) | ||
1473 | rotate_ctx(ctx); | ||
1474 | |||
1475 | perf_event_cpu_sched_in(cpuctx, cpu); | ||
1476 | if (ctx) | ||
1477 | perf_event_task_sched_in(curr, cpu); | ||
1478 | } | ||
1479 | |||
1480 | /* | ||
1481 | * Enable all of a task's events that have been marked enable-on-exec. | ||
1482 | * This expects task == current. | ||
1483 | */ | ||
1484 | static void perf_event_enable_on_exec(struct task_struct *task) | ||
1485 | { | ||
1486 | struct perf_event_context *ctx; | ||
1487 | struct perf_event *event; | ||
1488 | unsigned long flags; | ||
1489 | int enabled = 0; | ||
1490 | |||
1491 | local_irq_save(flags); | ||
1492 | ctx = task->perf_event_ctxp; | ||
1493 | if (!ctx || !ctx->nr_events) | ||
1494 | goto out; | ||
1495 | |||
1496 | __perf_event_task_sched_out(ctx); | ||
1497 | |||
1498 | spin_lock(&ctx->lock); | ||
1499 | |||
1500 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
1501 | if (!event->attr.enable_on_exec) | ||
1502 | continue; | ||
1503 | event->attr.enable_on_exec = 0; | ||
1504 | if (event->state >= PERF_EVENT_STATE_INACTIVE) | ||
1505 | continue; | ||
1506 | __perf_event_mark_enabled(event, ctx); | ||
1507 | enabled = 1; | ||
1508 | } | ||
1509 | |||
1510 | /* | ||
1511 | * Unclone this context if we enabled any event. | ||
1512 | */ | ||
1513 | if (enabled) | ||
1514 | unclone_ctx(ctx); | ||
1515 | |||
1516 | spin_unlock(&ctx->lock); | ||
1517 | |||
1518 | perf_event_task_sched_in(task, smp_processor_id()); | ||
1519 | out: | ||
1520 | local_irq_restore(flags); | ||
1521 | } | ||
1522 | |||
1523 | /* | ||
1524 | * Cross CPU call to read the hardware event | ||
1525 | */ | ||
1526 | static void __perf_event_read(void *info) | ||
1527 | { | ||
1528 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
1529 | struct perf_event *event = info; | ||
1530 | struct perf_event_context *ctx = event->ctx; | ||
1531 | unsigned long flags; | ||
1532 | |||
1533 | /* | ||
1534 | * If this is a task context, we need to check whether it is | ||
1535 | * the current task context of this cpu. If not it has been | ||
1536 | * scheduled out before the smp call arrived. In that case | ||
1537 | * event->count would have been updated to a recent sample | ||
1538 | * when the event was scheduled out. | ||
1539 | */ | ||
1540 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
1541 | return; | ||
1542 | |||
1543 | local_irq_save(flags); | ||
1544 | if (ctx->is_active) | ||
1545 | update_context_time(ctx); | ||
1546 | event->pmu->read(event); | ||
1547 | update_event_times(event); | ||
1548 | local_irq_restore(flags); | ||
1549 | } | ||
1550 | |||
1551 | static u64 perf_event_read(struct perf_event *event) | ||
1552 | { | ||
1553 | /* | ||
1554 | * If event is enabled and currently active on a CPU, update the | ||
1555 | * value in the event structure: | ||
1556 | */ | ||
1557 | if (event->state == PERF_EVENT_STATE_ACTIVE) { | ||
1558 | smp_call_function_single(event->oncpu, | ||
1559 | __perf_event_read, event, 1); | ||
1560 | } else if (event->state == PERF_EVENT_STATE_INACTIVE) { | ||
1561 | update_event_times(event); | ||
1562 | } | ||
1563 | |||
1564 | return atomic64_read(&event->count); | ||
1565 | } | ||
1566 | |||
1567 | /* | ||
1568 | * Initialize the perf_event context in a task_struct: | ||
1569 | */ | ||
1570 | static void | ||
1571 | __perf_event_init_context(struct perf_event_context *ctx, | ||
1572 | struct task_struct *task) | ||
1573 | { | ||
1574 | memset(ctx, 0, sizeof(*ctx)); | ||
1575 | spin_lock_init(&ctx->lock); | ||
1576 | mutex_init(&ctx->mutex); | ||
1577 | INIT_LIST_HEAD(&ctx->group_list); | ||
1578 | INIT_LIST_HEAD(&ctx->event_list); | ||
1579 | atomic_set(&ctx->refcount, 1); | ||
1580 | ctx->task = task; | ||
1581 | } | ||
1582 | |||
1583 | static struct perf_event_context *find_get_context(pid_t pid, int cpu) | ||
1584 | { | ||
1585 | struct perf_event_context *ctx; | ||
1586 | struct perf_cpu_context *cpuctx; | ||
1587 | struct task_struct *task; | ||
1588 | unsigned long flags; | ||
1589 | int err; | ||
1590 | |||
1591 | /* | ||
1592 | * If cpu is not a wildcard then this is a percpu event: | ||
1593 | */ | ||
1594 | if (cpu != -1) { | ||
1595 | /* Must be root to operate on a CPU event: */ | ||
1596 | if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) | ||
1597 | return ERR_PTR(-EACCES); | ||
1598 | |||
1599 | if (cpu < 0 || cpu > num_possible_cpus()) | ||
1600 | return ERR_PTR(-EINVAL); | ||
1601 | |||
1602 | /* | ||
1603 | * We could be clever and allow to attach a event to an | ||
1604 | * offline CPU and activate it when the CPU comes up, but | ||
1605 | * that's for later. | ||
1606 | */ | ||
1607 | if (!cpu_isset(cpu, cpu_online_map)) | ||
1608 | return ERR_PTR(-ENODEV); | ||
1609 | |||
1610 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1611 | ctx = &cpuctx->ctx; | ||
1612 | get_ctx(ctx); | ||
1613 | |||
1614 | return ctx; | ||
1615 | } | ||
1616 | |||
1617 | rcu_read_lock(); | ||
1618 | if (!pid) | ||
1619 | task = current; | ||
1620 | else | ||
1621 | task = find_task_by_vpid(pid); | ||
1622 | if (task) | ||
1623 | get_task_struct(task); | ||
1624 | rcu_read_unlock(); | ||
1625 | |||
1626 | if (!task) | ||
1627 | return ERR_PTR(-ESRCH); | ||
1628 | |||
1629 | /* | ||
1630 | * Can't attach events to a dying task. | ||
1631 | */ | ||
1632 | err = -ESRCH; | ||
1633 | if (task->flags & PF_EXITING) | ||
1634 | goto errout; | ||
1635 | |||
1636 | /* Reuse ptrace permission checks for now. */ | ||
1637 | err = -EACCES; | ||
1638 | if (!ptrace_may_access(task, PTRACE_MODE_READ)) | ||
1639 | goto errout; | ||
1640 | |||
1641 | retry: | ||
1642 | ctx = perf_lock_task_context(task, &flags); | ||
1643 | if (ctx) { | ||
1644 | unclone_ctx(ctx); | ||
1645 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
1646 | } | ||
1647 | |||
1648 | if (!ctx) { | ||
1649 | ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL); | ||
1650 | err = -ENOMEM; | ||
1651 | if (!ctx) | ||
1652 | goto errout; | ||
1653 | __perf_event_init_context(ctx, task); | ||
1654 | get_ctx(ctx); | ||
1655 | if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) { | ||
1656 | /* | ||
1657 | * We raced with some other task; use | ||
1658 | * the context they set. | ||
1659 | */ | ||
1660 | kfree(ctx); | ||
1661 | goto retry; | ||
1662 | } | ||
1663 | get_task_struct(task); | ||
1664 | } | ||
1665 | |||
1666 | put_task_struct(task); | ||
1667 | return ctx; | ||
1668 | |||
1669 | errout: | ||
1670 | put_task_struct(task); | ||
1671 | return ERR_PTR(err); | ||
1672 | } | ||
1673 | |||
1674 | static void free_event_rcu(struct rcu_head *head) | ||
1675 | { | ||
1676 | struct perf_event *event; | ||
1677 | |||
1678 | event = container_of(head, struct perf_event, rcu_head); | ||
1679 | if (event->ns) | ||
1680 | put_pid_ns(event->ns); | ||
1681 | kfree(event); | ||
1682 | } | ||
1683 | |||
1684 | static void perf_pending_sync(struct perf_event *event); | ||
1685 | |||
1686 | static void free_event(struct perf_event *event) | ||
1687 | { | ||
1688 | perf_pending_sync(event); | ||
1689 | |||
1690 | if (!event->parent) { | ||
1691 | atomic_dec(&nr_events); | ||
1692 | if (event->attr.mmap) | ||
1693 | atomic_dec(&nr_mmap_events); | ||
1694 | if (event->attr.comm) | ||
1695 | atomic_dec(&nr_comm_events); | ||
1696 | if (event->attr.task) | ||
1697 | atomic_dec(&nr_task_events); | ||
1698 | } | ||
1699 | |||
1700 | if (event->output) { | ||
1701 | fput(event->output->filp); | ||
1702 | event->output = NULL; | ||
1703 | } | ||
1704 | |||
1705 | if (event->destroy) | ||
1706 | event->destroy(event); | ||
1707 | |||
1708 | put_ctx(event->ctx); | ||
1709 | call_rcu(&event->rcu_head, free_event_rcu); | ||
1710 | } | ||
1711 | |||
1712 | /* | ||
1713 | * Called when the last reference to the file is gone. | ||
1714 | */ | ||
1715 | static int perf_release(struct inode *inode, struct file *file) | ||
1716 | { | ||
1717 | struct perf_event *event = file->private_data; | ||
1718 | struct perf_event_context *ctx = event->ctx; | ||
1719 | |||
1720 | file->private_data = NULL; | ||
1721 | |||
1722 | WARN_ON_ONCE(ctx->parent_ctx); | ||
1723 | mutex_lock(&ctx->mutex); | ||
1724 | perf_event_remove_from_context(event); | ||
1725 | mutex_unlock(&ctx->mutex); | ||
1726 | |||
1727 | mutex_lock(&event->owner->perf_event_mutex); | ||
1728 | list_del_init(&event->owner_entry); | ||
1729 | mutex_unlock(&event->owner->perf_event_mutex); | ||
1730 | put_task_struct(event->owner); | ||
1731 | |||
1732 | free_event(event); | ||
1733 | |||
1734 | return 0; | ||
1735 | } | ||
1736 | |||
1737 | static int perf_event_read_size(struct perf_event *event) | ||
1738 | { | ||
1739 | int entry = sizeof(u64); /* value */ | ||
1740 | int size = 0; | ||
1741 | int nr = 1; | ||
1742 | |||
1743 | if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
1744 | size += sizeof(u64); | ||
1745 | |||
1746 | if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
1747 | size += sizeof(u64); | ||
1748 | |||
1749 | if (event->attr.read_format & PERF_FORMAT_ID) | ||
1750 | entry += sizeof(u64); | ||
1751 | |||
1752 | if (event->attr.read_format & PERF_FORMAT_GROUP) { | ||
1753 | nr += event->group_leader->nr_siblings; | ||
1754 | size += sizeof(u64); | ||
1755 | } | ||
1756 | |||
1757 | size += entry * nr; | ||
1758 | |||
1759 | return size; | ||
1760 | } | ||
1761 | |||
1762 | static u64 perf_event_read_value(struct perf_event *event) | ||
1763 | { | ||
1764 | struct perf_event *child; | ||
1765 | u64 total = 0; | ||
1766 | |||
1767 | total += perf_event_read(event); | ||
1768 | list_for_each_entry(child, &event->child_list, child_list) | ||
1769 | total += perf_event_read(child); | ||
1770 | |||
1771 | return total; | ||
1772 | } | ||
1773 | |||
1774 | static int perf_event_read_entry(struct perf_event *event, | ||
1775 | u64 read_format, char __user *buf) | ||
1776 | { | ||
1777 | int n = 0, count = 0; | ||
1778 | u64 values[2]; | ||
1779 | |||
1780 | values[n++] = perf_event_read_value(event); | ||
1781 | if (read_format & PERF_FORMAT_ID) | ||
1782 | values[n++] = primary_event_id(event); | ||
1783 | |||
1784 | count = n * sizeof(u64); | ||
1785 | |||
1786 | if (copy_to_user(buf, values, count)) | ||
1787 | return -EFAULT; | ||
1788 | |||
1789 | return count; | ||
1790 | } | ||
1791 | |||
1792 | static int perf_event_read_group(struct perf_event *event, | ||
1793 | u64 read_format, char __user *buf) | ||
1794 | { | ||
1795 | struct perf_event *leader = event->group_leader, *sub; | ||
1796 | int n = 0, size = 0, err = -EFAULT; | ||
1797 | u64 values[3]; | ||
1798 | |||
1799 | values[n++] = 1 + leader->nr_siblings; | ||
1800 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
1801 | values[n++] = leader->total_time_enabled + | ||
1802 | atomic64_read(&leader->child_total_time_enabled); | ||
1803 | } | ||
1804 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
1805 | values[n++] = leader->total_time_running + | ||
1806 | atomic64_read(&leader->child_total_time_running); | ||
1807 | } | ||
1808 | |||
1809 | size = n * sizeof(u64); | ||
1810 | |||
1811 | if (copy_to_user(buf, values, size)) | ||
1812 | return -EFAULT; | ||
1813 | |||
1814 | err = perf_event_read_entry(leader, read_format, buf + size); | ||
1815 | if (err < 0) | ||
1816 | return err; | ||
1817 | |||
1818 | size += err; | ||
1819 | |||
1820 | list_for_each_entry(sub, &leader->sibling_list, group_entry) { | ||
1821 | err = perf_event_read_entry(sub, read_format, | ||
1822 | buf + size); | ||
1823 | if (err < 0) | ||
1824 | return err; | ||
1825 | |||
1826 | size += err; | ||
1827 | } | ||
1828 | |||
1829 | return size; | ||
1830 | } | ||
1831 | |||
1832 | static int perf_event_read_one(struct perf_event *event, | ||
1833 | u64 read_format, char __user *buf) | ||
1834 | { | ||
1835 | u64 values[4]; | ||
1836 | int n = 0; | ||
1837 | |||
1838 | values[n++] = perf_event_read_value(event); | ||
1839 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
1840 | values[n++] = event->total_time_enabled + | ||
1841 | atomic64_read(&event->child_total_time_enabled); | ||
1842 | } | ||
1843 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
1844 | values[n++] = event->total_time_running + | ||
1845 | atomic64_read(&event->child_total_time_running); | ||
1846 | } | ||
1847 | if (read_format & PERF_FORMAT_ID) | ||
1848 | values[n++] = primary_event_id(event); | ||
1849 | |||
1850 | if (copy_to_user(buf, values, n * sizeof(u64))) | ||
1851 | return -EFAULT; | ||
1852 | |||
1853 | return n * sizeof(u64); | ||
1854 | } | ||
1855 | |||
1856 | /* | ||
1857 | * Read the performance event - simple non blocking version for now | ||
1858 | */ | ||
1859 | static ssize_t | ||
1860 | perf_read_hw(struct perf_event *event, char __user *buf, size_t count) | ||
1861 | { | ||
1862 | u64 read_format = event->attr.read_format; | ||
1863 | int ret; | ||
1864 | |||
1865 | /* | ||
1866 | * Return end-of-file for a read on a event that is in | ||
1867 | * error state (i.e. because it was pinned but it couldn't be | ||
1868 | * scheduled on to the CPU at some point). | ||
1869 | */ | ||
1870 | if (event->state == PERF_EVENT_STATE_ERROR) | ||
1871 | return 0; | ||
1872 | |||
1873 | if (count < perf_event_read_size(event)) | ||
1874 | return -ENOSPC; | ||
1875 | |||
1876 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
1877 | mutex_lock(&event->child_mutex); | ||
1878 | if (read_format & PERF_FORMAT_GROUP) | ||
1879 | ret = perf_event_read_group(event, read_format, buf); | ||
1880 | else | ||
1881 | ret = perf_event_read_one(event, read_format, buf); | ||
1882 | mutex_unlock(&event->child_mutex); | ||
1883 | |||
1884 | return ret; | ||
1885 | } | ||
1886 | |||
1887 | static ssize_t | ||
1888 | perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) | ||
1889 | { | ||
1890 | struct perf_event *event = file->private_data; | ||
1891 | |||
1892 | return perf_read_hw(event, buf, count); | ||
1893 | } | ||
1894 | |||
1895 | static unsigned int perf_poll(struct file *file, poll_table *wait) | ||
1896 | { | ||
1897 | struct perf_event *event = file->private_data; | ||
1898 | struct perf_mmap_data *data; | ||
1899 | unsigned int events = POLL_HUP; | ||
1900 | |||
1901 | rcu_read_lock(); | ||
1902 | data = rcu_dereference(event->data); | ||
1903 | if (data) | ||
1904 | events = atomic_xchg(&data->poll, 0); | ||
1905 | rcu_read_unlock(); | ||
1906 | |||
1907 | poll_wait(file, &event->waitq, wait); | ||
1908 | |||
1909 | return events; | ||
1910 | } | ||
1911 | |||
1912 | static void perf_event_reset(struct perf_event *event) | ||
1913 | { | ||
