diff options
Diffstat (limited to 'kernel/perf_event.c')
-rw-r--r-- | kernel/perf_event.c | 5359 |
1 files changed, 5359 insertions, 0 deletions
diff --git a/kernel/perf_event.c b/kernel/perf_event.c new file mode 100644 index 000000000000..6b7ddba1dd64 --- /dev/null +++ b/kernel/perf_event.c | |||
@@ -0,0 +1,5359 @@ | |||
1 | /* | ||
2 | * Performance events core code: | ||
3 | * | ||
4 | * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> | ||
5 | * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar | ||
6 | * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | ||
7 | * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> | ||
8 | * | ||
9 | * For licensing details see kernel-base/COPYING | ||
10 | */ | ||
11 | |||
12 | #include <linux/fs.h> | ||
13 | #include <linux/mm.h> | ||
14 | #include <linux/cpu.h> | ||
15 | #include <linux/smp.h> | ||
16 | #include <linux/file.h> | ||
17 | #include <linux/poll.h> | ||
18 | #include <linux/sysfs.h> | ||
19 | #include <linux/dcache.h> | ||
20 | #include <linux/percpu.h> | ||
21 | #include <linux/ptrace.h> | ||
22 | #include <linux/vmstat.h> | ||
23 | #include <linux/vmalloc.h> | ||
24 | #include <linux/hardirq.h> | ||
25 | #include <linux/rculist.h> | ||
26 | #include <linux/uaccess.h> | ||
27 | #include <linux/syscalls.h> | ||
28 | #include <linux/anon_inodes.h> | ||
29 | #include <linux/kernel_stat.h> | ||
30 | #include <linux/perf_event.h> | ||
31 | #include <linux/ftrace_event.h> | ||
32 | #include <linux/hw_breakpoint.h> | ||
33 | |||
34 | #include <asm/irq_regs.h> | ||
35 | |||
36 | /* | ||
37 | * Each CPU has a list of per CPU events: | ||
38 | */ | ||
39 | DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); | ||
40 | |||
41 | int perf_max_events __read_mostly = 1; | ||
42 | static int perf_reserved_percpu __read_mostly; | ||
43 | static int perf_overcommit __read_mostly = 1; | ||
44 | |||
45 | static atomic_t nr_events __read_mostly; | ||
46 | static atomic_t nr_mmap_events __read_mostly; | ||
47 | static atomic_t nr_comm_events __read_mostly; | ||
48 | static atomic_t nr_task_events __read_mostly; | ||
49 | |||
50 | /* | ||
51 | * perf event paranoia level: | ||
52 | * -1 - not paranoid at all | ||
53 | * 0 - disallow raw tracepoint access for unpriv | ||
54 | * 1 - disallow cpu events for unpriv | ||
55 | * 2 - disallow kernel profiling for unpriv | ||
56 | */ | ||
57 | int sysctl_perf_event_paranoid __read_mostly = 1; | ||
58 | |||
59 | static inline bool perf_paranoid_tracepoint_raw(void) | ||
60 | { | ||
61 | return sysctl_perf_event_paranoid > -1; | ||
62 | } | ||
63 | |||
64 | static inline bool perf_paranoid_cpu(void) | ||
65 | { | ||
66 | return sysctl_perf_event_paranoid > 0; | ||
67 | } | ||
68 | |||
69 | static inline bool perf_paranoid_kernel(void) | ||
70 | { | ||
71 | return sysctl_perf_event_paranoid > 1; | ||
72 | } | ||
73 | |||
74 | int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */ | ||
75 | |||
76 | /* | ||
77 | * max perf event sample rate | ||
78 | */ | ||
79 | int sysctl_perf_event_sample_rate __read_mostly = 100000; | ||
80 | |||
81 | static atomic64_t perf_event_id; | ||
82 | |||
83 | /* | ||
84 | * Lock for (sysadmin-configurable) event reservations: | ||
85 | */ | ||
86 | static DEFINE_SPINLOCK(perf_resource_lock); | ||
87 | |||
88 | /* | ||
89 | * Architecture provided APIs - weak aliases: | ||
90 | */ | ||
91 | extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event) | ||
92 | { | ||
93 | return NULL; | ||
94 | } | ||
95 | |||
96 | void __weak hw_perf_disable(void) { barrier(); } | ||
97 | void __weak hw_perf_enable(void) { barrier(); } | ||
98 | |||
99 | void __weak hw_perf_event_setup(int cpu) { barrier(); } | ||
100 | void __weak hw_perf_event_setup_online(int cpu) { barrier(); } | ||
101 | |||
102 | int __weak | ||
103 | hw_perf_group_sched_in(struct perf_event *group_leader, | ||
104 | struct perf_cpu_context *cpuctx, | ||
105 | struct perf_event_context *ctx, int cpu) | ||
106 | { | ||
107 | return 0; | ||
108 | } | ||
109 | |||
110 | void __weak perf_event_print_debug(void) { } | ||
111 | |||
112 | static DEFINE_PER_CPU(int, perf_disable_count); | ||
113 | |||
114 | void __perf_disable(void) | ||
115 | { | ||
116 | __get_cpu_var(perf_disable_count)++; | ||
117 | } | ||
118 | |||
119 | bool __perf_enable(void) | ||
120 | { | ||
121 | return !--__get_cpu_var(perf_disable_count); | ||
122 | } | ||
123 | |||
124 | void perf_disable(void) | ||
125 | { | ||
126 | __perf_disable(); | ||
127 | hw_perf_disable(); | ||
128 | } | ||
129 | |||
130 | void perf_enable(void) | ||
131 | { | ||
132 | if (__perf_enable()) | ||
133 | hw_perf_enable(); | ||
134 | } | ||
135 | |||
136 | static void get_ctx(struct perf_event_context *ctx) | ||
137 | { | ||
138 | WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); | ||
139 | } | ||
140 | |||
141 | static void free_ctx(struct rcu_head *head) | ||
142 | { | ||
143 | struct perf_event_context *ctx; | ||
144 | |||
145 | ctx = container_of(head, struct perf_event_context, rcu_head); | ||
146 | kfree(ctx); | ||
147 | } | ||
148 | |||
149 | static void put_ctx(struct perf_event_context *ctx) | ||
150 | { | ||
151 | if (atomic_dec_and_test(&ctx->refcount)) { | ||
152 | if (ctx->parent_ctx) | ||
153 | put_ctx(ctx->parent_ctx); | ||
154 | if (ctx->task) | ||
155 | put_task_struct(ctx->task); | ||
156 | call_rcu(&ctx->rcu_head, free_ctx); | ||
157 | } | ||
158 | } | ||
159 | |||
160 | static void unclone_ctx(struct perf_event_context *ctx) | ||
161 | { | ||
162 | if (ctx->parent_ctx) { | ||
163 | put_ctx(ctx->parent_ctx); | ||
164 | ctx->parent_ctx = NULL; | ||
165 | } | ||
166 | } | ||
167 | |||
168 | /* | ||
169 | * If we inherit events we want to return the parent event id | ||
170 | * to userspace. | ||
171 | */ | ||
172 | static u64 primary_event_id(struct perf_event *event) | ||
173 | { | ||
174 | u64 id = event->id; | ||
175 | |||
176 | if (event->parent) | ||
177 | id = event->parent->id; | ||
178 | |||
179 | return id; | ||
180 | } | ||
181 | |||
182 | /* | ||
183 | * Get the perf_event_context for a task and lock it. | ||
184 | * This has to cope with with the fact that until it is locked, | ||
185 | * the context could get moved to another task. | ||
186 | */ | ||
187 | static struct perf_event_context * | ||
188 | perf_lock_task_context(struct task_struct *task, unsigned long *flags) | ||
189 | { | ||
190 | struct perf_event_context *ctx; | ||
191 | |||
192 | rcu_read_lock(); | ||
193 | retry: | ||
194 | ctx = rcu_dereference(task->perf_event_ctxp); | ||
195 | if (ctx) { | ||
196 | /* | ||
197 | * If this context is a clone of another, it might | ||
198 | * get swapped for another underneath us by | ||
199 | * perf_event_task_sched_out, though the | ||
200 | * rcu_read_lock() protects us from any context | ||
201 | * getting freed. Lock the context and check if it | ||
202 | * got swapped before we could get the lock, and retry | ||
203 | * if so. If we locked the right context, then it | ||
204 | * can't get swapped on us any more. | ||
205 | */ | ||
206 | spin_lock_irqsave(&ctx->lock, *flags); | ||
207 | if (ctx != rcu_dereference(task->perf_event_ctxp)) { | ||
208 | spin_unlock_irqrestore(&ctx->lock, *flags); | ||
209 | goto retry; | ||
210 | } | ||
211 | |||
212 | if (!atomic_inc_not_zero(&ctx->refcount)) { | ||
213 | spin_unlock_irqrestore(&ctx->lock, *flags); | ||
214 | ctx = NULL; | ||
215 | } | ||
216 | } | ||
217 | rcu_read_unlock(); | ||
218 | return ctx; | ||
219 | } | ||
220 | |||
221 | /* | ||
222 | * Get the context for a task and increment its pin_count so it | ||
223 | * can't get swapped to another task. This also increments its | ||
224 | * reference count so that the context can't get freed. | ||
225 | */ | ||
226 | static struct perf_event_context *perf_pin_task_context(struct task_struct *task) | ||
227 | { | ||
228 | struct perf_event_context *ctx; | ||
229 | unsigned long flags; | ||
230 | |||
231 | ctx = perf_lock_task_context(task, &flags); | ||
232 | if (ctx) { | ||
233 | ++ctx->pin_count; | ||
234 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
235 | } | ||
236 | return ctx; | ||
237 | } | ||
238 | |||
239 | static void perf_unpin_context(struct perf_event_context *ctx) | ||
240 | { | ||
241 | unsigned long flags; | ||
242 | |||
243 | spin_lock_irqsave(&ctx->lock, flags); | ||
244 | --ctx->pin_count; | ||
245 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
246 | put_ctx(ctx); | ||
247 | } | ||
248 | |||
249 | static inline u64 perf_clock(void) | ||
250 | { | ||
251 | return cpu_clock(smp_processor_id()); | ||
252 | } | ||
253 | |||
254 | /* | ||
255 | * Update the record of the current time in a context. | ||
256 | */ | ||
257 | static void update_context_time(struct perf_event_context *ctx) | ||
258 | { | ||
259 | u64 now = perf_clock(); | ||
260 | |||
261 | ctx->time += now - ctx->timestamp; | ||
262 | ctx->timestamp = now; | ||
263 | } | ||
264 | |||
265 | /* | ||
266 | * Update the total_time_enabled and total_time_running fields for a event. | ||
267 | */ | ||
268 | static void update_event_times(struct perf_event *event) | ||
269 | { | ||
270 | struct perf_event_context *ctx = event->ctx; | ||
271 | u64 run_end; | ||
272 | |||
273 | if (event->state < PERF_EVENT_STATE_INACTIVE || | ||
274 | event->group_leader->state < PERF_EVENT_STATE_INACTIVE) | ||
275 | return; | ||
276 | |||
277 | if (ctx->is_active) | ||
278 | run_end = ctx->time; | ||
279 | else | ||
280 | run_end = event->tstamp_stopped; | ||
281 | |||
282 | event->total_time_enabled = run_end - event->tstamp_enabled; | ||
283 | |||
284 | if (event->state == PERF_EVENT_STATE_INACTIVE) | ||
285 | run_end = event->tstamp_stopped; | ||
286 | else | ||
287 | run_end = ctx->time; | ||
288 | |||
289 | event->total_time_running = run_end - event->tstamp_running; | ||
290 | } | ||
291 | |||
292 | /* | ||
293 | * Add a event from the lists for its context. | ||
294 | * Must be called with ctx->mutex and ctx->lock held. | ||
295 | */ | ||
296 | static void | ||
297 | list_add_event(struct perf_event *event, struct perf_event_context *ctx) | ||
298 | { | ||
299 | struct perf_event *group_leader = event->group_leader; | ||
300 | |||
301 | /* | ||
302 | * Depending on whether it is a standalone or sibling event, | ||
303 | * add it straight to the context's event list, or to the group | ||
304 | * leader's sibling list: | ||
305 | */ | ||
306 | if (group_leader == event) | ||
307 | list_add_tail(&event->group_entry, &ctx->group_list); | ||
308 | else { | ||
309 | list_add_tail(&event->group_entry, &group_leader->sibling_list); | ||
310 | group_leader->nr_siblings++; | ||
311 | } | ||
312 | |||
313 | list_add_rcu(&event->event_entry, &ctx->event_list); | ||
314 | ctx->nr_events++; | ||
315 | if (event->attr.inherit_stat) | ||
316 | ctx->nr_stat++; | ||
317 | } | ||
318 | |||
319 | /* | ||
320 | * Remove a event from the lists for its context. | ||
321 | * Must be called with ctx->mutex and ctx->lock held. | ||
322 | */ | ||
323 | static void | ||
324 | list_del_event(struct perf_event *event, struct perf_event_context *ctx) | ||
325 | { | ||
326 | struct perf_event *sibling, *tmp; | ||
327 | |||
328 | if (list_empty(&event->group_entry)) | ||
329 | return; | ||
330 | ctx->nr_events--; | ||
331 | if (event->attr.inherit_stat) | ||
332 | ctx->nr_stat--; | ||
333 | |||
334 | list_del_init(&event->group_entry); | ||
335 | list_del_rcu(&event->event_entry); | ||
336 | |||
337 | if (event->group_leader != event) | ||
338 | event->group_leader->nr_siblings--; | ||
339 | |||
340 | update_event_times(event); | ||
341 | |||
342 | /* | ||
343 | * If event was in error state, then keep it | ||
344 | * that way, otherwise bogus counts will be | ||
345 | * returned on read(). The only way to get out | ||
346 | * of error state is by explicit re-enabling | ||
347 | * of the event | ||
348 | */ | ||
349 | if (event->state > PERF_EVENT_STATE_OFF) | ||
350 | event->state = PERF_EVENT_STATE_OFF; | ||
351 | |||
352 | /* | ||
353 | * If this was a group event with sibling events then | ||
354 | * upgrade the siblings to singleton events by adding them | ||
355 | * to the context list directly: | ||
356 | */ | ||
357 | list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { | ||
358 | |||
359 | list_move_tail(&sibling->group_entry, &ctx->group_list); | ||
360 | sibling->group_leader = sibling; | ||
361 | } | ||
362 | } | ||
363 | |||
364 | static void | ||
365 | event_sched_out(struct perf_event *event, | ||
366 | struct perf_cpu_context *cpuctx, | ||
367 | struct perf_event_context *ctx) | ||
368 | { | ||
369 | if (event->state != PERF_EVENT_STATE_ACTIVE) | ||
370 | return; | ||
371 | |||
372 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
373 | if (event->pending_disable) { | ||
374 | event->pending_disable = 0; | ||
375 | event->state = PERF_EVENT_STATE_OFF; | ||
376 | } | ||
377 | event->tstamp_stopped = ctx->time; | ||
378 | event->pmu->disable(event); | ||
379 | event->oncpu = -1; | ||
380 | |||
381 | if (!is_software_event(event)) | ||
382 | cpuctx->active_oncpu--; | ||
383 | ctx->nr_active--; | ||
384 | if (event->attr.exclusive || !cpuctx->active_oncpu) | ||
385 | cpuctx->exclusive = 0; | ||
386 | } | ||
387 | |||
388 | static void | ||
389 | group_sched_out(struct perf_event *group_event, | ||
390 | struct perf_cpu_context *cpuctx, | ||
391 | struct perf_event_context *ctx) | ||
392 | { | ||
393 | struct perf_event *event; | ||
394 | |||
395 | if (group_event->state != PERF_EVENT_STATE_ACTIVE) | ||
396 | return; | ||
397 | |||
398 | event_sched_out(group_event, cpuctx, ctx); | ||
399 | |||
400 | /* | ||
401 | * Schedule out siblings (if any): | ||
402 | */ | ||
403 | list_for_each_entry(event, &group_event->sibling_list, group_entry) | ||
404 | event_sched_out(event, cpuctx, ctx); | ||
405 | |||
406 | if (group_event->attr.exclusive) | ||
407 | cpuctx->exclusive = 0; | ||
408 | } | ||
409 | |||
410 | /* | ||
411 | * Cross CPU call to remove a performance event | ||
412 | * | ||
413 | * We disable the event on the hardware level first. After that we | ||
414 | * remove it from the context list. | ||
415 | */ | ||
416 | static void __perf_event_remove_from_context(void *info) | ||
417 | { | ||
418 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
419 | struct perf_event *event = info; | ||
420 | struct perf_event_context *ctx = event->ctx; | ||
421 | |||
422 | /* | ||
423 | * If this is a task context, we need to check whether it is | ||
424 | * the current task context of this cpu. If not it has been | ||
425 | * scheduled out before the smp call arrived. | ||
426 | */ | ||
427 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
428 | return; | ||
429 | |||
430 | spin_lock(&ctx->lock); | ||
431 | /* | ||
432 | * Protect the list operation against NMI by disabling the | ||
433 | * events on a global level. | ||
434 | */ | ||
435 | perf_disable(); | ||
436 | |||
437 | event_sched_out(event, cpuctx, ctx); | ||
438 | |||
439 | list_del_event(event, ctx); | ||
440 | |||
441 | if (!ctx->task) { | ||
442 | /* | ||
443 | * Allow more per task events with respect to the | ||
444 | * reservation: | ||
445 | */ | ||
446 | cpuctx->max_pertask = | ||
447 | min(perf_max_events - ctx->nr_events, | ||
448 | perf_max_events - perf_reserved_percpu); | ||
449 | } | ||
450 | |||
451 | perf_enable(); | ||
452 | spin_unlock(&ctx->lock); | ||
453 | } | ||
454 | |||
455 | |||
456 | /* | ||
457 | * Remove the event from a task's (or a CPU's) list of events. | ||
458 | * | ||
459 | * Must be called with ctx->mutex held. | ||
460 | * | ||
461 | * CPU events are removed with a smp call. For task events we only | ||
462 | * call when the task is on a CPU. | ||
463 | * | ||
464 | * If event->ctx is a cloned context, callers must make sure that | ||
465 | * every task struct that event->ctx->task could possibly point to | ||
466 | * remains valid. This is OK when called from perf_release since | ||
467 | * that only calls us on the top-level context, which can't be a clone. | ||
468 | * When called from perf_event_exit_task, it's OK because the | ||
469 | * context has been detached from its task. | ||
470 | */ | ||
471 | static void perf_event_remove_from_context(struct perf_event *event) | ||
472 | { | ||
473 | struct perf_event_context *ctx = event->ctx; | ||
474 | struct task_struct *task = ctx->task; | ||
475 | |||
476 | if (!task) { | ||
477 | /* | ||
478 | * Per cpu events are removed via an smp call and | ||
479 | * the removal is always sucessful. | ||
480 | */ | ||
481 | smp_call_function_single(event->cpu, | ||
482 | __perf_event_remove_from_context, | ||
483 | event, 1); | ||
484 | return; | ||
485 | } | ||
486 | |||
487 | retry: | ||
488 | task_oncpu_function_call(task, __perf_event_remove_from_context, | ||
489 | event); | ||
490 | |||
491 | spin_lock_irq(&ctx->lock); | ||
492 | /* | ||
493 | * If the context is active we need to retry the smp call. | ||
494 | */ | ||
495 | if (ctx->nr_active && !list_empty(&event->group_entry)) { | ||
496 | spin_unlock_irq(&ctx->lock); | ||
497 | goto retry; | ||
498 | } | ||
499 | |||
500 | /* | ||
501 | * The lock prevents that this context is scheduled in so we | ||
502 | * can remove the event safely, if the call above did not | ||
503 | * succeed. | ||
504 | */ | ||
505 | if (!list_empty(&event->group_entry)) | ||
506 | list_del_event(event, ctx); | ||
507 | spin_unlock_irq(&ctx->lock); | ||
508 | } | ||
509 | |||
510 | /* | ||
511 | * Update total_time_enabled and total_time_running for all events in a group. | ||
512 | */ | ||
513 | static void update_group_times(struct perf_event *leader) | ||
514 | { | ||
515 | struct perf_event *event; | ||
516 | |||
517 | update_event_times(leader); | ||
518 | list_for_each_entry(event, &leader->sibling_list, group_entry) | ||
519 | update_event_times(event); | ||
520 | } | ||
521 | |||
522 | /* | ||
523 | * Cross CPU call to disable a performance event | ||
524 | */ | ||
525 | static void __perf_event_disable(void *info) | ||
526 | { | ||
527 | struct perf_event *event = info; | ||
528 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
529 | struct perf_event_context *ctx = event->ctx; | ||
530 | |||
531 | /* | ||
532 | * If this is a per-task event, need to check whether this | ||
533 | * event's task is the current task on this cpu. | ||
534 | */ | ||
535 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
536 | return; | ||
537 | |||
538 | spin_lock(&ctx->lock); | ||
539 | |||
540 | /* | ||
541 | * If the event is on, turn it off. | ||
542 | * If it is in error state, leave it in error state. | ||
543 | */ | ||
544 | if (event->state >= PERF_EVENT_STATE_INACTIVE) { | ||
545 | update_context_time(ctx); | ||
546 | update_group_times(event); | ||
547 | if (event == event->group_leader) | ||
548 | group_sched_out(event, cpuctx, ctx); | ||
549 | else | ||
550 | event_sched_out(event, cpuctx, ctx); | ||
551 | event->state = PERF_EVENT_STATE_OFF; | ||
552 | } | ||
553 | |||
554 | spin_unlock(&ctx->lock); | ||
555 | } | ||
556 | |||
557 | /* | ||
558 | * Disable a event. | ||
559 | * | ||
560 | * If event->ctx is a cloned context, callers must make sure that | ||
561 | * every task struct that event->ctx->task could possibly point to | ||
562 | * remains valid. This condition is satisifed when called through | ||
563 | * perf_event_for_each_child or perf_event_for_each because they | ||
564 | * hold the top-level event's child_mutex, so any descendant that | ||
565 | * goes to exit will block in sync_child_event. | ||
566 | * When called from perf_pending_event it's OK because event->ctx | ||
567 | * is the current context on this CPU and preemption is disabled, | ||
568 | * hence we can't get into perf_event_task_sched_out for this context. | ||
569 | */ | ||
570 | static void perf_event_disable(struct perf_event *event) | ||
571 | { | ||
572 | struct perf_event_context *ctx = event->ctx; | ||
573 | struct task_struct *task = ctx->task; | ||
574 | |||
575 | if (!task) { | ||
576 | /* | ||
577 | * Disable the event on the cpu that it's on | ||
578 | */ | ||
579 | smp_call_function_single(event->cpu, __perf_event_disable, | ||
580 | event, 1); | ||
581 | return; | ||
582 | } | ||
583 | |||
584 | retry: | ||
585 | task_oncpu_function_call(task, __perf_event_disable, event); | ||
586 | |||
587 | spin_lock_irq(&ctx->lock); | ||
588 | /* | ||
589 | * If the event is still active, we need to retry the cross-call. | ||
590 | */ | ||
591 | if (event->state == PERF_EVENT_STATE_ACTIVE) { | ||
592 | spin_unlock_irq(&ctx->lock); | ||
593 | goto retry; | ||
594 | } | ||
595 | |||
596 | /* | ||
597 | * Since we have the lock this context can't be scheduled | ||
598 | * in, so we can change the state safely. | ||
599 | */ | ||
600 | if (event->state == PERF_EVENT_STATE_INACTIVE) { | ||
601 | update_group_times(event); | ||
602 | event->state = PERF_EVENT_STATE_OFF; | ||
603 | } | ||
604 | |||
605 | spin_unlock_irq(&ctx->lock); | ||
606 | } | ||
607 | |||
608 | static int | ||
609 | event_sched_in(struct perf_event *event, | ||
610 | struct perf_cpu_context *cpuctx, | ||
611 | struct perf_event_context *ctx, | ||
612 | int cpu) | ||
613 | { | ||
614 | if (event->state <= PERF_EVENT_STATE_OFF) | ||
615 | return 0; | ||
616 | |||
617 | event->state = PERF_EVENT_STATE_ACTIVE; | ||
618 | event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */ | ||
619 | /* | ||
620 | * The new state must be visible before we turn it on in the hardware: | ||
621 | */ | ||
622 | smp_wmb(); | ||
623 | |||
624 | if (event->pmu->enable(event)) { | ||
625 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
626 | event->oncpu = -1; | ||
627 | return -EAGAIN; | ||
628 | } | ||
629 | |||
630 | event->tstamp_running += ctx->time - event->tstamp_stopped; | ||
631 | |||
632 | if (!is_software_event(event)) | ||
633 | cpuctx->active_oncpu++; | ||
634 | ctx->nr_active++; | ||
635 | |||
636 | if (event->attr.exclusive) | ||
637 | cpuctx->exclusive = 1; | ||
638 | |||
639 | return 0; | ||
640 | } | ||
641 | |||
642 | static int | ||
643 | group_sched_in(struct perf_event *group_event, | ||
644 | struct perf_cpu_context *cpuctx, | ||
645 | struct perf_event_context *ctx, | ||
646 | int cpu) | ||
647 | { | ||
648 | struct perf_event *event, *partial_group; | ||
649 | int ret; | ||
650 | |||
