diff options
Diffstat (limited to 'kernel/perf_event.c')
-rw-r--r-- | kernel/perf_event.c | 5108 |
1 files changed, 5108 insertions, 0 deletions
diff --git a/kernel/perf_event.c b/kernel/perf_event.c new file mode 100644 index 000000000000..9d0b5c665883 --- /dev/null +++ b/kernel/perf_event.c | |||
@@ -0,0 +1,5108 @@ | |||
1 | /* | ||
2 | * Performance events core code: | ||
3 | * | ||
4 | * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> | ||
5 | * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar | ||
6 | * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | ||
7 | * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> | ||
8 | * | ||
9 | * For licensing details see kernel-base/COPYING | ||
10 | */ | ||
11 | |||
12 | #include <linux/fs.h> | ||
13 | #include <linux/mm.h> | ||
14 | #include <linux/cpu.h> | ||
15 | #include <linux/smp.h> | ||
16 | #include <linux/file.h> | ||
17 | #include <linux/poll.h> | ||
18 | #include <linux/sysfs.h> | ||
19 | #include <linux/dcache.h> | ||
20 | #include <linux/percpu.h> | ||
21 | #include <linux/ptrace.h> | ||
22 | #include <linux/vmstat.h> | ||
23 | #include <linux/vmalloc.h> | ||
24 | #include <linux/hardirq.h> | ||
25 | #include <linux/rculist.h> | ||
26 | #include <linux/uaccess.h> | ||
27 | #include <linux/syscalls.h> | ||
28 | #include <linux/anon_inodes.h> | ||
29 | #include <linux/kernel_stat.h> | ||
30 | #include <linux/perf_event.h> | ||
31 | |||
32 | #include <asm/irq_regs.h> | ||
33 | |||
34 | /* | ||
35 | * Each CPU has a list of per CPU events: | ||
36 | */ | ||
37 | DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); | ||
38 | |||
39 | int perf_max_events __read_mostly = 1; | ||
40 | static int perf_reserved_percpu __read_mostly; | ||
41 | static int perf_overcommit __read_mostly = 1; | ||
42 | |||
43 | static atomic_t nr_events __read_mostly; | ||
44 | static atomic_t nr_mmap_events __read_mostly; | ||
45 | static atomic_t nr_comm_events __read_mostly; | ||
46 | static atomic_t nr_task_events __read_mostly; | ||
47 | |||
48 | /* | ||
49 | * perf event paranoia level: | ||
50 | * -1 - not paranoid at all | ||
51 | * 0 - disallow raw tracepoint access for unpriv | ||
52 | * 1 - disallow cpu events for unpriv | ||
53 | * 2 - disallow kernel profiling for unpriv | ||
54 | */ | ||
55 | int sysctl_perf_event_paranoid __read_mostly = 1; | ||
56 | |||
57 | static inline bool perf_paranoid_tracepoint_raw(void) | ||
58 | { | ||
59 | return sysctl_perf_event_paranoid > -1; | ||
60 | } | ||
61 | |||
62 | static inline bool perf_paranoid_cpu(void) | ||
63 | { | ||
64 | return sysctl_perf_event_paranoid > 0; | ||
65 | } | ||
66 | |||
67 | static inline bool perf_paranoid_kernel(void) | ||
68 | { | ||
69 | return sysctl_perf_event_paranoid > 1; | ||
70 | } | ||
71 | |||
72 | int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */ | ||
73 | |||
74 | /* | ||
75 | * max perf event sample rate | ||
76 | */ | ||
77 | int sysctl_perf_event_sample_rate __read_mostly = 100000; | ||
78 | |||
79 | static atomic64_t perf_event_id; | ||
80 | |||
81 | /* | ||
82 | * Lock for (sysadmin-configurable) event reservations: | ||
83 | */ | ||
84 | static DEFINE_SPINLOCK(perf_resource_lock); | ||
85 | |||
86 | /* | ||
87 | * Architecture provided APIs - weak aliases: | ||
88 | */ | ||