1914 | (void)perf_event_read(event); | ||
1915 | atomic64_set(&event->count, 0); | ||
1916 | perf_event_update_userpage(event); | ||
1917 | } | ||
1918 | |||
1919 | /* | ||
1920 | * Holding the top-level event's child_mutex means that any | ||
1921 | * descendant process that has inherited this event will block | ||
1922 | * in sync_child_event if it goes to exit, thus satisfying the | ||
1923 | * task existence requirements of perf_event_enable/disable. | ||
1924 | */ | ||
1925 | static void perf_event_for_each_child(struct perf_event *event, | ||
1926 | void (*func)(struct perf_event *)) | ||
1927 | { | ||
1928 | struct perf_event *child; | ||
1929 | |||
1930 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
1931 | mutex_lock(&event->child_mutex); | ||
1932 | func(event); | ||
1933 | list_for_each_entry(child, &event->child_list, child_list) | ||
1934 | func(child); | ||
1935 | mutex_unlock(&event->child_mutex); | ||
1936 | } | ||
1937 | |||
1938 | static void perf_event_for_each(struct perf_event *event, | ||
1939 | void (*func)(struct perf_event *)) | ||
1940 | { | ||
1941 | struct perf_event_context *ctx = event->ctx; | ||
1942 | struct perf_event *sibling; | ||
1943 | |||
1944 | WARN_ON_ONCE(ctx->parent_ctx); | ||
1945 | mutex_lock(&ctx->mutex); | ||
1946 | event = event->group_leader; | ||
1947 | |||
1948 | perf_event_for_each_child(event, func); | ||
1949 | func(event); | ||
1950 | list_for_each_entry(sibling, &event->sibling_list, group_entry) | ||
1951 | perf_event_for_each_child(event, func); | ||
1952 | mutex_unlock(&ctx->mutex); | ||
1953 | } | ||
1954 | |||
1955 | static int perf_event_period(struct perf_event *event, u64 __user *arg) | ||
1956 | { | ||
1957 | struct perf_event_context *ctx = event->ctx; | ||
1958 | unsigned long size; | ||
1959 | int ret = 0; | ||
1960 | u64 value; | ||
1961 | |||
1962 | if (!event->attr.sample_period) | ||
1963 | return -EINVAL; | ||
1964 | |||
1965 | size = copy_from_user(&value, arg, sizeof(value)); | ||
1966 | if (size != sizeof(value)) | ||
1967 | return -EFAULT; | ||
1968 | |||
1969 | if (!value) | ||
1970 | return -EINVAL; | ||
1971 | |||
1972 | spin_lock_irq(&ctx->lock); | ||
1973 | if (event->attr.freq) { | ||
1974 | if (value > sysctl_perf_event_sample_rate) { | ||
1975 | ret = -EINVAL; | ||
1976 | goto unlock; | ||
1977 | } | ||
1978 | |||
1979 | event->attr.sample_freq = value; | ||
1980 | } else { | ||
1981 | event->attr.sample_period = value; | ||
1982 | event->hw.sample_period = value; | ||
1983 | } | ||
1984 | unlock: | ||
1985 | spin_unlock_irq(&ctx->lock); | ||
1986 | |||
1987 | return ret; | ||
1988 | } | ||
1989 | |||
1990 | int perf_event_set_output(struct perf_event *event, int output_fd); | ||
1991 | |||
1992 | static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) | ||
1993 | { | ||
1994 | struct perf_event *event = file->private_data; | ||
1995 | void (*func)(struct perf_event *); | ||
1996 | u32 flags = arg; | ||
1997 | |||
1998 | switch (cmd) { | ||
1999 | case PERF_EVENT_IOC_ENABLE: | ||
2000 | func = perf_event_enable; | ||
2001 | break; | ||
2002 | case PERF_EVENT_IOC_DISABLE: | ||
2003 | func = perf_event_disable; | ||
2004 | break; | ||
2005 | case PERF_EVENT_IOC_RESET: | ||
2006 | func = perf_event_reset; | ||
2007 | break; | ||
2008 | |||
2009 | case PERF_EVENT_IOC_REFRESH: | ||
2010 | return perf_event_refresh(event, arg); | ||
2011 | |||
2012 | case PERF_EVENT_IOC_PERIOD: | ||
2013 | return perf_event_period(event, (u64 __user *)arg); | ||
2014 | |||
2015 | case PERF_EVENT_IOC_SET_OUTPUT: | ||
2016 | return perf_event_set_output(event, arg); | ||
2017 | |||
2018 | default: | ||
2019 | return -ENOTTY; | ||
2020 | } | ||
2021 | |||
2022 | if (flags & PERF_IOC_FLAG_GROUP) | ||
2023 | perf_event_for_each(event, func); | ||
2024 | else | ||
2025 | perf_event_for_each_child(event, func); | ||
2026 | |||
2027 | return 0; | ||
2028 | } | ||
2029 | |||
2030 | int perf_event_task_enable(void) | ||
2031 | { | ||
2032 | struct perf_event *event; | ||
2033 | |||
2034 | mutex_lock(¤t->perf_event_mutex); | ||
2035 | list_for_each_entry(event, ¤t->perf_event_list, owner_entry) | ||
2036 | perf_event_for_each_child(event, perf_event_enable); | ||
2037 | mutex_unlock(¤t->perf_event_mutex); | ||
2038 | |||
2039 | return 0; | ||
2040 | } | ||
2041 | |||
2042 | int perf_event_task_disable(void) | ||
2043 | { | ||
2044 | struct perf_event *event; | ||
2045 | |||
2046 | mutex_lock(¤t->perf_event_mutex); | ||
2047 | list_for_each_entry(event, ¤t->perf_event_list, owner_entry) | ||
2048 | perf_event_for_each_child(event, perf_event_disable); | ||
2049 | mutex_unlock(¤t->perf_event_mutex); | ||
2050 | |||
2051 | return 0; | ||
2052 | } | ||
2053 | |||
2054 | #ifndef PERF_EVENT_INDEX_OFFSET | ||
2055 | # define PERF_EVENT_INDEX_OFFSET 0 | ||
2056 | #endif | ||
2057 | |||
2058 | static int perf_event_index(struct perf_event *event) | ||
2059 | { | ||
2060 | if (event->state != PERF_EVENT_STATE_ACTIVE) | ||
2061 | return 0; | ||
2062 | |||
2063 | return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET; | ||
2064 | } | ||
2065 | |||
2066 | /* | ||
2067 | * Callers need to ensure there can be no nesting of this function, otherwise | ||
2068 | * the seqlock logic goes bad. We can not serialize this because the arch | ||
2069 | * code calls this from NMI context. | ||
2070 | */ | ||
2071 | void perf_event_update_userpage(struct perf_event *event) | ||
2072 | { | ||
2073 | struct perf_event_mmap_page *userpg; | ||
2074 | struct perf_mmap_data *data; | ||
2075 | |||
2076 | rcu_read_lock(); | ||
2077 | data = rcu_dereference(event->data); | ||
2078 | if (!data) | ||
2079 | goto unlock; | ||
2080 | |||
2081 | userpg = data->user_page; | ||
2082 | |||
2083 | /* | ||
2084 | * Disable preemption so as to not let the corresponding user-space | ||
2085 | * spin too long if we get preempted. | ||
2086 | */ | ||
2087 | preempt_disable(); | ||
2088 | ++userpg->lock; | ||
2089 | barrier(); | ||
2090 | userpg->index = perf_event_index(event); | ||
2091 | userpg->offset = atomic64_read(&event->count); | ||
2092 | if (event->state == PERF_EVENT_STATE_ACTIVE) | ||
2093 | userpg->offset -= atomic64_read(&event->hw.prev_count); | ||
2094 | |||
2095 | userpg->time_enabled = event->total_time_enabled + | ||
2096 | atomic64_read(&event->child_total_time_enabled); | ||
2097 | |||
2098 | userpg->time_running = event->total_time_running + | ||
2099 | atomic64_read(&event->child_total_time_running); | ||
2100 | |||
2101 | barrier(); | ||
2102 | ++userpg->lock; | ||
2103 | preempt_enable(); | ||
2104 | unlock: | ||
2105 | rcu_read_unlock(); | ||
2106 | } | ||
2107 | |||
2108 | static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | ||
2109 | { | ||
2110 | struct perf_event *event = vma->vm_file->private_data; | ||
2111 | struct perf_mmap_data *data; | ||
2112 | int ret = VM_FAULT_SIGBUS; | ||
2113 | |||
2114 | if (vmf->flags & FAULT_FLAG_MKWRITE) { | ||
2115 | if (vmf->pgoff == 0) | ||
2116 | ret = 0; | ||
2117 | return ret; | ||
2118 | } | ||
2119 | |||
2120 | rcu_read_lock(); | ||
2121 | data = rcu_dereference(event->data); | ||
2122 | if (!data) | ||
2123 | goto unlock; | ||
2124 | |||
2125 | if (vmf->pgoff == 0) { | ||
2126 | vmf->page = virt_to_page(data->user_page); | ||
2127 | } else { | ||
2128 | int nr = vmf->pgoff - 1; | ||
2129 | |||
2130 | if ((unsigned)nr > data->nr_pages) | ||
2131 | goto unlock; | ||
2132 | |||
2133 | if (vmf->flags & FAULT_FLAG_WRITE) | ||
2134 | goto unlock; | ||
2135 | |||
2136 | vmf->page = virt_to_page(data->data_pages[nr]); | ||
2137 | } | ||
2138 | |||
2139 | get_page(vmf->page); | ||
2140 | vmf->page->mapping = vma->vm_file->f_mapping; | ||
2141 | vmf->page->index = vmf->pgoff; | ||
2142 | |||
2143 | ret = 0; | ||
2144 | unlock: | ||
2145 | rcu_read_unlock(); | ||
2146 | |||
2147 | return ret; | ||
2148 | } | ||
2149 | |||
2150 | static int perf_mmap_data_alloc(struct perf_event *event, int nr_pages) | ||
2151 | { | ||
2152 | struct perf_mmap_data *data; | ||
2153 | unsigned long size; | ||
2154 | int i; | ||
2155 | |||
2156 | WARN_ON(atomic_read(&event->mmap_count)); | ||
2157 | |||
2158 | size = sizeof(struct perf_mmap_data); | ||
2159 | size += nr_pages * sizeof(void *); | ||
2160 | |||
2161 | data = kzalloc(size, GFP_KERNEL); | ||
2162 | if (!data) | ||
2163 | goto fail; | ||
2164 | |||
2165 | data->user_page = (void *)get_zeroed_page(GFP_KERNEL); | ||
2166 | if (!data->user_page) | ||
2167 | goto fail_user_page; | ||
2168 | |||
2169 | for (i = 0; i < nr_pages; i++) { | ||
2170 | data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL); | ||
2171 | if (!data->data_pages[i]) | ||
2172 | goto fail_data_pages; | ||
2173 | } | ||
2174 | |||
2175 | data->nr_pages = nr_pages; | ||
2176 | atomic_set(&data->lock, -1); | ||
2177 | |||
2178 | if (event->attr.watermark) { | ||
2179 | data->watermark = min_t(long, PAGE_SIZE * nr_pages, | ||
2180 | event->attr.wakeup_watermark); | ||
2181 | } | ||
2182 | if (!data->watermark) | ||
2183 | data->watermark = max(PAGE_SIZE, PAGE_SIZE * nr_pages / 4); | ||
2184 | |||
2185 | rcu_assign_pointer(event->data, data); | ||
2186 | |||
2187 | return 0; | ||
2188 | |||
2189 | fail_data_pages: | ||
2190 | for (i--; i >= 0; i--) | ||
2191 | free_page((unsigned long)data->data_pages[i]); | ||
2192 | |||
2193 | free_page((unsigned long)data->user_page); | ||
2194 | |||
2195 | fail_user_page: | ||
2196 | kfree(data); | ||
2197 | |||
2198 | fail: | ||
2199 | return -ENOMEM; | ||
2200 | } | ||
2201 | |||
2202 | static void perf_mmap_free_page(unsigned long addr) | ||
2203 | { | ||
2204 | struct page *page = virt_to_page((void *)addr); | ||
2205 | |||
2206 | page->mapping = NULL; | ||
2207 | __free_page(page); | ||
2208 | } | ||
2209 | |||
2210 | static void __perf_mmap_data_free(struct rcu_head *rcu_head) | ||
2211 | { | ||
2212 | struct perf_mmap_data *data; | ||
2213 | int i; | ||
2214 | |||
2215 | data = container_of(rcu_head, struct perf_mmap_data, rcu_head); | ||
2216 | |||
2217 | perf_mmap_free_page((unsigned long)data->user_page); | ||
2218 | for (i = 0; i < data->nr_pages; i++) | ||
2219 | perf_mmap_free_page((unsigned long)data->data_pages[i]); | ||
2220 | |||
2221 | kfree(data); | ||
2222 | } | ||
2223 | |||
2224 | static void perf_mmap_data_free(struct perf_event *event) | ||
2225 | { | ||
2226 | struct perf_mmap_data *data = event->data; | ||
2227 | |||
2228 | WARN_ON(atomic_read(&event->mmap_count)); | ||
2229 | |||
2230 | rcu_assign_pointer(event->data, NULL); | ||
2231 | call_rcu(&data->rcu_head, __perf_mmap_data_free); | ||
2232 | } | ||
2233 | |||
2234 | static void perf_mmap_open(struct vm_area_struct *vma) | ||
2235 | { | ||
2236 | struct perf_event *event = vma->vm_file->private_data; | ||
2237 | |||
2238 | atomic_inc(&event->mmap_count); | ||
2239 | } | ||
2240 | |||
2241 | static void perf_mmap_close(struct vm_area_struct *vma) | ||
2242 | { | ||
2243 | struct perf_event *event = vma->vm_file->private_data; | ||
2244 | |||
2245 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
2246 | if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { | ||
2247 | struct user_struct *user = current_user(); | ||
2248 | |||
2249 | atomic_long_sub(event->data->nr_pages + 1, &user->locked_vm); | ||
2250 | vma->vm_mm->locked_vm -= event->data->nr_locked; | ||
2251 | perf_mmap_data_free(event); | ||
2252 | mutex_unlock(&event->mmap_mutex); | ||
2253 | } | ||
2254 | } | ||
2255 | |||
2256 | static struct vm_operations_struct perf_mmap_vmops = { | ||
2257 | .open = perf_mmap_open, | ||
2258 | .close = perf_mmap_close, | ||
2259 | .fault = perf_mmap_fault, | ||
2260 | .page_mkwrite = perf_mmap_fault, | ||
2261 | }; | ||
2262 | |||
2263 | static int perf_mmap(struct file *file, struct vm_area_struct *vma) | ||
2264 | { | ||
2265 | struct perf_event *event = file->private_data; | ||
2266 | unsigned long user_locked, user_lock_limit; | ||
2267 | struct user_struct *user = current_user(); | ||
2268 | unsigned long locked, lock_limit; | ||
2269 | unsigned long vma_size; | ||
2270 | unsigned long nr_pages; | ||
2271 | long user_extra, extra; | ||
2272 | int ret = 0; | ||
2273 | |||
2274 | if (!(vma->vm_flags & VM_SHARED)) | ||
2275 | return -EINVAL; | ||
2276 | |||
2277 | vma_size = vma->vm_end - vma->vm_start; | ||
2278 | nr_pages = (vma_size / PAGE_SIZE) - 1; | ||
2279 | |||
2280 | /* | ||
2281 | * If we have data pages ensure they're a power-of-two number, so we | ||
2282 | * can do bitmasks instead of modulo. | ||
2283 | */ | ||
2284 | if (nr_pages != 0 && !is_power_of_2(nr_pages)) | ||
2285 | return -EINVAL; | ||
2286 | |||
2287 | if (vma_size != PAGE_SIZE * (1 + nr_pages)) | ||
2288 | return -EINVAL; | ||
2289 | |||
2290 | if (vma->vm_pgoff != 0) | ||
2291 | return -EINVAL; | ||
2292 | |||
2293 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
2294 | mutex_lock(&event->mmap_mutex); | ||
2295 | if (event->output) { | ||
2296 | ret = -EINVAL; | ||
2297 | goto unlock; | ||
2298 | } | ||
2299 | |||
2300 | if (atomic_inc_not_zero(&event->mmap_count)) { | ||
2301 | if (nr_pages != event->data->nr_pages) | ||
2302 | ret = -EINVAL; | ||
2303 | goto unlock; | ||
2304 | } | ||
2305 | |||
2306 | user_extra = nr_pages + 1; | ||
2307 | user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); | ||
2308 | |||
2309 | /* | ||
2310 | * Increase the limit linearly with more CPUs: | ||
2311 | */ | ||
2312 | user_lock_limit *= num_online_cpus(); | ||
2313 | |||
2314 | user_locked = atomic_long_read(&user->locked_vm) + user_extra; | ||
2315 | |||
2316 | extra = 0; | ||
2317 | if (user_locked > user_lock_limit) | ||
2318 | extra = user_locked - user_lock_limit; | ||
2319 | |||
2320 | lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; | ||
2321 | lock_limit >>= PAGE_SHIFT; | ||
2322 | locked = vma->vm_mm->locked_vm + extra; | ||
2323 | |||
2324 | if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && | ||
2325 | !capable(CAP_IPC_LOCK)) { | ||
2326 | ret = -EPERM; | ||
2327 | goto unlock; | ||
2328 | } | ||
2329 | |||
2330 | WARN_ON(event->data); | ||
2331 | ret = perf_mmap_data_alloc(event, nr_pages); | ||
2332 | if (ret) | ||
2333 | goto unlock; | ||
2334 | |||
2335 | atomic_set(&event->mmap_count, 1); | ||
2336 | atomic_long_add(user_extra, &user->locked_vm); | ||
2337 | vma->vm_mm->locked_vm += extra; | ||
2338 | event->data->nr_locked = extra; | ||
2339 | if (vma->vm_flags & VM_WRITE) | ||
2340 | event->data->writable = 1; | ||
2341 | |||
2342 | unlock: | ||
2343 | mutex_unlock(&event->mmap_mutex); | ||
2344 | |||