651 | if (group_event->state == PERF_EVENT_STATE_OFF) | ||
652 | return 0; | ||
653 | |||
654 | ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu); | ||
655 | if (ret) | ||
656 | return ret < 0 ? ret : 0; | ||
657 | |||
658 | if (event_sched_in(group_event, cpuctx, ctx, cpu)) | ||
659 | return -EAGAIN; | ||
660 | |||
661 | /* | ||
662 | * Schedule in siblings as one group (if any): | ||
663 | */ | ||
664 | list_for_each_entry(event, &group_event->sibling_list, group_entry) { | ||
665 | if (event_sched_in(event, cpuctx, ctx, cpu)) { | ||
666 | partial_group = event; | ||
667 | goto group_error; | ||
668 | } | ||
669 | } | ||
670 | |||
671 | return 0; | ||
672 | |||
673 | group_error: | ||
674 | /* | ||
675 | * Groups can be scheduled in as one unit only, so undo any | ||
676 | * partial group before returning: | ||
677 | */ | ||
678 | list_for_each_entry(event, &group_event->sibling_list, group_entry) { | ||
679 | if (event == partial_group) | ||
680 | break; | ||
681 | event_sched_out(event, cpuctx, ctx); | ||
682 | } | ||
683 | event_sched_out(group_event, cpuctx, ctx); | ||
684 | |||
685 | return -EAGAIN; | ||
686 | } | ||
687 | |||
688 | /* | ||
689 | * Return 1 for a group consisting entirely of software events, | ||
690 | * 0 if the group contains any hardware events. | ||
691 | */ | ||
692 | static int is_software_only_group(struct perf_event *leader) | ||
693 | { | ||
694 | struct perf_event *event; | ||
695 | |||
696 | if (!is_software_event(leader)) | ||
697 | return 0; | ||
698 | |||
699 | list_for_each_entry(event, &leader->sibling_list, group_entry) | ||
700 | if (!is_software_event(event)) | ||
701 | return 0; | ||
702 | |||
703 | return 1; | ||
704 | } | ||
705 | |||
706 | /* | ||
707 | * Work out whether we can put this event group on the CPU now. | ||
708 | */ | ||
709 | static int group_can_go_on(struct perf_event *event, | ||
710 | struct perf_cpu_context *cpuctx, | ||
711 | int can_add_hw) | ||
712 | { | ||
713 | /* | ||
714 | * Groups consisting entirely of software events can always go on. | ||
715 | */ | ||
716 | if (is_software_only_group(event)) | ||
717 | return 1; | ||
718 | /* | ||
719 | * If an exclusive group is already on, no other hardware | ||
720 | * events can go on. | ||
721 | */ | ||
722 | if (cpuctx->exclusive) | ||
723 | return 0; | ||
724 | /* | ||
725 | * If this group is exclusive and there are already | ||
726 | * events on the CPU, it can't go on. | ||
727 | */ | ||
728 | if (event->attr.exclusive && cpuctx->active_oncpu) | ||
729 | return 0; | ||
730 | /* | ||
731 | * Otherwise, try to add it if all previous groups were able | ||
732 | * to go on. | ||
733 | */ | ||
734 | return can_add_hw; | ||
735 | } | ||
736 | |||
737 | static void add_event_to_ctx(struct perf_event *event, | ||
738 | struct perf_event_context *ctx) | ||
739 | { | ||
740 | list_add_event(event, ctx); | ||
741 | event->tstamp_enabled = ctx->time; | ||
742 | event->tstamp_running = ctx->time; | ||
743 | event->tstamp_stopped = ctx->time; | ||
744 | } | ||
745 | |||
746 | /* | ||
747 | * Cross CPU call to install and enable a performance event | ||
748 | * | ||
749 | * Must be called with ctx->mutex held | ||
750 | */ | ||
751 | static void __perf_install_in_context(void *info) | ||
752 | { | ||
753 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
754 | struct perf_event *event = info; | ||
755 | struct perf_event_context *ctx = event->ctx; | ||
756 | struct perf_event *leader = event->group_leader; | ||
757 | int cpu = smp_processor_id(); | ||
758 | int err; | ||
759 | |||
760 | /* | ||
761 | * If this is a task context, we need to check whether it is | ||
762 | * the current task context of this cpu. If not it has been | ||
763 | * scheduled out before the smp call arrived. | ||
764 | * Or possibly this is the right context but it isn't | ||
765 | * on this cpu because it had no events. | ||
766 | */ | ||
767 | if (ctx->task && cpuctx->task_ctx != ctx) { | ||
768 | if (cpuctx->task_ctx || ctx->task != current) | ||
769 | return; | ||
770 | cpuctx->task_ctx = ctx; | ||
771 | } | ||
772 | |||
773 | spin_lock(&ctx->lock); | ||
774 | ctx->is_active = 1; | ||
775 | update_context_time(ctx); | ||
776 | |||
777 | /* | ||
778 | * Protect the list operation against NMI by disabling the | ||
779 | * events on a global level. NOP for non NMI based events. | ||
780 | */ | ||
781 | perf_disable(); | ||
782 | |||
783 | add_event_to_ctx(event, ctx); | ||
784 | |||
785 | /* | ||
786 | * Don't put the event on if it is disabled or if | ||
787 | * it is in a group and the group isn't on. | ||
788 | */ | ||
789 | if (event->state != PERF_EVENT_STATE_INACTIVE || | ||
790 | (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)) | ||
791 | goto unlock; | ||
792 | |||
793 | /* | ||
794 | * An exclusive event can't go on if there are already active | ||
795 | * hardware events, and no hardware event can go on if there | ||
796 | * is already an exclusive event on. | ||
797 | */ | ||
798 | if (!group_can_go_on(event, cpuctx, 1)) | ||
799 | err = -EEXIST; | ||
800 | else | ||
801 | err = event_sched_in(event, cpuctx, ctx, cpu); | ||
802 | |||
803 | if (err) { | ||
804 | /* | ||
805 | * This event couldn't go on. If it is in a group | ||
806 | * then we have to pull the whole group off. | ||
807 | * If the event group is pinned then put it in error state. | ||
808 | */ | ||
809 | if (leader != event) | ||
810 | group_sched_out(leader, cpuctx, ctx); | ||
811 | if (leader->attr.pinned) { | ||
812 | update_group_times(leader); | ||
813 | leader->state = PERF_EVENT_STATE_ERROR; | ||
814 | } | ||
815 | } | ||
816 | |||
817 | if (!err && !ctx->task && cpuctx->max_pertask) | ||
818 | cpuctx->max_pertask--; | ||
819 | |||
820 | unlock: | ||
821 | perf_enable(); | ||
822 | |||
823 | spin_unlock(&ctx->lock); | ||
824 | } | ||
825 | |||
826 | /* | ||
827 | * Attach a performance event to a context | ||
828 | * | ||
829 | * First we add the event to the list with the hardware enable bit | ||
830 | * in event->hw_config cleared. | ||
831 | * | ||
832 | * If the event is attached to a task which is on a CPU we use a smp | ||
833 | * call to enable it in the task context. The task might have been | ||
834 | * scheduled away, but we check this in the smp call again. | ||
835 | * | ||
836 | * Must be called with ctx->mutex held. | ||
837 | */ | ||
838 | static void | ||
839 | perf_install_in_context(struct perf_event_context *ctx, | ||
840 | struct perf_event *event, | ||
841 | int cpu) | ||
842 | { | ||
843 | struct task_struct *task = ctx->task; | ||
844 | |||
845 | if (!task) { | ||
846 | /* | ||
847 | * Per cpu events are installed via an smp call and | ||
848 | * the install is always sucessful. | ||
849 | */ | ||
850 | smp_call_function_single(cpu, __perf_install_in_context, | ||
851 | event, 1); | ||
852 | return; | ||
853 | } | ||
854 | |||
855 | retry: | ||
856 | task_oncpu_function_call(task, __perf_install_in_context, | ||
857 | event); | ||
858 | |||
859 | spin_lock_irq(&ctx->lock); | ||
860 | /* | ||
861 | * we need to retry the smp call. | ||
862 | */ | ||
863 | if (ctx->is_active && list_empty(&event->group_entry)) { | ||
864 | spin_unlock_irq(&ctx->lock); | ||
865 | goto retry; | ||
866 | } | ||
867 | |||
868 | /* | ||
869 | * The lock prevents that this context is scheduled in so we | ||
870 | * can add the event safely, if it the call above did not | ||
871 | * succeed. | ||
872 | */ | ||
873 | if (list_empty(&event->group_entry)) | ||
874 | add_event_to_ctx(event, ctx); | ||
875 | spin_unlock_irq(&ctx->lock); | ||
876 | } | ||
877 | |||
878 | /* | ||
879 | * Put a event into inactive state and update time fields. | ||
880 | * Enabling the leader of a group effectively enables all | ||
881 | * the group members that aren't explicitly disabled, so we | ||
882 | * have to update their ->tstamp_enabled also. | ||
883 | * Note: this works for group members as well as group leaders | ||
884 | * since the non-leader members' sibling_lists will be empty. | ||
885 | */ | ||
886 | static void __perf_event_mark_enabled(struct perf_event *event, | ||
887 | struct perf_event_context *ctx) | ||
888 | { | ||
889 | struct perf_event *sub; | ||
890 | |||
891 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
892 | event->tstamp_enabled = ctx->time - event->total_time_enabled; | ||
893 | list_for_each_entry(sub, &event->sibling_list, group_entry) | ||
894 | if (sub->state >= PERF_EVENT_STATE_INACTIVE) | ||
895 | sub->tstamp_enabled = | ||
896 | ctx->time - sub->total_time_enabled; | ||
897 | } | ||
898 | |||
899 | /* | ||
900 | * Cross CPU call to enable a performance event | ||
901 | */ | ||
902 | static void __perf_event_enable(void *info) | ||
903 | { | ||
904 | struct perf_event *event = info; | ||
905 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
906 | struct perf_event_context *ctx = event->ctx; | ||
907 | struct perf_event *leader = event->group_leader; | ||
908 | int err; | ||
909 | |||
910 | /* | ||
911 | * If this is a per-task event, need to check whether this | ||
912 | * event's task is the current task on this cpu. | ||
913 | */ | ||
914 | if (ctx->task && cpuctx->task_ctx != ctx) { | ||
915 | if (cpuctx->task_ctx || ctx->task != current) | ||
916 | return; | ||
917 | cpuctx->task_ctx = ctx; | ||
918 | } | ||
919 | |||
920 | spin_lock(&ctx->lock); | ||
921 | ctx->is_active = 1; | ||
922 | update_context_time(ctx); | ||
923 | |||
924 | if (event->state >= PERF_EVENT_STATE_INACTIVE) | ||
925 | goto unlock; | ||
926 | __perf_event_mark_enabled(event, ctx); | ||
927 | |||
928 | /* | ||
929 | * If the event is in a group and isn't the group leader, | ||
930 | * then don't put it on unless the group is on. | ||
931 | */ | ||
932 | if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) | ||
933 | goto unlock; | ||
934 | |||
935 | if (!group_can_go_on(event, cpuctx, 1)) { | ||
936 | err = -EEXIST; | ||
937 | } else { | ||
938 | perf_disable(); | ||
939 | if (event == leader) | ||
940 | err = group_sched_in(event, cpuctx, ctx, | ||
941 | smp_processor_id()); | ||
942 | else | ||
943 | err = event_sched_in(event, cpuctx, ctx, | ||
944 | smp_processor_id()); | ||
945 | perf_enable(); | ||
946 | } | ||
947 | |||
948 | if (err) { | ||
949 | /* | ||
950 | * If this event can't go on and it's part of a | ||
951 | * group, then the whole group has to come off. | ||
952 | */ | ||
953 | if (leader != event) | ||
954 | group_sched_out(leader, cpuctx, ctx); | ||
955 | if (leader->attr.pinned) { | ||
956 | update_group_times(leader); | ||
957 | leader->state = PERF_EVENT_STATE_ERROR; | ||
958 | } | ||
959 | } | ||
960 | |||
961 | unlock: | ||
962 | spin_unlock(&ctx->lock); | ||
963 | } | ||
964 | |||
965 | /* | ||
966 | * Enable a event. | ||
967 | * | ||
968 | * If event->ctx is a cloned context, callers must make sure that | ||
969 | * every task struct that event->ctx->task could possibly point to | ||
970 | * remains valid. This condition is satisfied when called through | ||
971 | * perf_event_for_each_child or perf_event_for_each as described | ||
972 | * for perf_event_disable. | ||
973 | */ | ||
974 | static void perf_event_enable(struct perf_event *event) | ||
975 | { | ||
976 | struct perf_event_context *ctx = event->ctx; | ||
977 | struct task_struct *task = ctx->task; | ||
978 | |||
979 | if (!task) { | ||
980 | /* | ||
981 | * Enable the event on the cpu that it's on | ||
982 | */ | ||
983 | smp_call_function_single(event->cpu, __perf_event_enable, | ||
984 | event, 1); | ||
985 | return; | ||
986 | } | ||
987 | |||
988 | spin_lock_irq(&ctx->lock); | ||
989 | if (event->state >= PERF_EVENT_STATE_INACTIVE) | ||
990 | goto out; | ||
991 | |||
992 | /* | ||
993 | * If the event is in error state, clear that first. | ||
994 | * That way, if we see the event in error state below, we | ||
995 | * know that it has gone back into error state, as distinct | ||
996 | * from the task having been scheduled away before the | ||
997 | * cross-call arrived. | ||
998 | */ | ||
999 | if (event->state == PERF_EVENT_STATE_ERROR) | ||
1000 | event->state = PERF_EVENT_STATE_OFF; | ||
1001 | |||
1002 | retry: | ||
1003 | spin_unlock_irq(&ctx->lock); | ||
1004 | task_oncpu_function_call(task, __perf_event_enable, event); | ||
1005 | |||
1006 | spin_lock_irq(&ctx->lock); | ||
1007 | |||
1008 | /* | ||
1009 | * If the context is active and the event is still off, | ||
1010 | * we need to retry the cross-call. | ||
1011 | */ | ||
1012 | if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) | ||
1013 | goto retry; | ||
1014 | |||
1015 | /* | ||
1016 | * Since we have the lock this context can't be scheduled | ||
1017 | * in, so we can change the state safely. | ||
1018 | */ | ||
1019 | if (event->state == PERF_EVENT_STATE_OFF) | ||
1020 | __perf_event_mark_enabled(event, ctx); | ||
1021 | |||
1022 | out: | ||
1023 | spin_unlock_irq(&ctx->lock); | ||
1024 | } | ||
1025 | |||
1026 | static int perf_event_refresh(struct perf_event *event, int refresh) | ||
1027 | { | ||
1028 | /* | ||
1029 | * not supported on inherited events | ||
1030 | */ | ||
1031 | if (event->attr.inherit) | ||
1032 | return -EINVAL; | ||
1033 | |||
1034 | atomic_add(refresh, &event->event_limit); | ||
1035 | perf_event_enable(event); | ||
1036 | |||
1037 | return 0; | ||
1038 | } | ||
1039 | |||
1040 | void __perf_event_sched_out(struct perf_event_context *ctx, | ||
1041 | struct perf_cpu_context *cpuctx) | ||
1042 | { | ||
1043 | struct perf_event *event; | ||
1044 | |||
1045 | spin_lock(&ctx->lock); | ||
1046 | ctx->is_active = 0; | ||
1047 | if (likely(!ctx->nr_events)) | ||
1048 | goto out; | ||
1049 | update_context_time(ctx); | ||
1050 | |||
1051 | perf_disable(); | ||
1052 | if (ctx->nr_active) { | ||
1053 | list_for_each_entry(event, &ctx->group_list, group_entry) | ||
1054 | group_sched_out(event, cpuctx, ctx); | ||
1055 | } | ||
1056 | perf_enable(); | ||
1057 | out: | ||
1058 | spin_unlock(&ctx->lock); | ||
1059 | } | ||
1060 | |||
1061 | /* | ||
1062 | * Test whether two contexts are equivalent, i.e. whether they | ||
1063 | * have both been cloned from the same version of the same context | ||
1064 | * and they both have the same number of enabled events. | ||
1065 | * If the number of enabled events is the same, then the set | ||
1066 | * of enabled events should be the same, because these are both | ||
1067 | * inherited contexts, therefore we can't access individual events | ||
1068 | * in them directly with an fd; we can only enable/disable all | ||
1069 | * events via prctl, or enable/disable all events in a family | ||
1070 | * via ioctl, which will have the same effect on both contexts. | ||
1071 | */ | ||
1072 | static int context_equiv(struct perf_event_context *ctx1, | ||
1073 | struct perf_event_context *ctx2) | ||
1074 | { | ||
1075 | return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx | ||
1076 | && ctx1->parent_gen == ctx2->parent_gen | ||
1077 | && !ctx1->pin_count && !ctx2->pin_count; | ||
1078 | } | ||
1079 | |||
1080 | static void __perf_event_sync_stat(struct perf_event *event, | ||
1081 | struct perf_event *next_event) | ||
1082 | { | ||
1083 | u64 value; | ||
1084 | |||
1085 | if (!event->attr.inherit_stat) | ||
1086 | return; | ||
1087 | |||
1088 | /* | ||
1089 | * Update the event value, we cannot use perf_event_read() | ||
1090 | * because we're in the middle of a context switch and have IRQs | ||
1091 | * disabled, which upsets smp_call_function_single(), however | ||
1092 | * we know the event must be on the current CPU, therefore we | ||
1093 | * don't need to use it. | ||
1094 | */ | ||
1095 | switch (event->state) { | ||
1096 | case PERF_EVENT_STATE_ACTIVE: | ||
1097 | event->pmu->read(event); | ||
1098 | /* fall-through */ | ||
1099 | |||
1100 | case PERF_EVENT_STATE_INACTIVE: | ||
1101 | update_event_times(event); | ||
1102 | break; | ||
1103 | |||
1104 | default: | ||
1105 | break; | ||
1106 | } | ||
1107 | |||
1108 | /* | ||
1109 | * In order to keep per-task stats reliable we need to flip the event | ||
1110 | * values when we flip the contexts. | ||
1111 | */ | ||
1112 | value = atomic64_read(&next_event->count); | ||
1113 | value = atomic64_xchg(&event->count, value); | ||
1114 | atomic64_set(&next_event->count, value); | ||
1115 | |||
1116 | swap(event->total_time_enabled, next_event->total_time_enabled); | ||
1117 | swap(event->total_time_running, next_event->total_time_running); | ||
1118 | |||
1119 | /* | ||
1120 | * Since we swizzled the values, update the user visible data too. | ||
1121 | */ | ||
1122 | perf_event_update_userpage(event); | ||
1123 | perf_event_update_userpage(next_event); | ||
1124 | } | ||
1125 | |||
1126 | #define list_next_entry(pos, member) \ | ||
1127 | list_entry(pos->member.next, typeof(*pos), member) | ||
1128 | |||
1129 | static void perf_event_sync_stat(struct perf_event_context *ctx, | ||
1130 | struct perf_event_context *next_ctx) | ||
1131 | { | ||
1132 | struct perf_event *event, *next_event; | ||
1133 | |||
1134 | if (!ctx->nr_stat) | ||
1135 | return; | ||
1136 | |||
1137 | update_context_time(ctx); | ||
1138 | |||
1139 | event = list_first_entry(&ctx->event_list, | ||
1140 | struct perf_event, event_entry); | ||
1141 | |||
1142 | next_event = list_first_entry(&next_ctx->event_list, | ||
1143 | struct perf_event, event_entry); | ||
1144 | |||
1145 | while (&event->event_entry != &ctx->event_list && | ||
1146 | &next_event->event_entry != &next_ctx->event_list) { | ||
1147 | |||
1148 | __perf_event_sync_stat(event, next_event); | ||
1149 | |||
1150 | event = list_next_entry(event, event_entry); | ||
1151 | next_event = list_next_entry(next_event, event_entry); | ||
1152 | } | ||
1153 | } | ||
1154 | |||
1155 | /* | ||
1156 | * Called from scheduler to remove the events of the current task, | ||
1157 | * with interrupts disabled. | ||
1158 | * | ||
1159 | * We stop each event and update the event value in event->count. | ||
1160 | * | ||
1161 | * This does not protect us against NMI, but disable() | ||
1162 | * sets the disabled bit in the control field of event _before_ | ||
1163 | * accessing the event control register. If a NMI hits, then it will | ||
1164 | * not restart the event. | ||
1165 | */ | ||
1166 | void perf_event_task_sched_out(struct task_struct *task, | ||
1167 | struct task_struct *next, int cpu) | ||
1168 | { | ||
1169 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1170 | struct perf_event_context *ctx = task->perf_event_ctxp; | ||
1171 | struct perf_event_context *next_ctx; | ||
1172 | struct perf_event_context *parent; | ||
1173 | struct pt_regs *regs; | ||
1174 | int do_switch = 1; | ||
1175 | |||
1176 | regs = task_pt_regs(task); | ||
1177 | perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0); | ||
1178 | |||
1179 | if (likely(!ctx || !cpuctx->task_ctx)) | ||
1180 | return; | ||
1181 | |||
1182 | rcu_read_lock(); | ||
1183 | parent = rcu_dereference(ctx->parent_ctx); | ||
1184 | next_ctx = next->perf_event_ctxp; | ||
1185 | if (parent && next_ctx && | ||
1186 | rcu_dereference(next_ctx->parent_ctx) == parent) { | ||
1187 | /* | ||
1188 | * Looks like the two contexts are clones, so we might be | ||
1189 | * able to optimize the context switch. We lock both | ||
1190 | * contexts and check that they are clones under the | ||
1191 | * lock (including re-checking that neither has been | ||
1192 | * uncloned in the meantime). It doesn't matter which | ||
1193 | * order we take the locks because no other cpu could | ||
1194 | * be trying to lock both of these tasks. | ||
1195 | */ | ||
1196 | spin_lock(&ctx->lock); | ||
1197 | spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); | ||
1198 | if (context_equiv(ctx, next_ctx)) { | ||
1199 | /* | ||
1200 | * XXX do we need a memory barrier of sorts | ||
1201 | * wrt to rcu_dereference() of perf_event_ctxp | ||
1202 | */ | ||
1203 | task->perf_event_ctxp = next_ctx; | ||
1204 | next->perf_event_ctxp = ctx; | ||
1205 | ctx->task = next; | ||
1206 | next_ctx->task = task; | ||
1207 | do_switch = 0; | ||
1208 | |||
1209 | perf_event_sync_stat(ctx, next_ctx); | ||
1210 | } | ||
1211 | spin_unlock(&next_ctx->lock); | ||
1212 | spin_unlock(&ctx->lock); | ||
1213 | } | ||
1214 | rcu_read_unlock(); | ||
1215 | |||
1216 | if (do_switch) { | ||
1217 | __perf_event_sched_out(ctx, cpuctx); | ||
1218 | cpuctx->task_ctx = NULL; | ||
1219 | } | ||
1220 | } | ||
1221 | |||
1222 | /* | ||
1223 | * Called with IRQs disabled | ||
1224 | */ | ||
1225 | static void __perf_event_task_sched_out(struct perf_event_context *ctx) | ||
1226 | { | ||
1227 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
1228 | |||
1229 | if (!cpuctx->task_ctx) | ||
1230 | return; | ||
1231 | |||
1232 | if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) | ||
1233 | return; | ||
1234 | |||
1235 | __perf_event_sched_out(ctx, cpuctx); | ||
1236 | cpuctx->task_ctx = NULL; | ||
1237 | } | ||
1238 | |||
1239 | /* | ||
1240 | * Called with IRQs disabled | ||
1241 | */ | ||
1242 | static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx) | ||
1243 | { | ||
1244 | __perf_event_sched_out(&cpuctx->ctx, cpuctx); | ||
1245 | } | ||
1246 | |||
1247 | static void | ||
1248 | __perf_event_sched_in(struct perf_event_context *ctx, | ||
1249 | struct perf_cpu_context *cpuctx, int cpu) | ||
1250 | { | ||
1251 | struct perf_event *event; | ||
1252 | int can_add_hw = 1; | ||
1253 | |||
1254 | spin_lock(&ctx->lock); | ||
1255 | ctx->is_active = 1; | ||
1256 | if (likely(!ctx->nr_events)) | ||
1257 | goto out; | ||
1258 | |||
1259 | ctx->timestamp = perf_clock(); | ||
1260 | |||
1261 | perf_disable(); | ||
1262 | |||
1263 | /* | ||
1264 | * First go through the list and put on any pinned groups | ||
1265 | * in order to give them the best chance of going on. | ||
1266 | */ | ||
1267 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
1268 | if (event->state <= PERF_EVENT_STATE_OFF || | ||
1269 | !event->attr.pinned) | ||
1270 | continue; | ||
1271 | if (event->cpu != -1 && event->cpu != cpu) | ||
1272 | continue; | ||
1273 | |||
1274 | if (group_can_go_on(event, cpuctx, 1)) | ||
1275 | group_sched_in(event, cpuctx, ctx, cpu); | ||
1276 | |||
1277 | /* | ||
1278 | * If this pinned group hasn't been scheduled, | ||
1279 | * put it in error state. | ||
1280 | */ | ||
1281 | if (event->state == PERF_EVENT_STATE_INACTIVE) { | ||