89 | extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event) | ||
90 | { | ||
91 | return NULL; | ||
92 | } | ||
93 | |||
94 | void __weak hw_perf_disable(void) { barrier(); } | ||
95 | void __weak hw_perf_enable(void) { barrier(); } | ||
96 | |||
97 | void __weak hw_perf_event_setup(int cpu) { barrier(); } | ||
98 | void __weak hw_perf_event_setup_online(int cpu) { barrier(); } | ||
99 | |||
100 | int __weak | ||
101 | hw_perf_group_sched_in(struct perf_event *group_leader, | ||
102 | struct perf_cpu_context *cpuctx, | ||
103 | struct perf_event_context *ctx, int cpu) | ||
104 | { | ||
105 | return 0; | ||
106 | } | ||
107 | |||
108 | void __weak perf_event_print_debug(void) { } | ||
109 | |||
110 | static DEFINE_PER_CPU(int, perf_disable_count); | ||
111 | |||
112 | void __perf_disable(void) | ||
113 | { | ||
114 | __get_cpu_var(perf_disable_count)++; | ||
115 | } | ||
116 | |||
117 | bool __perf_enable(void) | ||
118 | { | ||
119 | return !--__get_cpu_var(perf_disable_count); | ||
120 | } | ||
121 | |||
122 | void perf_disable(void) | ||
123 | { | ||
124 | __perf_disable(); | ||
125 | hw_perf_disable(); | ||
126 | } | ||
127 | |||
128 | void perf_enable(void) | ||
129 | { | ||
130 | if (__perf_enable()) | ||
131 | hw_perf_enable(); | ||
132 | } | ||
133 | |||
134 | static void get_ctx(struct perf_event_context *ctx) | ||
135 | { | ||
136 | WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); | ||
137 | } | ||
138 | |||
139 | static void free_ctx(struct rcu_head *head) | ||
140 | { | ||
141 | struct perf_event_context *ctx; | ||
142 | |||
143 | ctx = container_of(head, struct perf_event_context, rcu_head); | ||
144 | kfree(ctx); | ||
145 | } | ||
146 | |||
147 | static void put_ctx(struct perf_event_context *ctx) | ||
148 | { | ||
149 | if (atomic_dec_and_test(&ctx->refcount)) { | ||
150 | if (ctx->parent_ctx) | ||
151 | put_ctx(ctx->parent_ctx); | ||
152 | if (ctx->task) | ||
153 | put_task_struct(ctx->task); | ||
154 | call_rcu(&ctx->rcu_head, free_ctx); | ||
155 | } | ||
156 | } | ||
157 | |||
158 | static void unclone_ctx(struct perf_event_context *ctx) | ||
159 | { | ||
160 | if (ctx->parent_ctx) { | ||
161 | put_ctx(ctx->parent_ctx); | ||
162 | ctx->parent_ctx = NULL; | ||
163 | } | ||
164 | } | ||
165 | |||
166 | /* | ||
167 | * If we inherit events we want to return the parent event id | ||
168 | * to userspace. | ||
169 | */ | ||
170 | static u64 primary_event_id(struct perf_event *event) | ||
171 | { | ||
172 | u64 id = event->id; | ||
173 | |||
174 | if (event->parent) | ||
175 | id = event->parent->id; | ||
176 | |||
177 | return id; | ||
178 | } | ||
179 | |||
180 | /* | ||
181 | * Get the perf_event_context for a task and lock it. | ||
182 | * This has to cope with with the fact that until it is locked, | ||
183 | * the context could get moved to another task. | ||
184 | */ | ||
185 | static struct perf_event_context * | ||
186 | perf_lock_task_context(struct task_struct *task, unsigned long *flags) | ||
187 | { | ||
188 | struct perf_event_context *ctx; | ||
189 | |||
190 | rcu_read_lock(); | ||
191 | retry: | ||
192 | ctx = rcu_dereference(task->perf_event_ctxp); | ||
193 | if (ctx) { | ||
194 | /* | ||
195 | * If this context is a clone of another, it might | ||
196 | * get swapped for another underneath us by | ||