2345 | vma->vm_flags |= VM_RESERVED; | ||
2346 | vma->vm_ops = &perf_mmap_vmops; | ||
2347 | |||
2348 | return ret; | ||
2349 | } | ||
2350 | |||
2351 | static int perf_fasync(int fd, struct file *filp, int on) | ||
2352 | { | ||
2353 | struct inode *inode = filp->f_path.dentry->d_inode; | ||
2354 | struct perf_event *event = filp->private_data; | ||
2355 | int retval; | ||
2356 | |||
2357 | mutex_lock(&inode->i_mutex); | ||
2358 | retval = fasync_helper(fd, filp, on, &event->fasync); | ||
2359 | mutex_unlock(&inode->i_mutex); | ||
2360 | |||
2361 | if (retval < 0) | ||
2362 | return retval; | ||
2363 | |||
2364 | return 0; | ||
2365 | } | ||
2366 | |||
2367 | static const struct file_operations perf_fops = { | ||
2368 | .release = perf_release, | ||
2369 | .read = perf_read, | ||
2370 | .poll = perf_poll, | ||
2371 | .unlocked_ioctl = perf_ioctl, | ||
2372 | .compat_ioctl = perf_ioctl, | ||
2373 | .mmap = perf_mmap, | ||
2374 | .fasync = perf_fasync, | ||
2375 | }; | ||
2376 | |||
2377 | /* | ||
2378 | * Perf event wakeup | ||
2379 | * | ||
2380 | * If there's data, ensure we set the poll() state and publish everything | ||
2381 | * to user-space before waking everybody up. | ||
2382 | */ | ||
2383 | |||
2384 | void perf_event_wakeup(struct perf_event *event) | ||
2385 | { | ||
2386 | wake_up_all(&event->waitq); | ||
2387 | |||
2388 | if (event->pending_kill) { | ||
2389 | kill_fasync(&event->fasync, SIGIO, event->pending_kill); | ||
2390 | event->pending_kill = 0; | ||
2391 | } | ||
2392 | } | ||
2393 | |||
2394 | /* | ||
2395 | * Pending wakeups | ||
2396 | * | ||
2397 | * Handle the case where we need to wakeup up from NMI (or rq->lock) context. | ||
2398 | * | ||
2399 | * The NMI bit means we cannot possibly take locks. Therefore, maintain a | ||
2400 | * single linked list and use cmpxchg() to add entries lockless. | ||
2401 | */ | ||
2402 | |||
2403 | static void perf_pending_event(struct perf_pending_entry *entry) | ||
2404 | { | ||
2405 | struct perf_event *event = container_of(entry, | ||
2406 | struct perf_event, pending); | ||
2407 | |||
2408 | if (event->pending_disable) { | ||
2409 | event->pending_disable = 0; | ||
2410 | __perf_event_disable(event); | ||
2411 | } | ||
2412 | |||
2413 | if (event->pending_wakeup) { | ||
2414 | event->pending_wakeup = 0; | ||
2415 | perf_event_wakeup(event); | ||
2416 | } | ||
2417 | } | ||
2418 | |||
2419 | #define PENDING_TAIL ((struct perf_pending_entry *)-1UL) | ||
2420 | |||
2421 | static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = { | ||
2422 | PENDING_TAIL, | ||
2423 | }; | ||
2424 | |||
2425 | static void perf_pending_queue(struct perf_pending_entry *entry, | ||
2426 | void (*func)(struct perf_pending_entry *)) | ||
2427 | { | ||
2428 | struct perf_pending_entry **head; | ||
2429 | |||
2430 | if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL) | ||
2431 | return; | ||
2432 | |||
2433 | entry->func = func; | ||
2434 | |||
2435 | head = &get_cpu_var(perf_pending_head); | ||
2436 | |||
2437 | do { | ||
2438 | entry->next = *head; | ||
2439 | } while (cmpxchg(head, entry->next, entry) != entry->next); | ||
2440 | |||
2441 | set_perf_event_pending(); | ||
2442 | |||
2443 | put_cpu_var(perf_pending_head); | ||
2444 | } | ||
2445 | |||
2446 | static int __perf_pending_run(void) | ||
2447 | { | ||
2448 | struct perf_pending_entry *list; | ||
2449 | int nr = 0; | ||
2450 | |||
2451 | list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL); | ||
2452 | while (list != PENDING_TAIL) { | ||
2453 | void (*func)(struct perf_pending_entry *); | ||
2454 | struct perf_pending_entry *entry = list; | ||
2455 | |||
2456 | list = list->next; | ||
2457 | |||
2458 | func = entry->func; | ||
2459 | entry->next = NULL; | ||
2460 | /* | ||
2461 | * Ensure we observe the unqueue before we issue the wakeup, | ||
2462 | * so that we won't be waiting forever. | ||
2463 | * -- see perf_not_pending(). | ||
2464 | */ | ||
2465 | smp_wmb(); | ||
2466 | |||
2467 | func(entry); | ||
2468 | nr++; | ||
2469 | } | ||
2470 | |||
2471 | return nr; | ||
2472 | } | ||
2473 | |||
2474 | static inline int perf_not_pending(struct perf_event *event) | ||
2475 | { | ||
2476 | /* | ||
2477 | * If we flush on whatever cpu we run, there is a chance we don't | ||
2478 | * need to wait. | ||
2479 | */ | ||
2480 | get_cpu(); | ||
2481 | __perf_pending_run(); | ||
2482 | put_cpu(); | ||
2483 | |||
2484 | /* | ||
2485 | * Ensure we see the proper queue state before going to sleep | ||
2486 | * so that we do not miss the wakeup. -- see perf_pending_handle() | ||
2487 | */ | ||
2488 | smp_rmb(); | ||
2489 | return event->pending.next == NULL; | ||
2490 | } | ||
2491 | |||
2492 | static void perf_pending_sync(struct perf_event *event) | ||
2493 | { | ||
2494 | wait_event(event->waitq, perf_not_pending(event)); | ||
2495 | } | ||
2496 | |||
2497 | void perf_event_do_pending(void) | ||
2498 | { | ||
2499 | __perf_pending_run(); | ||
2500 | } | ||
2501 | |||
2502 | /* | ||
2503 | * Callchain support -- arch specific | ||
2504 | */ | ||
2505 | |||
2506 | __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) | ||
2507 | { | ||
2508 | return NULL; | ||
2509 | } | ||
2510 | |||
2511 | /* | ||
2512 | * Output | ||
2513 | */ | ||
2514 | static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail, | ||
2515 | unsigned long offset, unsigned long head) | ||
2516 | { | ||
2517 | unsigned long mask; | ||
2518 | |||
2519 | if (!data->writable) | ||
2520 | return true; | ||
2521 | |||
2522 | mask = (data->nr_pages << PAGE_SHIFT) - 1; | ||
2523 | |||
2524 | offset = (offset - tail) & mask; | ||
2525 | head = (head - tail) & mask; | ||
2526 | |||
2527 | if ((int)(head - offset) < 0) | ||
2528 | return false; | ||
2529 | |||
2530 | return true; | ||
2531 | } | ||
2532 | |||
2533 | static void perf_output_wakeup(struct perf_output_handle *handle) | ||
2534 | { | ||
2535 | atomic_set(&handle->data->poll, POLL_IN); | ||
2536 | |||
2537 | if (handle->nmi) { | ||
2538 | handle->event->pending_wakeup = 1; | ||
2539 | perf_pending_queue(&handle->event->pending, | ||
2540 | perf_pending_event); | ||
2541 | } else | ||
2542 | perf_event_wakeup(handle->event); | ||
2543 | } | ||
2544 | |||
2545 | /* | ||
2546 | * Curious locking construct. | ||
2547 | * | ||
2548 | * We need to ensure a later event_id doesn't publish a head when a former | ||
2549 | * event_id isn't done writing. However since we need to deal with NMIs we | ||
2550 | * cannot fully serialize things. | ||
2551 | * | ||
2552 | * What we do is serialize between CPUs so we only have to deal with NMI | ||
2553 | * nesting on a single CPU. | ||
2554 | * | ||
2555 | * We only publish the head (and generate a wakeup) when the outer-most | ||
2556 | * event_id completes. | ||
2557 | */ | ||
2558 | static void perf_output_lock(struct perf_output_handle *handle) | ||
2559 | { | ||
2560 | struct perf_mmap_data *data = handle->data; | ||
2561 | int cpu; | ||
2562 | |||
2563 | handle->locked = 0; | ||
2564 | |||
2565 | local_irq_save(handle->flags); | ||
2566 | cpu = smp_processor_id(); | ||
2567 | |||
2568 | if (in_nmi() && atomic_read(&data->lock) == cpu) | ||
2569 | return; | ||
2570 | |||
2571 | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | ||
2572 | cpu_relax(); | ||
2573 | |||
2574 | handle->locked = 1; | ||
2575 | } | ||
2576 | |||
2577 | static void perf_output_unlock(struct perf_output_handle *handle) | ||
2578 | { | ||
2579 | struct perf_mmap_data *data = handle->data; | ||
2580 | unsigned long head; | ||
2581 | int cpu; | ||
2582 | |||
2583 | data->done_head = data->head; | ||
2584 | |||
2585 | if (!handle->locked) | ||
2586 | goto out; | ||
2587 | |||
2588 | again: | ||
2589 | /* | ||
2590 | * The xchg implies a full barrier that ensures all writes are done | ||
2591 | * before we publish the new head, matched by a rmb() in userspace when | ||
2592 | * reading this position. | ||
2593 | */ | ||
2594 | while ((head = atomic_long_xchg(&data->done_head, 0))) | ||
2595 | data->user_page->data_head = head; | ||
2596 | |||
2597 | /* | ||
2598 | * NMI can happen here, which means we can miss a done_head update. | ||
2599 | */ | ||
2600 | |||
2601 | cpu = atomic_xchg(&data->lock, -1); | ||
2602 | WARN_ON_ONCE(cpu != smp_processor_id()); | ||
2603 | |||
2604 | /* | ||
2605 | * Therefore we have to validate we did not indeed do so. | ||
2606 | */ | ||
2607 | if (unlikely(atomic_long_read(&data->done_head))) { | ||
2608 | /* | ||
2609 | * Since we had it locked, we can lock it again. | ||
2610 | */ | ||
2611 | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | ||
2612 | cpu_relax(); | ||
2613 | |||
2614 | goto again; | ||
2615 | } | ||
2616 | |||
2617 | if (atomic_xchg(&data->wakeup, 0)) | ||
2618 | perf_output_wakeup(handle); | ||
2619 | out: | ||
2620 | local_irq_restore(handle->flags); | ||
2621 | } | ||
2622 | |||
2623 | void perf_output_copy(struct perf_output_handle *handle, | ||
2624 | const void *buf, unsigned int len) | ||
2625 | { | ||
2626 | unsigned int pages_mask; | ||
2627 | unsigned int offset; | ||
2628 | unsigned int size; | ||
2629 | void **pages; | ||
2630 | |||
2631 | offset = handle->offset; | ||
2632 | pages_mask = handle->data->nr_pages - 1; | ||
2633 | pages = handle->data->data_pages; | ||
2634 | |||
2635 | do { | ||
2636 | unsigned int page_offset; | ||
2637 | int nr; | ||
2638 | |||
2639 | nr = (offset >> PAGE_SHIFT) & pages_mask; | ||
2640 | page_offset = offset & (PAGE_SIZE - 1); | ||
2641 | size = min_t(unsigned int, PAGE_SIZE - page_offset, len); | ||
2642 | |||
2643 | memcpy(pages[nr] + page_offset, buf, size); | ||
2644 | |||
2645 | len -= size; | ||
2646 | buf += size; | ||
2647 | offset += size; | ||
2648 | } while (len); | ||
2649 | |||
2650 | handle->offset = offset; | ||
2651 | |||
2652 | /* | ||
2653 | * Check we didn't copy past our reservation window, taking the | ||
2654 | * possible unsigned int wrap into account. | ||
2655 | */ | ||
2656 | WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0); | ||
2657 | } | ||
2658 | |||
2659 | int perf_output_begin(struct perf_output_handle *handle, | ||
2660 | struct perf_event *event, unsigned int size, | ||
2661 | int nmi, int sample) | ||
2662 | { | ||
2663 | struct perf_event *output_event; | ||
2664 | struct perf_mmap_data *data; | ||
2665 | unsigned long tail, offset, head; | ||
2666 | int have_lost; | ||
2667 | struct { | ||
2668 | struct perf_event_header header; | ||
2669 | u64 id; | ||
2670 | u64 lost; | ||
2671 | } lost_event; | ||
2672 | |||
2673 | rcu_read_lock(); | ||
2674 | /* | ||
2675 | * For inherited events we send all the output towards the parent. | ||
2676 | */ | ||
2677 | if (event->parent) | ||
2678 | event = event->parent; | ||
2679 | |||
2680 | output_event = rcu_dereference(event->output); | ||
2681 | if (output_event) | ||
2682 | event = output_event; | ||
2683 | |||
2684 | data = rcu_dereference(event->data); | ||
2685 | if (!data) | ||
2686 | goto out; | ||
2687 | |||
2688 | handle->data = data; | ||
2689 | handle->event = event; | ||
2690 | handle->nmi = nmi; | ||
2691 | handle->sample = sample; | ||
2692 | |||
2693 | if (!data->nr_pages) | ||
2694 | goto fail; | ||
2695 | |||
2696 | have_lost = atomic_read(&data->lost); | ||
2697 | if (have_lost) | ||
2698 | size += sizeof(lost_event); | ||
2699 | |||
2700 | perf_output_lock(handle); | ||
2701 | |||
2702 | do { | ||
2703 | /* | ||
2704 | * Userspace could choose to issue a mb() before updating the | ||
2705 | * tail pointer. So that all reads will be completed before the | ||
2706 | * write is issued. | ||
2707 | */ | ||
2708 | tail = ACCESS_ONCE(data->user_page->data_tail); | ||
2709 | smp_rmb(); | ||
2710 | offset = head = atomic_long_read(&data->head); | ||
2711 | head += size; | ||
2712 | if (unlikely(!perf_output_space(data, tail, offset, head))) | ||
2713 | goto fail; | ||
2714 | } while (atomic_long_cmpxchg(&data->head, offset, head) != offset); | ||
2715 | |||
2716 | handle->offset = offset; | ||
2717 | handle->head = head; | ||
2718 | |||
2719 | if (head - tail > data->watermark) | ||
2720 | atomic_set(&data->wakeup, 1); | ||
2721 | |||
2722 | if (have_lost) { | ||
2723 | lost_event.header.type = PERF_RECORD_LOST; | ||
2724 | lost_event.header.misc = 0; | ||
2725 | lost_event.header.size = sizeof(lost_event); | ||
2726 | lost_event.id = event->id; | ||
2727 | lost_event.lost = atomic_xchg(&data->lost, 0); | ||
2728 | |||
2729 | perf_output_put(handle, lost_event); | ||
2730 | } | ||
2731 | |||
2732 | return 0; | ||
2733 | |||
2734 | fail: | ||
2735 | atomic_inc(&data->lost); | ||
2736 | perf_output_unlock(handle); | ||
2737 | out: | ||
2738 | rcu_read_unlock(); | ||
2739 | |||
2740 | return -ENOSPC; | ||
2741 | } | ||
2742 | |||
2743 | void perf_output_end(struct perf_output_handle *handle) | ||
2744 | { | ||
2745 | struct perf_event *event = handle->event; | ||
2746 | struct perf_mmap_data *data = handle->data; | ||
2747 | |||
2748 | int wakeup_events = event->attr.wakeup_events; | ||
2749 | |||
2750 | if (handle->sample && wakeup_events) { | ||
2751 | int events = atomic_inc_return(&data->events); | ||
2752 | if (events >= wakeup_events) { | ||
2753 | atomic_sub(wakeup_events, &data->events); | ||
2754 | atomic_set(&data->wakeup, 1); | ||
2755 | } | ||
2756 | } | ||
2757 | |||
2758 | perf_output_unlock(handle); | ||
2759 | rcu_read_unlock(); | ||
2760 | } | ||
2761 | |||
2762 | static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) | ||
2763 | { | ||
2764 | /* | ||
2765 | * only top level events have the pid namespace they were created in | ||
2766 | */ | ||
2767 | if (event->parent) | ||
2768 | event = event->parent; | ||
2769 | |||
2770 | return task_tgid_nr_ns(p, event->ns); | ||
2771 | } | ||
2772 | |||
2773 | static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) | ||
2774 | { | ||
2775 | /* | ||
2776 | * only top level events have the pid namespace they were created in | ||
2777 | */ | ||
2778 | if (event->parent) | ||
2779 | event = event->parent; | ||
2780 | |||
2781 | return task_pid_nr_ns(p, event->ns); | ||
2782 | } | ||
2783 | |||
2784 | static void perf_output_read_one(struct perf_output_handle *handle, | ||
2785 | struct perf_event *event) | ||
2786 | { | ||
2787 | u64 read_format = event->attr.read_format; | ||
2788 | u64 values[4]; | ||
2789 | int n = 0; | ||
2790 | |||
2791 | values[n++] = atomic64_read(&event->count); | ||
2792 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
2793 | values[n++] = event->total_time_enabled + | ||
2794 | atomic64_read(&event->child_total_time_enabled); | ||