1282 | update_group_times(event); | ||
1283 | event->state = PERF_EVENT_STATE_ERROR; | ||
1284 | } | ||
1285 | } | ||
1286 | |||
1287 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
1288 | /* | ||
1289 | * Ignore events in OFF or ERROR state, and | ||
1290 | * ignore pinned events since we did them already. | ||
1291 | */ | ||
1292 | if (event->state <= PERF_EVENT_STATE_OFF || | ||
1293 | event->attr.pinned) | ||
1294 | continue; | ||
1295 | |||
1296 | /* | ||
1297 | * Listen to the 'cpu' scheduling filter constraint | ||
1298 | * of events: | ||
1299 | */ | ||
1300 | if (event->cpu != -1 && event->cpu != cpu) | ||
1301 | continue; | ||
1302 | |||
1303 | if (group_can_go_on(event, cpuctx, can_add_hw)) | ||
1304 | if (group_sched_in(event, cpuctx, ctx, cpu)) | ||
1305 | can_add_hw = 0; | ||
1306 | } | ||
1307 | perf_enable(); | ||
1308 | out: | ||
1309 | spin_unlock(&ctx->lock); | ||
1310 | } | ||
1311 | |||
1312 | /* | ||
1313 | * Called from scheduler to add the events of the current task | ||
1314 | * with interrupts disabled. | ||
1315 | * | ||
1316 | * We restore the event value and then enable it. | ||
1317 | * | ||
1318 | * This does not protect us against NMI, but enable() | ||
1319 | * sets the enabled bit in the control field of event _before_ | ||
1320 | * accessing the event control register. If a NMI hits, then it will | ||
1321 | * keep the event running. | ||
1322 | */ | ||
1323 | void perf_event_task_sched_in(struct task_struct *task, int cpu) | ||
1324 | { | ||
1325 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1326 | struct perf_event_context *ctx = task->perf_event_ctxp; | ||
1327 | |||
1328 | if (likely(!ctx)) | ||
1329 | return; | ||
1330 | if (cpuctx->task_ctx == ctx) | ||
1331 | return; | ||
1332 | __perf_event_sched_in(ctx, cpuctx, cpu); | ||
1333 | cpuctx->task_ctx = ctx; | ||
1334 | } | ||
1335 | |||
1336 | static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu) | ||
1337 | { | ||
1338 | struct perf_event_context *ctx = &cpuctx->ctx; | ||
1339 | |||
1340 | __perf_event_sched_in(ctx, cpuctx, cpu); | ||
1341 | } | ||
1342 | |||
1343 | #define MAX_INTERRUPTS (~0ULL) | ||
1344 | |||
1345 | static void perf_log_throttle(struct perf_event *event, int enable); | ||
1346 | |||
1347 | static void perf_adjust_period(struct perf_event *event, u64 events) | ||
1348 | { | ||
1349 | struct hw_perf_event *hwc = &event->hw; | ||
1350 | u64 period, sample_period; | ||
1351 | s64 delta; | ||
1352 | |||
1353 | events *= hwc->sample_period; | ||
1354 | period = div64_u64(events, event->attr.sample_freq); | ||
1355 | |||
1356 | delta = (s64)(period - hwc->sample_period); | ||
1357 | delta = (delta + 7) / 8; /* low pass filter */ | ||
1358 | |||
1359 | sample_period = hwc->sample_period + delta; | ||
1360 | |||
1361 | if (!sample_period) | ||
1362 | sample_period = 1; | ||
1363 | |||
1364 | hwc->sample_period = sample_period; | ||
1365 | } | ||
1366 | |||
1367 | static void perf_ctx_adjust_freq(struct perf_event_context *ctx) | ||
1368 | { | ||
1369 | struct perf_event *event; | ||
1370 | struct hw_perf_event *hwc; | ||
1371 | u64 interrupts, freq; | ||
1372 | |||
1373 | spin_lock(&ctx->lock); | ||
1374 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
1375 | if (event->state != PERF_EVENT_STATE_ACTIVE) | ||
1376 | continue; | ||
1377 | |||
1378 | hwc = &event->hw; | ||
1379 | |||
1380 | interrupts = hwc->interrupts; | ||
1381 | hwc->interrupts = 0; | ||
1382 | |||
1383 | /* | ||
1384 | * unthrottle events on the tick | ||
1385 | */ | ||
1386 | if (interrupts == MAX_INTERRUPTS) { | ||
1387 | perf_log_throttle(event, 1); | ||
1388 | event->pmu->unthrottle(event); | ||
1389 | interrupts = 2*sysctl_perf_event_sample_rate/HZ; | ||
1390 | } | ||
1391 | |||
1392 | if (!event->attr.freq || !event->attr.sample_freq) | ||
1393 | continue; | ||
1394 | |||
1395 | /* | ||
1396 | * if the specified freq < HZ then we need to skip ticks | ||
1397 | */ | ||
1398 | if (event->attr.sample_freq < HZ) { | ||
1399 | freq = event->attr.sample_freq; | ||
1400 | |||
1401 | hwc->freq_count += freq; | ||
1402 | hwc->freq_interrupts += interrupts; | ||
1403 | |||
1404 | if (hwc->freq_count < HZ) | ||
1405 | continue; | ||
1406 | |||
1407 | interrupts = hwc->freq_interrupts; | ||
1408 | hwc->freq_interrupts = 0; | ||
1409 | hwc->freq_count -= HZ; | ||
1410 | } else | ||
1411 | freq = HZ; | ||
1412 | |||
1413 | perf_adjust_period(event, freq * interrupts); | ||
1414 | |||
1415 | /* | ||
1416 | * In order to avoid being stalled by an (accidental) huge | ||
1417 | * sample period, force reset the sample period if we didn't | ||
1418 | * get any events in this freq period. | ||
1419 | */ | ||
1420 | if (!interrupts) { | ||
1421 | perf_disable(); | ||
1422 | event->pmu->disable(event); | ||
1423 | atomic64_set(&hwc->period_left, 0); | ||
1424 | event->pmu->enable(event); | ||
1425 | perf_enable(); | ||
1426 | } | ||
1427 | } | ||
1428 | spin_unlock(&ctx->lock); | ||
1429 | } | ||
1430 | |||
1431 | /* | ||
1432 | * Round-robin a context's events: | ||
1433 | */ | ||
1434 | static void rotate_ctx(struct perf_event_context *ctx) | ||
1435 | { | ||
1436 | struct perf_event *event; | ||
1437 | |||
1438 | if (!ctx->nr_events) | ||
1439 | return; | ||
1440 | |||
1441 | spin_lock(&ctx->lock); | ||
1442 | /* | ||
1443 | * Rotate the first entry last (works just fine for group events too): | ||
1444 | */ | ||
1445 | perf_disable(); | ||
1446 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
1447 | list_move_tail(&event->group_entry, &ctx->group_list); | ||
1448 | break; | ||
1449 | } | ||
1450 | perf_enable(); | ||
1451 | |||
1452 | spin_unlock(&ctx->lock); | ||
1453 | } | ||
1454 | |||
1455 | void perf_event_task_tick(struct task_struct *curr, int cpu) | ||
1456 | { | ||
1457 | struct perf_cpu_context *cpuctx; | ||
1458 | struct perf_event_context *ctx; | ||
1459 | |||
1460 | if (!atomic_read(&nr_events)) | ||
1461 | return; | ||
1462 | |||
1463 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1464 | ctx = curr->perf_event_ctxp; | ||
1465 | |||
1466 | perf_ctx_adjust_freq(&cpuctx->ctx); | ||
1467 | if (ctx) | ||
1468 | perf_ctx_adjust_freq(ctx); | ||
1469 | |||
1470 | perf_event_cpu_sched_out(cpuctx); | ||
1471 | if (ctx) | ||
1472 | __perf_event_task_sched_out(ctx); | ||
1473 | |||
1474 | rotate_ctx(&cpuctx->ctx); | ||
1475 | if (ctx) | ||
1476 | rotate_ctx(ctx); | ||
1477 | |||
1478 | perf_event_cpu_sched_in(cpuctx, cpu); | ||
1479 | if (ctx) | ||
1480 | perf_event_task_sched_in(curr, cpu); | ||
1481 | } | ||
1482 | |||
1483 | /* | ||
1484 | * Enable all of a task's events that have been marked enable-on-exec. | ||
1485 | * This expects task == current. | ||
1486 | */ | ||
1487 | static void perf_event_enable_on_exec(struct task_struct *task) | ||
1488 | { | ||
1489 | struct perf_event_context *ctx; | ||
1490 | struct perf_event *event; | ||
1491 | unsigned long flags; | ||
1492 | int enabled = 0; | ||
1493 | |||
1494 | local_irq_save(flags); | ||
1495 | ctx = task->perf_event_ctxp; | ||
1496 | if (!ctx || !ctx->nr_events) | ||
1497 | goto out; | ||
1498 | |||
1499 | __perf_event_task_sched_out(ctx); | ||
1500 | |||
1501 | spin_lock(&ctx->lock); | ||
1502 | |||
1503 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
1504 | if (!event->attr.enable_on_exec) | ||
1505 | continue; | ||
1506 | event->attr.enable_on_exec = 0; | ||
1507 | if (event->state >= PERF_EVENT_STATE_INACTIVE) | ||
1508 | continue; | ||
1509 | __perf_event_mark_enabled(event, ctx); | ||
1510 | enabled = 1; | ||
1511 | } | ||
1512 | |||
1513 | /* | ||
1514 | * Unclone this context if we enabled any event. | ||
1515 | */ | ||
1516 | if (enabled) | ||
1517 | unclone_ctx(ctx); | ||
1518 | |||
1519 | spin_unlock(&ctx->lock); | ||
1520 | |||
1521 | perf_event_task_sched_in(task, smp_processor_id()); | ||
1522 | out: | ||
1523 | local_irq_restore(flags); | ||
1524 | } | ||
1525 | |||
1526 | /* | ||
1527 | * Cross CPU call to read the hardware event | ||
1528 | */ | ||
1529 | static void __perf_event_read(void *info) | ||
1530 | { | ||
1531 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
1532 | struct perf_event *event = info; | ||
1533 | struct perf_event_context *ctx = event->ctx; | ||
1534 | |||
1535 | /* | ||
1536 | * If this is a task context, we need to check whether it is | ||
1537 | * the current task context of this cpu. If not it has been | ||
1538 | * scheduled out before the smp call arrived. In that case | ||
1539 | * event->count would have been updated to a recent sample | ||
1540 | * when the event was scheduled out. | ||
1541 | */ | ||
1542 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
1543 | return; | ||
1544 | |||
1545 | spin_lock(&ctx->lock); | ||
1546 | update_context_time(ctx); | ||
1547 | update_event_times(event); | ||
1548 | spin_unlock(&ctx->lock); | ||
1549 | |||
1550 | event->pmu->read(event); | ||
1551 | } | ||
1552 | |||
1553 | static u64 perf_event_read(struct perf_event *event) | ||
1554 | { | ||
1555 | /* | ||
1556 | * If event is enabled and currently active on a CPU, update the | ||
1557 | * value in the event structure: | ||
1558 | */ | ||
1559 | if (event->state == PERF_EVENT_STATE_ACTIVE) { | ||
1560 | smp_call_function_single(event->oncpu, | ||
1561 | __perf_event_read, event, 1); | ||
1562 | } else if (event->state == PERF_EVENT_STATE_INACTIVE) { | ||
1563 | struct perf_event_context *ctx = event->ctx; | ||
1564 | unsigned long flags; | ||
1565 | |||
1566 | spin_lock_irqsave(&ctx->lock, flags); | ||
1567 | update_context_time(ctx); | ||
1568 | update_event_times(event); | ||
1569 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
1570 | } | ||
1571 | |||
1572 | return atomic64_read(&event->count); | ||
1573 | } | ||
1574 | |||
1575 | /* | ||
1576 | * Initialize the perf_event context in a task_struct: | ||
1577 | */ | ||
1578 | static void | ||
1579 | __perf_event_init_context(struct perf_event_context *ctx, | ||
1580 | struct task_struct *task) | ||
1581 | { | ||
1582 | memset(ctx, 0, sizeof(*ctx)); | ||
1583 | spin_lock_init(&ctx->lock); | ||
1584 | mutex_init(&ctx->mutex); | ||
1585 | INIT_LIST_HEAD(&ctx->group_list); | ||
1586 | INIT_LIST_HEAD(&ctx->event_list); | ||
1587 | atomic_set(&ctx->refcount, 1); | ||
1588 | ctx->task = task; | ||
1589 | } | ||
1590 | |||
1591 | static struct perf_event_context *find_get_context(pid_t pid, int cpu) | ||
1592 | { | ||
1593 | struct perf_event_context *ctx; | ||
1594 | struct perf_cpu_context *cpuctx; | ||
1595 | struct task_struct *task; | ||
1596 | unsigned long flags; | ||
1597 | int err; | ||
1598 | |||
1599 | /* | ||
1600 | * If cpu is not a wildcard then this is a percpu event: | ||
1601 | */ | ||
1602 | if (cpu != -1) { | ||
1603 | /* Must be root to operate on a CPU event: */ | ||
1604 | if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) | ||
1605 | return ERR_PTR(-EACCES); | ||
1606 | |||
1607 | if (cpu < 0 || cpu > num_possible_cpus()) | ||
1608 | return ERR_PTR(-EINVAL); | ||
1609 | |||
1610 | /* | ||
1611 | * We could be clever and allow to attach a event to an | ||
1612 | * offline CPU and activate it when the CPU comes up, but | ||
1613 | * that's for later. | ||
1614 | */ | ||
1615 | if (!cpu_isset(cpu, cpu_online_map)) | ||
1616 | return ERR_PTR(-ENODEV); | ||
1617 | |||
1618 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1619 | ctx = &cpuctx->ctx; | ||
1620 | get_ctx(ctx); | ||
1621 | |||
1622 | return ctx; | ||
1623 | } | ||
1624 | |||
1625 | rcu_read_lock(); | ||
1626 | if (!pid) | ||
1627 | task = current; | ||
1628 | else | ||
1629 | task = find_task_by_vpid(pid); | ||
1630 | if (task) | ||
1631 | get_task_struct(task); | ||
1632 | rcu_read_unlock(); | ||
1633 | |||
1634 | if (!task) | ||
1635 | return ERR_PTR(-ESRCH); | ||
1636 | |||
1637 | /* | ||
1638 | * Can't attach events to a dying task. | ||
1639 | */ | ||
1640 | err = -ESRCH; | ||
1641 | if (task->flags & PF_EXITING) | ||
1642 | goto errout; | ||
1643 | |||
1644 | /* Reuse ptrace permission checks for now. */ | ||
1645 | err = -EACCES; | ||
1646 | if (!ptrace_may_access(task, PTRACE_MODE_READ)) | ||
1647 | goto errout; | ||
1648 | |||
1649 | retry: | ||
1650 | ctx = perf_lock_task_context(task, &flags); | ||
1651 | if (ctx) { | ||
1652 | unclone_ctx(ctx); | ||
1653 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
1654 | } | ||
1655 | |||
1656 | if (!ctx) { | ||
1657 | ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL); | ||
1658 | err = -ENOMEM; | ||
1659 | if (!ctx) | ||
1660 | goto errout; | ||
1661 | __perf_event_init_context(ctx, task); | ||
1662 | get_ctx(ctx); | ||
1663 | if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) { | ||
1664 | /* | ||
1665 | * We raced with some other task; use | ||
1666 | * the context they set. | ||
1667 | */ | ||
1668 | kfree(ctx); | ||
1669 | goto retry; | ||
1670 | } | ||
1671 | get_task_struct(task); | ||
1672 | } | ||
1673 | |||
1674 | put_task_struct(task); | ||
1675 | return ctx; | ||
1676 | |||
1677 | errout: | ||
1678 | put_task_struct(task); | ||
1679 | return ERR_PTR(err); | ||
1680 | } | ||
1681 | |||
1682 | static void perf_event_free_filter(struct perf_event *event); | ||
1683 | |||
1684 | static void free_event_rcu(struct rcu_head *head) | ||
1685 | { | ||
1686 | struct perf_event *event; | ||
1687 | |||
1688 | event = container_of(head, struct perf_event, rcu_head); | ||
1689 | if (event->ns) | ||
1690 | put_pid_ns(event->ns); | ||
1691 | perf_event_free_filter(event); | ||
1692 | kfree(event); | ||
1693 | } | ||
1694 | |||
1695 | static void perf_pending_sync(struct perf_event *event); | ||
1696 | |||
1697 | static void free_event(struct perf_event *event) | ||
1698 | { | ||
1699 | perf_pending_sync(event); | ||
1700 | |||
1701 | if (!event->parent) { | ||
1702 | atomic_dec(&nr_events); | ||
1703 | if (event->attr.mmap) | ||
1704 | atomic_dec(&nr_mmap_events); | ||
1705 | if (event->attr.comm) | ||
1706 | atomic_dec(&nr_comm_events); | ||
1707 | if (event->attr.task) | ||
1708 | atomic_dec(&nr_task_events); | ||
1709 | } | ||
1710 | |||
1711 | if (event->output) { | ||
1712 | fput(event->output->filp); | ||
1713 | event->output = NULL; | ||
1714 | } | ||
1715 | |||
1716 | if (event->destroy) | ||
1717 | event->destroy(event); | ||
1718 | |||
1719 | put_ctx(event->ctx); | ||
1720 | call_rcu(&event->rcu_head, free_event_rcu); | ||
1721 | } | ||
1722 | |||
1723 | int perf_event_release_kernel(struct perf_event *event) | ||
1724 | { | ||
1725 | struct perf_event_context *ctx = event->ctx; | ||
1726 | |||
1727 | WARN_ON_ONCE(ctx->parent_ctx); | ||
1728 | mutex_lock(&ctx->mutex); | ||
1729 | perf_event_remove_from_context(event); | ||
1730 | mutex_unlock(&ctx->mutex); | ||
1731 | |||
1732 | mutex_lock(&event->owner->perf_event_mutex); | ||
1733 | list_del_init(&event->owner_entry); | ||
1734 | mutex_unlock(&event->owner->perf_event_mutex); | ||
1735 | put_task_struct(event->owner); | ||
1736 | |||
1737 | free_event(event); | ||
1738 | |||
1739 | return 0; | ||
1740 | } | ||
1741 | EXPORT_SYMBOL_GPL(perf_event_release_kernel); | ||
1742 | |||
1743 | /* | ||
1744 | * Called when the last reference to the file is gone. | ||
1745 | */ | ||
1746 | static int perf_release(struct inode *inode, struct file *file) | ||
1747 | { | ||
1748 | struct perf_event *event = file->private_data; | ||
1749 | |||
1750 | file->private_data = NULL; | ||
1751 | |||
1752 | return perf_event_release_kernel(event); | ||
1753 | } | ||
1754 | |||
1755 | static int perf_event_read_size(struct perf_event *event) | ||
1756 | { | ||
1757 | int entry = sizeof(u64); /* value */ | ||
1758 | int size = 0; | ||
1759 | int nr = 1; | ||
1760 | |||
1761 | if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
1762 | size += sizeof(u64); | ||
1763 | |||
1764 | if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
1765 | size += sizeof(u64); | ||
1766 | |||
1767 | if (event->attr.read_format & PERF_FORMAT_ID) | ||
1768 | entry += sizeof(u64); | ||
1769 | |||
1770 | if (event->attr.read_format & PERF_FORMAT_GROUP) { | ||
1771 | nr += event->group_leader->nr_siblings; | ||
1772 | size += sizeof(u64); | ||
1773 | } | ||
1774 | |||
1775 | size += entry * nr; | ||
1776 | |||
1777 | return size; | ||
1778 | } | ||
1779 | |||
1780 | u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) | ||
1781 | { | ||
1782 | struct perf_event *child; | ||
1783 | u64 total = 0; | ||
1784 | |||
1785 | *enabled = 0; | ||
1786 | *running = 0; | ||
1787 | |||
1788 | mutex_lock(&event->child_mutex); | ||
1789 | total += perf_event_read(event); | ||
1790 | *enabled += event->total_time_enabled + | ||
1791 | atomic64_read(&event->child_total_time_enabled); | ||
1792 | *running += event->total_time_running + | ||
1793 | atomic64_read(&event->child_total_time_running); | ||
1794 | |||
1795 | list_for_each_entry(child, &event->child_list, child_list) { | ||
1796 | total += perf_event_read(child); | ||
1797 | *enabled += child->total_time_enabled; | ||
1798 | *running += child->total_time_running; | ||
1799 | } | ||
1800 | mutex_unlock(&event->child_mutex); | ||
1801 | |||
1802 | return total; | ||
1803 | } | ||
1804 | EXPORT_SYMBOL_GPL(perf_event_read_value); | ||
1805 | |||
1806 | static int perf_event_read_group(struct perf_event *event, | ||
1807 | u64 read_format, char __user *buf) | ||
1808 | { | ||
1809 | struct perf_event *leader = event->group_leader, *sub; | ||
1810 | int n = 0, size = 0, ret = -EFAULT; | ||
1811 | struct perf_event_context *ctx = leader->ctx; | ||
1812 | u64 values[5]; | ||
1813 | u64 count, enabled, running; | ||
1814 | |||
1815 | mutex_lock(&ctx->mutex); | ||
1816 | count = perf_event_read_value(leader, &enabled, &running); | ||
1817 | |||
1818 | values[n++] = 1 + leader->nr_siblings; | ||
1819 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
1820 | values[n++] = enabled; | ||
1821 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
1822 | values[n++] = running; | ||
1823 | values[n++] = count; | ||
1824 | if (read_format & PERF_FORMAT_ID) | ||
1825 | values[n++] = primary_event_id(leader); | ||
1826 | |||
1827 | size = n * sizeof(u64); | ||
1828 | |||
1829 | if (copy_to_user(buf, values, size)) | ||
1830 | goto unlock; | ||
1831 | |||
1832 | ret = size; | ||
1833 | |||
1834 | list_for_each_entry(sub, &leader->sibling_list, group_entry) { | ||
1835 | n = 0; | ||
1836 | |||
1837 | values[n++] = perf_event_read_value(sub, &enabled, &running); | ||
1838 | if (read_format & PERF_FORMAT_ID) | ||
1839 | values[n++] = primary_event_id(sub); | ||
1840 | |||
1841 | size = n * sizeof(u64); | ||
1842 | |||
1843 | if (copy_to_user(buf + ret, values, size)) { | ||
1844 | ret = -EFAULT; | ||
1845 | goto unlock; | ||
1846 | } | ||
1847 | |||
1848 | ret += size; | ||
1849 | } | ||
1850 | unlock: | ||
1851 | mutex_unlock(&ctx->mutex); | ||
1852 | |||
1853 | return ret; | ||
1854 | } | ||
1855 | |||
1856 | static int perf_event_read_one(struct perf_event *event, | ||
1857 | u64 read_format, char __user *buf) | ||
1858 | { | ||
1859 | u64 enabled, running; | ||
1860 | u64 values[4]; | ||
1861 | int n = 0; | ||
1862 | |||
1863 | values[n++] = perf_event_read_value(event, &enabled, &running); | ||
1864 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
1865 | values[n++] = enabled; | ||
1866 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
1867 | values[n++] = running; | ||
1868 | if (read_format & PERF_FORMAT_ID) | ||
1869 | values[n++] = primary_event_id(event); | ||
1870 | |||
1871 | if (copy_to_user(buf, values, n * sizeof(u64))) | ||
1872 | return -EFAULT; | ||
1873 | |||
1874 | return n * sizeof(u64); | ||
1875 | } | ||
1876 | |||
1877 | /* | ||
1878 | * Read the performance event - simple non blocking version for now | ||
1879 | */ | ||
1880 | static ssize_t | ||
1881 | perf_read_hw(struct perf_event *event, char __user *buf, size_t count) | ||
1882 | { | ||
1883 | u64 read_format = event->attr.read_format; | ||
1884 | int ret; | ||
1885 | |||
1886 | /* | ||
1887 | * Return end-of-file for a read on a event that is in | ||
1888 | * error state (i.e. because it was pinned but it couldn't be | ||
1889 | * scheduled on to the CPU at some point). | ||
1890 | */ | ||
1891 | if (event->state == PERF_EVENT_STATE_ERROR) | ||
1892 | return 0; | ||
1893 | |||
1894 | if (count < perf_event_read_size(event)) | ||
1895 | return -ENOSPC; | ||
1896 | |||
1897 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
1898 | if (read_format & PERF_FORMAT_GROUP) | ||
1899 | ret = perf_event_read_group(event, read_format, buf); | ||
1900 | else | ||
1901 | ret = perf_event_read_one(event, read_format, buf); | ||
1902 | |||
1903 | return ret; | ||
1904 | } | ||
1905 | |||
1906 | static ssize_t | ||
1907 | perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) | ||
1908 | { | ||
1909 | struct perf_event *event = file->private_data; | ||
1910 | |||
1911 | return perf_read_hw(event, buf, count); | ||
1912 | } | ||
1913 | |||
1914 | static unsigned int perf_poll(struct file *file, poll_table *wait) | ||
1915 | { | ||
1916 | struct perf_event *event = file->private_data; | ||
1917 | struct perf_mmap_data *data; | ||
1918 | unsigned int events = POLL_HUP; | ||
1919 | |||
1920 | rcu_read_lock(); | ||
1921 | data = rcu_dereference(event->data); | ||
1922 | if (data) | ||
1923 | events = atomic_xchg(&data->poll, 0); | ||
1924 | rcu_read_unlock(); | ||
1925 | |||
1926 | poll_wait(file, &event->waitq, wait); | ||
1927 | |||
1928 | return events; | ||
1929 | } | ||
1930 | |||
1931 | static void perf_event_reset(struct perf_event *event) | ||
1932 | { | ||
1933 | (void)perf_event_read(event); | ||
1934 | atomic64_set(&event->count, 0); | ||
1935 | perf_event_update_userpage(event); | ||
1936 | } | ||
1937 | |||
1938 | /* | ||
1939 | * Holding the top-level event's child_mutex means that any | ||
1940 | * descendant process that has inherited this event will block | ||
1941 | * in sync_child_event if it goes to exit, thus satisfying the | ||
1942 | * task existence requirements of perf_event_enable/disable. | ||
1943 | */ | ||
1944 | static void perf_event_for_each_child(struct perf_event *event, | ||
1945 | void (*func)(struct perf_event *)) | ||
1946 | { | ||
1947 | struct perf_event *child; | ||
1948 | |||
1949 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
1950 | mutex_lock(&event->child_mutex); | ||