197 | * perf_event_task_sched_out, though the | ||
198 | * rcu_read_lock() protects us from any context | ||
199 | * getting freed. Lock the context and check if it | ||
200 | * got swapped before we could get the lock, and retry | ||
201 | * if so. If we locked the right context, then it | ||
202 | * can't get swapped on us any more. | ||
203 | */ | ||
204 | spin_lock_irqsave(&ctx->lock, *flags); | ||
205 | if (ctx != rcu_dereference(task->perf_event_ctxp)) { | ||
206 | spin_unlock_irqrestore(&ctx->lock, *flags); | ||
207 | goto retry; | ||
208 | } | ||
209 | |||
210 | if (!atomic_inc_not_zero(&ctx->refcount)) { | ||
211 | spin_unlock_irqrestore(&ctx->lock, *flags); | ||
212 | ctx = NULL; | ||
213 | } | ||
214 | } | ||
215 | rcu_read_unlock(); | ||
216 | return ctx; | ||
217 | } | ||
218 | |||
219 | /* | ||
220 | * Get the context for a task and increment its pin_count so it | ||
221 | * can't get swapped to another task. This also increments its | ||
222 | * reference count so that the context can't get freed. | ||
223 | */ | ||
224 | static struct perf_event_context *perf_pin_task_context(struct task_struct *task) | ||
225 | { | ||
226 | struct perf_event_context *ctx; | ||
227 | unsigned long flags; | ||
228 | |||
229 | ctx = perf_lock_task_context(task, &flags); | ||
230 | if (ctx) { | ||
231 | ++ctx->pin_count; | ||
232 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
233 | } | ||
234 | return ctx; | ||
235 | } | ||
236 | |||
237 | static void perf_unpin_context(struct perf_event_context *ctx) | ||
238 | { | ||
239 | unsigned long flags; | ||
240 | |||
241 | spin_lock_irqsave(&ctx->lock, flags); | ||
242 | --ctx->pin_count; | ||
243 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
244 | put_ctx(ctx); | ||
245 | } | ||
246 | |||
247 | /* | ||
248 | * Add a event from the lists for its context. | ||
249 | * Must be called with ctx->mutex and ctx->lock held. | ||
250 | */ | ||
251 | static void | ||
252 | list_add_event(struct perf_event *event, struct perf_event_context *ctx) | ||
253 | { | ||
254 | struct perf_event *group_leader = event->group_leader; | ||
255 | |||
256 | /* | ||
257 | * Depending on whether it is a standalone or sibling event, | ||
258 | * add it straight to the context's event list, or to the group | ||
259 | * leader's sibling list: | ||
260 | */ | ||
261 | if (group_leader == event) | ||
262 | list_add_tail(&event->group_entry, &ctx->group_list); | ||
263 | else { | ||
264 | list_add_tail(&event->group_entry, &group_leader->sibling_list); | ||
265 | group_leader->nr_siblings++; | ||
266 | } | ||
267 | |||
268 | list_add_rcu(&event->event_entry, &ctx->event_list); | ||
269 | ctx->nr_events++; | ||
270 | if (event->attr.inherit_stat) | ||
271 | ctx->nr_stat++; | ||
272 | } | ||
273 | |||
274 | /* | ||
275 | * Remove a event from the lists for its context. | ||
276 | * Must be called with ctx->mutex and ctx->lock held. | ||
277 | */ | ||
278 | static void | ||
279 | list_del_event(struct perf_event *event, struct perf_event_context *ctx) | ||
280 | { | ||
281 | struct perf_event *sibling, *tmp; | ||
282 | |||
283 | if (list_empty(&event->group_entry)) | ||
284 | return; | ||
285 | ctx->nr_events--; | ||
286 | if (event->attr.inherit_stat) | ||
287 | ctx->nr_stat--; | ||
288 | |||
289 | list_del_init(&event->group_entry); | ||