2795 | } | ||
2796 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
2797 | values[n++] = event->total_time_running + | ||
2798 | atomic64_read(&event->child_total_time_running); | ||
2799 | } | ||
2800 | if (read_format & PERF_FORMAT_ID) | ||
2801 | values[n++] = primary_event_id(event); | ||
2802 | |||
2803 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
2804 | } | ||
2805 | |||
2806 | /* | ||
2807 | * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. | ||
2808 | */ | ||
2809 | static void perf_output_read_group(struct perf_output_handle *handle, | ||
2810 | struct perf_event *event) | ||
2811 | { | ||
2812 | struct perf_event *leader = event->group_leader, *sub; | ||
2813 | u64 read_format = event->attr.read_format; | ||
2814 | u64 values[5]; | ||
2815 | int n = 0; | ||
2816 | |||
2817 | values[n++] = 1 + leader->nr_siblings; | ||
2818 | |||
2819 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
2820 | values[n++] = leader->total_time_enabled; | ||
2821 | |||
2822 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
2823 | values[n++] = leader->total_time_running; | ||
2824 | |||
2825 | if (leader != event) | ||
2826 | leader->pmu->read(leader); | ||
2827 | |||
2828 | values[n++] = atomic64_read(&leader->count); | ||
2829 | if (read_format & PERF_FORMAT_ID) | ||
2830 | values[n++] = primary_event_id(leader); | ||
2831 | |||
2832 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
2833 | |||
2834 | list_for_each_entry(sub, &leader->sibling_list, group_entry) { | ||
2835 | n = 0; | ||
2836 | |||
2837 | if (sub != event) | ||
2838 | sub->pmu->read(sub); | ||
2839 | |||
2840 | values[n++] = atomic64_read(&sub->count); | ||
2841 | if (read_format & PERF_FORMAT_ID) | ||
2842 | values[n++] = primary_event_id(sub); | ||
2843 | |||
2844 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
2845 | } | ||
2846 | } | ||
2847 | |||
2848 | static void perf_output_read(struct perf_output_handle *handle, | ||
2849 | struct perf_event *event) | ||
2850 | { | ||
2851 | if (event->attr.read_format & PERF_FORMAT_GROUP) | ||
2852 | perf_output_read_group(handle, event); | ||
2853 | else | ||
2854 | perf_output_read_one(handle, event); | ||
2855 | } | ||
2856 | |||
2857 | void perf_output_sample(struct perf_output_handle *handle, | ||
2858 | struct perf_event_header *header, | ||
2859 | struct perf_sample_data *data, | ||
2860 | struct perf_event *event) | ||
2861 | { | ||
2862 | u64 sample_type = data->type; | ||
2863 | |||
2864 | perf_output_put(handle, *header); | ||
2865 | |||
2866 | if (sample_type & PERF_SAMPLE_IP) | ||
2867 | perf_output_put(handle, data->ip); | ||
2868 | |||
2869 | if (sample_type & PERF_SAMPLE_TID) | ||
2870 | perf_output_put(handle, data->tid_entry); | ||
2871 | |||
2872 | if (sample_type & PERF_SAMPLE_TIME) | ||
2873 | perf_output_put(handle, data->time); | ||
2874 | |||
2875 | if (sample_type & PERF_SAMPLE_ADDR) | ||
2876 | perf_output_put(handle, data->addr); | ||
2877 | |||
2878 | if (sample_type & PERF_SAMPLE_ID) | ||
2879 | perf_output_put(handle, data->id); | ||
2880 | |||
2881 | if (sample_type & PERF_SAMPLE_STREAM_ID) | ||
2882 | perf_output_put(handle, data->stream_id); | ||
2883 | |||
2884 | if (sample_type & PERF_SAMPLE_CPU) | ||
2885 | perf_output_put(handle, data->cpu_entry); | ||
2886 | |||
2887 | if (sample_type & PERF_SAMPLE_PERIOD) | ||
2888 | perf_output_put(handle, data->period); | ||
2889 | |||
2890 | if (sample_type & PERF_SAMPLE_READ) | ||
2891 | perf_output_read(handle, event); | ||
2892 | |||
2893 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | ||
2894 | if (data->callchain) { | ||
2895 | int size = 1; | ||
2896 | |||
2897 | if (data->callchain) | ||
2898 | size += data->callchain->nr; | ||
2899 | |||
2900 | size *= sizeof(u64); | ||
2901 | |||
2902 | perf_output_copy(handle, data->callchain, size); | ||
2903 | } else { | ||
2904 | u64 nr = 0; | ||
2905 | perf_output_put(handle, nr); | ||
2906 | } | ||
2907 | } | ||
2908 | |||
2909 | if (sample_type & PERF_SAMPLE_RAW) { | ||
2910 | if (data->raw) { | ||
2911 | perf_output_put(handle, data->raw->size); | ||
2912 | perf_output_copy(handle, data->raw->data, | ||
2913 | data->raw->size); | ||
2914 | } else { | ||
2915 | struct { | ||
2916 | u32 size; | ||
2917 | u32 data; | ||
2918 | } raw = { | ||
2919 | .size = sizeof(u32), | ||
2920 | .data = 0, | ||
2921 | }; | ||
2922 | perf_output_put(handle, raw); | ||
2923 | } | ||
2924 | } | ||
2925 | } | ||
2926 | |||
2927 | void perf_prepare_sample(struct perf_event_header *header, | ||
2928 | struct perf_sample_data *data, | ||
2929 | struct perf_event *event, | ||
2930 | struct pt_regs *regs) | ||
2931 | { | ||
2932 | u64 sample_type = event->attr.sample_type; | ||
2933 | |||
2934 | data->type = sample_type; | ||
2935 | |||
2936 | header->type = PERF_RECORD_SAMPLE; | ||
2937 | header->size = sizeof(*header); | ||
2938 | |||
2939 | header->misc = 0; | ||
2940 | header->misc |= perf_misc_flags(regs); | ||
2941 | |||
2942 | if (sample_type & PERF_SAMPLE_IP) { | ||
2943 | data->ip = perf_instruction_pointer(regs); | ||
2944 | |||
2945 | header->size += sizeof(data->ip); | ||
2946 | } | ||
2947 | |||
2948 | if (sample_type & PERF_SAMPLE_TID) { | ||
2949 | /* namespace issues */ | ||
2950 | data->tid_entry.pid = perf_event_pid(event, current); | ||
2951 | data->tid_entry.tid = perf_event_tid(event, current); | ||
2952 | |||
2953 | header->size += sizeof(data->tid_entry); | ||
2954 | } | ||
2955 | |||
2956 | if (sample_type & PERF_SAMPLE_TIME) { | ||
2957 | data->time = perf_clock(); | ||
2958 | |||
2959 | header->size += sizeof(data->time); | ||
2960 | } | ||
2961 | |||
2962 | if (sample_type & PERF_SAMPLE_ADDR) | ||
2963 | header->size += sizeof(data->addr); | ||
2964 | |||
2965 | if (sample_type & PERF_SAMPLE_ID) { | ||
2966 | data->id = primary_event_id(event); | ||
2967 | |||
2968 | header->size += sizeof(data->id); | ||
2969 | } | ||
2970 | |||
2971 | if (sample_type & PERF_SAMPLE_STREAM_ID) { | ||
2972 | data->stream_id = event->id; | ||
2973 | |||
2974 | header->size += sizeof(data->stream_id); | ||
2975 | } | ||
2976 | |||
2977 | if (sample_type & PERF_SAMPLE_CPU) { | ||
2978 | data->cpu_entry.cpu = raw_smp_processor_id(); | ||
2979 | data->cpu_entry.reserved = 0; | ||
2980 | |||
2981 | header->size += sizeof(data->cpu_entry); | ||
2982 | } | ||
2983 | |||
2984 | if (sample_type & PERF_SAMPLE_PERIOD) | ||
2985 | header->size += sizeof(data->period); | ||
2986 | |||
2987 | if (sample_type & PERF_SAMPLE_READ) | ||
2988 | header->size += perf_event_read_size(event); | ||
2989 | |||
2990 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | ||
2991 | int size = 1; | ||
2992 | |||
2993 | data->callchain = perf_callchain(regs); | ||
2994 | |||
2995 | if (data->callchain) | ||
2996 | size += data->callchain->nr; | ||
2997 | |||
2998 | header->size += size * sizeof(u64); | ||
2999 | } | ||
3000 | |||
3001 | if (sample_type & PERF_SAMPLE_RAW) { | ||
3002 | int size = sizeof(u32); | ||
3003 | |||
3004 | if (data->raw) | ||
3005 | size += data->raw->size; | ||
3006 | else | ||
3007 | size += sizeof(u32); | ||
3008 | |||
3009 | WARN_ON_ONCE(size & (sizeof(u64)-1)); | ||
3010 | header->size += size; | ||
3011 | } | ||
3012 | } | ||
3013 | |||
3014 | static void perf_event_output(struct perf_event *event, int nmi, | ||
3015 | struct perf_sample_data *data, | ||
3016 | struct pt_regs *regs) | ||
3017 | { | ||
3018 | struct perf_output_handle handle; | ||
3019 | struct perf_event_header header; | ||
3020 | |||
3021 | perf_prepare_sample(&header, data, event, regs); | ||
3022 | |||
3023 | if (perf_output_begin(&handle, event, header.size, nmi, 1)) | ||
3024 | return; | ||
3025 | |||
3026 | perf_output_sample(&handle, &header, data, event); | ||
3027 | |||
3028 | perf_output_end(&handle); | ||
3029 | } | ||
3030 | |||
3031 | /* | ||
3032 | * read event_id | ||
3033 | */ | ||
3034 | |||
3035 | struct perf_read_event { | ||
3036 | struct perf_event_header header; | ||
3037 | |||
3038 | u32 pid; | ||
3039 | u32 tid; | ||
3040 | }; | ||
3041 | |||
3042 | static void | ||
3043 | perf_event_read_event(struct perf_event *event, | ||
3044 | struct task_struct *task) | ||
3045 | { | ||
3046 | struct perf_output_handle handle; | ||
3047 | struct perf_read_event read_event = { | ||
3048 | .header = { | ||
3049 | .type = PERF_RECORD_READ, | ||
3050 | .misc = 0, | ||
3051 | .size = sizeof(read_event) + perf_event_read_size(event), | ||
3052 | }, | ||
3053 | .pid = perf_event_pid(event, task), | ||
3054 | .tid = perf_event_tid(event, task), | ||
3055 | }; | ||
3056 | int ret; | ||
3057 | |||
3058 | ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0); | ||
3059 | if (ret) | ||
3060 | return; | ||
3061 | |||
3062 | perf_output_put(&handle, read_event); | ||
3063 | perf_output_read(&handle, event); | ||
3064 | |||
3065 | perf_output_end(&handle); | ||
3066 | } | ||
3067 | |||
3068 | /* | ||
3069 | * task tracking -- fork/exit | ||
3070 | * | ||
3071 | * enabled by: attr.comm | attr.mmap | attr.task | ||
3072 | */ | ||
3073 | |||
3074 | struct perf_task_event { | ||
3075 | struct task_struct *task; | ||
3076 | struct perf_event_context *task_ctx; | ||
3077 | |||
3078 | struct { | ||
3079 | struct perf_event_header header; | ||
3080 | |||
3081 | u32 pid; | ||
3082 | u32 ppid; | ||
3083 | u32 tid; | ||
3084 | u32 ptid; | ||
3085 | u64 time; | ||
3086 | } event_id; | ||
3087 | }; | ||
3088 | |||
3089 | static void perf_event_task_output(struct perf_event *event, | ||
3090 | struct perf_task_event *task_event) | ||
3091 | { | ||
3092 | struct perf_output_handle handle; | ||
3093 | int size; | ||
3094 | struct task_struct *task = task_event->task; | ||
3095 | int ret; | ||
3096 | |||
3097 | size = task_event->event_id.header.size; | ||
3098 | ret = perf_output_begin(&handle, event, size, 0, 0); | ||
3099 | |||
3100 | if (ret) | ||
3101 | return; | ||
3102 | |||
3103 | task_event->event_id.pid = perf_event_pid(event, task); | ||
3104 | task_event->event_id.ppid = perf_event_pid(event, current); | ||
3105 | |||
3106 | task_event->event_id.tid = perf_event_tid(event, task); | ||
3107 | task_event->event_id.ptid = perf_event_tid(event, current); | ||
3108 | |||
3109 | task_event->event_id.time = perf_clock(); | ||
3110 | |||
3111 | perf_output_put(&handle, task_event->event_id); | ||
3112 | |||
3113 | perf_output_end(&handle); | ||
3114 | } | ||
3115 | |||
3116 | static int perf_event_task_match(struct perf_event *event) | ||
3117 | { | ||
3118 | if (event->attr.comm || event->attr.mmap || event->attr.task) | ||
3119 | return 1; | ||
3120 | |||
3121 | return 0; | ||
3122 | } | ||
3123 | |||
3124 | static void perf_event_task_ctx(struct perf_event_context *ctx, | ||
3125 | struct perf_task_event *task_event) | ||
3126 | { | ||
3127 | struct perf_event *event; | ||
3128 | |||
3129 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
3130 | return; | ||
3131 | |||
3132 | rcu_read_lock(); | ||
3133 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
3134 | if (perf_event_task_match(event)) | ||
3135 | perf_event_task_output(event, task_event); | ||
3136 | } | ||
3137 | rcu_read_unlock(); | ||
3138 | } | ||
3139 | |||
3140 | static void perf_event_task_event(struct perf_task_event *task_event) | ||
3141 | { | ||
3142 | struct perf_cpu_context *cpuctx; | ||
3143 | struct perf_event_context *ctx = task_event->task_ctx; | ||
3144 | |||
3145 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
3146 | perf_event_task_ctx(&cpuctx->ctx, task_event); | ||
3147 | put_cpu_var(perf_cpu_context); | ||
3148 | |||
3149 | rcu_read_lock(); | ||
3150 | if (!ctx) | ||
3151 | ctx = rcu_dereference(task_event->task->perf_event_ctxp); | ||
3152 | if (ctx) | ||
3153 | perf_event_task_ctx(ctx, task_event); | ||
3154 | rcu_read_unlock(); | ||
3155 | } | ||
3156 | |||
3157 | static void perf_event_task(struct task_struct *task, | ||
3158 | struct perf_event_context *task_ctx, | ||
3159 | int new) | ||
3160 | { | ||
3161 | struct perf_task_event task_event; | ||
3162 | |||
3163 | if (!atomic_read(&nr_comm_events) && | ||
3164 | !atomic_read(&nr_mmap_events) && | ||
3165 | !atomic_read(&nr_task_events)) | ||
3166 | return; | ||
3167 | |||
3168 | task_event = (struct perf_task_event){ | ||
3169 | .task = task, | ||
3170 | .task_ctx = task_ctx, | ||
3171 | .event_id = { | ||
3172 | .header = { | ||
3173 | .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, | ||
3174 | .misc = 0, | ||
3175 | .size = sizeof(task_event.event_id), | ||
3176 | }, | ||
3177 | /* .pid */ | ||
3178 | /* .ppid */ | ||
3179 | /* .tid */ | ||
3180 | /* .ptid */ | ||
3181 | }, | ||
3182 | }; | ||
3183 | |||
3184 | perf_event_task_event(&task_event); | ||
3185 | } | ||
3186 | |||
3187 | void perf_event_fork(struct task_struct *task) | ||
3188 | { | ||
3189 | perf_event_task(task, NULL, 1); | ||
3190 | } | ||
3191 | |||
3192 | /* | ||
3193 | * comm tracking | ||
3194 | */ | ||
3195 | |||
3196 | struct perf_comm_event { | ||
3197 | struct task_struct *task; | ||
3198 | char *comm; | ||
3199 | int comm_size; | ||
3200 | |||
3201 | struct { | ||
3202 | struct perf_event_header header; | ||
3203 | |||
3204 | u32 pid; | ||
3205 | u32 tid; | ||
3206 | } event_id; | ||
3207 | }; | ||
3208 | |||
3209 | static void perf_event_comm_output(struct perf_event *event, | ||
3210 | struct perf_comm_event *comm_event) | ||
3211 | { | ||
3212 | struct perf_output_handle handle; | ||
3213 | int size = comm_event->event_id.header.size; | ||
3214 | int ret = perf_output_begin(&handle, event, size, 0, 0); | ||
3215 | |||
3216 | if (ret) | ||
3217 | return; | ||
3218 | |||
3219 | comm_event->event_id.pid = perf_event_pid(event, comm_event->task); | ||
3220 | comm_event->event_id.tid = perf_event_tid(event, comm_event->task); | ||
3221 | |||
3222 | perf_output_put(&handle, comm_event->event_id); | ||
3223 | perf_output_copy(&handle, comm_event->comm, | ||
3224 | comm_event->comm_size); | ||
3225 | perf_output_end(&handle); | ||
3226 | } | ||
3227 | |||
3228 | static int perf_event_comm_match(struct perf_event *event) | ||
3229 | { | ||
3230 | if (event->attr.comm) | ||
3231 | return 1; | ||
3232 | |||
3233 | return 0; | ||
3234 | } | ||
3235 | |||
3236 | static void perf_event_comm_ctx(struct perf_event_context *ctx, | ||
3237 | struct perf_comm_event *comm_event) | ||
3238 | { | ||
3239 | struct perf_event *event; | ||
3240 | |||
3241 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
3242 | return; | ||
3243 | |||
3244 | rcu_read_lock(); | ||
3245 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