1951 | func(event); | ||
1952 | list_for_each_entry(child, &event->child_list, child_list) | ||
1953 | func(child); | ||
1954 | mutex_unlock(&event->child_mutex); | ||
1955 | } | ||
1956 | |||
1957 | static void perf_event_for_each(struct perf_event *event, | ||
1958 | void (*func)(struct perf_event *)) | ||
1959 | { | ||
1960 | struct perf_event_context *ctx = event->ctx; | ||
1961 | struct perf_event *sibling; | ||
1962 | |||
1963 | WARN_ON_ONCE(ctx->parent_ctx); | ||
1964 | mutex_lock(&ctx->mutex); | ||
1965 | event = event->group_leader; | ||
1966 | |||
1967 | perf_event_for_each_child(event, func); | ||
1968 | func(event); | ||
1969 | list_for_each_entry(sibling, &event->sibling_list, group_entry) | ||
1970 | perf_event_for_each_child(event, func); | ||
1971 | mutex_unlock(&ctx->mutex); | ||
1972 | } | ||
1973 | |||
1974 | static int perf_event_period(struct perf_event *event, u64 __user *arg) | ||
1975 | { | ||
1976 | struct perf_event_context *ctx = event->ctx; | ||
1977 | unsigned long size; | ||
1978 | int ret = 0; | ||
1979 | u64 value; | ||
1980 | |||
1981 | if (!event->attr.sample_period) | ||
1982 | return -EINVAL; | ||
1983 | |||
1984 | size = copy_from_user(&value, arg, sizeof(value)); | ||
1985 | if (size != sizeof(value)) | ||
1986 | return -EFAULT; | ||
1987 | |||
1988 | if (!value) | ||
1989 | return -EINVAL; | ||
1990 | |||
1991 | spin_lock_irq(&ctx->lock); | ||
1992 | if (event->attr.freq) { | ||
1993 | if (value > sysctl_perf_event_sample_rate) { | ||
1994 | ret = -EINVAL; | ||
1995 | goto unlock; | ||
1996 | } | ||
1997 | |||
1998 | event->attr.sample_freq = value; | ||
1999 | } else { | ||
2000 | event->attr.sample_period = value; | ||
2001 | event->hw.sample_period = value; | ||
2002 | } | ||
2003 | unlock: | ||
2004 | spin_unlock_irq(&ctx->lock); | ||
2005 | |||
2006 | return ret; | ||
2007 | } | ||
2008 | |||
2009 | static int perf_event_set_output(struct perf_event *event, int output_fd); | ||
2010 | static int perf_event_set_filter(struct perf_event *event, void __user *arg); | ||
2011 | |||
2012 | static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) | ||
2013 | { | ||
2014 | struct perf_event *event = file->private_data; | ||
2015 | void (*func)(struct perf_event *); | ||
2016 | u32 flags = arg; | ||
2017 | |||
2018 | switch (cmd) { | ||
2019 | case PERF_EVENT_IOC_ENABLE: | ||
2020 | func = perf_event_enable; | ||
2021 | break; | ||
2022 | case PERF_EVENT_IOC_DISABLE: | ||
2023 | func = perf_event_disable; | ||
2024 | break; | ||
2025 | case PERF_EVENT_IOC_RESET: | ||
2026 | func = perf_event_reset; | ||
2027 | break; | ||
2028 | |||
2029 | case PERF_EVENT_IOC_REFRESH: | ||
2030 | return perf_event_refresh(event, arg); | ||
2031 | |||
2032 | case PERF_EVENT_IOC_PERIOD: | ||
2033 | return perf_event_period(event, (u64 __user *)arg); | ||
2034 | |||
2035 | case PERF_EVENT_IOC_SET_OUTPUT: | ||
2036 | return perf_event_set_output(event, arg); | ||
2037 | |||
2038 | case PERF_EVENT_IOC_SET_FILTER: | ||
2039 | return perf_event_set_filter(event, (void __user *)arg); | ||
2040 | |||
2041 | default: | ||
2042 | return -ENOTTY; | ||
2043 | } | ||
2044 | |||
2045 | if (flags & PERF_IOC_FLAG_GROUP) | ||
2046 | perf_event_for_each(event, func); | ||
2047 | else | ||
2048 | perf_event_for_each_child(event, func); | ||
2049 | |||
2050 | return 0; | ||
2051 | } | ||
2052 | |||
2053 | int perf_event_task_enable(void) | ||
2054 | { | ||
2055 | struct perf_event *event; | ||
2056 | |||
2057 | mutex_lock(¤t->perf_event_mutex); | ||
2058 | list_for_each_entry(event, ¤t->perf_event_list, owner_entry) | ||
2059 | perf_event_for_each_child(event, perf_event_enable); | ||
2060 | mutex_unlock(¤t->perf_event_mutex); | ||
2061 | |||
2062 | return 0; | ||
2063 | } | ||
2064 | |||
2065 | int perf_event_task_disable(void) | ||
2066 | { | ||
2067 | struct perf_event *event; | ||
2068 | |||
2069 | mutex_lock(¤t->perf_event_mutex); | ||
2070 | list_for_each_entry(event, ¤t->perf_event_list, owner_entry) | ||
2071 | perf_event_for_each_child(event, perf_event_disable); | ||
2072 | mutex_unlock(¤t->perf_event_mutex); | ||
2073 | |||
2074 | return 0; | ||
2075 | } | ||
2076 | |||
2077 | #ifndef PERF_EVENT_INDEX_OFFSET | ||
2078 | # define PERF_EVENT_INDEX_OFFSET 0 | ||
2079 | #endif | ||
2080 | |||
2081 | static int perf_event_index(struct perf_event *event) | ||
2082 | { | ||
2083 | if (event->state != PERF_EVENT_STATE_ACTIVE) | ||
2084 | return 0; | ||
2085 | |||
2086 | return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET; | ||
2087 | } | ||
2088 | |||
2089 | /* | ||
2090 | * Callers need to ensure there can be no nesting of this function, otherwise | ||
2091 | * the seqlock logic goes bad. We can not serialize this because the arch | ||
2092 | * code calls this from NMI context. | ||
2093 | */ | ||
2094 | void perf_event_update_userpage(struct perf_event *event) | ||
2095 | { | ||
2096 | struct perf_event_mmap_page *userpg; | ||
2097 | struct perf_mmap_data *data; | ||
2098 | |||
2099 | rcu_read_lock(); | ||
2100 | data = rcu_dereference(event->data); | ||
2101 | if (!data) | ||
2102 | goto unlock; | ||
2103 | |||
2104 | userpg = data->user_page; | ||
2105 | |||
2106 | /* | ||
2107 | * Disable preemption so as to not let the corresponding user-space | ||
2108 | * spin too long if we get preempted. | ||
2109 | */ | ||
2110 | preempt_disable(); | ||
2111 | ++userpg->lock; | ||
2112 | barrier(); | ||
2113 | userpg->index = perf_event_index(event); | ||
2114 | userpg->offset = atomic64_read(&event->count); | ||
2115 | if (event->state == PERF_EVENT_STATE_ACTIVE) | ||
2116 | userpg->offset -= atomic64_read(&event->hw.prev_count); | ||
2117 | |||
2118 | userpg->time_enabled = event->total_time_enabled + | ||
2119 | atomic64_read(&event->child_total_time_enabled); | ||
2120 | |||
2121 | userpg->time_running = event->total_time_running + | ||
2122 | atomic64_read(&event->child_total_time_running); | ||
2123 | |||
2124 | barrier(); | ||
2125 | ++userpg->lock; | ||
2126 | preempt_enable(); | ||
2127 | unlock: | ||
2128 | rcu_read_unlock(); | ||
2129 | } | ||
2130 | |||
2131 | static unsigned long perf_data_size(struct perf_mmap_data *data) | ||
2132 | { | ||
2133 | return data->nr_pages << (PAGE_SHIFT + data->data_order); | ||
2134 | } | ||
2135 | |||
2136 | #ifndef CONFIG_PERF_USE_VMALLOC | ||
2137 | |||
2138 | /* | ||
2139 | * Back perf_mmap() with regular GFP_KERNEL-0 pages. | ||
2140 | */ | ||
2141 | |||
2142 | static struct page * | ||
2143 | perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff) | ||
2144 | { | ||
2145 | if (pgoff > data->nr_pages) | ||
2146 | return NULL; | ||
2147 | |||
2148 | if (pgoff == 0) | ||
2149 | return virt_to_page(data->user_page); | ||
2150 | |||
2151 | return virt_to_page(data->data_pages[pgoff - 1]); | ||
2152 | } | ||
2153 | |||
2154 | static struct perf_mmap_data * | ||
2155 | perf_mmap_data_alloc(struct perf_event *event, int nr_pages) | ||
2156 | { | ||
2157 | struct perf_mmap_data *data; | ||
2158 | unsigned long size; | ||
2159 | int i; | ||
2160 | |||
2161 | WARN_ON(atomic_read(&event->mmap_count)); | ||
2162 | |||
2163 | size = sizeof(struct perf_mmap_data); | ||
2164 | size += nr_pages * sizeof(void *); | ||
2165 | |||
2166 | data = kzalloc(size, GFP_KERNEL); | ||
2167 | if (!data) | ||
2168 | goto fail; | ||
2169 | |||
2170 | data->user_page = (void *)get_zeroed_page(GFP_KERNEL); | ||
2171 | if (!data->user_page) | ||
2172 | goto fail_user_page; | ||
2173 | |||
2174 | for (i = 0; i < nr_pages; i++) { | ||
2175 | data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL); | ||
2176 | if (!data->data_pages[i]) | ||
2177 | goto fail_data_pages; | ||
2178 | } | ||
2179 | |||
2180 | data->data_order = 0; | ||
2181 | data->nr_pages = nr_pages; | ||
2182 | |||
2183 | return data; | ||
2184 | |||
2185 | fail_data_pages: | ||
2186 | for (i--; i >= 0; i--) | ||
2187 | free_page((unsigned long)data->data_pages[i]); | ||
2188 | |||
2189 | free_page((unsigned long)data->user_page); | ||
2190 | |||
2191 | fail_user_page: | ||
2192 | kfree(data); | ||
2193 | |||
2194 | fail: | ||
2195 | return NULL; | ||
2196 | } | ||
2197 | |||
2198 | static void perf_mmap_free_page(unsigned long addr) | ||
2199 | { | ||
2200 | struct page *page = virt_to_page((void *)addr); | ||
2201 | |||
2202 | page->mapping = NULL; | ||
2203 | __free_page(page); | ||
2204 | } | ||
2205 | |||
2206 | static void perf_mmap_data_free(struct perf_mmap_data *data) | ||
2207 | { | ||
2208 | int i; | ||
2209 | |||
2210 | perf_mmap_free_page((unsigned long)data->user_page); | ||
2211 | for (i = 0; i < data->nr_pages; i++) | ||
2212 | perf_mmap_free_page((unsigned long)data->data_pages[i]); | ||
2213 | kfree(data); | ||
2214 | } | ||
2215 | |||
2216 | #else | ||
2217 | |||
2218 | /* | ||
2219 | * Back perf_mmap() with vmalloc memory. | ||
2220 | * | ||
2221 | * Required for architectures that have d-cache aliasing issues. | ||
2222 | */ | ||
2223 | |||
2224 | static struct page * | ||
2225 | perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff) | ||
2226 | { | ||
2227 | if (pgoff > (1UL << data->data_order)) | ||
2228 | return NULL; | ||
2229 | |||
2230 | return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE); | ||
2231 | } | ||
2232 | |||
2233 | static void perf_mmap_unmark_page(void *addr) | ||
2234 | { | ||
2235 | struct page *page = vmalloc_to_page(addr); | ||
2236 | |||
2237 | page->mapping = NULL; | ||
2238 | } | ||
2239 | |||
2240 | static void perf_mmap_data_free_work(struct work_struct *work) | ||
2241 | { | ||
2242 | struct perf_mmap_data *data; | ||
2243 | void *base; | ||
2244 | int i, nr; | ||
2245 | |||
2246 | data = container_of(work, struct perf_mmap_data, work); | ||
2247 | nr = 1 << data->data_order; | ||
2248 | |||
2249 | base = data->user_page; | ||
2250 | for (i = 0; i < nr + 1; i++) | ||
2251 | perf_mmap_unmark_page(base + (i * PAGE_SIZE)); | ||
2252 | |||
2253 | vfree(base); | ||
2254 | kfree(data); | ||
2255 | } | ||
2256 | |||
2257 | static void perf_mmap_data_free(struct perf_mmap_data *data) | ||
2258 | { | ||
2259 | schedule_work(&data->work); | ||
2260 | } | ||
2261 | |||
2262 | static struct perf_mmap_data * | ||
2263 | perf_mmap_data_alloc(struct perf_event *event, int nr_pages) | ||
2264 | { | ||
2265 | struct perf_mmap_data *data; | ||
2266 | unsigned long size; | ||
2267 | void *all_buf; | ||
2268 | |||
2269 | WARN_ON(atomic_read(&event->mmap_count)); | ||
2270 | |||
2271 | size = sizeof(struct perf_mmap_data); | ||
2272 | size += sizeof(void *); | ||
2273 | |||
2274 | data = kzalloc(size, GFP_KERNEL); | ||
2275 | if (!data) | ||
2276 | goto fail; | ||
2277 | |||
2278 | INIT_WORK(&data->work, perf_mmap_data_free_work); | ||
2279 | |||
2280 | all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE); | ||
2281 | if (!all_buf) | ||
2282 | goto fail_all_buf; | ||
2283 | |||
2284 | data->user_page = all_buf; | ||
2285 | data->data_pages[0] = all_buf + PAGE_SIZE; | ||
2286 | data->data_order = ilog2(nr_pages); | ||
2287 | data->nr_pages = 1; | ||
2288 | |||
2289 | return data; | ||
2290 | |||
2291 | fail_all_buf: | ||
2292 | kfree(data); | ||
2293 | |||
2294 | fail: | ||
2295 | return NULL; | ||
2296 | } | ||
2297 | |||
2298 | #endif | ||
2299 | |||
2300 | static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | ||
2301 | { | ||
2302 | struct perf_event *event = vma->vm_file->private_data; | ||
2303 | struct perf_mmap_data *data; | ||
2304 | int ret = VM_FAULT_SIGBUS; | ||
2305 | |||
2306 | if (vmf->flags & FAULT_FLAG_MKWRITE) { | ||
2307 | if (vmf->pgoff == 0) | ||
2308 | ret = 0; | ||
2309 | return ret; | ||
2310 | } | ||
2311 | |||
2312 | rcu_read_lock(); | ||
2313 | data = rcu_dereference(event->data); | ||
2314 | if (!data) | ||
2315 | goto unlock; | ||
2316 | |||
2317 | if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) | ||
2318 | goto unlock; | ||
2319 | |||
2320 | vmf->page = perf_mmap_to_page(data, vmf->pgoff); | ||
2321 | if (!vmf->page) | ||
2322 | goto unlock; | ||
2323 | |||
2324 | get_page(vmf->page); | ||
2325 | vmf->page->mapping = vma->vm_file->f_mapping; | ||
2326 | vmf->page->index = vmf->pgoff; | ||
2327 | |||
2328 | ret = 0; | ||
2329 | unlock: | ||
2330 | rcu_read_unlock(); | ||
2331 | |||
2332 | return ret; | ||
2333 | } | ||
2334 | |||
2335 | static void | ||
2336 | perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data) | ||
2337 | { | ||
2338 | long max_size = perf_data_size(data); | ||
2339 | |||
2340 | atomic_set(&data->lock, -1); | ||
2341 | |||
2342 | if (event->attr.watermark) { | ||
2343 | data->watermark = min_t(long, max_size, | ||
2344 | event->attr.wakeup_watermark); | ||
2345 | } | ||
2346 | |||
2347 | if (!data->watermark) | ||
2348 | data->watermark = max_size / 2; | ||
2349 | |||
2350 | |||
2351 | rcu_assign_pointer(event->data, data); | ||
2352 | } | ||
2353 | |||
2354 | static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head) | ||
2355 | { | ||
2356 | struct perf_mmap_data *data; | ||
2357 | |||
2358 | data = container_of(rcu_head, struct perf_mmap_data, rcu_head); | ||
2359 | perf_mmap_data_free(data); | ||
2360 | } | ||
2361 | |||
2362 | static void perf_mmap_data_release(struct perf_event *event) | ||
2363 | { | ||
2364 | struct perf_mmap_data *data = event->data; | ||
2365 | |||
2366 | WARN_ON(atomic_read(&event->mmap_count)); | ||
2367 | |||
2368 | rcu_assign_pointer(event->data, NULL); | ||
2369 | call_rcu(&data->rcu_head, perf_mmap_data_free_rcu); | ||
2370 | } | ||
2371 | |||
2372 | static void perf_mmap_open(struct vm_area_struct *vma) | ||
2373 | { | ||
2374 | struct perf_event *event = vma->vm_file->private_data; | ||
2375 | |||
2376 | atomic_inc(&event->mmap_count); | ||
2377 | } | ||
2378 | |||
2379 | static void perf_mmap_close(struct vm_area_struct *vma) | ||
2380 | { | ||
2381 | struct perf_event *event = vma->vm_file->private_data; | ||
2382 | |||
2383 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
2384 | if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { | ||
2385 | unsigned long size = perf_data_size(event->data); | ||
2386 | struct user_struct *user = current_user(); | ||
2387 | |||
2388 | atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm); | ||
2389 | vma->vm_mm->locked_vm -= event->data->nr_locked; | ||
2390 | perf_mmap_data_release(event); | ||
2391 | mutex_unlock(&event->mmap_mutex); | ||
2392 | } | ||
2393 | } | ||
2394 | |||
2395 | static const struct vm_operations_struct perf_mmap_vmops = { | ||
2396 | .open = perf_mmap_open, | ||
2397 | .close = perf_mmap_close, | ||
2398 | .fault = perf_mmap_fault, | ||
2399 | .page_mkwrite = perf_mmap_fault, | ||
2400 | }; | ||
2401 | |||
2402 | static int perf_mmap(struct file *file, struct vm_area_struct *vma) | ||
2403 | { | ||
2404 | struct perf_event *event = file->private_data; | ||
2405 | unsigned long user_locked, user_lock_limit; | ||
2406 | struct user_struct *user = current_user(); | ||
2407 | unsigned long locked, lock_limit; | ||
2408 | struct perf_mmap_data *data; | ||
2409 | unsigned long vma_size; | ||
2410 | unsigned long nr_pages; | ||
2411 | long user_extra, extra; | ||
2412 | int ret = 0; | ||
2413 | |||
2414 | if (!(vma->vm_flags & VM_SHARED)) | ||
2415 | return -EINVAL; | ||
2416 | |||
2417 | vma_size = vma->vm_end - vma->vm_start; | ||
2418 | nr_pages = (vma_size / PAGE_SIZE) - 1; | ||
2419 | |||
2420 | /* | ||
2421 | * If we have data pages ensure they're a power-of-two number, so we | ||
2422 | * can do bitmasks instead of modulo. | ||
2423 | */ | ||
2424 | if (nr_pages != 0 && !is_power_of_2(nr_pages)) | ||
2425 | return -EINVAL; | ||
2426 | |||
2427 | if (vma_size != PAGE_SIZE * (1 + nr_pages)) | ||
2428 | return -EINVAL; | ||
2429 | |||
2430 | if (vma->vm_pgoff != 0) | ||
2431 | return -EINVAL; | ||
2432 | |||
2433 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
2434 | mutex_lock(&event->mmap_mutex); | ||
2435 | if (event->output) { | ||
2436 | ret = -EINVAL; | ||
2437 | goto unlock; | ||
2438 | } | ||
2439 | |||
2440 | if (atomic_inc_not_zero(&event->mmap_count)) { | ||
2441 | if (nr_pages != event->data->nr_pages) | ||
2442 | ret = -EINVAL; | ||
2443 | goto unlock; | ||
2444 | } | ||
2445 | |||
2446 | user_extra = nr_pages + 1; | ||
2447 | user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); | ||
2448 | |||
2449 | /* | ||
2450 | * Increase the limit linearly with more CPUs: | ||
2451 | */ | ||
2452 | user_lock_limit *= num_online_cpus(); | ||
2453 | |||
2454 | user_locked = atomic_long_read(&user->locked_vm) + user_extra; | ||
2455 | |||
2456 | extra = 0; | ||
2457 | if (user_locked > user_lock_limit) | ||
2458 | extra = user_locked - user_lock_limit; | ||
2459 | |||
2460 | lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; | ||
2461 | lock_limit >>= PAGE_SHIFT; | ||
2462 | locked = vma->vm_mm->locked_vm + extra; | ||
2463 | |||
2464 | if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && | ||
2465 | !capable(CAP_IPC_LOCK)) { | ||
2466 | ret = -EPERM; | ||
2467 | goto unlock; | ||
2468 | } | ||
2469 | |||
2470 | WARN_ON(event->data); | ||
2471 | |||
2472 | data = perf_mmap_data_alloc(event, nr_pages); | ||
2473 | ret = -ENOMEM; | ||
2474 | if (!data) | ||
2475 | goto unlock; | ||
2476 | |||
2477 | ret = 0; | ||
2478 | perf_mmap_data_init(event, data); | ||
2479 | |||
2480 | atomic_set(&event->mmap_count, 1); | ||
2481 | atomic_long_add(user_extra, &user->locked_vm); | ||
2482 | vma->vm_mm->locked_vm += extra; | ||
2483 | event->data->nr_locked = extra; | ||
2484 | if (vma->vm_flags & VM_WRITE) | ||
2485 | event->data->writable = 1; | ||
2486 | |||
2487 | unlock: | ||
2488 | mutex_unlock(&event->mmap_mutex); | ||
2489 | |||
2490 | vma->vm_flags |= VM_RESERVED; | ||
2491 | vma->vm_ops = &perf_mmap_vmops; | ||
2492 | |||
2493 | return ret; | ||
2494 | } | ||
2495 | |||
2496 | static int perf_fasync(int fd, struct file *filp, int on) | ||
2497 | { | ||
2498 | struct inode *inode = filp->f_path.dentry->d_inode; | ||
2499 | struct perf_event *event = filp->private_data; | ||
2500 | int retval; | ||
2501 | |||
2502 | mutex_lock(&inode->i_mutex); | ||
2503 | retval = fasync_helper(fd, filp, on, &event->fasync); | ||
2504 | mutex_unlock(&inode->i_mutex); | ||
2505 | |||
2506 | if (retval < 0) | ||
2507 | return retval; | ||
2508 | |||
2509 | return 0; | ||
2510 | } | ||
2511 | |||
2512 | static const struct file_operations perf_fops = { | ||
2513 | .release = perf_release, | ||
2514 | .read = perf_read, | ||
2515 | .poll = perf_poll, | ||
2516 | .unlocked_ioctl = perf_ioctl, | ||
2517 | .compat_ioctl = perf_ioctl, | ||
2518 | .mmap = perf_mmap, | ||
2519 | .fasync = perf_fasync, | ||
2520 | }; | ||
2521 | |||
2522 | /* | ||
2523 | * Perf event wakeup | ||
2524 | * | ||
2525 | * If there's data, ensure we set the poll() state and publish everything | ||
2526 | * to user-space before waking everybody up. | ||
2527 | */ | ||
2528 | |||
2529 | void perf_event_wakeup(struct perf_event *event) | ||
2530 | { | ||
2531 | wake_up_all(&event->waitq); | ||
2532 | |||
2533 | if (event->pending_kill) { | ||
2534 | kill_fasync(&event->fasync, SIGIO, event->pending_kill); | ||
2535 | event->pending_kill = 0; | ||
2536 | } | ||
2537 | } | ||
2538 | |||
2539 | /* | ||
2540 | * Pending wakeups | ||
2541 | * | ||
2542 | * Handle the case where we need to wakeup up from NMI (or rq->lock) context. | ||
2543 | * | ||
2544 | * The NMI bit means we cannot possibly take locks. Therefore, maintain a | ||
2545 | * single linked list and use cmpxchg() to add entries lockless. | ||
2546 | */ | ||
2547 | |||
2548 | static void perf_pending_event(struct perf_pending_entry *entry) | ||
2549 | { | ||
2550 | struct perf_event *event = container_of(entry, | ||
2551 | struct perf_event, pending); | ||
2552 | |||
2553 | if (event->pending_disable) { | ||
2554 | event->pending_disable = 0; | ||
2555 | __perf_event_disable(event); | ||
2556 | } | ||
2557 | |||
2558 | if (event->pending_wakeup) { | ||
2559 | event->pending_wakeup = 0; | ||
2560 | perf_event_wakeup(event); | ||
2561 | } | ||
2562 | } | ||
2563 | |||
2564 | #define PENDING_TAIL ((struct perf_pending_entry *)-1UL) | ||
2565 | |||
2566 | static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = { | ||
2567 | PENDING_TAIL, | ||
2568 | }; | ||
2569 | |||
2570 | static void perf_pending_queue(struct perf_pending_entry *entry, | ||
2571 | void (*func)(struct perf_pending_entry *)) | ||
2572 | { | ||
2573 | struct perf_pending_entry **head; | ||
2574 | |||
2575 | if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL) | ||
2576 | return; | ||
2577 | |||
2578 | entry->func = func; | ||
2579 | |||
2580 | head = &get_cpu_var(perf_pending_head); | ||
2581 | |||
2582 | do { | ||
2583 | entry->next = *head; | ||
2584 | } while (cmpxchg(head, entry->next, entry) != entry->next); | ||
2585 | |||
2586 | set_perf_event_pending(); | ||
2587 | |||
2588 | put_cpu_var(perf_pending_head); | ||
2589 | } | ||
2590 | |||
2591 | static int __perf_pending_run(void) | ||
2592 | { | ||
2593 | struct perf_pending_entry *list; | ||
2594 | int nr = 0; | ||
2595 | |||
2596 | list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL); | ||
2597 | while (list != PENDING_TAIL) { | ||
2598 | void (*func)(struct perf_pending_entry *); | ||
2599 | struct perf_pending_entry *entry = list; | ||
2600 | |||
2601 | list = list->next; | ||
2602 | |||
2603 | func = entry->func; | ||
2604 | entry->next = NULL; | ||
2605 | /* | ||
2606 | * Ensure we observe the unqueue before we issue the wakeup, | ||
2607 | * so that we won't be waiting forever. | ||
2608 | * -- see perf_not_pending(). | ||
2609 | */ | ||
2610 | smp_wmb(); | ||
2611 | |||
2612 | func(entry); | ||
2613 | nr++; | ||
2614 | } | ||
2615 | |||
2616 | return nr; | ||
2617 | } | ||
2618 | |||
2619 | static inline int perf_not_pending(struct perf_event *event) | ||
2620 | { | ||
2621 | /* | ||
2622 | * If we flush on whatever cpu we run, there is a chance we don't | ||
2623 | * need to wait. | ||
2624 | */ | ||
2625 | get_cpu(); | ||
2626 | __perf_pending_run(); | ||
2627 | put_cpu(); | ||
2628 | |||
2629 | /* | ||
2630 | * Ensure we see the proper queue state before going to sleep | ||
2631 | * so that we do not miss the wakeup. -- see perf_pending_handle() | ||
2632 | */ | ||
2633 | smp_rmb(); | ||
2634 | return event->pending.next == NULL; | ||
2635 | } | ||
2636 | |||