290 | list_del_rcu(&event->event_entry); | ||
291 | |||
292 | if (event->group_leader != event) | ||
293 | event->group_leader->nr_siblings--; | ||
294 | |||
295 | /* | ||
296 | * If this was a group event with sibling events then | ||
297 | * upgrade the siblings to singleton events by adding them | ||
298 | * to the context list directly: | ||
299 | */ | ||
300 | list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { | ||
301 | |||
302 | list_move_tail(&sibling->group_entry, &ctx->group_list); | ||
303 | sibling->group_leader = sibling; | ||
304 | } | ||
305 | } | ||
306 | |||
307 | static void | ||
308 | event_sched_out(struct perf_event *event, | ||
309 | struct perf_cpu_context *cpuctx, | ||
310 | struct perf_event_context *ctx) | ||
311 | { | ||
312 | if (event->state != PERF_EVENT_STATE_ACTIVE) | ||
313 | return; | ||
314 | |||
315 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
316 | if (event->pending_disable) { | ||
317 | event->pending_disable = 0; | ||
318 | event->state = PERF_EVENT_STATE_OFF; | ||
319 | } | ||
320 | event->tstamp_stopped = ctx->time; | ||
321 | event->pmu->disable(event); | ||
322 | event->oncpu = -1; | ||
323 | |||
324 | if (!is_software_event(event)) | ||
325 | cpuctx->active_oncpu--; | ||
326 | ctx->nr_active--; | ||
327 | if (event->attr.exclusive || !cpuctx->active_oncpu) | ||
328 | cpuctx->exclusive = 0; | ||
329 | } | ||
330 | |||
331 | static void | ||
332 | group_sched_out(struct perf_event *group_event, | ||
333 | struct perf_cpu_context *cpuctx, | ||
334 | struct perf_event_context *ctx) | ||
335 | { | ||
336 | struct perf_event *event; | ||
337 | |||
338 | if (group_event->state != PERF_EVENT_STATE_ACTIVE) | ||
339 | return; | ||
340 | |||
341 | event_sched_out(group_event, cpuctx, ctx); | ||
342 | |||
343 | /* | ||
344 | * Schedule out siblings (if any): | ||
345 | */ | ||
346 | list_for_each_entry(event, &group_event->sibling_list, group_entry) | ||
347 | event_sched_out(event, cpuctx, ctx); | ||
348 | |||
349 | if (group_event->attr.exclusive) | ||
350 | cpuctx->exclusive = 0; | ||
351 | } | ||
352 | |||
353 | /* | ||
354 | * Cross CPU call to remove a performance event | ||
355 | * | ||
356 | * We disable the event on the hardware level first. After that we | ||
357 | * remove it from the context list. | ||
358 | */ | ||
359 | static void __perf_event_remove_from_context(void *info) | ||
360 | { | ||
361 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
362 | struct perf_event *event = info; | ||
363 | struct perf_event_context *ctx = event->ctx; | ||
364 | |||
365 | /* | ||
366 | * If this is a task context, we need to check whether it is | ||
367 | * the current task context of this cpu. If not it has been | ||
368 | * scheduled out before the smp call arrived. | ||
369 | */ | ||
370 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
371 | return; | ||
372 | |||
373 | spin_lock(&ctx->lock); | ||
374 | /* | ||
375 | * Protect the list operation against NMI by disabling the | ||
376 | * events on a global level. | ||
377 | */ | ||
378 | perf_disable(); | ||
379 | |||
380 | event_sched_out(event, cpuctx, ctx); | ||
381 | |||
382 | list_del_event(event, ctx); | ||
383 | |||
384 | if (!ctx->task) { | ||
385 | /* | ||
386 | * Allow more per task events with respect to the | ||