3246 | if (perf_event_comm_match(event)) | ||
3247 | perf_event_comm_output(event, comm_event); | ||
3248 | } | ||
3249 | rcu_read_unlock(); | ||
3250 | } | ||
3251 | |||
3252 | static void perf_event_comm_event(struct perf_comm_event *comm_event) | ||
3253 | { | ||
3254 | struct perf_cpu_context *cpuctx; | ||
3255 | struct perf_event_context *ctx; | ||
3256 | unsigned int size; | ||
3257 | char comm[TASK_COMM_LEN]; | ||
3258 | |||
3259 | memset(comm, 0, sizeof(comm)); | ||
3260 | strncpy(comm, comm_event->task->comm, sizeof(comm)); | ||
3261 | size = ALIGN(strlen(comm)+1, sizeof(u64)); | ||
3262 | |||
3263 | comm_event->comm = comm; | ||
3264 | comm_event->comm_size = size; | ||
3265 | |||
3266 | comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; | ||
3267 | |||
3268 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
3269 | perf_event_comm_ctx(&cpuctx->ctx, comm_event); | ||
3270 | put_cpu_var(perf_cpu_context); | ||
3271 | |||
3272 | rcu_read_lock(); | ||
3273 | /* | ||
3274 | * doesn't really matter which of the child contexts the | ||
3275 | * events ends up in. | ||
3276 | */ | ||
3277 | ctx = rcu_dereference(current->perf_event_ctxp); | ||
3278 | if (ctx) | ||
3279 | perf_event_comm_ctx(ctx, comm_event); | ||
3280 | rcu_read_unlock(); | ||
3281 | } | ||
3282 | |||
3283 | void perf_event_comm(struct task_struct *task) | ||
3284 | { | ||
3285 | struct perf_comm_event comm_event; | ||
3286 | |||
3287 | if (task->perf_event_ctxp) | ||
3288 | perf_event_enable_on_exec(task); | ||
3289 | |||
3290 | if (!atomic_read(&nr_comm_events)) | ||
3291 | return; | ||
3292 | |||
3293 | comm_event = (struct perf_comm_event){ | ||
3294 | .task = task, | ||
3295 | /* .comm */ | ||
3296 | /* .comm_size */ | ||
3297 | .event_id = { | ||
3298 | .header = { | ||
3299 | .type = PERF_RECORD_COMM, | ||
3300 | .misc = 0, | ||
3301 | /* .size */ | ||
3302 | }, | ||
3303 | /* .pid */ | ||
3304 | /* .tid */ | ||
3305 | }, | ||
3306 | }; | ||
3307 | |||
3308 | perf_event_comm_event(&comm_event); | ||
3309 | } | ||
3310 | |||
3311 | /* | ||
3312 | * mmap tracking | ||
3313 | */ | ||
3314 | |||
3315 | struct perf_mmap_event { | ||
3316 | struct vm_area_struct *vma; | ||
3317 | |||
3318 | const char *file_name; | ||
3319 | int file_size; | ||
3320 | |||
3321 | struct { | ||
3322 | struct perf_event_header header; | ||
3323 | |||
3324 | u32 pid; | ||
3325 | u32 tid; | ||
3326 | u64 start; | ||
3327 | u64 len; | ||
3328 | u64 pgoff; | ||
3329 | } event_id; | ||
3330 | }; | ||
3331 | |||
3332 | static void perf_event_mmap_output(struct perf_event *event, | ||
3333 | struct perf_mmap_event *mmap_event) | ||
3334 | { | ||
3335 | struct perf_output_handle handle; | ||
3336 | int size = mmap_event->event_id.header.size; | ||
3337 | int ret = perf_output_begin(&handle, event, size, 0, 0); | ||
3338 | |||
3339 | if (ret) | ||
3340 | return; | ||
3341 | |||
3342 | mmap_event->event_id.pid = perf_event_pid(event, current); | ||
3343 | mmap_event->event_id.tid = perf_event_tid(event, current); | ||
3344 | |||
3345 | perf_output_put(&handle, mmap_event->event_id); | ||
3346 | perf_output_copy(&handle, mmap_event->file_name, | ||
3347 | mmap_event->file_size); | ||
3348 | perf_output_end(&handle); | ||
3349 | } | ||
3350 | |||
3351 | static int perf_event_mmap_match(struct perf_event *event, | ||
3352 | struct perf_mmap_event *mmap_event) | ||
3353 | { | ||
3354 | if (event->attr.mmap) | ||
3355 | return 1; | ||
3356 | |||
3357 | return 0; | ||
3358 | } | ||
3359 | |||
3360 | static void perf_event_mmap_ctx(struct perf_event_context *ctx, | ||
3361 | struct perf_mmap_event *mmap_event) | ||
3362 | { | ||
3363 | struct perf_event *event; | ||
3364 | |||
3365 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
3366 | return; | ||
3367 | |||
3368 | rcu_read_lock(); | ||
3369 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
3370 | if (perf_event_mmap_match(event, mmap_event)) | ||
3371 | perf_event_mmap_output(event, mmap_event); | ||
3372 | } | ||
3373 | rcu_read_unlock(); | ||
3374 | } | ||
3375 | |||
3376 | static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) | ||
3377 | { | ||
3378 | struct perf_cpu_context *cpuctx; | ||
3379 | struct perf_event_context *ctx; | ||
3380 | struct vm_area_struct *vma = mmap_event->vma; | ||
3381 | struct file *file = vma->vm_file; | ||
3382 | unsigned int size; | ||
3383 | char tmp[16]; | ||
3384 | char *buf = NULL; | ||
3385 | const char *name; | ||
3386 | |||
3387 | memset(tmp, 0, sizeof(tmp)); | ||
3388 | |||
3389 | if (file) { | ||
3390 | /* | ||
3391 | * d_path works from the end of the buffer backwards, so we | ||
3392 | * need to add enough zero bytes after the string to handle | ||
3393 | * the 64bit alignment we do later. | ||
3394 | */ | ||
3395 | buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); | ||
3396 | if (!buf) { | ||
3397 | name = strncpy(tmp, "//enomem", sizeof(tmp)); | ||
3398 | goto got_name; | ||
3399 | } | ||
3400 | name = d_path(&file->f_path, buf, PATH_MAX); | ||
3401 | if (IS_ERR(name)) { | ||
3402 | name = strncpy(tmp, "//toolong", sizeof(tmp)); | ||
3403 | goto got_name; | ||
3404 | } | ||
3405 | } else { | ||
3406 | if (arch_vma_name(mmap_event->vma)) { | ||
3407 | name = strncpy(tmp, arch_vma_name(mmap_event->vma), | ||
3408 | sizeof(tmp)); | ||
3409 | goto got_name; | ||
3410 | } | ||
3411 | |||
3412 | if (!vma->vm_mm) { | ||
3413 | name = strncpy(tmp, "[vdso]", sizeof(tmp)); | ||
3414 | goto got_name; | ||
3415 | } | ||
3416 | |||
3417 | name = strncpy(tmp, "//anon", sizeof(tmp)); | ||
3418 | goto got_name; | ||
3419 | } | ||
3420 | |||
3421 | got_name: | ||
3422 | size = ALIGN(strlen(name)+1, sizeof(u64)); | ||
3423 | |||
3424 | mmap_event->file_name = name; | ||
3425 | mmap_event->file_size = size; | ||
3426 | |||
3427 | mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; | ||
3428 | |||
3429 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
3430 | perf_event_mmap_ctx(&cpuctx->ctx, mmap_event); | ||
3431 | put_cpu_var(perf_cpu_context); | ||
3432 | |||
3433 | rcu_read_lock(); | ||
3434 | /* | ||
3435 | * doesn't really matter which of the child contexts the | ||
3436 | * events ends up in. | ||
3437 | */ | ||
3438 | ctx = rcu_dereference(current->perf_event_ctxp); | ||
3439 | if (ctx) | ||
3440 | perf_event_mmap_ctx(ctx, mmap_event); | ||
3441 | rcu_read_unlock(); | ||
3442 | |||
3443 | kfree(buf); | ||
3444 | } | ||
3445 | |||
3446 | void __perf_event_mmap(struct vm_area_struct *vma) | ||
3447 | { | ||
3448 | struct perf_mmap_event mmap_event; | ||
3449 | |||
3450 | if (!atomic_read(&nr_mmap_events)) | ||
3451 | return; | ||
3452 | |||
3453 | mmap_event = (struct perf_mmap_event){ | ||
3454 | .vma = vma, | ||
3455 | /* .file_name */ | ||
3456 | /* .file_size */ | ||
3457 | .event_id = { | ||
3458 | .header = { | ||
3459 | .type = PERF_RECORD_MMAP, | ||
3460 | .misc = 0, | ||
3461 | /* .size */ | ||
3462 | }, | ||
3463 | /* .pid */ | ||
3464 | /* .tid */ | ||
3465 | .start = vma->vm_start, | ||
3466 | .len = vma->vm_end - vma->vm_start, | ||
3467 | .pgoff = vma->vm_pgoff, | ||
3468 | }, | ||
3469 | }; | ||
3470 | |||
3471 | perf_event_mmap_event(&mmap_event); | ||
3472 | } | ||
3473 | |||
3474 | /* | ||
3475 | * IRQ throttle logging | ||
3476 | */ | ||
3477 | |||
3478 | static void perf_log_throttle(struct perf_event *event, int enable) | ||
3479 | { | ||
3480 | struct perf_output_handle handle; | ||
3481 | int ret; | ||
3482 | |||
3483 | struct { | ||
3484 | struct perf_event_header header; | ||
3485 | u64 time; | ||
3486 | u64 id; | ||
3487 | u64 stream_id; | ||
3488 | } throttle_event = { | ||
3489 | .header = { | ||
3490 | .type = PERF_RECORD_THROTTLE, | ||
3491 | .misc = 0, | ||
3492 | .size = sizeof(throttle_event), | ||
3493 | }, | ||
3494 | .time = perf_clock(), | ||
3495 | .id = primary_event_id(event), | ||
3496 | .stream_id = event->id, | ||
3497 | }; | ||
3498 | |||
3499 | if (enable) | ||
3500 | throttle_event.header.type = PERF_RECORD_UNTHROTTLE; | ||
3501 | |||
3502 | ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0); | ||
3503 | if (ret) | ||
3504 | return; | ||
3505 | |||
3506 | perf_output_put(&handle, throttle_event); | ||
3507 | perf_output_end(&handle); | ||
3508 | } | ||
3509 | |||
3510 | /* | ||
3511 | * Generic event overflow handling, sampling. | ||
3512 | */ | ||
3513 | |||
3514 | static int __perf_event_overflow(struct perf_event *event, int nmi, | ||
3515 | int throttle, struct perf_sample_data *data, | ||
3516 | struct pt_regs *regs) | ||
3517 | { | ||
3518 | int events = atomic_read(&event->event_limit); | ||
3519 | struct hw_perf_event *hwc = &event->hw; | ||
3520 | int ret = 0; | ||
3521 | |||
3522 | throttle = (throttle && event->pmu->unthrottle != NULL); | ||
3523 | |||
3524 | if (!throttle) { | ||
3525 | hwc->interrupts++; | ||
3526 | } else { | ||
3527 | if (hwc->interrupts != MAX_INTERRUPTS) { | ||
3528 | hwc->interrupts++; | ||
3529 | if (HZ * hwc->interrupts > | ||
3530 | (u64)sysctl_perf_event_sample_rate) { | ||
3531 | hwc->interrupts = MAX_INTERRUPTS; | ||
3532 | perf_log_throttle(event, 0); | ||
3533 | ret = 1; | ||
3534 | } | ||
3535 | } else { | ||
3536 | /* | ||
3537 | * Keep re-disabling events even though on the previous | ||
3538 | * pass we disabled it - just in case we raced with a | ||
3539 | * sched-in and the event got enabled again: | ||
3540 | */ | ||
3541 | ret = 1; | ||
3542 | } | ||
3543 | } | ||
3544 | |||
3545 | if (event->attr.freq) { | ||
3546 | u64 now = perf_clock(); | ||
3547 | s64 delta = now - hwc->freq_stamp; | ||
3548 | |||
3549 | hwc->freq_stamp = now; | ||
3550 | |||
3551 | if (delta > 0 && delta < TICK_NSEC) | ||
3552 | perf_adjust_period(event, NSEC_PER_SEC / (int)delta); | ||
3553 | } | ||
3554 | |||
3555 | /* | ||
3556 | * XXX event_limit might not quite work as expected on inherited | ||
3557 | * events | ||
3558 | */ | ||
3559 | |||
3560 | event->pending_kill = POLL_IN; | ||
3561 | if (events && atomic_dec_and_test(&event->event_limit)) { | ||
3562 | ret = 1; | ||
3563 | event->pending_kill = POLL_HUP; | ||
3564 | if (nmi) { | ||
3565 | event->pending_disable = 1; | ||
3566 | perf_pending_queue(&event->pending, | ||
3567 | perf_pending_event); | ||
3568 | } else | ||
3569 | perf_event_disable(event); | ||
3570 | } | ||
3571 | |||
3572 | perf_event_output(event, nmi, data, regs); | ||
3573 | return ret; | ||
3574 | } | ||
3575 | |||
3576 | int perf_event_overflow(struct perf_event *event, int nmi, | ||
3577 | struct perf_sample_data *data, | ||
3578 | struct pt_regs *regs) | ||
3579 | { | ||
3580 | return __perf_event_overflow(event, nmi, 1, data, regs); | ||
3581 | } | ||
3582 | |||
3583 | /* | ||
3584 | * Generic software event infrastructure | ||
3585 | */ | ||
3586 | |||
3587 | /* | ||
3588 | * We directly increment event->count and keep a second value in | ||
3589 | * event->hw.period_left to count intervals. This period event | ||
3590 | * is kept in the range [-sample_period, 0] so that we can use the | ||
3591 | * sign as trigger. | ||
3592 | */ | ||
3593 | |||
3594 | static u64 perf_swevent_set_period(struct perf_event *event) | ||
3595 | { | ||
3596 | struct hw_perf_event *hwc = &event->hw; | ||
3597 | u64 period = hwc->last_period; | ||
3598 | u64 nr, offset; | ||
3599 | s64 old, val; | ||
3600 | |||
3601 | hwc->last_period = hwc->sample_period; | ||
3602 | |||
3603 | again: | ||
3604 | old = val = atomic64_read(&hwc->period_left); | ||
3605 | if (val < 0) | ||
3606 | return 0; | ||
3607 | |||
3608 | nr = div64_u64(period + val, period); | ||
3609 | offset = nr * period; | ||
3610 | val -= offset; | ||
3611 | if (atomic64_cmpxchg(&hwc->period_left, old, val) != old) | ||
3612 | goto again; | ||
3613 | |||
3614 | return nr; | ||
3615 | } | ||
3616 | |||
3617 | static void perf_swevent_overflow(struct perf_event *event, | ||
3618 | int nmi, struct perf_sample_data *data, | ||
3619 | struct pt_regs *regs) | ||
3620 | { | ||
3621 | struct hw_perf_event *hwc = &event->hw; | ||
3622 | int throttle = 0; | ||
3623 | u64 overflow; | ||
3624 | |||
3625 | data->period = event->hw.last_period; | ||
3626 | overflow = perf_swevent_set_period(event); | ||
3627 | |||
3628 | if (hwc->interrupts == MAX_INTERRUPTS) | ||
3629 | return; | ||
3630 | |||
3631 | for (; overflow; overflow--) { | ||
3632 | if (__perf_event_overflow(event, nmi, throttle, | ||
3633 | data, regs)) { | ||
3634 | /* | ||
3635 | * We inhibit the overflow from happening when | ||
3636 | * hwc->interrupts == MAX_INTERRUPTS. | ||
3637 | */ | ||
3638 | break; | ||
3639 | } | ||
3640 | throttle = 1; | ||
3641 | } | ||
3642 | } | ||
3643 | |||
3644 | static void perf_swevent_unthrottle(struct perf_event *event) | ||
3645 | { | ||
3646 | /* | ||
3647 | * Nothing to do, we already reset hwc->interrupts. | ||
3648 | */ | ||
3649 | } | ||
3650 | |||
3651 | static void perf_swevent_add(struct perf_event *event, u64 nr, | ||
3652 | int nmi, struct perf_sample_data *data, | ||
3653 | struct pt_regs *regs) | ||
3654 | { | ||
3655 | struct hw_perf_event *hwc = &event->hw; | ||
3656 | |||
3657 | atomic64_add(nr, &event->count); | ||
3658 | |||
3659 | if (!hwc->sample_period) | ||
3660 | return; | ||
3661 | |||
3662 | if (!regs) | ||
3663 | return; | ||
3664 | |||
3665 | if (!atomic64_add_negative(nr, &hwc->period_left)) | ||
3666 | perf_swevent_overflow(event, nmi, data, regs); | ||
3667 | } | ||
3668 | |||
3669 | static int perf_swevent_is_counting(struct perf_event *event) | ||
3670 | { | ||
3671 | /* | ||
3672 | * The event is active, we're good! | ||
3673 | */ | ||
3674 | if (event->state == PERF_EVENT_STATE_ACTIVE) | ||
3675 | return 1; | ||
3676 | |||
3677 | /* | ||
3678 | * The event is off/error, not counting. | ||
3679 | */ | ||
3680 | if (event->state != PERF_EVENT_STATE_INACTIVE) | ||
3681 | return 0; | ||
3682 | |||
3683 | /* | ||
3684 | * The event is inactive, if the context is active | ||
3685 | * we're part of a group that didn't make it on the 'pmu', | ||
3686 | * not counting. | ||
3687 | */ | ||
3688 | if (event->ctx->is_active) | ||
3689 | return 0; | ||
3690 | |||
3691 | /* | ||
3692 | * We're inactive and the context is too, this means the | ||
3693 | * task is scheduled out, we're counting events that happen | ||
3694 | * to us, like migration events. | ||
3695 | */ | ||
3696 | return 1; | ||
3697 | } | ||
3698 | |||
3699 | static int perf_swevent_match(struct perf_event *event, | ||
3700 | enum perf_type_id type, | ||
3701 | u32 event_id, struct pt_regs *regs) | ||
3702 | { | ||
3703 | if (!perf_swevent_is_counting(event)) | ||