2637 | static void perf_pending_sync(struct perf_event *event) | ||
2638 | { | ||
2639 | wait_event(event->waitq, perf_not_pending(event)); | ||
2640 | } | ||
2641 | |||
2642 | void perf_event_do_pending(void) | ||
2643 | { | ||
2644 | __perf_pending_run(); | ||
2645 | } | ||
2646 | |||
2647 | /* | ||
2648 | * Callchain support -- arch specific | ||
2649 | */ | ||
2650 | |||
2651 | __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) | ||
2652 | { | ||
2653 | return NULL; | ||
2654 | } | ||
2655 | |||
2656 | /* | ||
2657 | * Output | ||
2658 | */ | ||
2659 | static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail, | ||
2660 | unsigned long offset, unsigned long head) | ||
2661 | { | ||
2662 | unsigned long mask; | ||
2663 | |||
2664 | if (!data->writable) | ||
2665 | return true; | ||
2666 | |||
2667 | mask = perf_data_size(data) - 1; | ||
2668 | |||
2669 | offset = (offset - tail) & mask; | ||
2670 | head = (head - tail) & mask; | ||
2671 | |||
2672 | if ((int)(head - offset) < 0) | ||
2673 | return false; | ||
2674 | |||
2675 | return true; | ||
2676 | } | ||
2677 | |||
2678 | static void perf_output_wakeup(struct perf_output_handle *handle) | ||
2679 | { | ||
2680 | atomic_set(&handle->data->poll, POLL_IN); | ||
2681 | |||
2682 | if (handle->nmi) { | ||
2683 | handle->event->pending_wakeup = 1; | ||
2684 | perf_pending_queue(&handle->event->pending, | ||
2685 | perf_pending_event); | ||
2686 | } else | ||
2687 | perf_event_wakeup(handle->event); | ||
2688 | } | ||
2689 | |||
2690 | /* | ||
2691 | * Curious locking construct. | ||
2692 | * | ||
2693 | * We need to ensure a later event_id doesn't publish a head when a former | ||
2694 | * event_id isn't done writing. However since we need to deal with NMIs we | ||
2695 | * cannot fully serialize things. | ||
2696 | * | ||
2697 | * What we do is serialize between CPUs so we only have to deal with NMI | ||
2698 | * nesting on a single CPU. | ||
2699 | * | ||
2700 | * We only publish the head (and generate a wakeup) when the outer-most | ||
2701 | * event_id completes. | ||
2702 | */ | ||
2703 | static void perf_output_lock(struct perf_output_handle *handle) | ||
2704 | { | ||
2705 | struct perf_mmap_data *data = handle->data; | ||
2706 | int cur, cpu = get_cpu(); | ||
2707 | |||
2708 | handle->locked = 0; | ||
2709 | |||
2710 | for (;;) { | ||
2711 | cur = atomic_cmpxchg(&data->lock, -1, cpu); | ||
2712 | if (cur == -1) { | ||
2713 | handle->locked = 1; | ||
2714 | break; | ||
2715 | } | ||
2716 | if (cur == cpu) | ||
2717 | break; | ||
2718 | |||
2719 | cpu_relax(); | ||
2720 | } | ||
2721 | } | ||
2722 | |||
2723 | static void perf_output_unlock(struct perf_output_handle *handle) | ||
2724 | { | ||
2725 | struct perf_mmap_data *data = handle->data; | ||
2726 | unsigned long head; | ||
2727 | int cpu; | ||
2728 | |||
2729 | data->done_head = data->head; | ||
2730 | |||
2731 | if (!handle->locked) | ||
2732 | goto out; | ||
2733 | |||
2734 | again: | ||
2735 | /* | ||
2736 | * The xchg implies a full barrier that ensures all writes are done | ||
2737 | * before we publish the new head, matched by a rmb() in userspace when | ||
2738 | * reading this position. | ||
2739 | */ | ||
2740 | while ((head = atomic_long_xchg(&data->done_head, 0))) | ||
2741 | data->user_page->data_head = head; | ||
2742 | |||
2743 | /* | ||
2744 | * NMI can happen here, which means we can miss a done_head update. | ||
2745 | */ | ||
2746 | |||
2747 | cpu = atomic_xchg(&data->lock, -1); | ||
2748 | WARN_ON_ONCE(cpu != smp_processor_id()); | ||
2749 | |||
2750 | /* | ||
2751 | * Therefore we have to validate we did not indeed do so. | ||
2752 | */ | ||
2753 | if (unlikely(atomic_long_read(&data->done_head))) { | ||
2754 | /* | ||
2755 | * Since we had it locked, we can lock it again. | ||
2756 | */ | ||
2757 | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | ||
2758 | cpu_relax(); | ||
2759 | |||
2760 | goto again; | ||
2761 | } | ||
2762 | |||
2763 | if (atomic_xchg(&data->wakeup, 0)) | ||
2764 | perf_output_wakeup(handle); | ||
2765 | out: | ||
2766 | put_cpu(); | ||
2767 | } | ||
2768 | |||
2769 | void perf_output_copy(struct perf_output_handle *handle, | ||
2770 | const void *buf, unsigned int len) | ||
2771 | { | ||
2772 | unsigned int pages_mask; | ||
2773 | unsigned long offset; | ||
2774 | unsigned int size; | ||
2775 | void **pages; | ||
2776 | |||
2777 | offset = handle->offset; | ||
2778 | pages_mask = handle->data->nr_pages - 1; | ||
2779 | pages = handle->data->data_pages; | ||
2780 | |||
2781 | do { | ||
2782 | unsigned long page_offset; | ||
2783 | unsigned long page_size; | ||
2784 | int nr; | ||
2785 | |||
2786 | nr = (offset >> PAGE_SHIFT) & pages_mask; | ||
2787 | page_size = 1UL << (handle->data->data_order + PAGE_SHIFT); | ||
2788 | page_offset = offset & (page_size - 1); | ||
2789 | size = min_t(unsigned int, page_size - page_offset, len); | ||
2790 | |||
2791 | memcpy(pages[nr] + page_offset, buf, size); | ||
2792 | |||
2793 | len -= size; | ||
2794 | buf += size; | ||
2795 | offset += size; | ||
2796 | } while (len); | ||
2797 | |||
2798 | handle->offset = offset; | ||
2799 | |||
2800 | /* | ||
2801 | * Check we didn't copy past our reservation window, taking the | ||
2802 | * possible unsigned int wrap into account. | ||
2803 | */ | ||
2804 | WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0); | ||
2805 | } | ||
2806 | |||
2807 | int perf_output_begin(struct perf_output_handle *handle, | ||
2808 | struct perf_event *event, unsigned int size, | ||
2809 | int nmi, int sample) | ||
2810 | { | ||
2811 | struct perf_event *output_event; | ||
2812 | struct perf_mmap_data *data; | ||
2813 | unsigned long tail, offset, head; | ||
2814 | int have_lost; | ||
2815 | struct { | ||
2816 | struct perf_event_header header; | ||
2817 | u64 id; | ||
2818 | u64 lost; | ||
2819 | } lost_event; | ||
2820 | |||
2821 | rcu_read_lock(); | ||
2822 | /* | ||
2823 | * For inherited events we send all the output towards the parent. | ||
2824 | */ | ||
2825 | if (event->parent) | ||
2826 | event = event->parent; | ||
2827 | |||
2828 | output_event = rcu_dereference(event->output); | ||
2829 | if (output_event) | ||
2830 | event = output_event; | ||
2831 | |||
2832 | data = rcu_dereference(event->data); | ||
2833 | if (!data) | ||
2834 | goto out; | ||
2835 | |||
2836 | handle->data = data; | ||
2837 | handle->event = event; | ||
2838 | handle->nmi = nmi; | ||
2839 | handle->sample = sample; | ||
2840 | |||
2841 | if (!data->nr_pages) | ||
2842 | goto fail; | ||
2843 | |||
2844 | have_lost = atomic_read(&data->lost); | ||
2845 | if (have_lost) | ||
2846 | size += sizeof(lost_event); | ||
2847 | |||
2848 | perf_output_lock(handle); | ||
2849 | |||
2850 | do { | ||
2851 | /* | ||
2852 | * Userspace could choose to issue a mb() before updating the | ||
2853 | * tail pointer. So that all reads will be completed before the | ||
2854 | * write is issued. | ||
2855 | */ | ||
2856 | tail = ACCESS_ONCE(data->user_page->data_tail); | ||
2857 | smp_rmb(); | ||
2858 | offset = head = atomic_long_read(&data->head); | ||
2859 | head += size; | ||
2860 | if (unlikely(!perf_output_space(data, tail, offset, head))) | ||
2861 | goto fail; | ||
2862 | } while (atomic_long_cmpxchg(&data->head, offset, head) != offset); | ||
2863 | |||
2864 | handle->offset = offset; | ||
2865 | handle->head = head; | ||
2866 | |||
2867 | if (head - tail > data->watermark) | ||
2868 | atomic_set(&data->wakeup, 1); | ||
2869 | |||
2870 | if (have_lost) { | ||
2871 | lost_event.header.type = PERF_RECORD_LOST; | ||
2872 | lost_event.header.misc = 0; | ||
2873 | lost_event.header.size = sizeof(lost_event); | ||
2874 | lost_event.id = event->id; | ||
2875 | lost_event.lost = atomic_xchg(&data->lost, 0); | ||
2876 | |||
2877 | perf_output_put(handle, lost_event); | ||
2878 | } | ||
2879 | |||
2880 | return 0; | ||
2881 | |||
2882 | fail: | ||
2883 | atomic_inc(&data->lost); | ||
2884 | perf_output_unlock(handle); | ||
2885 | out: | ||
2886 | rcu_read_unlock(); | ||
2887 | |||
2888 | return -ENOSPC; | ||
2889 | } | ||
2890 | |||
2891 | void perf_output_end(struct perf_output_handle *handle) | ||
2892 | { | ||
2893 | struct perf_event *event = handle->event; | ||
2894 | struct perf_mmap_data *data = handle->data; | ||
2895 | |||
2896 | int wakeup_events = event->attr.wakeup_events; | ||
2897 | |||
2898 | if (handle->sample && wakeup_events) { | ||
2899 | int events = atomic_inc_return(&data->events); | ||
2900 | if (events >= wakeup_events) { | ||
2901 | atomic_sub(wakeup_events, &data->events); | ||
2902 | atomic_set(&data->wakeup, 1); | ||
2903 | } | ||
2904 | } | ||
2905 | |||
2906 | perf_output_unlock(handle); | ||
2907 | rcu_read_unlock(); | ||
2908 | } | ||
2909 | |||
2910 | static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) | ||
2911 | { | ||
2912 | /* | ||
2913 | * only top level events have the pid namespace they were created in | ||
2914 | */ | ||
2915 | if (event->parent) | ||
2916 | event = event->parent; | ||
2917 | |||
2918 | return task_tgid_nr_ns(p, event->ns); | ||
2919 | } | ||
2920 | |||
2921 | static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) | ||
2922 | { | ||
2923 | /* | ||
2924 | * only top level events have the pid namespace they were created in | ||
2925 | */ | ||
2926 | if (event->parent) | ||
2927 | event = event->parent; | ||
2928 | |||
2929 | return task_pid_nr_ns(p, event->ns); | ||
2930 | } | ||
2931 | |||
2932 | static void perf_output_read_one(struct perf_output_handle *handle, | ||
2933 | struct perf_event *event) | ||
2934 | { | ||
2935 | u64 read_format = event->attr.read_format; | ||
2936 | u64 values[4]; | ||
2937 | int n = 0; | ||
2938 | |||
2939 | values[n++] = atomic64_read(&event->count); | ||
2940 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
2941 | values[n++] = event->total_time_enabled + | ||
2942 | atomic64_read(&event->child_total_time_enabled); | ||
2943 | } | ||
2944 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
2945 | values[n++] = event->total_time_running + | ||
2946 | atomic64_read(&event->child_total_time_running); | ||
2947 | } | ||
2948 | if (read_format & PERF_FORMAT_ID) | ||
2949 | values[n++] = primary_event_id(event); | ||
2950 | |||
2951 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
2952 | } | ||
2953 | |||
2954 | /* | ||
2955 | * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. | ||
2956 | */ | ||
2957 | static void perf_output_read_group(struct perf_output_handle *handle, | ||
2958 | struct perf_event *event) | ||
2959 | { | ||
2960 | struct perf_event *leader = event->group_leader, *sub; | ||
2961 | u64 read_format = event->attr.read_format; | ||
2962 | u64 values[5]; | ||
2963 | int n = 0; | ||
2964 | |||
2965 | values[n++] = 1 + leader->nr_siblings; | ||
2966 | |||
2967 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
2968 | values[n++] = leader->total_time_enabled; | ||
2969 | |||
2970 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
2971 | values[n++] = leader->total_time_running; | ||
2972 | |||
2973 | if (leader != event) | ||
2974 | leader->pmu->read(leader); | ||
2975 | |||
2976 | values[n++] = atomic64_read(&leader->count); | ||
2977 | if (read_format & PERF_FORMAT_ID) | ||
2978 | values[n++] = primary_event_id(leader); | ||
2979 | |||
2980 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
2981 | |||
2982 | list_for_each_entry(sub, &leader->sibling_list, group_entry) { | ||
2983 | n = 0; | ||
2984 | |||
2985 | if (sub != event) | ||
2986 | sub->pmu->read(sub); | ||
2987 | |||
2988 | values[n++] = atomic64_read(&sub->count); | ||
2989 | if (read_format & PERF_FORMAT_ID) | ||
2990 | values[n++] = primary_event_id(sub); | ||
2991 | |||
2992 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
2993 | } | ||
2994 | } | ||
2995 | |||
2996 | static void perf_output_read(struct perf_output_handle *handle, | ||
2997 | struct perf_event *event) | ||
2998 | { | ||
2999 | if (event->attr.read_format & PERF_FORMAT_GROUP) | ||
3000 | perf_output_read_group(handle, event); | ||
3001 | else | ||
3002 | perf_output_read_one(handle, event); | ||
3003 | } | ||
3004 | |||
3005 | void perf_output_sample(struct perf_output_handle *handle, | ||
3006 | struct perf_event_header *header, | ||
3007 | struct perf_sample_data *data, | ||
3008 | struct perf_event *event) | ||
3009 | { | ||
3010 | u64 sample_type = data->type; | ||
3011 | |||
3012 | perf_output_put(handle, *header); | ||
3013 | |||
3014 | if (sample_type & PERF_SAMPLE_IP) | ||
3015 | perf_output_put(handle, data->ip); | ||
3016 | |||
3017 | if (sample_type & PERF_SAMPLE_TID) | ||
3018 | perf_output_put(handle, data->tid_entry); | ||
3019 | |||
3020 | if (sample_type & PERF_SAMPLE_TIME) | ||
3021 | perf_output_put(handle, data->time); | ||
3022 | |||
3023 | if (sample_type & PERF_SAMPLE_ADDR) | ||
3024 | perf_output_put(handle, data->addr); | ||
3025 | |||
3026 | if (sample_type & PERF_SAMPLE_ID) | ||
3027 | perf_output_put(handle, data->id); | ||
3028 | |||
3029 | if (sample_type & PERF_SAMPLE_STREAM_ID) | ||
3030 | perf_output_put(handle, data->stream_id); | ||
3031 | |||
3032 | if (sample_type & PERF_SAMPLE_CPU) | ||
3033 | perf_output_put(handle, data->cpu_entry); | ||
3034 | |||
3035 | if (sample_type & PERF_SAMPLE_PERIOD) | ||
3036 | perf_output_put(handle, data->period); | ||
3037 | |||
3038 | if (sample_type & PERF_SAMPLE_READ) | ||
3039 | perf_output_read(handle, event); | ||
3040 | |||
3041 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | ||
3042 | if (data->callchain) { | ||
3043 | int size = 1; | ||
3044 | |||
3045 | if (data->callchain) | ||
3046 | size += data->callchain->nr; | ||
3047 | |||
3048 | size *= sizeof(u64); | ||
3049 | |||
3050 | perf_output_copy(handle, data->callchain, size); | ||
3051 | } else { | ||
3052 | u64 nr = 0; | ||
3053 | perf_output_put(handle, nr); | ||
3054 | } | ||
3055 | } | ||
3056 | |||
3057 | if (sample_type & PERF_SAMPLE_RAW) { | ||
3058 | if (data->raw) { | ||
3059 | perf_output_put(handle, data->raw->size); | ||
3060 | perf_output_copy(handle, data->raw->data, | ||
3061 | data->raw->size); | ||
3062 | } else { | ||
3063 | struct { | ||
3064 | u32 size; | ||
3065 | u32 data; | ||
3066 | } raw = { | ||
3067 | .size = sizeof(u32), | ||
3068 | .data = 0, | ||
3069 | }; | ||
3070 | perf_output_put(handle, raw); | ||
3071 | } | ||
3072 | } | ||
3073 | } | ||
3074 | |||
3075 | void perf_prepare_sample(struct perf_event_header *header, | ||
3076 | struct perf_sample_data *data, | ||
3077 | struct perf_event *event, | ||
3078 | struct pt_regs *regs) | ||
3079 | { | ||
3080 | u64 sample_type = event->attr.sample_type; | ||
3081 | |||
3082 | data->type = sample_type; | ||
3083 | |||
3084 | header->type = PERF_RECORD_SAMPLE; | ||
3085 | header->size = sizeof(*header); | ||
3086 | |||
3087 | header->misc = 0; | ||
3088 | header->misc |= perf_misc_flags(regs); | ||
3089 | |||
3090 | if (sample_type & PERF_SAMPLE_IP) { | ||
3091 | data->ip = perf_instruction_pointer(regs); | ||
3092 | |||
3093 | header->size += sizeof(data->ip); | ||
3094 | } | ||
3095 | |||
3096 | if (sample_type & PERF_SAMPLE_TID) { | ||
3097 | /* namespace issues */ | ||
3098 | data->tid_entry.pid = perf_event_pid(event, current); | ||
3099 | data->tid_entry.tid = perf_event_tid(event, current); | ||
3100 | |||
3101 | header->size += sizeof(data->tid_entry); | ||
3102 | } | ||
3103 | |||
3104 | if (sample_type & PERF_SAMPLE_TIME) { | ||
3105 | data->time = perf_clock(); | ||
3106 | |||
3107 | header->size += sizeof(data->time); | ||
3108 | } | ||
3109 | |||
3110 | if (sample_type & PERF_SAMPLE_ADDR) | ||
3111 | header->size += sizeof(data->addr); | ||
3112 | |||
3113 | if (sample_type & PERF_SAMPLE_ID) { | ||
3114 | data->id = primary_event_id(event); | ||
3115 | |||
3116 | header->size += sizeof(data->id); | ||
3117 | } | ||
3118 | |||
3119 | if (sample_type & PERF_SAMPLE_STREAM_ID) { | ||
3120 | data->stream_id = event->id; | ||
3121 | |||
3122 | header->size += sizeof(data->stream_id); | ||
3123 | } | ||
3124 | |||
3125 | if (sample_type & PERF_SAMPLE_CPU) { | ||
3126 | data->cpu_entry.cpu = raw_smp_processor_id(); | ||
3127 | data->cpu_entry.reserved = 0; | ||
3128 | |||
3129 | header->size += sizeof(data->cpu_entry); | ||
3130 | } | ||
3131 | |||
3132 | if (sample_type & PERF_SAMPLE_PERIOD) | ||
3133 | header->size += sizeof(data->period); | ||
3134 | |||
3135 | if (sample_type & PERF_SAMPLE_READ) | ||
3136 | header->size += perf_event_read_size(event); | ||
3137 | |||
3138 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | ||
3139 | int size = 1; | ||
3140 | |||
3141 | data->callchain = perf_callchain(regs); | ||
3142 | |||
3143 | if (data->callchain) | ||
3144 | size += data->callchain->nr; | ||
3145 | |||
3146 | header->size += size * sizeof(u64); | ||
3147 | } | ||
3148 | |||
3149 | if (sample_type & PERF_SAMPLE_RAW) { | ||
3150 | int size = sizeof(u32); | ||
3151 | |||
3152 | if (data->raw) | ||
3153 | size += data->raw->size; | ||
3154 | else | ||
3155 | size += sizeof(u32); | ||
3156 | |||
3157 | WARN_ON_ONCE(size & (sizeof(u64)-1)); | ||
3158 | header->size += size; | ||
3159 | } | ||
3160 | } | ||
3161 | |||
3162 | static void perf_event_output(struct perf_event *event, int nmi, | ||
3163 | struct perf_sample_data *data, | ||
3164 | struct pt_regs *regs) | ||
3165 | { | ||
3166 | struct perf_output_handle handle; | ||
3167 | struct perf_event_header header; | ||
3168 | |||
3169 | perf_prepare_sample(&header, data, event, regs); | ||
3170 | |||
3171 | if (perf_output_begin(&handle, event, header.size, nmi, 1)) | ||
3172 | return; | ||
3173 | |||
3174 | perf_output_sample(&handle, &header, data, event); | ||
3175 | |||
3176 | perf_output_end(&handle); | ||
3177 | } | ||
3178 | |||
3179 | /* | ||
3180 | * read event_id | ||
3181 | */ | ||
3182 | |||
3183 | struct perf_read_event { | ||
3184 | struct perf_event_header header; | ||
3185 | |||
3186 | u32 pid; | ||
3187 | u32 tid; | ||
3188 | }; | ||
3189 | |||
3190 | static void | ||
3191 | perf_event_read_event(struct perf_event *event, | ||
3192 | struct task_struct *task) | ||
3193 | { | ||
3194 | struct perf_output_handle handle; | ||
3195 | struct perf_read_event read_event = { | ||
3196 | .header = { | ||
3197 | .type = PERF_RECORD_READ, | ||
3198 | .misc = 0, | ||
3199 | .size = sizeof(read_event) + perf_event_read_size(event), | ||
3200 | }, | ||
3201 | .pid = perf_event_pid(event, task), | ||
3202 | .tid = perf_event_tid(event, task), | ||
3203 | }; | ||
3204 | int ret; | ||
3205 | |||
3206 | ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0); | ||
3207 | if (ret) | ||
3208 | return; | ||
3209 | |||
3210 | perf_output_put(&handle, read_event); | ||
3211 | perf_output_read(&handle, event); | ||
3212 | |||
3213 | perf_output_end(&handle); | ||
3214 | } | ||
3215 | |||
3216 | /* | ||
3217 | * task tracking -- fork/exit | ||
3218 | * | ||
3219 | * enabled by: attr.comm | attr.mmap | attr.task | ||
3220 | */ | ||
3221 | |||
3222 | struct perf_task_event { | ||
3223 | struct task_struct *task; | ||
3224 | struct perf_event_context *task_ctx; | ||
3225 | |||
3226 | struct { | ||
3227 | struct perf_event_header header; | ||
3228 | |||
3229 | u32 pid; | ||
3230 | u32 ppid; | ||
3231 | u32 tid; | ||
3232 | u32 ptid; | ||
3233 | u64 time; | ||
3234 | } event_id; | ||
3235 | }; | ||
3236 | |||
3237 | static void perf_event_task_output(struct perf_event *event, | ||
3238 | struct perf_task_event *task_event) | ||
3239 | { | ||
3240 | struct perf_output_handle handle; | ||
3241 | int size; | ||
3242 | struct task_struct *task = task_event->task; | ||
3243 | int ret; | ||
3244 | |||
3245 | size = task_event->event_id.header.size; | ||
3246 | ret = perf_output_begin(&handle, event, size, 0, 0); | ||
3247 | |||
3248 | if (ret) | ||
3249 | return; | ||
3250 | |||
3251 | task_event->event_id.pid = perf_event_pid(event, task); | ||
3252 | task_event->event_id.ppid = perf_event_pid(event, current); | ||
3253 | |||
3254 | task_event->event_id.tid = perf_event_tid(event, task); | ||
3255 | task_event->event_id.ptid = perf_event_tid(event, current); | ||
3256 | |||
3257 | task_event->event_id.time = perf_clock(); | ||
3258 | |||
3259 | perf_output_put(&handle, task_event->event_id); | ||
3260 | |||
3261 | perf_output_end(&handle); | ||
3262 | } | ||
3263 | |||
3264 | static int perf_event_task_match(struct perf_event *event) | ||
3265 | { | ||
3266 | if (event->attr.comm || event->attr.mmap || event->attr.task) | ||
3267 | return 1; | ||
3268 | |||
3269 | return 0; | ||
3270 | } | ||
3271 | |||
3272 | static void perf_event_task_ctx(struct perf_event_context *ctx, | ||
3273 | struct perf_task_event *task_event) | ||
3274 | { | ||
3275 | struct perf_event *event; | ||
3276 | |||
3277 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
3278 | if (perf_event_task_match(event)) | ||
3279 | perf_event_task_output(event, task_event); | ||
3280 | } | ||
3281 | } | ||
3282 | |||
3283 | static void perf_event_task_event(struct perf_task_event *task_event) | ||
3284 | { | ||
3285 | struct perf_cpu_context *cpuctx; | ||
3286 | struct perf_event_context *ctx = task_event->task_ctx; | ||
3287 | |||
3288 | rcu_read_lock(); | ||
3289 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
3290 | perf_event_task_ctx(&cpuctx->ctx, task_event); | ||
3291 | put_cpu_var(perf_cpu_context); | ||
3292 | |||
3293 | if (!ctx) | ||
3294 | ctx = rcu_dereference(task_event->task->perf_event_ctxp); | ||
3295 | if (ctx) | ||
3296 | perf_event_task_ctx(ctx, task_event); | ||
3297 | rcu_read_unlock(); | ||
3298 | } | ||
3299 | |||
3300 | static void perf_event_task(struct task_struct *task, | ||
3301 | struct perf_event_context *task_ctx, | ||
3302 | int new) | ||
3303 | { | ||
3304 | struct perf_task_event task_event; | ||
3305 | |||
3306 | if (!atomic_read(&nr_comm_events) && | ||
3307 | !atomic_read(&nr_mmap_events) && | ||
3308 | !atomic_read(&nr_task_events)) | ||
3309 | return; | ||
3310 | |||
3311 | task_event = (struct perf_task_event){ | ||
3312 | .task = task, | ||
3313 | .task_ctx = task_ctx, | ||
3314 | .event_id = { | ||
3315 | .header = { | ||
3316 | .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, | ||
3317 | .misc = 0, | ||
3318 | .size = sizeof(task_event.event_id), | ||
3319 | }, | ||
3320 | /* .pid */ | ||
3321 | /* .ppid */ | ||