387 | * reservation: | ||
388 | */ | ||
389 | cpuctx->max_pertask = | ||
390 | min(perf_max_events - ctx->nr_events, | ||
391 | perf_max_events - perf_reserved_percpu); | ||
392 | } | ||
393 | |||
394 | perf_enable(); | ||
395 | spin_unlock(&ctx->lock); | ||
396 | } | ||
397 | |||
398 | |||
399 | /* | ||
400 | * Remove the event from a task's (or a CPU's) list of events. | ||
401 | * | ||
402 | * Must be called with ctx->mutex held. | ||
403 | * | ||
404 | * CPU events are removed with a smp call. For task events we only | ||
405 | * call when the task is on a CPU. | ||
406 | * | ||
407 | * If event->ctx is a cloned context, callers must make sure that | ||
408 | * every task struct that event->ctx->task could possibly point to | ||
409 | * remains valid. This is OK when called from perf_release since | ||
410 | * that only calls us on the top-level context, which can't be a clone. | ||
411 | * When called from perf_event_exit_task, it's OK because the | ||
412 | * context has been detached from its task. | ||
413 | */ | ||
414 | static void perf_event_remove_from_context(struct perf_event *event) | ||
415 | { | ||
416 | struct perf_event_context *ctx = event->ctx; | ||
417 | struct task_struct *task = ctx->task; | ||
418 | |||
419 | if (!task) { | ||
420 | /* | ||
421 | * Per cpu events are removed via an smp call and | ||
422 | * the removal is always sucessful. | ||
423 | */ | ||
424 | smp_call_function_single(event->cpu, | ||
425 | __perf_event_remove_from_context, | ||
426 | event, 1); | ||
427 | return; | ||
428 | } | ||
429 | |||
430 | retry: | ||
431 | task_oncpu_function_call(task, __perf_event_remove_from_context, | ||
432 | event); | ||
433 | |||
434 | spin_lock_irq(&ctx->lock); | ||
435 | /* | ||
436 | * If the context is active we need to retry the smp call. | ||
437 | */ | ||
438 | if (ctx->nr_active && !list_empty(&event->group_entry)) { | ||
439 | spin_unlock_irq(&ctx->lock); | ||
440 | goto retry; | ||
441 | } | ||
442 | |||
443 | /* | ||
444 | * The lock prevents that this context is scheduled in so we | ||
445 | * can remove the event safely, if the call above did not | ||
446 | * succeed. | ||
447 | */ | ||
448 | if (!list_empty(&event->group_entry)) { | ||
449 | list_del_event(event, ctx); | ||
450 | } | ||
451 | spin_unlock_irq(&ctx->lock); | ||
452 | } | ||
453 | |||
454 | static inline u64 perf_clock(void) | ||
455 | { | ||
456 | return cpu_clock(smp_processor_id()); | ||
457 | } | ||
458 | |||
459 | /* | ||
460 | * Update the record of the current time in a context. | ||
461 | */ | ||
462 | static void update_context_time(struct perf_event_context *ctx) | ||
463 | { | ||
464 | u64 now = perf_clock(); | ||
465 | |||
466 | ctx->time += now - ctx->timestamp; | ||
467 | ctx->timestamp = now; | ||
468 | } | ||
469 | |||
470 | /* | ||
471 | * Update the total_time_enabled and total_time_running fields for a event. | ||
472 | */ | ||
473 | static void update_event_times(struct perf_event *event) | ||
474 | { | ||
475 | struct perf_event_context *ctx = event->ctx; | ||
476 | u64 run_end; | ||
477 | |||
478 | if (event->state < PERF_EVENT_STATE_INACTIVE || | ||
479 | event->group_leader->state < PERF_EVENT_STATE_INACTIVE) | ||
480 | return; | ||
481 | |||
482 | event->total_time_enabled = ctx->time - event->tstamp_enabled; | ||