3704 | return 0; | ||
3705 | |||
3706 | if (event->attr.type != type) | ||
3707 | return 0; | ||
3708 | if (event->attr.config != event_id) | ||
3709 | return 0; | ||
3710 | |||
3711 | if (regs) { | ||
3712 | if (event->attr.exclude_user && user_mode(regs)) | ||
3713 | return 0; | ||
3714 | |||
3715 | if (event->attr.exclude_kernel && !user_mode(regs)) | ||
3716 | return 0; | ||
3717 | } | ||
3718 | |||
3719 | return 1; | ||
3720 | } | ||
3721 | |||
3722 | static void perf_swevent_ctx_event(struct perf_event_context *ctx, | ||
3723 | enum perf_type_id type, | ||
3724 | u32 event_id, u64 nr, int nmi, | ||
3725 | struct perf_sample_data *data, | ||
3726 | struct pt_regs *regs) | ||
3727 | { | ||
3728 | struct perf_event *event; | ||
3729 | |||
3730 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
3731 | return; | ||
3732 | |||
3733 | rcu_read_lock(); | ||
3734 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
3735 | if (perf_swevent_match(event, type, event_id, regs)) | ||
3736 | perf_swevent_add(event, nr, nmi, data, regs); | ||
3737 | } | ||
3738 | rcu_read_unlock(); | ||
3739 | } | ||
3740 | |||
3741 | static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx) | ||
3742 | { | ||
3743 | if (in_nmi()) | ||
3744 | return &cpuctx->recursion[3]; | ||
3745 | |||
3746 | if (in_irq()) | ||
3747 | return &cpuctx->recursion[2]; | ||
3748 | |||
3749 | if (in_softirq()) | ||
3750 | return &cpuctx->recursion[1]; | ||
3751 | |||
3752 | return &cpuctx->recursion[0]; | ||
3753 | } | ||
3754 | |||
3755 | static void do_perf_sw_event(enum perf_type_id type, u32 event_id, | ||
3756 | u64 nr, int nmi, | ||
3757 | struct perf_sample_data *data, | ||
3758 | struct pt_regs *regs) | ||
3759 | { | ||
3760 | struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context); | ||
3761 | int *recursion = perf_swevent_recursion_context(cpuctx); | ||
3762 | struct perf_event_context *ctx; | ||
3763 | |||
3764 | if (*recursion) | ||
3765 | goto out; | ||
3766 | |||
3767 | (*recursion)++; | ||
3768 | barrier(); | ||
3769 | |||
3770 | perf_swevent_ctx_event(&cpuctx->ctx, type, event_id, | ||
3771 | nr, nmi, data, regs); | ||
3772 | rcu_read_lock(); | ||
3773 | /* | ||
3774 | * doesn't really matter which of the child contexts the | ||
3775 | * events ends up in. | ||
3776 | */ | ||
3777 | ctx = rcu_dereference(current->perf_event_ctxp); | ||
3778 | if (ctx) | ||
3779 | perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs); | ||
3780 | rcu_read_unlock(); | ||
3781 | |||
3782 | barrier(); | ||
3783 | (*recursion)--; | ||
3784 | |||
3785 | out: | ||
3786 | put_cpu_var(perf_cpu_context); | ||
3787 | } | ||
3788 | |||
3789 | void __perf_sw_event(u32 event_id, u64 nr, int nmi, | ||
3790 | struct pt_regs *regs, u64 addr) | ||
3791 | { | ||
3792 | struct perf_sample_data data = { | ||
3793 | .addr = addr, | ||
3794 | }; | ||
3795 | |||
3796 | do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, | ||
3797 | &data, regs); | ||
3798 | } | ||
3799 | |||
3800 | static void perf_swevent_read(struct perf_event *event) | ||
3801 | { | ||
3802 | } | ||
3803 | |||
3804 | static int perf_swevent_enable(struct perf_event *event) | ||
3805 | { | ||
3806 | struct hw_perf_event *hwc = &event->hw; | ||
3807 | |||
3808 | if (hwc->sample_period) { | ||
3809 | hwc->last_period = hwc->sample_period; | ||
3810 | perf_swevent_set_period(event); | ||
3811 | } | ||
3812 | return 0; | ||
3813 | } | ||
3814 | |||
3815 | static void perf_swevent_disable(struct perf_event *event) | ||
3816 | { | ||
3817 | } | ||
3818 | |||
3819 | static const struct pmu perf_ops_generic = { | ||
3820 | .enable = perf_swevent_enable, | ||
3821 | .disable = perf_swevent_disable, | ||
3822 | .read = perf_swevent_read, | ||
3823 | .unthrottle = perf_swevent_unthrottle, | ||
3824 | }; | ||
3825 | |||
3826 | /* | ||
3827 | * hrtimer based swevent callback | ||
3828 | */ | ||
3829 | |||
3830 | static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) | ||
3831 | { | ||
3832 | enum hrtimer_restart ret = HRTIMER_RESTART; | ||
3833 | struct perf_sample_data data; | ||
3834 | struct pt_regs *regs; | ||
3835 | struct perf_event *event; | ||
3836 | u64 period; | ||
3837 | |||
3838 | event = container_of(hrtimer, struct perf_event, hw.hrtimer); | ||
3839 | event->pmu->read(event); | ||
3840 | |||
3841 | data.addr = 0; | ||
3842 | regs = get_irq_regs(); | ||
3843 | /* | ||
3844 | * In case we exclude kernel IPs or are somehow not in interrupt | ||
3845 | * context, provide the next best thing, the user IP. | ||
3846 | */ | ||
3847 | if ((event->attr.exclude_kernel || !regs) && | ||
3848 | !event->attr.exclude_user) | ||
3849 | regs = task_pt_regs(current); | ||
3850 | |||
3851 | if (regs) { | ||
3852 | if (perf_event_overflow(event, 0, &data, regs)) | ||
3853 | ret = HRTIMER_NORESTART; | ||
3854 | } | ||
3855 | |||
3856 | period = max_t(u64, 10000, event->hw.sample_period); | ||
3857 | hrtimer_forward_now(hrtimer, ns_to_ktime(period)); | ||
3858 | |||
3859 | return ret; | ||
3860 | } | ||
3861 | |||
3862 | /* | ||
3863 | * Software event: cpu wall time clock | ||
3864 | */ | ||
3865 | |||
3866 | static void cpu_clock_perf_event_update(struct perf_event *event) | ||
3867 | { | ||
3868 | int cpu = raw_smp_processor_id(); | ||
3869 | s64 prev; | ||
3870 | u64 now; | ||
3871 | |||
3872 | now = cpu_clock(cpu); | ||
3873 | prev = atomic64_read(&event->hw.prev_count); | ||
3874 | atomic64_set(&event->hw.prev_count, now); | ||
3875 | atomic64_add(now - prev, &event->count); | ||
3876 | } | ||
3877 | |||
3878 | static int cpu_clock_perf_event_enable(struct perf_event *event) | ||
3879 | { | ||
3880 | struct hw_perf_event *hwc = &event->hw; | ||
3881 | int cpu = raw_smp_processor_id(); | ||
3882 | |||
3883 | atomic64_set(&hwc->prev_count, cpu_clock(cpu)); | ||
3884 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
3885 | hwc->hrtimer.function = perf_swevent_hrtimer; | ||
3886 | if (hwc->sample_period) { | ||
3887 | u64 period = max_t(u64, 10000, hwc->sample_period); | ||
3888 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
3889 | ns_to_ktime(period), 0, | ||
3890 | HRTIMER_MODE_REL, 0); | ||
3891 | } | ||
3892 | |||
3893 | return 0; | ||
3894 | } | ||
3895 | |||
3896 | static void cpu_clock_perf_event_disable(struct perf_event *event) | ||
3897 | { | ||
3898 | if (event->hw.sample_period) | ||
3899 | hrtimer_cancel(&event->hw.hrtimer); | ||
3900 | cpu_clock_perf_event_update(event); | ||
3901 | } | ||
3902 | |||
3903 | static void cpu_clock_perf_event_read(struct perf_event *event) | ||
3904 | { | ||
3905 | cpu_clock_perf_event_update(event); | ||
3906 | } | ||
3907 | |||
3908 | static const struct pmu perf_ops_cpu_clock = { | ||
3909 | .enable = cpu_clock_perf_event_enable, | ||
3910 | .disable = cpu_clock_perf_event_disable, | ||
3911 | .read = cpu_clock_perf_event_read, | ||
3912 | }; | ||
3913 | |||
3914 | /* | ||
3915 | * Software event: task time clock | ||
3916 | */ | ||
3917 | |||
3918 | static void task_clock_perf_event_update(struct perf_event *event, u64 now) | ||
3919 | { | ||
3920 | u64 prev; | ||
3921 | s64 delta; | ||
3922 | |||
3923 | prev = atomic64_xchg(&event->hw.prev_count, now); | ||
3924 | delta = now - prev; | ||
3925 | atomic64_add(delta, &event->count); | ||
3926 | } | ||
3927 | |||
3928 | static int task_clock_perf_event_enable(struct perf_event *event) | ||
3929 | { | ||
3930 | struct hw_perf_event *hwc = &event->hw; | ||
3931 | u64 now; | ||
3932 | |||
3933 | now = event->ctx->time; | ||
3934 | |||
3935 | atomic64_set(&hwc->prev_count, now); | ||
3936 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
3937 | hwc->hrtimer.function = perf_swevent_hrtimer; | ||
3938 | if (hwc->sample_period) { | ||
3939 | u64 period = max_t(u64, 10000, hwc->sample_period); | ||
3940 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
3941 | ns_to_ktime(period), 0, | ||
3942 | HRTIMER_MODE_REL, 0); | ||
3943 | } | ||
3944 | |||
3945 | return 0; | ||
3946 | } | ||
3947 | |||
3948 | static void task_clock_perf_event_disable(struct perf_event *event) | ||
3949 | { | ||
3950 | if (event->hw.sample_period) | ||
3951 | hrtimer_cancel(&event->hw.hrtimer); | ||
3952 | task_clock_perf_event_update(event, event->ctx->time); | ||
3953 | |||
3954 | } | ||
3955 | |||
3956 | static void task_clock_perf_event_read(struct perf_event *event) | ||
3957 | { | ||
3958 | u64 time; | ||
3959 | |||
3960 | if (!in_nmi()) { | ||
3961 | update_context_time(event->ctx); | ||
3962 | time = event->ctx->time; | ||
3963 | } else { | ||
3964 | u64 now = perf_clock(); | ||
3965 | u64 delta = now - event->ctx->timestamp; | ||
3966 | time = event->ctx->time + delta; | ||
3967 | } | ||
3968 | |||
3969 | task_clock_perf_event_update(event, time); | ||
3970 | } | ||
3971 | |||
3972 | static const struct pmu perf_ops_task_clock = { | ||
3973 | .enable = task_clock_perf_event_enable, | ||
3974 | .disable = task_clock_perf_event_disable, | ||
3975 | .read = task_clock_perf_event_read, | ||
3976 | }; | ||
3977 | |||
3978 | #ifdef CONFIG_EVENT_PROFILE | ||
3979 | void perf_tp_event(int event_id, u64 addr, u64 count, void *record, | ||
3980 | int entry_size) | ||
3981 | { | ||
3982 | struct perf_raw_record raw = { | ||
3983 | .size = entry_size, | ||
3984 | .data = record, | ||
3985 | }; | ||
3986 | |||
3987 | struct perf_sample_data data = { | ||
3988 | .addr = addr, | ||
3989 | .raw = &raw, | ||
3990 | }; | ||
3991 | |||
3992 | struct pt_regs *regs = get_irq_regs(); | ||
3993 | |||
3994 | if (!regs) | ||
3995 | regs = task_pt_regs(current); | ||
3996 | |||
3997 | do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, | ||
3998 | &data, regs); | ||
3999 | } | ||
4000 | EXPORT_SYMBOL_GPL(perf_tp_event); | ||
4001 | |||
4002 | extern int ftrace_profile_enable(int); | ||
4003 | extern void ftrace_profile_disable(int); | ||
4004 | |||
4005 | static void tp_perf_event_destroy(struct perf_event *event) | ||
4006 | { | ||
4007 | ftrace_profile_disable(event->attr.config); | ||
4008 | } | ||
4009 | |||
4010 | static const struct pmu *tp_perf_event_init(struct perf_event *event) | ||
4011 | { | ||
4012 | /* | ||
4013 | * Raw tracepoint data is a severe data leak, only allow root to | ||
4014 | * have these. | ||
4015 | */ | ||
4016 | if ((event->attr.sample_type & PERF_SAMPLE_RAW) && | ||
4017 | perf_paranoid_tracepoint_raw() && | ||
4018 | !capable(CAP_SYS_ADMIN)) | ||
4019 | return ERR_PTR(-EPERM); | ||
4020 | |||
4021 | if (ftrace_profile_enable(event->attr.config)) | ||
4022 | return NULL; | ||
4023 | |||
4024 | event->destroy = tp_perf_event_destroy; | ||
4025 | |||
4026 | return &perf_ops_generic; | ||
4027 | } | ||
4028 | #else | ||
4029 | static const struct pmu *tp_perf_event_init(struct perf_event *event) | ||
4030 | { | ||
4031 | return NULL; | ||
4032 | } | ||
4033 | #endif | ||
4034 | |||
4035 | atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX]; | ||
4036 | |||
4037 | static void sw_perf_event_destroy(struct perf_event *event) | ||
4038 | { | ||
4039 | u64 event_id = event->attr.config; | ||
4040 | |||
4041 | WARN_ON(event->parent); | ||
4042 | |||
4043 | atomic_dec(&perf_swevent_enabled[event_id]); | ||
4044 | } | ||
4045 | |||
4046 | static const struct pmu *sw_perf_event_init(struct perf_event *event) | ||
4047 | { | ||
4048 | const struct pmu *pmu = NULL; | ||
4049 | u64 event_id = event->attr.config; | ||
4050 | |||
4051 | /* | ||
4052 | * Software events (currently) can't in general distinguish | ||
4053 | * between user, kernel and hypervisor events. | ||
4054 | * However, context switches and cpu migrations are considered | ||
4055 | * to be kernel events, and page faults are never hypervisor | ||
4056 | * events. | ||
4057 | */ | ||
4058 | switch (event_id) { | ||
4059 | case PERF_COUNT_SW_CPU_CLOCK: | ||
4060 | pmu = &perf_ops_cpu_clock; | ||
4061 | |||
4062 | break; | ||
4063 | case PERF_COUNT_SW_TASK_CLOCK: | ||
4064 | /* | ||
4065 | * If the user instantiates this as a per-cpu event, | ||
4066 | * use the cpu_clock event instead. | ||
4067 | */ | ||
4068 | if (event->ctx->task) | ||
4069 | pmu = &perf_ops_task_clock; | ||
4070 | else | ||
4071 | pmu = &perf_ops_cpu_clock; | ||
4072 | |||
4073 | break; | ||
4074 | case PERF_COUNT_SW_PAGE_FAULTS: | ||
4075 | case PERF_COUNT_SW_PAGE_FAULTS_MIN: | ||
4076 | case PERF_COUNT_SW_PAGE_FAULTS_MAJ: | ||
4077 | case PERF_COUNT_SW_CONTEXT_SWITCHES: | ||
4078 | case PERF_COUNT_SW_CPU_MIGRATIONS: | ||
4079 | if (!event->parent) { | ||
4080 | atomic_inc(&perf_swevent_enabled[event_id]); | ||
4081 | event->destroy = sw_perf_event_destroy; | ||
4082 | } | ||
4083 | pmu = &perf_ops_generic; | ||
4084 | break; | ||
4085 | } | ||
4086 | |||
4087 | return pmu; | ||
4088 | } | ||
4089 | |||
4090 | /* | ||
4091 | * Allocate and initialize a event structure | ||
4092 | */ | ||
4093 | static struct perf_event * | ||
4094 | perf_event_alloc(struct perf_event_attr *attr, | ||
4095 | int cpu, | ||
4096 | struct perf_event_context *ctx, | ||
4097 | struct perf_event *group_leader, | ||
4098 | struct perf_event *parent_event, | ||
4099 | gfp_t gfpflags) | ||
4100 | { | ||
4101 | const struct pmu *pmu; | ||
4102 | struct perf_event *event; | ||
4103 | struct hw_perf_event *hwc; | ||
4104 | long err; | ||
4105 | |||
4106 | event = kzalloc(sizeof(*event), gfpflags); | ||
4107 | if (!event) | ||
4108 | return ERR_PTR(-ENOMEM); | ||
4109 | |||
4110 | /* | ||
4111 | * Single events are their own group leaders, with an | ||
4112 | * empty sibling list: | ||
4113 | */ | ||
4114 | if (!group_leader) | ||
4115 | group_leader = event; | ||
4116 | |||
4117 | mutex_init(&event->child_mutex); | ||
4118 | INIT_LIST_HEAD(&event->child_list); | ||
4119 | |||
4120 | INIT_LIST_HEAD(&event->group_entry); | ||
4121 | INIT_LIST_HEAD(&event->event_entry); | ||
4122 | INIT_LIST_HEAD(&event->sibling_list); | ||
4123 | init_waitqueue_head(&event->waitq); | ||
4124 | |||
4125 | mutex_init(&event->mmap_mutex); | ||
4126 | |||
4127 | event->cpu = cpu; | ||
4128 | event->attr = *attr; | ||
4129 | event->group_leader = group_leader; | ||
4130 | event->pmu = NULL; | ||
4131 | event->ctx = ctx; | ||
4132 | event->oncpu = -1; | ||
4133 | |||
4134 | event->parent = parent_event; | ||
4135 | |||
4136 | event->ns = get_pid_ns(current->nsproxy->pid_ns); | ||
4137 | event->id = atomic64_inc_return(&perf_event_id); | ||
4138 | |||
4139 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
4140 | |||
4141 | if (attr->disabled) | ||
4142 | event->state = PERF_EVENT_STATE_OFF; | ||
4143 | |||
4144 | pmu = NULL; | ||