3322 | /* .tid */ | ||
3323 | /* .ptid */ | ||
3324 | }, | ||
3325 | }; | ||
3326 | |||
3327 | perf_event_task_event(&task_event); | ||
3328 | } | ||
3329 | |||
3330 | void perf_event_fork(struct task_struct *task) | ||
3331 | { | ||
3332 | perf_event_task(task, NULL, 1); | ||
3333 | } | ||
3334 | |||
3335 | /* | ||
3336 | * comm tracking | ||
3337 | */ | ||
3338 | |||
3339 | struct perf_comm_event { | ||
3340 | struct task_struct *task; | ||
3341 | char *comm; | ||
3342 | int comm_size; | ||
3343 | |||
3344 | struct { | ||
3345 | struct perf_event_header header; | ||
3346 | |||
3347 | u32 pid; | ||
3348 | u32 tid; | ||
3349 | } event_id; | ||
3350 | }; | ||
3351 | |||
3352 | static void perf_event_comm_output(struct perf_event *event, | ||
3353 | struct perf_comm_event *comm_event) | ||
3354 | { | ||
3355 | struct perf_output_handle handle; | ||
3356 | int size = comm_event->event_id.header.size; | ||
3357 | int ret = perf_output_begin(&handle, event, size, 0, 0); | ||
3358 | |||
3359 | if (ret) | ||
3360 | return; | ||
3361 | |||
3362 | comm_event->event_id.pid = perf_event_pid(event, comm_event->task); | ||
3363 | comm_event->event_id.tid = perf_event_tid(event, comm_event->task); | ||
3364 | |||
3365 | perf_output_put(&handle, comm_event->event_id); | ||
3366 | perf_output_copy(&handle, comm_event->comm, | ||
3367 | comm_event->comm_size); | ||
3368 | perf_output_end(&handle); | ||
3369 | } | ||
3370 | |||
3371 | static int perf_event_comm_match(struct perf_event *event) | ||
3372 | { | ||
3373 | if (event->attr.comm) | ||
3374 | return 1; | ||
3375 | |||
3376 | return 0; | ||
3377 | } | ||
3378 | |||
3379 | static void perf_event_comm_ctx(struct perf_event_context *ctx, | ||
3380 | struct perf_comm_event *comm_event) | ||
3381 | { | ||
3382 | struct perf_event *event; | ||
3383 | |||
3384 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
3385 | if (perf_event_comm_match(event)) | ||
3386 | perf_event_comm_output(event, comm_event); | ||
3387 | } | ||
3388 | } | ||
3389 | |||
3390 | static void perf_event_comm_event(struct perf_comm_event *comm_event) | ||
3391 | { | ||
3392 | struct perf_cpu_context *cpuctx; | ||
3393 | struct perf_event_context *ctx; | ||
3394 | unsigned int size; | ||
3395 | char comm[TASK_COMM_LEN]; | ||
3396 | |||
3397 | memset(comm, 0, sizeof(comm)); | ||
3398 | strlcpy(comm, comm_event->task->comm, sizeof(comm)); | ||
3399 | size = ALIGN(strlen(comm)+1, sizeof(u64)); | ||
3400 | |||
3401 | comm_event->comm = comm; | ||
3402 | comm_event->comm_size = size; | ||
3403 | |||
3404 | comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; | ||
3405 | |||
3406 | rcu_read_lock(); | ||
3407 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
3408 | perf_event_comm_ctx(&cpuctx->ctx, comm_event); | ||
3409 | put_cpu_var(perf_cpu_context); | ||
3410 | |||
3411 | /* | ||
3412 | * doesn't really matter which of the child contexts the | ||
3413 | * events ends up in. | ||
3414 | */ | ||
3415 | ctx = rcu_dereference(current->perf_event_ctxp); | ||
3416 | if (ctx) | ||
3417 | perf_event_comm_ctx(ctx, comm_event); | ||
3418 | rcu_read_unlock(); | ||
3419 | } | ||
3420 | |||
3421 | void perf_event_comm(struct task_struct *task) | ||
3422 | { | ||
3423 | struct perf_comm_event comm_event; | ||
3424 | |||
3425 | if (task->perf_event_ctxp) | ||
3426 | perf_event_enable_on_exec(task); | ||
3427 | |||
3428 | if (!atomic_read(&nr_comm_events)) | ||
3429 | return; | ||
3430 | |||
3431 | comm_event = (struct perf_comm_event){ | ||
3432 | .task = task, | ||
3433 | /* .comm */ | ||
3434 | /* .comm_size */ | ||
3435 | .event_id = { | ||
3436 | .header = { | ||
3437 | .type = PERF_RECORD_COMM, | ||
3438 | .misc = 0, | ||
3439 | /* .size */ | ||
3440 | }, | ||
3441 | /* .pid */ | ||
3442 | /* .tid */ | ||
3443 | }, | ||
3444 | }; | ||
3445 | |||
3446 | perf_event_comm_event(&comm_event); | ||
3447 | } | ||
3448 | |||
3449 | /* | ||
3450 | * mmap tracking | ||
3451 | */ | ||
3452 | |||
3453 | struct perf_mmap_event { | ||
3454 | struct vm_area_struct *vma; | ||
3455 | |||
3456 | const char *file_name; | ||
3457 | int file_size; | ||
3458 | |||
3459 | struct { | ||
3460 | struct perf_event_header header; | ||
3461 | |||
3462 | u32 pid; | ||
3463 | u32 tid; | ||
3464 | u64 start; | ||
3465 | u64 len; | ||
3466 | u64 pgoff; | ||
3467 | } event_id; | ||
3468 | }; | ||
3469 | |||
3470 | static void perf_event_mmap_output(struct perf_event *event, | ||
3471 | struct perf_mmap_event *mmap_event) | ||
3472 | { | ||
3473 | struct perf_output_handle handle; | ||
3474 | int size = mmap_event->event_id.header.size; | ||
3475 | int ret = perf_output_begin(&handle, event, size, 0, 0); | ||
3476 | |||
3477 | if (ret) | ||
3478 | return; | ||
3479 | |||
3480 | mmap_event->event_id.pid = perf_event_pid(event, current); | ||
3481 | mmap_event->event_id.tid = perf_event_tid(event, current); | ||
3482 | |||
3483 | perf_output_put(&handle, mmap_event->event_id); | ||
3484 | perf_output_copy(&handle, mmap_event->file_name, | ||
3485 | mmap_event->file_size); | ||
3486 | perf_output_end(&handle); | ||
3487 | } | ||
3488 | |||
3489 | static int perf_event_mmap_match(struct perf_event *event, | ||
3490 | struct perf_mmap_event *mmap_event) | ||
3491 | { | ||
3492 | if (event->attr.mmap) | ||
3493 | return 1; | ||
3494 | |||
3495 | return 0; | ||
3496 | } | ||
3497 | |||
3498 | static void perf_event_mmap_ctx(struct perf_event_context *ctx, | ||
3499 | struct perf_mmap_event *mmap_event) | ||
3500 | { | ||
3501 | struct perf_event *event; | ||
3502 | |||
3503 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
3504 | if (perf_event_mmap_match(event, mmap_event)) | ||
3505 | perf_event_mmap_output(event, mmap_event); | ||
3506 | } | ||
3507 | } | ||
3508 | |||
3509 | static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) | ||
3510 | { | ||
3511 | struct perf_cpu_context *cpuctx; | ||
3512 | struct perf_event_context *ctx; | ||
3513 | struct vm_area_struct *vma = mmap_event->vma; | ||
3514 | struct file *file = vma->vm_file; | ||
3515 | unsigned int size; | ||
3516 | char tmp[16]; | ||
3517 | char *buf = NULL; | ||
3518 | const char *name; | ||
3519 | |||
3520 | memset(tmp, 0, sizeof(tmp)); | ||
3521 | |||
3522 | if (file) { | ||
3523 | /* | ||
3524 | * d_path works from the end of the buffer backwards, so we | ||
3525 | * need to add enough zero bytes after the string to handle | ||
3526 | * the 64bit alignment we do later. | ||
3527 | */ | ||
3528 | buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); | ||
3529 | if (!buf) { | ||
3530 | name = strncpy(tmp, "//enomem", sizeof(tmp)); | ||
3531 | goto got_name; | ||
3532 | } | ||
3533 | name = d_path(&file->f_path, buf, PATH_MAX); | ||
3534 | if (IS_ERR(name)) { | ||
3535 | name = strncpy(tmp, "//toolong", sizeof(tmp)); | ||
3536 | goto got_name; | ||
3537 | } | ||
3538 | } else { | ||
3539 | if (arch_vma_name(mmap_event->vma)) { | ||
3540 | name = strncpy(tmp, arch_vma_name(mmap_event->vma), | ||
3541 | sizeof(tmp)); | ||
3542 | goto got_name; | ||
3543 | } | ||
3544 | |||
3545 | if (!vma->vm_mm) { | ||
3546 | name = strncpy(tmp, "[vdso]", sizeof(tmp)); | ||
3547 | goto got_name; | ||
3548 | } | ||
3549 | |||
3550 | name = strncpy(tmp, "//anon", sizeof(tmp)); | ||
3551 | goto got_name; | ||
3552 | } | ||
3553 | |||
3554 | got_name: | ||
3555 | size = ALIGN(strlen(name)+1, sizeof(u64)); | ||
3556 | |||
3557 | mmap_event->file_name = name; | ||
3558 | mmap_event->file_size = size; | ||
3559 | |||
3560 | mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; | ||
3561 | |||
3562 | rcu_read_lock(); | ||
3563 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
3564 | perf_event_mmap_ctx(&cpuctx->ctx, mmap_event); | ||
3565 | put_cpu_var(perf_cpu_context); | ||
3566 | |||
3567 | /* | ||
3568 | * doesn't really matter which of the child contexts the | ||
3569 | * events ends up in. | ||
3570 | */ | ||
3571 | ctx = rcu_dereference(current->perf_event_ctxp); | ||
3572 | if (ctx) | ||
3573 | perf_event_mmap_ctx(ctx, mmap_event); | ||
3574 | rcu_read_unlock(); | ||
3575 | |||
3576 | kfree(buf); | ||
3577 | } | ||
3578 | |||
3579 | void __perf_event_mmap(struct vm_area_struct *vma) | ||
3580 | { | ||
3581 | struct perf_mmap_event mmap_event; | ||
3582 | |||
3583 | if (!atomic_read(&nr_mmap_events)) | ||
3584 | return; | ||
3585 | |||
3586 | mmap_event = (struct perf_mmap_event){ | ||
3587 | .vma = vma, | ||
3588 | /* .file_name */ | ||
3589 | /* .file_size */ | ||
3590 | .event_id = { | ||
3591 | .header = { | ||
3592 | .type = PERF_RECORD_MMAP, | ||
3593 | .misc = 0, | ||
3594 | /* .size */ | ||
3595 | }, | ||
3596 | /* .pid */ | ||
3597 | /* .tid */ | ||
3598 | .start = vma->vm_start, | ||
3599 | .len = vma->vm_end - vma->vm_start, | ||
3600 | .pgoff = vma->vm_pgoff, | ||
3601 | }, | ||
3602 | }; | ||
3603 | |||
3604 | perf_event_mmap_event(&mmap_event); | ||
3605 | } | ||
3606 | |||
3607 | /* | ||
3608 | * IRQ throttle logging | ||
3609 | */ | ||
3610 | |||
3611 | static void perf_log_throttle(struct perf_event *event, int enable) | ||
3612 | { | ||
3613 | struct perf_output_handle handle; | ||
3614 | int ret; | ||
3615 | |||
3616 | struct { | ||
3617 | struct perf_event_header header; | ||
3618 | u64 time; | ||
3619 | u64 id; | ||
3620 | u64 stream_id; | ||
3621 | } throttle_event = { | ||
3622 | .header = { | ||
3623 | .type = PERF_RECORD_THROTTLE, | ||
3624 | .misc = 0, | ||
3625 | .size = sizeof(throttle_event), | ||
3626 | }, | ||
3627 | .time = perf_clock(), | ||
3628 | .id = primary_event_id(event), | ||
3629 | .stream_id = event->id, | ||
3630 | }; | ||
3631 | |||
3632 | if (enable) | ||
3633 | throttle_event.header.type = PERF_RECORD_UNTHROTTLE; | ||
3634 | |||
3635 | ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0); | ||
3636 | if (ret) | ||
3637 | return; | ||
3638 | |||
3639 | perf_output_put(&handle, throttle_event); | ||
3640 | perf_output_end(&handle); | ||
3641 | } | ||
3642 | |||
3643 | /* | ||
3644 | * Generic event overflow handling, sampling. | ||
3645 | */ | ||
3646 | |||
3647 | static int __perf_event_overflow(struct perf_event *event, int nmi, | ||
3648 | int throttle, struct perf_sample_data *data, | ||
3649 | struct pt_regs *regs) | ||
3650 | { | ||
3651 | int events = atomic_read(&event->event_limit); | ||
3652 | struct hw_perf_event *hwc = &event->hw; | ||
3653 | int ret = 0; | ||
3654 | |||
3655 | throttle = (throttle && event->pmu->unthrottle != NULL); | ||
3656 | |||
3657 | if (!throttle) { | ||
3658 | hwc->interrupts++; | ||
3659 | } else { | ||
3660 | if (hwc->interrupts != MAX_INTERRUPTS) { | ||
3661 | hwc->interrupts++; | ||
3662 | if (HZ * hwc->interrupts > | ||
3663 | (u64)sysctl_perf_event_sample_rate) { | ||
3664 | hwc->interrupts = MAX_INTERRUPTS; | ||
3665 | perf_log_throttle(event, 0); | ||
3666 | ret = 1; | ||
3667 | } | ||
3668 | } else { | ||
3669 | /* | ||
3670 | * Keep re-disabling events even though on the previous | ||
3671 | * pass we disabled it - just in case we raced with a | ||
3672 | * sched-in and the event got enabled again: | ||
3673 | */ | ||
3674 | ret = 1; | ||
3675 | } | ||
3676 | } | ||
3677 | |||
3678 | if (event->attr.freq) { | ||
3679 | u64 now = perf_clock(); | ||
3680 | s64 delta = now - hwc->freq_stamp; | ||
3681 | |||
3682 | hwc->freq_stamp = now; | ||
3683 | |||
3684 | if (delta > 0 && delta < TICK_NSEC) | ||
3685 | perf_adjust_period(event, NSEC_PER_SEC / (int)delta); | ||
3686 | } | ||
3687 | |||
3688 | /* | ||
3689 | * XXX event_limit might not quite work as expected on inherited | ||
3690 | * events | ||
3691 | */ | ||
3692 | |||
3693 | event->pending_kill = POLL_IN; | ||
3694 | if (events && atomic_dec_and_test(&event->event_limit)) { | ||
3695 | ret = 1; | ||
3696 | event->pending_kill = POLL_HUP; | ||
3697 | if (nmi) { | ||
3698 | event->pending_disable = 1; | ||
3699 | perf_pending_queue(&event->pending, | ||
3700 | perf_pending_event); | ||
3701 | } else | ||
3702 | perf_event_disable(event); | ||
3703 | } | ||
3704 | |||
3705 | if (event->overflow_handler) | ||
3706 | event->overflow_handler(event, nmi, data, regs); | ||
3707 | else | ||
3708 | perf_event_output(event, nmi, data, regs); | ||
3709 | |||
3710 | return ret; | ||
3711 | } | ||
3712 | |||
3713 | int perf_event_overflow(struct perf_event *event, int nmi, | ||
3714 | struct perf_sample_data *data, | ||
3715 | struct pt_regs *regs) | ||
3716 | { | ||
3717 | return __perf_event_overflow(event, nmi, 1, data, regs); | ||
3718 | } | ||
3719 | |||
3720 | /* | ||
3721 | * Generic software event infrastructure | ||
3722 | */ | ||
3723 | |||
3724 | /* | ||
3725 | * We directly increment event->count and keep a second value in | ||
3726 | * event->hw.period_left to count intervals. This period event | ||
3727 | * is kept in the range [-sample_period, 0] so that we can use the | ||
3728 | * sign as trigger. | ||
3729 | */ | ||
3730 | |||
3731 | static u64 perf_swevent_set_period(struct perf_event *event) | ||
3732 | { | ||
3733 | struct hw_perf_event *hwc = &event->hw; | ||
3734 | u64 period = hwc->last_period; | ||
3735 | u64 nr, offset; | ||
3736 | s64 old, val; | ||
3737 | |||
3738 | hwc->last_period = hwc->sample_period; | ||
3739 | |||
3740 | again: | ||
3741 | old = val = atomic64_read(&hwc->period_left); | ||
3742 | if (val < 0) | ||
3743 | return 0; | ||
3744 | |||
3745 | nr = div64_u64(period + val, period); | ||
3746 | offset = nr * period; | ||
3747 | val -= offset; | ||
3748 | if (atomic64_cmpxchg(&hwc->period_left, old, val) != old) | ||
3749 | goto again; | ||
3750 | |||
3751 | return nr; | ||
3752 | } | ||
3753 | |||
3754 | static void perf_swevent_overflow(struct perf_event *event, u64 overflow, | ||
3755 | int nmi, struct perf_sample_data *data, | ||
3756 | struct pt_regs *regs) | ||
3757 | { | ||
3758 | struct hw_perf_event *hwc = &event->hw; | ||
3759 | int throttle = 0; | ||
3760 | |||
3761 | data->period = event->hw.last_period; | ||
3762 | if (!overflow) | ||
3763 | overflow = perf_swevent_set_period(event); | ||
3764 | |||
3765 | if (hwc->interrupts == MAX_INTERRUPTS) | ||
3766 | return; | ||
3767 | |||
3768 | for (; overflow; overflow--) { | ||
3769 | if (__perf_event_overflow(event, nmi, throttle, | ||
3770 | data, regs)) { | ||
3771 | /* | ||
3772 | * We inhibit the overflow from happening when | ||
3773 | * hwc->interrupts == MAX_INTERRUPTS. | ||
3774 | */ | ||
3775 | break; | ||
3776 | } | ||
3777 | throttle = 1; | ||
3778 | } | ||
3779 | } | ||
3780 | |||
3781 | static void perf_swevent_unthrottle(struct perf_event *event) | ||
3782 | { | ||
3783 | /* | ||
3784 | * Nothing to do, we already reset hwc->interrupts. | ||
3785 | */ | ||
3786 | } | ||
3787 | |||
3788 | static void perf_swevent_add(struct perf_event *event, u64 nr, | ||
3789 | int nmi, struct perf_sample_data *data, | ||
3790 | struct pt_regs *regs) | ||
3791 | { | ||
3792 | struct hw_perf_event *hwc = &event->hw; | ||
3793 | |||
3794 | atomic64_add(nr, &event->count); | ||
3795 | |||
3796 | if (!regs) | ||
3797 | return; | ||
3798 | |||
3799 | if (!hwc->sample_period) | ||
3800 | return; | ||
3801 | |||
3802 | if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) | ||
3803 | return perf_swevent_overflow(event, 1, nmi, data, regs); | ||
3804 | |||
3805 | if (atomic64_add_negative(nr, &hwc->period_left)) | ||
3806 | return; | ||
3807 | |||
3808 | perf_swevent_overflow(event, 0, nmi, data, regs); | ||
3809 | } | ||
3810 | |||
3811 | static int perf_swevent_is_counting(struct perf_event *event) | ||
3812 | { | ||
3813 | /* | ||
3814 | * The event is active, we're good! | ||
3815 | */ | ||
3816 | if (event->state == PERF_EVENT_STATE_ACTIVE) | ||
3817 | return 1; | ||
3818 | |||
3819 | /* | ||
3820 | * The event is off/error, not counting. | ||
3821 | */ | ||
3822 | if (event->state != PERF_EVENT_STATE_INACTIVE) | ||
3823 | return 0; | ||
3824 | |||
3825 | /* | ||
3826 | * The event is inactive, if the context is active | ||
3827 | * we're part of a group that didn't make it on the 'pmu', | ||
3828 | * not counting. | ||
3829 | */ | ||
3830 | if (event->ctx->is_active) | ||
3831 | return 0; | ||
3832 | |||
3833 | /* | ||
3834 | * We're inactive and the context is too, this means the | ||
3835 | * task is scheduled out, we're counting events that happen | ||
3836 | * to us, like migration events. | ||
3837 | */ | ||
3838 | return 1; | ||
3839 | } | ||
3840 | |||
3841 | static int perf_tp_event_match(struct perf_event *event, | ||
3842 | struct perf_sample_data *data); | ||
3843 | |||
3844 | static int perf_exclude_event(struct perf_event *event, | ||
3845 | struct pt_regs *regs) | ||
3846 | { | ||
3847 | if (regs) { | ||
3848 | if (event->attr.exclude_user && user_mode(regs)) | ||
3849 | return 1; | ||
3850 | |||
3851 | if (event->attr.exclude_kernel && !user_mode(regs)) | ||
3852 | return 1; | ||
3853 | } | ||
3854 | |||
3855 | return 0; | ||
3856 | } | ||
3857 | |||
3858 | static int perf_swevent_match(struct perf_event *event, | ||
3859 | enum perf_type_id type, | ||
3860 | u32 event_id, | ||
3861 | struct perf_sample_data *data, | ||
3862 | struct pt_regs *regs) | ||
3863 | { | ||
3864 | if (!perf_swevent_is_counting(event)) | ||
3865 | return 0; | ||
3866 | |||
3867 | if (event->attr.type != type) | ||
3868 | return 0; | ||
3869 | |||
3870 | if (event->attr.config != event_id) | ||
3871 | return 0; | ||
3872 | |||
3873 | if (perf_exclude_event(event, regs)) | ||
3874 | return 0; | ||
3875 | |||
3876 | if (event->attr.type == PERF_TYPE_TRACEPOINT && | ||
3877 | !perf_tp_event_match(event, data)) | ||
3878 | return 0; | ||
3879 | |||
3880 | return 1; | ||
3881 | } | ||
3882 | |||
3883 | static void perf_swevent_ctx_event(struct perf_event_context *ctx, | ||
3884 | enum perf_type_id type, | ||
3885 | u32 event_id, u64 nr, int nmi, | ||
3886 | struct perf_sample_data *data, | ||
3887 | struct pt_regs *regs) | ||
3888 | { | ||
3889 | struct perf_event *event; | ||
3890 | |||
3891 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
3892 | if (perf_swevent_match(event, type, event_id, data, regs)) | ||
3893 | perf_swevent_add(event, nr, nmi, data, regs); | ||
3894 | } | ||
3895 | } | ||
3896 | |||
3897 | int perf_swevent_get_recursion_context(void) | ||
3898 | { | ||
3899 | struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context); | ||
3900 | int rctx; | ||
3901 | |||
3902 | if (in_nmi()) | ||
3903 | rctx = 3; | ||
3904 | else if (in_irq()) | ||
3905 | rctx = 2; | ||
3906 | else if (in_softirq()) | ||
3907 | rctx = 1; | ||
3908 | else | ||
3909 | rctx = 0; | ||
3910 | |||
3911 | if (cpuctx->recursion[rctx]) { | ||
3912 | put_cpu_var(perf_cpu_context); | ||
3913 | return -1; | ||
3914 | } | ||
3915 | |||
3916 | cpuctx->recursion[rctx]++; | ||
3917 | barrier(); | ||
3918 | |||
3919 | return rctx; | ||
3920 | } | ||
3921 | EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); | ||
3922 | |||
3923 | void perf_swevent_put_recursion_context(int rctx) | ||
3924 | { | ||
3925 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
3926 | barrier(); | ||
3927 | cpuctx->recursion[rctx]--; | ||
3928 | put_cpu_var(perf_cpu_context); | ||
3929 | } | ||
3930 | EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context); | ||
3931 | |||
3932 | static void do_perf_sw_event(enum perf_type_id type, u32 event_id, | ||
3933 | u64 nr, int nmi, | ||
3934 | struct perf_sample_data *data, | ||
3935 | struct pt_regs *regs) | ||
3936 | { | ||
3937 | struct perf_cpu_context *cpuctx; | ||
3938 | struct perf_event_context *ctx; | ||
3939 | |||
3940 | cpuctx = &__get_cpu_var(perf_cpu_context); | ||
3941 | rcu_read_lock(); | ||
3942 | perf_swevent_ctx_event(&cpuctx->ctx, type, event_id, | ||
3943 | nr, nmi, data, regs); | ||
3944 | /* | ||
3945 | * doesn't really matter which of the child contexts the | ||
3946 | * events ends up in. | ||
3947 | */ | ||
3948 | ctx = rcu_dereference(current->perf_event_ctxp); | ||
3949 | if (ctx) | ||
3950 | perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs); | ||
3951 | rcu_read_unlock(); | ||
3952 | } | ||
3953 | |||
3954 | void __perf_sw_event(u32 event_id, u64 nr, int nmi, | ||
3955 | struct pt_regs *regs, u64 addr) | ||
3956 | { | ||
3957 | struct perf_sample_data data; | ||
3958 | int rctx; | ||
3959 | |||
3960 | rctx = perf_swevent_get_recursion_context(); | ||
3961 | if (rctx < 0) | ||
3962 | return; | ||
3963 | |||
3964 | data.addr = addr; | ||
3965 | data.raw = NULL; | ||
3966 | |||
3967 | do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs); | ||
3968 | |||
3969 | perf_swevent_put_recursion_context(rctx); | ||
3970 | } | ||
3971 | |||
3972 | static void perf_swevent_read(struct perf_event *event) | ||
3973 | { | ||
3974 | } | ||
3975 | |||
3976 | static int perf_swevent_enable(struct perf_event *event) | ||
3977 | { | ||
3978 | struct hw_perf_event *hwc = &event->hw; | ||
3979 | |||
3980 | if (hwc->sample_period) { | ||
3981 | hwc->last_period = hwc->sample_period; | ||
3982 | perf_swevent_set_period(event); | ||
3983 | } | ||
3984 | return 0; | ||
3985 | } | ||
3986 | |||
3987 | static void perf_swevent_disable(struct perf_event *event) | ||
3988 | { | ||
3989 | } | ||
3990 | |||
3991 | static const struct pmu perf_ops_generic = { | ||
3992 | .enable = perf_swevent_enable, | ||
3993 | .disable = perf_swevent_disable, | ||
3994 | .read = perf_swevent_read, | ||
3995 | .unthrottle = perf_swevent_unthrottle, | ||
3996 | }; | ||
3997 | |||
3998 | /* | ||
3999 | * hrtimer based swevent callback | ||
4000 | */ | ||
4001 | |||
4002 | static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) | ||
4003 | { | ||
4004 | enum hrtimer_restart ret = HRTIMER_RESTART; | ||
4005 | struct perf_sample_data data; | ||
4006 | struct pt_regs *regs; | ||
4007 | struct perf_event *event; | ||
4008 | u64 period; | ||
4009 | |||
4010 | event = container_of(hrtimer, struct perf_event, hw.hrtimer); | ||
4011 | event->pmu->read(event); | ||
4012 | |||
4013 | data.addr = 0; | ||
4014 | data.period = event->hw.last_period; | ||
4015 | regs = get_irq_regs(); | ||
4016 | /* | ||
4017 | * In case we exclude kernel IPs or are somehow not in interrupt | ||
4018 | * context, provide the next best thing, the user IP. | ||
4019 | */ | ||
4020 | if ((event->attr.exclude_kernel || !regs) && | ||
4021 | !event->attr.exclude_user) | ||
4022 | regs = task_pt_regs(current); | ||
4023 | |||
4024 | if (regs) { | ||