483 | |||
484 | if (event->state == PERF_EVENT_STATE_INACTIVE) | ||
485 | run_end = event->tstamp_stopped; | ||
486 | else | ||
487 | run_end = ctx->time; | ||
488 | |||
489 | event->total_time_running = run_end - event->tstamp_running; | ||
490 | } | ||
491 | |||
492 | /* | ||
493 | * Update total_time_enabled and total_time_running for all events in a group. | ||
494 | */ | ||
495 | static void update_group_times(struct perf_event *leader) | ||
496 | { | ||
497 | struct perf_event *event; | ||
498 | |||
499 | update_event_times(leader); | ||
500 | list_for_each_entry(event, &leader->sibling_list, group_entry) | ||
501 | update_event_times(event); | ||
502 | } | ||
503 | |||
504 | /* | ||
505 | * Cross CPU call to disable a performance event | ||
506 | */ | ||
507 | static void __perf_event_disable(void *info) | ||
508 | { | ||
509 | struct perf_event *event = info; | ||
510 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
511 | struct perf_event_context *ctx = event->ctx; | ||
512 | |||
513 | /* | ||
514 | * If this is a per-task event, need to check whether this | ||
515 | * event's task is the current task on this cpu. | ||
516 | */ | ||
517 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
518 | return; | ||
519 | |||
520 | spin_lock(&ctx->lock); | ||
521 | |||
522 | /* | ||
523 | * If the event is on, turn it off. | ||
524 | * If it is in error state, leave it in error state. | ||
525 | */ | ||
526 | if (event->state >= PERF_EVENT_STATE_INACTIVE) { | ||
527 | update_context_time(ctx); | ||
528 | update_group_times(event); | ||
529 | if (event == event->group_leader) | ||
530 | group_sched_out(event, cpuctx, ctx); | ||
531 | else | ||
532 | event_sched_out(event, cpuctx, ctx); | ||
533 | event->state = PERF_EVENT_STATE_OFF; | ||
534 | } | ||
535 | |||
536 | spin_unlock(&ctx->lock); | ||
537 | } | ||
538 | |||
539 | /* | ||
540 | * Disable a event. | ||
541 | * | ||
542 | * If event->ctx is a cloned context, callers must make sure that | ||
543 | * every task struct that event->ctx->task could possibly point to | ||
544 | * remains valid. This condition is satisifed when called through | ||
545 | * perf_event_for_each_child or perf_event_for_each because they | ||
546 | * hold the top-level event's child_mutex, so any descendant that | ||
547 | * goes to exit will block in sync_child_event. | ||
548 | * When called from perf_pending_event it's OK because event->ctx | ||
549 | * is the current context on this CPU and preemption is disabled, | ||
550 | * hence we can't get into perf_event_task_sched_out for this context. | ||
551 | */ | ||
552 | static void perf_event_disable(struct perf_event *event) | ||
553 | { | ||
554 | struct perf_event_context *ctx = event->ctx; | ||
555 | struct task_struct *task = ctx->task; | ||
556 | |||
557 | if (!task) { | ||
558 | /* | ||
559 | * Disable the event on the cpu that it's on | ||
560 | */ | ||
561 | smp_call_function_single(event->cpu, __perf_event_disable, | ||
562 | event, 1); | ||
563 | return; | ||
564 | } | ||
565 | |||
566 | retry: | ||
567 | task_oncpu_function_call(task, __perf_event_disable, event); | ||
568 | |||
569 | spin_lock_irq(&ctx->lock); | ||
570 | /* | ||
571 | * If the event is still active, we need to retry the cross-call. | ||
572 | */ | ||