4145 | |||
4146 | hwc = &event->hw; | ||
4147 | hwc->sample_period = attr->sample_period; | ||
4148 | if (attr->freq && attr->sample_freq) | ||
4149 | hwc->sample_period = 1; | ||
4150 | hwc->last_period = hwc->sample_period; | ||
4151 | |||
4152 | atomic64_set(&hwc->period_left, hwc->sample_period); | ||
4153 | |||
4154 | /* | ||
4155 | * we currently do not support PERF_FORMAT_GROUP on inherited events | ||
4156 | */ | ||
4157 | if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) | ||
4158 | goto done; | ||
4159 | |||
4160 | switch (attr->type) { | ||
4161 | case PERF_TYPE_RAW: | ||
4162 | case PERF_TYPE_HARDWARE: | ||
4163 | case PERF_TYPE_HW_CACHE: | ||
4164 | pmu = hw_perf_event_init(event); | ||
4165 | break; | ||
4166 | |||
4167 | case PERF_TYPE_SOFTWARE: | ||
4168 | pmu = sw_perf_event_init(event); | ||
4169 | break; | ||
4170 | |||
4171 | case PERF_TYPE_TRACEPOINT: | ||
4172 | pmu = tp_perf_event_init(event); | ||
4173 | break; | ||
4174 | |||
4175 | default: | ||
4176 | break; | ||
4177 | } | ||
4178 | done: | ||
4179 | err = 0; | ||
4180 | if (!pmu) | ||
4181 | err = -EINVAL; | ||
4182 | else if (IS_ERR(pmu)) | ||
4183 | err = PTR_ERR(pmu); | ||
4184 | |||
4185 | if (err) { | ||
4186 | if (event->ns) | ||
4187 | put_pid_ns(event->ns); | ||
4188 | kfree(event); | ||
4189 | return ERR_PTR(err); | ||
4190 | } | ||
4191 | |||
4192 | event->pmu = pmu; | ||
4193 | |||
4194 | if (!event->parent) { | ||
4195 | atomic_inc(&nr_events); | ||
4196 | if (event->attr.mmap) | ||
4197 | atomic_inc(&nr_mmap_events); | ||
4198 | if (event->attr.comm) | ||
4199 | atomic_inc(&nr_comm_events); | ||
4200 | if (event->attr.task) | ||
4201 | atomic_inc(&nr_task_events); | ||
4202 | } | ||
4203 | |||
4204 | return event; | ||
4205 | } | ||
4206 | |||
4207 | static int perf_copy_attr(struct perf_event_attr __user *uattr, | ||
4208 | struct perf_event_attr *attr) | ||
4209 | { | ||
4210 | u32 size; | ||
4211 | int ret; | ||
4212 | |||
4213 | if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) | ||
4214 | return -EFAULT; | ||
4215 | |||
4216 | /* | ||
4217 | * zero the full structure, so that a short copy will be nice. | ||
4218 | */ | ||
4219 | memset(attr, 0, sizeof(*attr)); | ||
4220 | |||
4221 | ret = get_user(size, &uattr->size); | ||
4222 | if (ret) | ||
4223 | return ret; | ||
4224 | |||
4225 | if (size > PAGE_SIZE) /* silly large */ | ||
4226 | goto err_size; | ||
4227 | |||
4228 | if (!size) /* abi compat */ | ||
4229 | size = PERF_ATTR_SIZE_VER0; | ||
4230 | |||
4231 | if (size < PERF_ATTR_SIZE_VER0) | ||
4232 | goto err_size; | ||
4233 | |||
4234 | /* | ||
4235 | * If we're handed a bigger struct than we know of, | ||
4236 | * ensure all the unknown bits are 0 - i.e. new | ||
4237 | * user-space does not rely on any kernel feature | ||
4238 | * extensions we dont know about yet. | ||
4239 | */ | ||
4240 | if (size > sizeof(*attr)) { | ||
4241 | unsigned char __user *addr; | ||
4242 | unsigned char __user *end; | ||
4243 | unsigned char val; | ||
4244 | |||
4245 | addr = (void __user *)uattr + sizeof(*attr); | ||
4246 | end = (void __user *)uattr + size; | ||
4247 | |||
4248 | for (; addr < end; addr++) { | ||
4249 | ret = get_user(val, addr); | ||
4250 | if (ret) | ||
4251 | return ret; | ||
4252 | if (val) | ||
4253 | goto err_size; | ||
4254 | } | ||
4255 | size = sizeof(*attr); | ||
4256 | } | ||
4257 | |||
4258 | ret = copy_from_user(attr, uattr, size); | ||
4259 | if (ret) | ||
4260 | return -EFAULT; | ||
4261 | |||
4262 | /* | ||
4263 | * If the type exists, the corresponding creation will verify | ||
4264 | * the attr->config. | ||
4265 | */ | ||
4266 | if (attr->type >= PERF_TYPE_MAX) | ||
4267 | return -EINVAL; | ||
4268 | |||
4269 | if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) | ||
4270 | return -EINVAL; | ||
4271 | |||
4272 | if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) | ||
4273 | return -EINVAL; | ||
4274 | |||
4275 | if (attr->read_format & ~(PERF_FORMAT_MAX-1)) | ||
4276 | return -EINVAL; | ||
4277 | |||
4278 | out: | ||
4279 | return ret; | ||
4280 | |||
4281 | err_size: | ||
4282 | put_user(sizeof(*attr), &uattr->size); | ||
4283 | ret = -E2BIG; | ||
4284 | goto out; | ||
4285 | } | ||
4286 | |||
4287 | int perf_event_set_output(struct perf_event *event, int output_fd) | ||
4288 | { | ||
4289 | struct perf_event *output_event = NULL; | ||
4290 | struct file *output_file = NULL; | ||
4291 | struct perf_event *old_output; | ||
4292 | int fput_needed = 0; | ||
4293 | int ret = -EINVAL; | ||
4294 | |||
4295 | if (!output_fd) | ||
4296 | goto set; | ||
4297 | |||
4298 | output_file = fget_light(output_fd, &fput_needed); | ||
4299 | if (!output_file) | ||
4300 | return -EBADF; | ||
4301 | |||
4302 | if (output_file->f_op != &perf_fops) | ||
4303 | goto out; | ||
4304 | |||
4305 | output_event = output_file->private_data; | ||
4306 | |||
4307 | /* Don't chain output fds */ | ||
4308 | if (output_event->output) | ||
4309 | goto out; | ||
4310 | |||
4311 | /* Don't set an output fd when we already have an output channel */ | ||
4312 | if (event->data) | ||
4313 | goto out; | ||
4314 | |||
4315 | atomic_long_inc(&output_file->f_count); | ||
4316 | |||
4317 | set: | ||
4318 | mutex_lock(&event->mmap_mutex); | ||
4319 | old_output = event->output; | ||
4320 | rcu_assign_pointer(event->output, output_event); | ||
4321 | mutex_unlock(&event->mmap_mutex); | ||
4322 | |||
4323 | if (old_output) { | ||
4324 | /* | ||
4325 | * we need to make sure no existing perf_output_*() | ||
4326 | * is still referencing this event. | ||
4327 | */ | ||
4328 | synchronize_rcu(); | ||
4329 | fput(old_output->filp); | ||
4330 | } | ||
4331 | |||
4332 | ret = 0; | ||
4333 | out: | ||
4334 | fput_light(output_file, fput_needed); | ||
4335 | return ret; | ||
4336 | } | ||
4337 | |||
4338 | /** | ||
4339 | * sys_perf_event_open - open a performance event, associate it to a task/cpu | ||
4340 | * | ||
4341 | * @attr_uptr: event_id type attributes for monitoring/sampling | ||
4342 | * @pid: target pid | ||
4343 | * @cpu: target cpu | ||
4344 | * @group_fd: group leader event fd | ||
4345 | */ | ||
4346 | SYSCALL_DEFINE5(perf_event_open, | ||
4347 | struct perf_event_attr __user *, attr_uptr, | ||
4348 | pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) | ||
4349 | { | ||
4350 | struct perf_event *event, *group_leader; | ||
4351 | struct perf_event_attr attr; | ||
4352 | struct perf_event_context *ctx; | ||
4353 | struct file *event_file = NULL; | ||
4354 | struct file *group_file = NULL; | ||
4355 | int fput_needed = 0; | ||
4356 | int fput_needed2 = 0; | ||
4357 | int err; | ||
4358 | |||
4359 | /* for future expandability... */ | ||
4360 | if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT)) | ||
4361 | return -EINVAL; | ||
4362 | |||
4363 | err = perf_copy_attr(attr_uptr, &attr); | ||
4364 | if (err) | ||
4365 | return err; | ||
4366 | |||
4367 | if (!attr.exclude_kernel) { | ||
4368 | if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) | ||
4369 | return -EACCES; | ||
4370 | } | ||
4371 | |||
4372 | if (attr.freq) { | ||
4373 | if (attr.sample_freq > sysctl_perf_event_sample_rate) | ||
4374 | return -EINVAL; | ||
4375 | } | ||
4376 | |||
4377 | /* | ||
4378 | * Get the target context (task or percpu): | ||
4379 | */ | ||
4380 | ctx = find_get_context(pid, cpu); | ||
4381 | if (IS_ERR(ctx)) | ||
4382 | return PTR_ERR(ctx); | ||
4383 | |||
4384 | /* | ||
4385 | * Look up the group leader (we will attach this event to it): | ||
4386 | */ | ||
4387 | group_leader = NULL; | ||
4388 | if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) { | ||
4389 | err = -EINVAL; | ||
4390 | group_file = fget_light(group_fd, &fput_needed); | ||
4391 | if (!group_file) | ||
4392 | goto err_put_context; | ||
4393 | if (group_file->f_op != &perf_fops) | ||
4394 | goto err_put_context; | ||
4395 | |||
4396 | group_leader = group_file->private_data; | ||
4397 | /* | ||
4398 | * Do not allow a recursive hierarchy (this new sibling | ||
4399 | * becoming part of another group-sibling): | ||
4400 | */ | ||
4401 | if (group_leader->group_leader != group_leader) | ||
4402 | goto err_put_context; | ||
4403 | /* | ||
4404 | * Do not allow to attach to a group in a different | ||
4405 | * task or CPU context: | ||
4406 | */ | ||
4407 | if (group_leader->ctx != ctx) | ||
4408 | goto err_put_context; | ||
4409 | /* | ||
4410 | * Only a group leader can be exclusive or pinned | ||
4411 | */ | ||
4412 | if (attr.exclusive || attr.pinned) | ||
4413 | goto err_put_context; | ||
4414 | } | ||
4415 | |||
4416 | event = perf_event_alloc(&attr, cpu, ctx, group_leader, | ||
4417 | NULL, GFP_KERNEL); | ||
4418 | err = PTR_ERR(event); | ||
4419 | if (IS_ERR(event)) | ||
4420 | goto err_put_context; | ||
4421 | |||
4422 | err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0); | ||
4423 | if (err < 0) | ||
4424 | goto err_free_put_context; | ||
4425 | |||
4426 | event_file = fget_light(err, &fput_needed2); | ||
4427 | if (!event_file) | ||
4428 | goto err_free_put_context; | ||
4429 | |||
4430 | if (flags & PERF_FLAG_FD_OUTPUT) { | ||
4431 | err = perf_event_set_output(event, group_fd); | ||
4432 | if (err) | ||
4433 | goto err_fput_free_put_context; | ||
4434 | } | ||
4435 | |||
4436 | event->filp = event_file; | ||
4437 | WARN_ON_ONCE(ctx->parent_ctx); | ||
4438 | mutex_lock(&ctx->mutex); | ||
4439 | perf_install_in_context(ctx, event, cpu); | ||
4440 | ++ctx->generation; | ||
4441 | mutex_unlock(&ctx->mutex); | ||
4442 | |||
4443 | event->owner = current; | ||
4444 | get_task_struct(current); | ||
4445 | mutex_lock(¤t->perf_event_mutex); | ||
4446 | list_add_tail(&event->owner_entry, ¤t->perf_event_list); | ||
4447 | mutex_unlock(¤t->perf_event_mutex); | ||
4448 | |||
4449 | err_fput_free_put_context: | ||
4450 | fput_light(event_file, fput_needed2); | ||
4451 | |||
4452 | err_free_put_context: | ||
4453 | if (err < 0) | ||
4454 | kfree(event); | ||
4455 | |||
4456 | err_put_context: | ||
4457 | if (err < 0) | ||
4458 | put_ctx(ctx); | ||
4459 | |||
4460 | fput_light(group_file, fput_needed); | ||
4461 | |||
4462 | return err; | ||
4463 | } | ||
4464 | |||
4465 | /* | ||
4466 | * inherit a event from parent task to child task: | ||
4467 | */ | ||
4468 | static struct perf_event * | ||
4469 | inherit_event(struct perf_event *parent_event, | ||
4470 | struct task_struct *parent, | ||
4471 | struct perf_event_context *parent_ctx, | ||
4472 | struct task_struct *child, | ||
4473 | struct perf_event *group_leader, | ||
4474 | struct perf_event_context *child_ctx) | ||
4475 | { | ||
4476 | struct perf_event *child_event; | ||
4477 | |||
4478 | /* | ||
4479 | * Instead of creating recursive hierarchies of events, | ||
4480 | * we link inherited events back to the original parent, | ||
4481 | * which has a filp for sure, which we use as the reference | ||
4482 | * count: | ||
4483 | */ | ||
4484 | if (parent_event->parent) | ||
4485 | parent_event = parent_event->parent; | ||
4486 | |||
4487 | child_event = perf_event_alloc(&parent_event->attr, | ||
4488 | parent_event->cpu, child_ctx, | ||
4489 | group_leader, parent_event, | ||
4490 | GFP_KERNEL); | ||
4491 | if (IS_ERR(child_event)) | ||
4492 | return child_event; | ||
4493 | get_ctx(child_ctx); | ||
4494 | |||
4495 | /* | ||
4496 | * Make the child state follow the state of the parent event, | ||
4497 | * not its attr.disabled bit. We hold the parent's mutex, | ||
4498 | * so we won't race with perf_event_{en, dis}able_family. | ||
4499 | */ | ||
4500 | if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) | ||
4501 | child_event->state = PERF_EVENT_STATE_INACTIVE; | ||
4502 | else | ||
4503 | child_event->state = PERF_EVENT_STATE_OFF; | ||
4504 | |||
4505 | if (parent_event->attr.freq) | ||
4506 | child_event->hw.sample_period = parent_event->hw.sample_period; | ||
4507 | |||
4508 | /* | ||
4509 | * Link it up in the child's context: | ||
4510 | */ | ||
4511 | add_event_to_ctx(child_event, child_ctx); | ||
4512 | |||
4513 | /* | ||
4514 | * Get a reference to the parent filp - we will fput it | ||
4515 | * when the child event exits. This is safe to do because | ||
4516 | * we are in the parent and we know that the filp still | ||
4517 | * exists and has a nonzero count: | ||
4518 | */ | ||
4519 | atomic_long_inc(&parent_event->filp->f_count); | ||
4520 | |||
4521 | /* | ||
4522 | * Link this into the parent event's child list | ||
4523 | */ | ||
4524 | WARN_ON_ONCE(parent_event->ctx->parent_ctx); | ||
4525 | mutex_lock(&parent_event->child_mutex); | ||
4526 | list_add_tail(&child_event->child_list, &parent_event->child_list); | ||
4527 | mutex_unlock(&parent_event->child_mutex); | ||
4528 | |||
4529 | return child_event; | ||
4530 | } | ||
4531 | |||
4532 | static int inherit_group(struct perf_event *parent_event, | ||
4533 | struct task_struct *parent, | ||
4534 | struct perf_event_context *parent_ctx, | ||
4535 | struct task_struct *child, | ||
4536 | struct perf_event_context *child_ctx) | ||
4537 | { | ||
4538 | struct perf_event *leader; | ||
4539 | struct perf_event *sub; | ||
4540 | struct perf_event *child_ctr; | ||
4541 | |||
4542 | leader = inherit_event(parent_event, parent, parent_ctx, | ||
4543 | child, NULL, child_ctx); | ||
4544 | if (IS_ERR(leader)) | ||
4545 | return PTR_ERR(leader); | ||
4546 | list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { | ||
4547 | child_ctr = inherit_event(sub, parent, parent_ctx, | ||
4548 | child, leader, child_ctx); | ||
4549 | if (IS_ERR(child_ctr)) | ||
4550 | return PTR_ERR(child_ctr); | ||
4551 | } | ||
4552 | return 0; | ||
4553 | } | ||
4554 | |||
4555 | static void sync_child_event(struct perf_event *child_event, | ||
4556 | struct task_struct *child) | ||
4557 | { | ||
4558 | struct perf_event *parent_event = child_event->parent; | ||
4559 | u64 child_val; | ||
4560 | |||
4561 | if (child_event->attr.inherit_stat) | ||
4562 | perf_event_read_event(child_event, child); | ||
4563 | |||
4564 | child_val = atomic64_read(&child_event->count); | ||
4565 | |||
4566 | /* | ||
4567 | * Add back the child's count to the parent's count: | ||
4568 | */ | ||
4569 | atomic64_add(child_val, &parent_event->count); | ||
4570 | atomic64_add(child_event->total_time_enabled, | ||
4571 | &parent_event->child_total_time_enabled); | ||
4572 | atomic64_add(child_event->total_time_running, | ||
4573 | &parent_event->child_total_time_running); | ||
4574 | |||
4575 | /* | ||
4576 | * Remove this event from the parent's list | ||
4577 | */ | ||