4025 | if (!(event->attr.exclude_idle && current->pid == 0)) | ||
4026 | if (perf_event_overflow(event, 0, &data, regs)) | ||
4027 | ret = HRTIMER_NORESTART; | ||
4028 | } | ||
4029 | |||
4030 | period = max_t(u64, 10000, event->hw.sample_period); | ||
4031 | hrtimer_forward_now(hrtimer, ns_to_ktime(period)); | ||
4032 | |||
4033 | return ret; | ||
4034 | } | ||
4035 | |||
4036 | static void perf_swevent_start_hrtimer(struct perf_event *event) | ||
4037 | { | ||
4038 | struct hw_perf_event *hwc = &event->hw; | ||
4039 | |||
4040 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
4041 | hwc->hrtimer.function = perf_swevent_hrtimer; | ||
4042 | if (hwc->sample_period) { | ||
4043 | u64 period; | ||
4044 | |||
4045 | if (hwc->remaining) { | ||
4046 | if (hwc->remaining < 0) | ||
4047 | period = 10000; | ||
4048 | else | ||
4049 | period = hwc->remaining; | ||
4050 | hwc->remaining = 0; | ||
4051 | } else { | ||
4052 | period = max_t(u64, 10000, hwc->sample_period); | ||
4053 | } | ||
4054 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
4055 | ns_to_ktime(period), 0, | ||
4056 | HRTIMER_MODE_REL, 0); | ||
4057 | } | ||
4058 | } | ||
4059 | |||
4060 | static void perf_swevent_cancel_hrtimer(struct perf_event *event) | ||
4061 | { | ||
4062 | struct hw_perf_event *hwc = &event->hw; | ||
4063 | |||
4064 | if (hwc->sample_period) { | ||
4065 | ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); | ||
4066 | hwc->remaining = ktime_to_ns(remaining); | ||
4067 | |||
4068 | hrtimer_cancel(&hwc->hrtimer); | ||
4069 | } | ||
4070 | } | ||
4071 | |||
4072 | /* | ||
4073 | * Software event: cpu wall time clock | ||
4074 | */ | ||
4075 | |||
4076 | static void cpu_clock_perf_event_update(struct perf_event *event) | ||
4077 | { | ||
4078 | int cpu = raw_smp_processor_id(); | ||
4079 | s64 prev; | ||
4080 | u64 now; | ||
4081 | |||
4082 | now = cpu_clock(cpu); | ||
4083 | prev = atomic64_read(&event->hw.prev_count); | ||
4084 | atomic64_set(&event->hw.prev_count, now); | ||
4085 | atomic64_add(now - prev, &event->count); | ||
4086 | } | ||
4087 | |||
4088 | static int cpu_clock_perf_event_enable(struct perf_event *event) | ||
4089 | { | ||
4090 | struct hw_perf_event *hwc = &event->hw; | ||
4091 | int cpu = raw_smp_processor_id(); | ||
4092 | |||
4093 | atomic64_set(&hwc->prev_count, cpu_clock(cpu)); | ||
4094 | perf_swevent_start_hrtimer(event); | ||
4095 | |||
4096 | return 0; | ||
4097 | } | ||
4098 | |||
4099 | static void cpu_clock_perf_event_disable(struct perf_event *event) | ||
4100 | { | ||
4101 | perf_swevent_cancel_hrtimer(event); | ||
4102 | cpu_clock_perf_event_update(event); | ||
4103 | } | ||
4104 | |||
4105 | static void cpu_clock_perf_event_read(struct perf_event *event) | ||
4106 | { | ||
4107 | cpu_clock_perf_event_update(event); | ||
4108 | } | ||
4109 | |||
4110 | static const struct pmu perf_ops_cpu_clock = { | ||
4111 | .enable = cpu_clock_perf_event_enable, | ||
4112 | .disable = cpu_clock_perf_event_disable, | ||
4113 | .read = cpu_clock_perf_event_read, | ||
4114 | }; | ||
4115 | |||
4116 | /* | ||
4117 | * Software event: task time clock | ||
4118 | */ | ||
4119 | |||
4120 | static void task_clock_perf_event_update(struct perf_event *event, u64 now) | ||
4121 | { | ||
4122 | u64 prev; | ||
4123 | s64 delta; | ||
4124 | |||
4125 | prev = atomic64_xchg(&event->hw.prev_count, now); | ||
4126 | delta = now - prev; | ||
4127 | atomic64_add(delta, &event->count); | ||
4128 | } | ||
4129 | |||
4130 | static int task_clock_perf_event_enable(struct perf_event *event) | ||
4131 | { | ||
4132 | struct hw_perf_event *hwc = &event->hw; | ||
4133 | u64 now; | ||
4134 | |||
4135 | now = event->ctx->time; | ||
4136 | |||
4137 | atomic64_set(&hwc->prev_count, now); | ||
4138 | |||
4139 | perf_swevent_start_hrtimer(event); | ||
4140 | |||
4141 | return 0; | ||
4142 | } | ||
4143 | |||
4144 | static void task_clock_perf_event_disable(struct perf_event *event) | ||
4145 | { | ||
4146 | perf_swevent_cancel_hrtimer(event); | ||
4147 | task_clock_perf_event_update(event, event->ctx->time); | ||
4148 | |||
4149 | } | ||
4150 | |||
4151 | static void task_clock_perf_event_read(struct perf_event *event) | ||
4152 | { | ||
4153 | u64 time; | ||
4154 | |||
4155 | if (!in_nmi()) { | ||
4156 | update_context_time(event->ctx); | ||
4157 | time = event->ctx->time; | ||
4158 | } else { | ||
4159 | u64 now = perf_clock(); | ||
4160 | u64 delta = now - event->ctx->timestamp; | ||
4161 | time = event->ctx->time + delta; | ||
4162 | } | ||
4163 | |||
4164 | task_clock_perf_event_update(event, time); | ||
4165 | } | ||
4166 | |||
4167 | static const struct pmu perf_ops_task_clock = { | ||
4168 | .enable = task_clock_perf_event_enable, | ||
4169 | .disable = task_clock_perf_event_disable, | ||
4170 | .read = task_clock_perf_event_read, | ||
4171 | }; | ||
4172 | |||
4173 | #ifdef CONFIG_EVENT_PROFILE | ||
4174 | |||
4175 | void perf_tp_event(int event_id, u64 addr, u64 count, void *record, | ||
4176 | int entry_size) | ||
4177 | { | ||
4178 | struct perf_raw_record raw = { | ||
4179 | .size = entry_size, | ||
4180 | .data = record, | ||
4181 | }; | ||
4182 | |||
4183 | struct perf_sample_data data = { | ||
4184 | .addr = addr, | ||
4185 | .raw = &raw, | ||
4186 | }; | ||
4187 | |||
4188 | struct pt_regs *regs = get_irq_regs(); | ||
4189 | |||
4190 | if (!regs) | ||
4191 | regs = task_pt_regs(current); | ||
4192 | |||
4193 | /* Trace events already protected against recursion */ | ||
4194 | do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, | ||
4195 | &data, regs); | ||
4196 | } | ||
4197 | EXPORT_SYMBOL_GPL(perf_tp_event); | ||
4198 | |||
4199 | static int perf_tp_event_match(struct perf_event *event, | ||
4200 | struct perf_sample_data *data) | ||
4201 | { | ||
4202 | void *record = data->raw->data; | ||
4203 | |||
4204 | if (likely(!event->filter) || filter_match_preds(event->filter, record)) | ||
4205 | return 1; | ||
4206 | return 0; | ||
4207 | } | ||
4208 | |||
4209 | static void tp_perf_event_destroy(struct perf_event *event) | ||
4210 | { | ||
4211 | ftrace_profile_disable(event->attr.config); | ||
4212 | } | ||
4213 | |||
4214 | static const struct pmu *tp_perf_event_init(struct perf_event *event) | ||
4215 | { | ||
4216 | /* | ||
4217 | * Raw tracepoint data is a severe data leak, only allow root to | ||
4218 | * have these. | ||
4219 | */ | ||
4220 | if ((event->attr.sample_type & PERF_SAMPLE_RAW) && | ||
4221 | perf_paranoid_tracepoint_raw() && | ||
4222 | !capable(CAP_SYS_ADMIN)) | ||
4223 | return ERR_PTR(-EPERM); | ||
4224 | |||
4225 | if (ftrace_profile_enable(event->attr.config)) | ||
4226 | return NULL; | ||
4227 | |||
4228 | event->destroy = tp_perf_event_destroy; | ||
4229 | |||
4230 | return &perf_ops_generic; | ||
4231 | } | ||
4232 | |||
4233 | static int perf_event_set_filter(struct perf_event *event, void __user *arg) | ||
4234 | { | ||
4235 | char *filter_str; | ||
4236 | int ret; | ||
4237 | |||
4238 | if (event->attr.type != PERF_TYPE_TRACEPOINT) | ||
4239 | return -EINVAL; | ||
4240 | |||
4241 | filter_str = strndup_user(arg, PAGE_SIZE); | ||
4242 | if (IS_ERR(filter_str)) | ||
4243 | return PTR_ERR(filter_str); | ||
4244 | |||
4245 | ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); | ||
4246 | |||
4247 | kfree(filter_str); | ||
4248 | return ret; | ||
4249 | } | ||
4250 | |||
4251 | static void perf_event_free_filter(struct perf_event *event) | ||
4252 | { | ||
4253 | ftrace_profile_free_filter(event); | ||
4254 | } | ||
4255 | |||
4256 | #else | ||
4257 | |||
4258 | static int perf_tp_event_match(struct perf_event *event, | ||
4259 | struct perf_sample_data *data) | ||
4260 | { | ||
4261 | return 1; | ||
4262 | } | ||
4263 | |||
4264 | static const struct pmu *tp_perf_event_init(struct perf_event *event) | ||
4265 | { | ||
4266 | return NULL; | ||
4267 | } | ||
4268 | |||
4269 | static int perf_event_set_filter(struct perf_event *event, void __user *arg) | ||
4270 | { | ||
4271 | return -ENOENT; | ||
4272 | } | ||
4273 | |||
4274 | static void perf_event_free_filter(struct perf_event *event) | ||
4275 | { | ||
4276 | } | ||
4277 | |||
4278 | #endif /* CONFIG_EVENT_PROFILE */ | ||
4279 | |||
4280 | #ifdef CONFIG_HAVE_HW_BREAKPOINT | ||
4281 | static void bp_perf_event_destroy(struct perf_event *event) | ||
4282 | { | ||
4283 | release_bp_slot(event); | ||
4284 | } | ||
4285 | |||
4286 | static const struct pmu *bp_perf_event_init(struct perf_event *bp) | ||
4287 | { | ||
4288 | int err; | ||
4289 | /* | ||
4290 | * The breakpoint is already filled if we haven't created the counter | ||
4291 | * through perf syscall | ||
4292 | * FIXME: manage to get trigerred to NULL if it comes from syscalls | ||
4293 | */ | ||
4294 | if (!bp->callback) | ||
4295 | err = register_perf_hw_breakpoint(bp); | ||
4296 | else | ||
4297 | err = __register_perf_hw_breakpoint(bp); | ||
4298 | if (err) | ||
4299 | return ERR_PTR(err); | ||
4300 | |||
4301 | bp->destroy = bp_perf_event_destroy; | ||
4302 | |||
4303 | return &perf_ops_bp; | ||
4304 | } | ||
4305 | |||
4306 | void perf_bp_event(struct perf_event *bp, void *data) | ||
4307 | { | ||
4308 | struct perf_sample_data sample; | ||
4309 | struct pt_regs *regs = data; | ||
4310 | |||
4311 | sample.addr = bp->attr.bp_addr; | ||
4312 | |||
4313 | if (!perf_exclude_event(bp, regs)) | ||
4314 | perf_swevent_add(bp, 1, 1, &sample, regs); | ||
4315 | } | ||
4316 | #else | ||
4317 | static const struct pmu *bp_perf_event_init(struct perf_event *bp) | ||
4318 | { | ||
4319 | return NULL; | ||
4320 | } | ||
4321 | |||
4322 | void perf_bp_event(struct perf_event *bp, void *regs) | ||
4323 | { | ||
4324 | } | ||
4325 | #endif | ||
4326 | |||
4327 | atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX]; | ||
4328 | |||
4329 | static void sw_perf_event_destroy(struct perf_event *event) | ||
4330 | { | ||
4331 | u64 event_id = event->attr.config; | ||
4332 | |||
4333 | WARN_ON(event->parent); | ||
4334 | |||
4335 | atomic_dec(&perf_swevent_enabled[event_id]); | ||
4336 | } | ||
4337 | |||
4338 | static const struct pmu *sw_perf_event_init(struct perf_event *event) | ||
4339 | { | ||
4340 | const struct pmu *pmu = NULL; | ||
4341 | u64 event_id = event->attr.config; | ||
4342 | |||
4343 | /* | ||
4344 | * Software events (currently) can't in general distinguish | ||
4345 | * between user, kernel and hypervisor events. | ||
4346 | * However, context switches and cpu migrations are considered | ||
4347 | * to be kernel events, and page faults are never hypervisor | ||
4348 | * events. | ||
4349 | */ | ||
4350 | switch (event_id) { | ||
4351 | case PERF_COUNT_SW_CPU_CLOCK: | ||
4352 | pmu = &perf_ops_cpu_clock; | ||
4353 | |||
4354 | break; | ||
4355 | case PERF_COUNT_SW_TASK_CLOCK: | ||
4356 | /* | ||
4357 | * If the user instantiates this as a per-cpu event, | ||
4358 | * use the cpu_clock event instead. | ||
4359 | */ | ||
4360 | if (event->ctx->task) | ||
4361 | pmu = &perf_ops_task_clock; | ||
4362 | else | ||
4363 | pmu = &perf_ops_cpu_clock; | ||
4364 | |||
4365 | break; | ||
4366 | case PERF_COUNT_SW_PAGE_FAULTS: | ||
4367 | case PERF_COUNT_SW_PAGE_FAULTS_MIN: | ||
4368 | case PERF_COUNT_SW_PAGE_FAULTS_MAJ: | ||
4369 | case PERF_COUNT_SW_CONTEXT_SWITCHES: | ||
4370 | case PERF_COUNT_SW_CPU_MIGRATIONS: | ||
4371 | case PERF_COUNT_SW_ALIGNMENT_FAULTS: | ||
4372 | case PERF_COUNT_SW_EMULATION_FAULTS: | ||
4373 | if (!event->parent) { | ||
4374 | atomic_inc(&perf_swevent_enabled[event_id]); | ||
4375 | event->destroy = sw_perf_event_destroy; | ||
4376 | } | ||
4377 | pmu = &perf_ops_generic; | ||
4378 | break; | ||
4379 | } | ||
4380 | |||
4381 | return pmu; | ||
4382 | } | ||
4383 | |||
4384 | /* | ||
4385 | * Allocate and initialize a event structure | ||
4386 | */ | ||
4387 | static struct perf_event * | ||
4388 | perf_event_alloc(struct perf_event_attr *attr, | ||
4389 | int cpu, | ||
4390 | struct perf_event_context *ctx, | ||
4391 | struct perf_event *group_leader, | ||
4392 | struct perf_event *parent_event, | ||
4393 | perf_callback_t callback, | ||
4394 | gfp_t gfpflags) | ||
4395 | { | ||
4396 | const struct pmu *pmu; | ||
4397 | struct perf_event *event; | ||
4398 | struct hw_perf_event *hwc; | ||
4399 | long err; | ||
4400 | |||
4401 | event = kzalloc(sizeof(*event), gfpflags); | ||
4402 | if (!event) | ||
4403 | return ERR_PTR(-ENOMEM); | ||
4404 | |||
4405 | /* | ||
4406 | * Single events are their own group leaders, with an | ||
4407 | * empty sibling list: | ||
4408 | */ | ||
4409 | if (!group_leader) | ||
4410 | group_leader = event; | ||
4411 | |||
4412 | mutex_init(&event->child_mutex); | ||
4413 | INIT_LIST_HEAD(&event->child_list); | ||
4414 | |||
4415 | INIT_LIST_HEAD(&event->group_entry); | ||
4416 | INIT_LIST_HEAD(&event->event_entry); | ||
4417 | INIT_LIST_HEAD(&event->sibling_list); | ||
4418 | init_waitqueue_head(&event->waitq); | ||
4419 | |||
4420 | mutex_init(&event->mmap_mutex); | ||
4421 | |||
4422 | event->cpu = cpu; | ||
4423 | event->attr = *attr; | ||
4424 | event->group_leader = group_leader; | ||
4425 | event->pmu = NULL; | ||
4426 | event->ctx = ctx; | ||
4427 | event->oncpu = -1; | ||
4428 | |||
4429 | event->parent = parent_event; | ||
4430 | |||
4431 | event->ns = get_pid_ns(current->nsproxy->pid_ns); | ||
4432 | event->id = atomic64_inc_return(&perf_event_id); | ||
4433 | |||
4434 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
4435 | |||
4436 | if (!callback && parent_event) | ||
4437 | callback = parent_event->callback; | ||
4438 | |||
4439 | event->callback = callback; | ||
4440 | |||
4441 | if (attr->disabled) | ||
4442 | event->state = PERF_EVENT_STATE_OFF; | ||
4443 | |||
4444 | pmu = NULL; | ||
4445 | |||
4446 | hwc = &event->hw; | ||
4447 | hwc->sample_period = attr->sample_period; | ||
4448 | if (attr->freq && attr->sample_freq) | ||
4449 | hwc->sample_period = 1; | ||
4450 | hwc->last_period = hwc->sample_period; | ||
4451 | |||
4452 | atomic64_set(&hwc->period_left, hwc->sample_period); | ||
4453 | |||
4454 | /* | ||
4455 | * we currently do not support PERF_FORMAT_GROUP on inherited events | ||
4456 | */ | ||
4457 | if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) | ||
4458 | goto done; | ||
4459 | |||
4460 | switch (attr->type) { | ||
4461 | case PERF_TYPE_RAW: | ||
4462 | case PERF_TYPE_HARDWARE: | ||
4463 | case PERF_TYPE_HW_CACHE: | ||
4464 | pmu = hw_perf_event_init(event); | ||
4465 | break; | ||
4466 | |||
4467 | case PERF_TYPE_SOFTWARE: | ||
4468 | pmu = sw_perf_event_init(event); | ||
4469 | break; | ||
4470 | |||
4471 | case PERF_TYPE_TRACEPOINT: | ||
4472 | pmu = tp_perf_event_init(event); | ||
4473 | break; | ||
4474 | |||
4475 | case PERF_TYPE_BREAKPOINT: | ||
4476 | pmu = bp_perf_event_init(event); | ||
4477 | break; | ||
4478 | |||
4479 | |||
4480 | default: | ||
4481 | break; | ||
4482 | } | ||
4483 | done: | ||
4484 | err = 0; | ||
4485 | if (!pmu) | ||
4486 | err = -EINVAL; | ||
4487 | else if (IS_ERR(pmu)) | ||
4488 | err = PTR_ERR(pmu); | ||
4489 | |||
4490 | if (err) { | ||
4491 | if (event->ns) | ||
4492 | put_pid_ns(event->ns); | ||
4493 | kfree(event); | ||
4494 | return ERR_PTR(err); | ||
4495 | } | ||
4496 | |||
4497 | event->pmu = pmu; | ||
4498 | |||
4499 | if (!event->parent) { | ||
4500 | atomic_inc(&nr_events); | ||
4501 | if (event->attr.mmap) | ||
4502 | atomic_inc(&nr_mmap_events); | ||
4503 | if (event->attr.comm) | ||
4504 | atomic_inc(&nr_comm_events); | ||
4505 | if (event->attr.task) | ||
4506 | atomic_inc(&nr_task_events); | ||
4507 | } | ||
4508 | |||
4509 | return event; | ||
4510 | } | ||
4511 | |||
4512 | static int perf_copy_attr(struct perf_event_attr __user *uattr, | ||
4513 | struct perf_event_attr *attr) | ||
4514 | { | ||
4515 | u32 size; | ||
4516 | int ret; | ||
4517 | |||
4518 | if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) | ||
4519 | return -EFAULT; | ||
4520 | |||
4521 | /* | ||
4522 | * zero the full structure, so that a short copy will be nice. | ||
4523 | */ | ||
4524 | memset(attr, 0, sizeof(*attr)); | ||
4525 | |||
4526 | ret = get_user(size, &uattr->size); | ||
4527 | if (ret) | ||
4528 | return ret; | ||
4529 | |||
4530 | if (size > PAGE_SIZE) /* silly large */ | ||
4531 | goto err_size; | ||
4532 | |||
4533 | if (!size) /* abi compat */ | ||
4534 | size = PERF_ATTR_SIZE_VER0; | ||
4535 | |||
4536 | if (size < PERF_ATTR_SIZE_VER0) | ||
4537 | goto err_size; | ||
4538 | |||
4539 | /* | ||
4540 | * If we're handed a bigger struct than we know of, | ||
4541 | * ensure all the unknown bits are 0 - i.e. new | ||
4542 | * user-space does not rely on any kernel feature | ||
4543 | * extensions we dont know about yet. | ||
4544 | */ | ||
4545 | if (size > sizeof(*attr)) { | ||
4546 | unsigned char __user *addr; | ||
4547 | unsigned char __user *end; | ||
4548 | unsigned char val; | ||
4549 | |||
4550 | addr = (void __user *)uattr + sizeof(*attr); | ||
4551 | end = (void __user *)uattr + size; | ||
4552 | |||
4553 | for (; addr < end; addr++) { | ||
4554 | ret = get_user(val, addr); | ||
4555 | if (ret) | ||
4556 | return ret; | ||
4557 | if (val) | ||
4558 | goto err_size; | ||
4559 | } | ||
4560 | size = sizeof(*attr); | ||
4561 | } | ||
4562 | |||
4563 | ret = copy_from_user(attr, uattr, size); | ||
4564 | if (ret) | ||
4565 | return -EFAULT; | ||
4566 | |||
4567 | /* | ||
4568 | * If the type exists, the corresponding creation will verify | ||
4569 | * the attr->config. | ||
4570 | */ | ||
4571 | if (attr->type >= PERF_TYPE_MAX) | ||
4572 | return -EINVAL; | ||
4573 | |||
4574 | if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) | ||
4575 | return -EINVAL; | ||
4576 | |||
4577 | if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) | ||
4578 | return -EINVAL; | ||
4579 | |||
4580 | if (attr->read_format & ~(PERF_FORMAT_MAX-1)) | ||
4581 | return -EINVAL; | ||
4582 | |||
4583 | out: | ||
4584 | return ret; | ||
4585 | |||
4586 | err_size: | ||
4587 | put_user(sizeof(*attr), &uattr->size); | ||
4588 | ret = -E2BIG; | ||
4589 | goto out; | ||
4590 | } | ||
4591 | |||
4592 | static int perf_event_set_output(struct perf_event *event, int output_fd) | ||
4593 | { | ||
4594 | struct perf_event *output_event = NULL; | ||
4595 | struct file *output_file = NULL; | ||
4596 | struct perf_event *old_output; | ||
4597 | int fput_needed = 0; | ||
4598 | int ret = -EINVAL; | ||
4599 | |||
4600 | if (!output_fd) | ||
4601 | goto set; | ||
4602 | |||
4603 | output_file = fget_light(output_fd, &fput_needed); | ||
4604 | if (!output_file) | ||
4605 | return -EBADF; | ||
4606 | |||
4607 | if (output_file->f_op != &perf_fops) | ||
4608 | goto out; | ||
4609 | |||
4610 | output_event = output_file->private_data; | ||
4611 | |||
4612 | /* Don't chain output fds */ | ||
4613 | if (output_event->output) | ||
4614 | goto out; | ||
4615 | |||
4616 | /* Don't set an output fd when we already have an output channel */ | ||
4617 | if (event->data) | ||
4618 | goto out; | ||
4619 | |||
4620 | atomic_long_inc(&output_file->f_count); | ||
4621 | |||
4622 | set: | ||
4623 | mutex_lock(&event->mmap_mutex); | ||
4624 | old_output = event->output; | ||
4625 | rcu_assign_pointer(event->output, output_event); | ||
4626 | mutex_unlock(&event->mmap_mutex); | ||
4627 | |||
4628 | if (old_output) { | ||
4629 | /* | ||
4630 | * we need to make sure no existing perf_output_*() | ||
4631 | * is still referencing this event. | ||
4632 | */ | ||
4633 | synchronize_rcu(); | ||
4634 | fput(old_output->filp); | ||
4635 | } | ||
4636 | |||
4637 | ret = 0; | ||
4638 | out: | ||
4639 | fput_light(output_file, fput_needed); | ||
4640 | return ret; | ||
4641 | } | ||
4642 | |||
4643 | /** | ||
4644 | * sys_perf_event_open - open a performance event, associate it to a task/cpu | ||
4645 | * | ||
4646 | * @attr_uptr: event_id type attributes for monitoring/sampling | ||
4647 | * @pid: target pid | ||
4648 | * @cpu: target cpu | ||
4649 | * @group_fd: group leader event fd | ||
4650 | */ | ||
4651 | SYSCALL_DEFINE5(perf_event_open, | ||
4652 | struct perf_event_attr __user *, attr_uptr, | ||
4653 | pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) | ||
4654 | { | ||
4655 | struct perf_event *event, *group_leader; | ||
4656 | struct perf_event_attr attr; | ||
4657 | struct perf_event_context *ctx; | ||
4658 | struct file *event_file = NULL; | ||
4659 | struct file *group_file = NULL; | ||
4660 | int fput_needed = 0; | ||
4661 | int fput_needed2 = 0; | ||
4662 | int err; | ||
4663 | |||
4664 | /* for future expandability... */ | ||
4665 | if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT)) | ||
4666 | return -EINVAL; | ||
4667 | |||
4668 | err = perf_copy_attr(attr_uptr, &attr); | ||
4669 | if (err) | ||
4670 | return err; | ||
4671 | |||
4672 | if (!attr.exclude_kernel) { | ||
4673 | if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) | ||
4674 | return -EACCES; | ||
4675 | } | ||
4676 | |||
4677 | if (attr.freq) { | ||
4678 | if (attr.sample_freq > sysctl_perf_event_sample_rate) | ||
4679 | return -EINVAL; | ||
4680 | } | ||
4681 | |||
4682 | /* | ||
4683 | * Get the target context (task or percpu): | ||
4684 | */ | ||
4685 | ctx = find_get_context(pid, cpu); | ||
4686 | if (IS_ERR(ctx)) | ||
4687 | return PTR_ERR(ctx); | ||
4688 | |||
4689 | /* | ||
4690 | * Look up the group leader (we will attach this event to it): | ||
4691 | */ | ||
4692 | group_leader = NULL; | ||
4693 | if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) { | ||
4694 | err = -EINVAL; | ||
4695 | group_file = fget_light(group_fd, &fput_needed); | ||
4696 | if (!group_file) | ||
4697 | goto err_put_context; | ||
4698 | if (group_file->f_op != &perf_fops) | ||
4699 | goto err_put_context; | ||
4700 | |||
4701 | group_leader = group_file->private_data; | ||
4702 | /* | ||
4703 | * Do not allow a recursive hierarchy (this new sibling | ||
4704 | * becoming part of another group-sibling): | ||
4705 | */ | ||
4706 | if (group_leader->group_leader != group_leader) | ||
4707 | goto err_put_context; | ||
4708 | /* | ||
4709 | * Do not allow to attach to a group in a different | ||
4710 | * task or CPU context: | ||
4711 | */ | ||
4712 | if (group_leader->ctx != ctx) | ||
4713 | goto err_put_context; | ||
4714 | /* | ||
4715 | * Only a group leader can be exclusive or pinned | ||
4716 | */ | ||
4717 | if (attr.exclusive || attr.pinned) | ||
4718 | goto err_put_context; | ||
4719 | } | ||
4720 | |||
4721 | event = perf_event_alloc(&attr, cpu, ctx, group_leader, | ||
4722 | NULL, NULL, GFP_KERNEL); | ||
4723 | err = PTR_ERR(event); | ||
4724 | if (IS_ERR(event)) | ||
4725 | goto err_put_context; | ||
4726 | |||
4727 | err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0); | ||
4728 | if (err < 0) | ||
4729 | goto err_free_put_context; | ||
4730 | |||
4731 | event_file = fget_light(err, &fput_needed2); | ||
4732 | if (!event_file) | ||
4733 | goto err_free_put_context; | ||
4734 | |||
4735 | if (flags & PERF_FLAG_FD_OUTPUT) { | ||
4736 | err = perf_event_set_output(event, group_fd); | ||
4737 | if (err) | ||
4738 | goto err_fput_free_put_context; | ||
4739 | } | ||
4740 | |||
4741 | event->filp = event_file; | ||
4742 | WARN_ON_ONCE(ctx->parent_ctx); | ||
4743 | mutex_lock(&ctx->mutex); | ||
4744 | perf_install_in_context(ctx, event, cpu); | ||
4745 | ++ctx->generation; | ||
4746 | mutex_unlock(&ctx->mutex); | ||
4747 | |||
4748 | event->owner = current; | ||
4749 | get_task_struct(current); | ||
4750 | mutex_lock(¤t->perf_event_mutex); | ||
4751 | list_add_tail(&event->owner_entry, ¤t->perf_event_list); | ||
4752 | mutex_unlock(¤t->perf_event_mutex); | ||
4753 | |||
4754 | err_fput_free_put_context: | ||
4755 | fput_light(event_file, fput_needed2); | ||
4756 | |||
4757 | err_free_put_context: | ||
4758 | if (err < 0) | ||
4759 | kfree(event); | ||
4760 | |||
4761 | err_put_context: | ||
4762 | if (err < 0) | ||
4763 | put_ctx(ctx); | ||
4764 | |||
4765 | fput_light(group_file, fput_needed); | ||
4766 | |||
4767 | return err; | ||
4768 | } | ||
4769 | |||
4770 | /** | ||
4771 | * perf_event_create_kernel_counter | ||
4772 | * | ||
4773 | * @attr: attributes of the counter to create | ||
4774 | * @cpu: cpu in which the counter is bound | ||
4775 | * @pid: task to profile | ||
4776 | */ | ||
4777 | struct perf_event * | ||
4778 | perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, | ||
4779 | pid_t pid, perf_callback_t callback) | ||
4780 | { | ||
4781 | struct perf_event *event; | ||
4782 | struct perf_event_context *ctx; | ||
4783 | int err; | ||
4784 | |||
4785 | /* | ||
4786 | * Get the target context (task or percpu): | ||
4787 | */ | ||
4788 | |||
4789 | ctx = find_get_context(pid, cpu); | ||
4790 | if (IS_ERR(ctx)) { | ||
4791 | err = PTR_ERR(ctx); | ||
4792 | goto err_exit; | ||
4793 | } | ||
4794 | |||
4795 | event = perf_event_alloc(attr, cpu, ctx, NULL, | ||
4796 | NULL, callback, GFP_KERNEL); | ||
4797 | if (IS_ERR(event)) { | ||
4798 | err = PTR_ERR(event); | ||
4799 | goto err_put_context; | ||
4800 | } | ||
4801 | |||
4802 | event->filp = NULL; | ||
4803 | WARN_ON_ONCE(ctx->parent_ctx); | ||
4804 | mutex_lock(&ctx->mutex); | ||
4805 | perf_install_in_context(ctx, event, cpu); | ||
4806 | ++ctx->generation; | ||
4807 | mutex_unlock(&ctx->mutex); | ||
4808 | |||
4809 | event->owner = current; | ||
4810 | get_task_struct(current); | ||
4811 | mutex_lock(¤t->perf_event_mutex); | ||
4812 | list_add_tail(&event->owner_entry, ¤t->perf_event_list); | ||
4813 | mutex_unlock(¤t->perf_event_mutex); | ||
4814 | |||
4815 | return event; | ||
4816 | |||
4817 | err_put_context: | ||
4818 | put_ctx(ctx); | ||
4819 | err_exit: | ||
4820 | return ERR_PTR(err); | ||
4821 | } | ||
4822 | EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); | ||
4823 | |||
4824 | /* | ||
4825 | * inherit a event from parent task to child task: | ||
4826 | */ | ||
4827 | static struct perf_event * | ||
4828 | inherit_event(struct perf_event *parent_event, | ||
4829 | struct task_struct *parent, | ||
4830 | struct perf_event_context *parent_ctx, | ||
4831 | struct task_struct *child, | ||
4832 | struct perf_event *group_leader, | ||
4833 | struct perf_event_context *child_ctx) | ||
4834 | { | ||
4835 | struct perf_event *child_event; | ||
4836 | |||
4837 | /* | ||
4838 | * Instead of creating recursive hierarchies of events, | ||
4839 | * we link inherited events back to the original parent, | ||
4840 | * which has a filp for sure, which we use as the reference | ||
4841 | * count: | ||
4842 | */ | ||
4843 | if (parent_event->parent) | ||
4844 | parent_event = parent_event->parent; | ||
4845 | |||
4846 | child_event = perf_event_alloc(&parent_event->attr, | ||
4847 | parent_event->cpu, child_ctx, | ||
4848 | group_leader, parent_event, | ||
4849 | NULL, GFP_KERNEL); | ||
4850 | if (IS_ERR(child_event)) | ||
4851 | return child_event; | ||
4852 | get_ctx(child_ctx); | ||
4853 | |||
4854 | /* | ||
4855 | * Make the child state follow the state of the parent event, | ||
4856 | * not its attr.disabled bit. We hold the parent's mutex, | ||
4857 | * so we won't race with perf_event_{en, dis}able_family. | ||
4858 | */ | ||
4859 | if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) | ||
4860 | child_event->state = PERF_EVENT_STATE_INACTIVE; | ||
4861 | else | ||
4862 | child_event->state = PERF_EVENT_STATE_OFF; | ||
4863 | |||
4864 | if (parent_event->attr.freq) | ||
4865 | child_event->hw.sample_period = parent_event->hw.sample_period; | ||
4866 | |||
4867 | child_event->overflow_handler = parent_event->overflow_handler; | ||
4868 | |||
4869 | /* | ||
4870 | * Link it up in the child's context: | ||
4871 | */ | ||
4872 | add_event_to_ctx(child_event, child_ctx); | ||
4873 | |||
4874 | /* | ||
4875 | * Get a reference to the parent filp - we will fput it | ||
4876 | * when the child event exits. This is safe to do because | ||
4877 | * we are in the parent and we know that the filp still | ||
4878 | * exists and has a nonzero count: | ||
4879 | */ | ||
4880 | atomic_long_inc(&parent_event->filp->f_count); | ||
4881 | |||
4882 | /* | ||
4883 | * Link this into the parent event's child list | ||
4884 | */ | ||
4885 | WARN_ON_ONCE(parent_event->ctx->parent_ctx); | ||
4886 | mutex_lock(&parent_event->child_mutex); | ||
4887 | list_add_tail(&child_event->child_list, &parent_event->child_list); | ||
4888 | mutex_unlock(&parent_event->child_mutex); | ||
4889 | |||
4890 | return child_event; | ||
4891 | } | ||
4892 | |||
4893 | static int inherit_group(struct perf_event *parent_event, | ||
4894 | struct task_struct *parent, | ||
4895 | struct perf_event_context *parent_ctx, | ||
4896 | struct task_struct *child, | ||
4897 | struct perf_event_context *child_ctx) | ||
4898 | { | ||
4899 | struct perf_event *leader; | ||
4900 | struct perf_event *sub; | ||
4901 | struct perf_event *child_ctr; | ||
4902 | |||
4903 | leader = inherit_event(parent_event, parent, parent_ctx, | ||
4904 | child, NULL, child_ctx); | ||
4905 | if (IS_ERR(leader)) | ||
4906 | return PTR_ERR(leader); | ||
4907 | list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { | ||
4908 | child_ctr = inherit_event(sub, parent, parent_ctx, | ||
4909 | child, leader, child_ctx); | ||
4910 | if (IS_ERR(child_ctr)) | ||
4911 | return PTR_ERR(child_ctr); | ||
4912 | } | ||
4913 | return 0; | ||
4914 | } | ||
4915 | |||
4916 | static void sync_child_event(struct perf_event *child_event, | ||
4917 | struct task_struct *child) | ||
4918 | { | ||
4919 | struct perf_event *parent_event = child_event->parent; | ||
4920 | u64 child_val; | ||
4921 | |||
4922 | if (child_event->attr.inherit_stat) | ||
4923 | perf_event_read_event(child_event, child); | ||
4924 | |||
4925 | child_val = atomic64_read(&child_event->count); | ||
4926 | |||
4927 | /* | ||
4928 | * Add back the child's count to the parent's count: | ||
4929 | */ | ||
4930 | atomic64_add(child_val, &parent_event->count); | ||
4931 | atomic64_add(child_event->total_time_enabled, | ||
4932 | &parent_event->child_total_time_enabled); | ||
4933 | atomic64_add(child_event->total_time_running, | ||
4934 | &parent_event->child_total_time_running); | ||
4935 | |||
4936 | /* | ||
4937 | * Remove this event from the parent's list | ||
4938 | */ | ||
4939 | WARN_ON_ONCE(parent_event->ctx->parent_ctx); | ||
4940 | mutex_lock(&parent_event->child_mutex); | ||
4941 | list_del_init(&child_event->child_list); | ||
4942 | mutex_unlock(&parent_event->child_mutex); | ||
4943 | |||
4944 | /* | ||
4945 | * Release the parent event, if this was the last | ||
4946 | * reference to it. | ||
4947 | */ | ||
4948 | fput(parent_event->filp); | ||
4949 | } | ||
4950 | |||
4951 | static void | ||
4952 | __perf_event_exit_task(struct perf_event *child_event, | ||
4953 | struct perf_event_context *child_ctx, | ||
4954 | struct task_struct *child) | ||
4955 | { | ||
4956 | struct perf_event *parent_event; | ||
4957 | |||
4958 | perf_event_remove_from_context(child_event); | ||
4959 | |||
4960 | parent_event = child_event->parent; | ||
4961 | /* | ||
4962 | * It can happen that parent exits first, and has events | ||
4963 | * that are still around due to the child reference. These | ||
4964 | * events need to be zapped - but otherwise linger. | ||
4965 | */ | ||
4966 | if (parent_event) { | ||
4967 | sync_child_event(child_event, child); | ||
4968 | free_event(child_event); | ||
4969 | } | ||
4970 | } | ||
4971 | |||
4972 | /* | ||
4973 | * When a child task exits, feed back event values to parent events. | ||
4974 | */ | ||
4975 | void perf_event_exit_task(struct task_struct *child) | ||
4976 | { | ||
4977 | struct perf_event *child_event, *tmp; | ||
4978 | struct perf_event_context *child_ctx; | ||
4979 | unsigned long flags; | ||
4980 | |||
4981 | if (likely(!child->perf_event_ctxp)) { | ||
4982 | perf_event_task(child, NULL, 0); | ||
4983 | return; | ||
4984 | } | ||
4985 | |||
4986 | local_irq_save(flags); | ||
4987 | /* | ||
4988 | * We can't reschedule here because interrupts are disabled, | ||
4989 | * and either child is current or it is a task that can't be | ||
4990 | * scheduled, so we are now safe from rescheduling changing | ||
4991 | * our context. | ||
4992 | */ | ||
4993 | child_ctx = child->perf_event_ctxp; | ||
4994 | __perf_event_task_sched_out(child_ctx); | ||
4995 | |||
4996 | /* | ||
4997 | * Take the context lock here so that if find_get_context is | ||
4998 | * reading child->perf_event_ctxp, we wait until it has | ||
4999 | * incremented the context's refcount before we do put_ctx below. | ||
5000 | */ | ||
5001 | spin_lock(&child_ctx->lock); | ||
5002 | child->perf_event_ctxp = NULL; | ||
5003 | /* | ||
5004 | * If this context is a clone; unclone it so it can't get | ||
5005 | * swapped to another process while we're removing all | ||
5006 | * the events from it. | ||
5007 | */ | ||
5008 | unclone_ctx(child_ctx); | ||
5009 | update_context_time(child_ctx); | ||
5010 | spin_unlock_irqrestore(&child_ctx->lock, flags); | ||
5011 | |||
5012 | /* | ||
5013 | * Report the task dead after unscheduling the events so that we | ||
5014 | * won't get any samples after PERF_RECORD_EXIT. We can however still | ||
5015 | * get a few PERF_RECORD_READ events. | ||
5016 | */ | ||
5017 | perf_event_task(child, child_ctx, 0); | ||
5018 | |||
5019 | /* | ||
5020 | * We can recurse on the same lock type through: | ||
5021 | * | ||
5022 | * __perf_event_exit_task() | ||
5023 | * sync_child_event() | ||
5024 | * fput(parent_event->filp) | ||
5025 | * perf_release() | ||
5026 | * mutex_lock(&ctx->mutex) | ||
5027 | * | ||
5028 | * But since its the parent context it won't be the same instance. | ||
5029 | */ | ||
5030 | mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING); | ||
5031 | |||
5032 | again: | ||
5033 | list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list, | ||
5034 | group_entry) | ||
5035 | __perf_event_exit_task(child_event, child_ctx, child); | ||
5036 | |||
5037 | /* | ||
5038 | * If the last event was a group event, it will have appended all | ||
5039 | * its siblings to the list, but we obtained 'tmp' before that which | ||
5040 | * will still point to the list head terminating the iteration. | ||
5041 | */ | ||
5042 | if (!list_empty(&child_ctx->group_list)) | ||
5043 | goto again; | ||
5044 | |||
5045 | mutex_unlock(&child_ctx->mutex); | ||
5046 | |||
5047 | put_ctx(child_ctx); | ||
5048 | } | ||
5049 | |||
5050 | /* | ||
5051 | * free an unexposed, unused context as created by inheritance by | ||
5052 | * init_task below, used by fork() in case of fail. | ||
5053 | */ | ||
5054 | void perf_event_free_task(struct task_struct *task) | ||
5055 | { | ||
5056 | struct perf_event_context *ctx = task->perf_event_ctxp; | ||
5057 | struct perf_event *event, *tmp; | ||
5058 | |||
5059 | if (!ctx) | ||
5060 | return; | ||
5061 | |||
5062 | mutex_lock(&ctx->mutex); | ||
5063 | again: | ||
5064 | list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) { | ||
5065 | struct perf_event *parent = event->parent; | ||
5066 | |||
5067 | if (WARN_ON_ONCE(!parent)) | ||
5068 | continue; | ||
5069 | |||
5070 | mutex_lock(&parent->child_mutex); | ||
5071 | list_del_init(&event->child_list); | ||
5072 | mutex_unlock(&parent->child_mutex); | ||
5073 | |||
5074 | fput(parent->filp); | ||
5075 | |||
5076 | list_del_event(event, ctx); | ||
5077 | free_event(event); | ||
5078 | } | ||
5079 | |||
5080 | if (!list_empty(&ctx->group_list)) | ||
5081 | goto again; | ||
5082 | |||
5083 | mutex_unlock(&ctx->mutex); | ||
5084 | |||
5085 | put_ctx(ctx); | ||
5086 | } | ||
5087 | |||
5088 | /* | ||
5089 | * Initialize the perf_event context in task_struct | ||
5090 | */ | ||
5091 | int perf_event_init_task(struct task_struct *child) | ||
5092 | { | ||
5093 | struct perf_event_context *child_ctx, *parent_ctx; | ||
5094 | struct perf_event_context *cloned_ctx; | ||
5095 | struct perf_event *event; | ||
5096 | struct task_struct *parent = current; | ||
5097 | int inherited_all = 1; | ||
5098 | int ret = 0; | ||
5099 | |||
5100 | child->perf_event_ctxp = NULL; | ||
5101 | |||
5102 | mutex_init(&child->perf_event_mutex); | ||
5103 | INIT_LIST_HEAD(&child->perf_event_list); | ||
5104 | |||
5105 | if (likely(!parent->perf_event_ctxp)) | ||
5106 | return 0; | ||
5107 | |||
5108 | /* | ||
5109 | * This is executed from the parent task context, so inherit | ||
5110 | * events that have been marked for cloning. | ||
5111 | * First allocate and initialize a context for the child. | ||
5112 | */ | ||
5113 | |||
5114 | child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL); | ||
5115 | if (!child_ctx) | ||
5116 | return -ENOMEM; | ||
5117 | |||
5118 | __perf_event_init_context(child_ctx, child); | ||
5119 | child->perf_event_ctxp = child_ctx; | ||
5120 | get_task_struct(child); | ||
5121 | |||
5122 | /* | ||
5123 | * If the parent's context is a clone, pin it so it won't get | ||
5124 | * swapped under us. | ||
5125 | */ | ||
5126 | parent_ctx = perf_pin_task_context(parent); | ||
5127 | |||
5128 | /* | ||
5129 | * No need to check if parent_ctx != NULL here; since we saw | ||
5130 | * it non-NULL earlier, the only reason for it to become NULL | ||
5131 | * is if we exit, and since we're currently in the middle of | ||
5132 | * a fork we can't be exiting at the same time. | ||
5133 | */ | ||
5134 | |||
5135 | /* | ||
5136 | * Lock the parent list. No need to lock the child - not PID | ||
5137 | * hashed yet and not running, so nobody can access it. | ||
5138 | */ | ||
5139 | mutex_lock(&parent_ctx->mutex); | ||
5140 | |||
5141 | /* | ||
5142 | * We dont have to disable NMIs - we are only looking at | ||
5143 | * the list, not manipulating it: | ||
5144 | */ | ||
5145 | list_for_each_entry(event, &parent_ctx->group_list, group_entry) { | ||
5146 | |||
5147 | if (!event->attr.inherit) { | ||
5148 | inherited_all = 0; | ||
5149 | continue; | ||
5150 | } | ||
5151 | |||
5152 | ret = inherit_group(event, parent, parent_ctx, | ||
5153 | child, child_ctx); | ||
5154 | if (ret) { | ||
5155 | inherited_all = 0; | ||
5156 | break; | ||
5157 | } | ||
5158 | } | ||
5159 | |||
5160 | if (inherited_all) { | ||
5161 | /* | ||
5162 | * Mark the child context as a clone of the parent | ||
5163 | * context, or of whatever the parent is a clone of. | ||
5164 | * Note that if the parent is a clone, it could get | ||
5165 | * uncloned at any point, but that doesn't matter | ||
5166 | * because the list of events and the generation | ||
5167 | * count can't have changed since we took the mutex. | ||
5168 | */ | ||
5169 | cloned_ctx = rcu_dereference(parent_ctx->parent_ctx); | ||
5170 | if (cloned_ctx) { | ||
5171 | child_ctx->parent_ctx = cloned_ctx; | ||
5172 | child_ctx->parent_gen = parent_ctx->parent_gen; | ||
5173 | } else { | ||
5174 | child_ctx->parent_ctx = parent_ctx; | ||
5175 | child_ctx->parent_gen = parent_ctx->generation; | ||
5176 | } | ||
5177 | get_ctx(child_ctx->parent_ctx); | ||
5178 | } | ||
5179 | |||
5180 | mutex_unlock(&parent_ctx->mutex); | ||
5181 | |||
5182 | perf_unpin_context(parent_ctx); | ||
5183 | |||
5184 | return ret; | ||
5185 | } | ||
5186 | |||
5187 | static void __cpuinit perf_event_init_cpu(int cpu) | ||
5188 | { | ||
5189 | struct perf_cpu_context *cpuctx; | ||
5190 | |||
5191 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
5192 | __perf_event_init_context(&cpuctx->ctx, NULL); | ||
5193 | |||
5194 | spin_lock(&perf_resource_lock); | ||
5195 | cpuctx->max_pertask = perf_max_events - perf_reserved_percpu; | ||
5196 | spin_unlock(&perf_resource_lock); | ||
5197 | |||
5198 | hw_perf_event_setup(cpu); | ||
5199 | } | ||
5200 | |||
5201 | #ifdef CONFIG_HOTPLUG_CPU | ||
5202 | static void __perf_event_exit_cpu(void *info) | ||
5203 | { | ||
5204 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
5205 | struct perf_event_context *ctx = &cpuctx->ctx; | ||
5206 | struct perf_event *event, *tmp; | ||
5207 | |||
5208 | list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) | ||
5209 | __perf_event_remove_from_context(event); | ||
5210 | } | ||
5211 | static void perf_event_exit_cpu(int cpu) | ||
5212 | { | ||
5213 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
5214 | struct perf_event_context *ctx = &cpuctx->ctx; | ||
5215 | |||
5216 | mutex_lock(&ctx->mutex); | ||
5217 | smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1); | ||
5218 | mutex_unlock(&ctx->mutex); | ||
5219 | } | ||
5220 | #else | ||
5221 | static inline void perf_event_exit_cpu(int cpu) { } | ||
5222 | #endif | ||
5223 | |||
5224 | static int __cpuinit | ||
5225 | perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) | ||
5226 | { | ||
5227 | unsigned int cpu = (long)hcpu; | ||
5228 | |||
5229 | switch (action) { | ||
5230 | |||
5231 | case CPU_UP_PREPARE: | ||
5232 | case CPU_UP_PREPARE_FROZEN: | ||
5233 | perf_event_init_cpu(cpu); | ||
5234 | break; | ||
5235 | |||
5236 | case CPU_ONLINE: | ||
5237 | case CPU_ONLINE_FROZEN: | ||
5238 | hw_perf_event_setup_online(cpu); | ||
5239 | break; | ||
5240 | |||
5241 | case CPU_DOWN_PREPARE: | ||
5242 | case CPU_DOWN_PREPARE_FROZEN: | ||
5243 | perf_event_exit_cpu(cpu); | ||
5244 | break; | ||
5245 | |||
5246 | default: | ||
5247 | break; | ||
5248 | } | ||
5249 | |||
5250 | return NOTIFY_OK; | ||
5251 | } | ||
5252 | |||
5253 | /* | ||
5254 | * This has to have a higher priority than migration_notifier in sched.c. | ||
5255 | */ | ||
5256 | static struct notifier_block __cpuinitdata perf_cpu_nb = { | ||
5257 | .notifier_call = perf_cpu_notify, | ||
5258 | .priority = 20, | ||
5259 | }; | ||
5260 | |||
5261 | void __init perf_event_init(void) | ||
5262 | { | ||
5263 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE, | ||
5264 | (void *)(long)smp_processor_id()); | ||
5265 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE, | ||
5266 | (void *)(long)smp_processor_id()); | ||
5267 | register_cpu_notifier(&perf_cpu_nb); | ||
5268 | } | ||
5269 | |||
5270 | static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf) | ||
5271 | { | ||
5272 | return sprintf(buf, "%d\n", perf_reserved_percpu); | ||
5273 | } | ||
5274 | |||
5275 | static ssize_t | ||
5276 | perf_set_reserve_percpu(struct sysdev_class *class, | ||
5277 | const char *buf, | ||
5278 | size_t count) | ||
5279 | { | ||
5280 | struct perf_cpu_context *cpuctx; | ||
5281 | unsigned long val; | ||
5282 | int err, cpu, mpt; | ||
5283 | |||
5284 | err = strict_strtoul(buf, 10, &val); | ||
5285 | if (err) | ||
5286 | return err; | ||
5287 | if (val > perf_max_events) | ||
5288 | return -EINVAL; | ||
5289 | |||
5290 | spin_lock(&perf_resource_lock); | ||
5291 | perf_reserved_percpu = val; | ||
5292 | for_each_online_cpu(cpu) { | ||
5293 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
5294 | spin_lock_irq(&cpuctx->ctx.lock); | ||
5295 | mpt = min(perf_max_events - cpuctx->ctx.nr_events, | ||
5296 | perf_max_events - perf_reserved_percpu); | ||
5297 | cpuctx->max_pertask = mpt; | ||
5298 | spin_unlock_irq(&cpuctx->ctx.lock); | ||
5299 | } | ||
5300 | spin_unlock(&perf_resource_lock); | ||
5301 | |||
5302 | return count; | ||
5303 | } | ||
5304 | |||
5305 | static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf) | ||
5306 | { | ||
5307 | return sprintf(buf, "%d\n", perf_overcommit); | ||
5308 | } | ||
5309 | |||
5310 | static ssize_t | ||
5311 | perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count) | ||
5312 | { | ||
5313 | unsigned long val; | ||
5314 | int err; | ||
5315 | |||
5316 | err = strict_strtoul(buf, 10, &val); | ||
5317 | if (err) | ||
5318 | return err; | ||
5319 | if (val > 1) | ||
5320 | return -EINVAL; | ||
5321 | |||
5322 | spin_lock(&perf_resource_lock); | ||
5323 | perf_overcommit = val; | ||
5324 | spin_unlock(&perf_resource_lock); | ||
5325 | |||
5326 | return count; | ||
5327 | } | ||
5328 | |||
5329 | static SYSDEV_CLASS_ATTR( | ||
5330 | reserve_percpu, | ||
5331 | 0644, | ||
5332 | perf_show_reserve_percpu, | ||
5333 | perf_set_reserve_percpu | ||
5334 | ); | ||
5335 | |||
5336 | static SYSDEV_CLASS_ATTR( | ||
5337 | overcommit, | ||
5338 | 0644, | ||
5339 | perf_show_overcommit, | ||
5340 | perf_set_overcommit | ||
5341 | ); | ||
5342 | |||
5343 | static struct attribute *perfclass_attrs[] = { | ||
5344 | &attr_reserve_percpu.attr, | ||
5345 | &attr_overcommit.attr, | ||
5346 | NULL | ||
5347 | }; | ||
5348 | |||
5349 | static struct attribute_group perfclass_attr_group = { | ||
5350 | .attrs = perfclass_attrs, | ||
5351 | .name = "perf_events", | ||
5352 | }; | ||
5353 | |||
5354 | static int __init perf_event_sysfs_init(void) | ||
5355 | { | ||
5356 | return sysfs_create_group(&cpu_sysdev_class.kset.kobj, | ||
5357 | &perfclass_attr_group); | ||
5358 | } | ||
5359 | device_initcall(perf_event_sysfs_init); | ||