4578 | WARN_ON_ONCE(parent_event->ctx->parent_ctx); | ||
4579 | mutex_lock(&parent_event->child_mutex); | ||
4580 | list_del_init(&child_event->child_list); | ||
4581 | mutex_unlock(&parent_event->child_mutex); | ||
4582 | |||
4583 | /* | ||
4584 | * Release the parent event, if this was the last | ||
4585 | * reference to it. | ||
4586 | */ | ||
4587 | fput(parent_event->filp); | ||
4588 | } | ||
4589 | |||
4590 | static void | ||
4591 | __perf_event_exit_task(struct perf_event *child_event, | ||
4592 | struct perf_event_context *child_ctx, | ||
4593 | struct task_struct *child) | ||
4594 | { | ||
4595 | struct perf_event *parent_event; | ||
4596 | |||
4597 | update_event_times(child_event); | ||
4598 | perf_event_remove_from_context(child_event); | ||
4599 | |||
4600 | parent_event = child_event->parent; | ||
4601 | /* | ||
4602 | * It can happen that parent exits first, and has events | ||
4603 | * that are still around due to the child reference. These | ||
4604 | * events need to be zapped - but otherwise linger. | ||
4605 | */ | ||
4606 | if (parent_event) { | ||
4607 | sync_child_event(child_event, child); | ||
4608 | free_event(child_event); | ||
4609 | } | ||
4610 | } | ||
4611 | |||
4612 | /* | ||
4613 | * When a child task exits, feed back event values to parent events. | ||
4614 | */ | ||
4615 | void perf_event_exit_task(struct task_struct *child) | ||
4616 | { | ||
4617 | struct perf_event *child_event, *tmp; | ||
4618 | struct perf_event_context *child_ctx; | ||
4619 | unsigned long flags; | ||
4620 | |||
4621 | if (likely(!child->perf_event_ctxp)) { | ||
4622 | perf_event_task(child, NULL, 0); | ||
4623 | return; | ||
4624 | } | ||
4625 | |||
4626 | local_irq_save(flags); | ||
4627 | /* | ||
4628 | * We can't reschedule here because interrupts are disabled, | ||
4629 | * and either child is current or it is a task that can't be | ||
4630 | * scheduled, so we are now safe from rescheduling changing | ||
4631 | * our context. | ||
4632 | */ | ||
4633 | child_ctx = child->perf_event_ctxp; | ||
4634 | __perf_event_task_sched_out(child_ctx); | ||
4635 | |||
4636 | /* | ||
4637 | * Take the context lock here so that if find_get_context is | ||
4638 | * reading child->perf_event_ctxp, we wait until it has | ||
4639 | * incremented the context's refcount before we do put_ctx below. | ||
4640 | */ | ||
4641 | spin_lock(&child_ctx->lock); | ||
4642 | child->perf_event_ctxp = NULL; | ||
4643 | /* | ||
4644 | * If this context is a clone; unclone it so it can't get | ||
4645 | * swapped to another process while we're removing all | ||
4646 | * the events from it. | ||
4647 | */ | ||
4648 | unclone_ctx(child_ctx); | ||
4649 | spin_unlock_irqrestore(&child_ctx->lock, flags); | ||
4650 | |||
4651 | /* | ||
4652 | * Report the task dead after unscheduling the events so that we | ||
4653 | * won't get any samples after PERF_RECORD_EXIT. We can however still | ||
4654 | * get a few PERF_RECORD_READ events. | ||
4655 | */ | ||
4656 | perf_event_task(child, child_ctx, 0); | ||
4657 | |||
4658 | /* | ||
4659 | * We can recurse on the same lock type through: | ||
4660 | * | ||
4661 | * __perf_event_exit_task() | ||
4662 | * sync_child_event() | ||
4663 | * fput(parent_event->filp) | ||
4664 | * perf_release() | ||
4665 | * mutex_lock(&ctx->mutex) | ||
4666 | * | ||
4667 | * But since its the parent context it won't be the same instance. | ||
4668 | */ | ||
4669 | mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING); | ||
4670 | |||
4671 | again: | ||
4672 | list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list, | ||
4673 | group_entry) | ||
4674 | __perf_event_exit_task(child_event, child_ctx, child); | ||
4675 | |||
4676 | /* | ||
4677 | * If the last event was a group event, it will have appended all | ||
4678 | * its siblings to the list, but we obtained 'tmp' before that which | ||
4679 | * will still point to the list head terminating the iteration. | ||
4680 | */ | ||
4681 | if (!list_empty(&child_ctx->group_list)) | ||
4682 | goto again; | ||
4683 | |||
4684 | mutex_unlock(&child_ctx->mutex); | ||
4685 | |||
4686 | put_ctx(child_ctx); | ||
4687 | } | ||
4688 | |||
4689 | /* | ||
4690 | * free an unexposed, unused context as created by inheritance by | ||
4691 | * init_task below, used by fork() in case of fail. | ||
4692 | */ | ||
4693 | void perf_event_free_task(struct task_struct *task) | ||
4694 | { | ||
4695 | struct perf_event_context *ctx = task->perf_event_ctxp; | ||
4696 | struct perf_event *event, *tmp; | ||
4697 | |||
4698 | if (!ctx) | ||
4699 | return; | ||
4700 | |||
4701 | mutex_lock(&ctx->mutex); | ||
4702 | again: | ||
4703 | list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) { | ||
4704 | struct perf_event *parent = event->parent; | ||
4705 | |||
4706 | if (WARN_ON_ONCE(!parent)) | ||
4707 | continue; | ||
4708 | |||
4709 | mutex_lock(&parent->child_mutex); | ||
4710 | list_del_init(&event->child_list); | ||
4711 | mutex_unlock(&parent->child_mutex); | ||
4712 | |||
4713 | fput(parent->filp); | ||
4714 | |||
4715 | list_del_event(event, ctx); | ||
4716 | free_event(event); | ||
4717 | } | ||
4718 | |||
4719 | if (!list_empty(&ctx->group_list)) | ||
4720 | goto again; | ||
4721 | |||
4722 | mutex_unlock(&ctx->mutex); | ||
4723 | |||
4724 | put_ctx(ctx); | ||
4725 | } | ||
4726 | |||
4727 | /* | ||
4728 | * Initialize the perf_event context in task_struct | ||
4729 | */ | ||
4730 | int perf_event_init_task(struct task_struct *child) | ||
4731 | { | ||
4732 | struct perf_event_context *child_ctx, *parent_ctx; | ||
4733 | struct perf_event_context *cloned_ctx; | ||
4734 | struct perf_event *event; | ||
4735 | struct task_struct *parent = current; | ||
4736 | int inherited_all = 1; | ||
4737 | int ret = 0; | ||
4738 | |||
4739 | child->perf_event_ctxp = NULL; | ||
4740 | |||
4741 | mutex_init(&child->perf_event_mutex); | ||
4742 | INIT_LIST_HEAD(&child->perf_event_list); | ||
4743 | |||
4744 | if (likely(!parent->perf_event_ctxp)) | ||
4745 | return 0; | ||
4746 | |||
4747 | /* | ||
4748 | * This is executed from the parent task context, so inherit | ||
4749 | * events that have been marked for cloning. | ||
4750 | * First allocate and initialize a context for the child. | ||
4751 | */ | ||
4752 | |||
4753 | child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL); | ||
4754 | if (!child_ctx) | ||
4755 | return -ENOMEM; | ||
4756 | |||
4757 | __perf_event_init_context(child_ctx, child); | ||
4758 | child->perf_event_ctxp = child_ctx; | ||
4759 | get_task_struct(child); | ||
4760 | |||
4761 | /* | ||
4762 | * If the parent's context is a clone, pin it so it won't get | ||
4763 | * swapped under us. | ||
4764 | */ | ||
4765 | parent_ctx = perf_pin_task_context(parent); | ||
4766 | |||
4767 | /* | ||
4768 | * No need to check if parent_ctx != NULL here; since we saw | ||
4769 | * it non-NULL earlier, the only reason for it to become NULL | ||
4770 | * is if we exit, and since we're currently in the middle of | ||
4771 | * a fork we can't be exiting at the same time. | ||
4772 | */ | ||
4773 | |||
4774 | /* | ||
4775 | * Lock the parent list. No need to lock the child - not PID | ||
4776 | * hashed yet and not running, so nobody can access it. | ||
4777 | */ | ||
4778 | mutex_lock(&parent_ctx->mutex); | ||
4779 | |||
4780 | /* | ||
4781 | * We dont have to disable NMIs - we are only looking at | ||
4782 | * the list, not manipulating it: | ||
4783 | */ | ||
4784 | list_for_each_entry_rcu(event, &parent_ctx->event_list, event_entry) { | ||
4785 | if (event != event->group_leader) | ||
4786 | continue; | ||
4787 | |||
4788 | if (!event->attr.inherit) { | ||
4789 | inherited_all = 0; | ||
4790 | continue; | ||
4791 | } | ||
4792 | |||
4793 | ret = inherit_group(event, parent, parent_ctx, | ||
4794 | child, child_ctx); | ||
4795 | if (ret) { | ||
4796 | inherited_all = 0; | ||
4797 | break; | ||
4798 | } | ||
4799 | } | ||
4800 | |||
4801 | if (inherited_all) { | ||
4802 | /* | ||
4803 | * Mark the child context as a clone of the parent | ||
4804 | * context, or of whatever the parent is a clone of. | ||
4805 | * Note that if the parent is a clone, it could get | ||
4806 | * uncloned at any point, but that doesn't matter | ||
4807 | * because the list of events and the generation | ||
4808 | * count can't have changed since we took the mutex. | ||
4809 | */ | ||
4810 | cloned_ctx = rcu_dereference(parent_ctx->parent_ctx); | ||
4811 | if (cloned_ctx) { | ||
4812 | child_ctx->parent_ctx = cloned_ctx; | ||
4813 | child_ctx->parent_gen = parent_ctx->parent_gen; | ||
4814 | } else { | ||
4815 | child_ctx->parent_ctx = parent_ctx; | ||
4816 | child_ctx->parent_gen = parent_ctx->generation; | ||
4817 | } | ||
4818 | get_ctx(child_ctx->parent_ctx); | ||
4819 | } | ||
4820 | |||
4821 | mutex_unlock(&parent_ctx->mutex); | ||
4822 | |||
4823 | perf_unpin_context(parent_ctx); | ||
4824 | |||
4825 | return ret; | ||
4826 | } | ||
4827 | |||
4828 | static void __cpuinit perf_event_init_cpu(int cpu) | ||
4829 | { | ||
4830 | struct perf_cpu_context *cpuctx; | ||
4831 | |||
4832 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
4833 | __perf_event_init_context(&cpuctx->ctx, NULL); | ||
4834 | |||
4835 | spin_lock(&perf_resource_lock); | ||
4836 | cpuctx->max_pertask = perf_max_events - perf_reserved_percpu; | ||
4837 | spin_unlock(&perf_resource_lock); | ||
4838 | |||
4839 | hw_perf_event_setup(cpu); | ||
4840 | } | ||
4841 | |||
4842 | #ifdef CONFIG_HOTPLUG_CPU | ||
4843 | static void __perf_event_exit_cpu(void *info) | ||
4844 | { | ||
4845 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
4846 | struct perf_event_context *ctx = &cpuctx->ctx; | ||
4847 | struct perf_event *event, *tmp; | ||
4848 | |||
4849 | list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) | ||
4850 | __perf_event_remove_from_context(event); | ||
4851 | } | ||
4852 | static void perf_event_exit_cpu(int cpu) | ||
4853 | { | ||
4854 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
4855 | struct perf_event_context *ctx = &cpuctx->ctx; | ||
4856 | |||
4857 | mutex_lock(&ctx->mutex); | ||
4858 | smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1); | ||
4859 | mutex_unlock(&ctx->mutex); | ||
4860 | } | ||
4861 | #else | ||
4862 | static inline void perf_event_exit_cpu(int cpu) { } | ||
4863 | #endif | ||
4864 | |||
4865 | static int __cpuinit | ||
4866 | perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) | ||
4867 | { | ||
4868 | unsigned int cpu = (long)hcpu; | ||
4869 | |||
4870 | switch (action) { | ||
4871 | |||
4872 | case CPU_UP_PREPARE: | ||
4873 | case CPU_UP_PREPARE_FROZEN: | ||
4874 | perf_event_init_cpu(cpu); | ||
4875 | break; | ||
4876 | |||
4877 | case CPU_ONLINE: | ||
4878 | case CPU_ONLINE_FROZEN: | ||
4879 | hw_perf_event_setup_online(cpu); | ||
4880 | break; | ||
4881 | |||
4882 | case CPU_DOWN_PREPARE: | ||
4883 | case CPU_DOWN_PREPARE_FROZEN: | ||
4884 | perf_event_exit_cpu(cpu); | ||
4885 | break; | ||
4886 | |||
4887 | default: | ||
4888 | break; | ||
4889 | } | ||
4890 | |||
4891 | return NOTIFY_OK; | ||
4892 | } | ||
4893 | |||
4894 | /* | ||
4895 | * This has to have a higher priority than migration_notifier in sched.c. | ||
4896 | */ | ||
4897 | static struct notifier_block __cpuinitdata perf_cpu_nb = { | ||
4898 | .notifier_call = perf_cpu_notify, | ||
4899 | .priority = 20, | ||
4900 | }; | ||
4901 | |||
4902 | void __init perf_event_init(void) | ||
4903 | { | ||
4904 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE, | ||
4905 | (void *)(long)smp_processor_id()); | ||
4906 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE, | ||
4907 | (void *)(long)smp_processor_id()); | ||
4908 | register_cpu_notifier(&perf_cpu_nb); | ||
4909 | } | ||
4910 | |||
4911 | static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf) | ||
4912 | { | ||
4913 | return sprintf(buf, "%d\n", perf_reserved_percpu); | ||
4914 | } | ||
4915 | |||
4916 | static ssize_t | ||
4917 | perf_set_reserve_percpu(struct sysdev_class *class, | ||
4918 | const char *buf, | ||
4919 | size_t count) | ||
4920 | { | ||
4921 | struct perf_cpu_context *cpuctx; | ||
4922 | unsigned long val; | ||
4923 | int err, cpu, mpt; | ||
4924 | |||
4925 | err = strict_strtoul(buf, 10, &val); | ||
4926 | if (err) | ||
4927 | return err; | ||
4928 | if (val > perf_max_events) | ||
4929 | return -EINVAL; | ||
4930 | |||
4931 | spin_lock(&perf_resource_lock); | ||
4932 | perf_reserved_percpu = val; | ||
4933 | for_each_online_cpu(cpu) { | ||
4934 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
4935 | spin_lock_irq(&cpuctx->ctx.lock); | ||
4936 | mpt = min(perf_max_events - cpuctx->ctx.nr_events, | ||
4937 | perf_max_events - perf_reserved_percpu); | ||
4938 | cpuctx->max_pertask = mpt; | ||
4939 | spin_unlock_irq(&cpuctx->ctx.lock); | ||
4940 | } | ||
4941 | spin_unlock(&perf_resource_lock); | ||
4942 | |||
4943 | return count; | ||
4944 | } | ||
4945 | |||
4946 | static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf) | ||
4947 | { | ||
4948 | return sprintf(buf, "%d\n", perf_overcommit); | ||
4949 | } | ||
4950 | |||
4951 | static ssize_t | ||
4952 | perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count) | ||
4953 | { | ||
4954 | unsigned long val; | ||
4955 | int err; | ||
4956 | |||
4957 | err = strict_strtoul(buf, 10, &val); | ||
4958 | if (err) | ||
4959 | return err; | ||
4960 | if (val > 1) | ||
4961 | return -EINVAL; | ||
4962 | |||
4963 | spin_lock(&perf_resource_lock); | ||
4964 | perf_overcommit = val; | ||
4965 | spin_unlock(&perf_resource_lock); | ||
4966 | |||
4967 | return count; | ||
4968 | } | ||
4969 | |||
4970 | static SYSDEV_CLASS_ATTR( | ||
4971 | reserve_percpu, | ||
4972 | 0644, | ||
4973 | perf_show_reserve_percpu, | ||
4974 | perf_set_reserve_percpu | ||
4975 | ); | ||
4976 | |||
4977 | static SYSDEV_CLASS_ATTR( | ||
4978 | overcommit, | ||
4979 | 0644, | ||
4980 | perf_show_overcommit, | ||
4981 | perf_set_overcommit | ||
4982 | ); | ||
4983 | |||
4984 | static struct attribute *perfclass_attrs[] = { | ||
4985 | &attr_reserve_percpu.attr, | ||
4986 | &attr_overcommit.attr, | ||
4987 | NULL | ||
4988 | }; | ||
4989 | |||
4990 | static struct attribute_group perfclass_attr_group = { | ||
4991 | .attrs = perfclass_attrs, | ||
4992 | .name = "perf_events", | ||
4993 | }; | ||
4994 | |||
4995 | static int __init perf_event_sysfs_init(void) | ||
4996 | { | ||
4997 | return sysfs_create_group(&cpu_sysdev_class.kset.kobj, | ||
4998 | &perfclass_attr_group); | ||
4999 | } | ||
5000 | device_initcall(perf_event_sysfs_init); | ||