573 | if (event->state == PERF_EVENT_STATE_ACTIVE) { | ||
574 | spin_unlock_irq(&ctx->lock); | ||
575 | goto retry; | ||
576 | } | ||
577 | |||
578 | /* | ||
579 | * Since we have the lock this context can't be scheduled | ||
580 | * in, so we can change the state safely. | ||
581 | */ | ||
582 | if (event->state == PERF_EVENT_STATE_INACTIVE) { | ||
583 | update_group_times(event); | ||
584 | event->state = PERF_EVENT_STATE_OFF; | ||
585 | } | ||
586 | |||
587 | spin_unlock_irq(&ctx->lock); | ||
588 | } | ||
589 | |||
590 | static int | ||
591 | event_sched_in(struct perf_event *event, | ||
592 | struct perf_cpu_context *cpuctx, | ||
593 | struct perf_event_context *ctx, | ||
594 | int cpu) | ||
595 | { | ||
596 | if (event->state <= PERF_EVENT_STATE_OFF) | ||
597 | return 0; | ||
598 | |||
599 | event->state = PERF_EVENT_STATE_ACTIVE; | ||
600 | event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */ | ||
601 | /* | ||
602 | * The new state must be visible before we turn it on in the hardware: | ||
603 | */ | ||
604 | smp_wmb(); | ||
605 | |||
606 | if (event->pmu->enable(event)) { | ||
607 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
608 | event->oncpu = -1; | ||
609 | return -EAGAIN; | ||
610 | } | ||
611 | |||
612 | event->tstamp_running += ctx->time - event->tstamp_stopped; | ||
613 | |||
614 | if (!is_software_event(event)) | ||
615 | cpuctx->active_oncpu++; | ||
616 | ctx->nr_active++; | ||
617 | |||
618 | if (event->attr.exclusive) | ||
619 | cpuctx->exclusive = 1; | ||
620 | |||
621 | return 0; | ||
622 | } | ||
623 | |||
624 | static int | ||
625 | group_sched_in(struct perf_event *group_event, | ||
626 | struct perf_cpu_context *cpuctx, | ||
627 | struct perf_event_context *ctx, | ||
628 | int cpu) | ||
629 | { | ||
630 | struct perf_event *event, *partial_group; | ||
631 | int ret; | ||
632 | |||
633 | if (group_event->state == PERF_EVENT_STATE_OFF) | ||
634 | return 0; | ||
635 | |||
636 | ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu); | ||
637 | if (ret) | ||
638 | return ret < 0 ? ret : 0; | ||
639 | |||
640 | if (event_sched_in(group_event, cpuctx, ctx, cpu)) | ||
641 | return -EAGAIN; | ||
642 | |||
643 | /* | ||
644 | * Schedule in siblings as one group (if any): | ||
645 | */ | ||
646 | list_for_each_entry(event, &group_event->sibling_list, group_entry) { | ||
647 | if (event_sched_in(event, cpuctx, ctx, cpu)) { | ||
648 | partial_group = event; | ||
649 | goto group_error; | ||
650 | } | ||
651 | } | ||
652 | |||
653 | return 0; | ||
654 | |||
655 | group_error: | ||
656 | /* | ||
657 | * Groups can be scheduled in as one unit only, so undo any | ||
658 | * partial group before returning: | ||
659 | */ | ||
660 | list_for_each_entry(event, &group_event->sibling_list, group_entry) { | ||
661 | if (event == partial_group) | ||
662 | break; | ||
663 | event_sched_out(event, cpuctx, ctx); | ||
664 | } | ||
665 | event_sched_out(group_event, cpuctx, ctx); | ||
666 | |||
667 | return -EAGAIN; | ||
668 | } | ||
669 | |||
670 | /* | ||
671 | * Return 1 for a group consisting entirely of software events, | ||
672 | * 0 if the group contains any hardware events. | ||
673 | */ | ||
674 | static int is_software_only_group(struct perf_event *leader) | ||
675 | { | ||
676 | struct perf_event *event; | ||
677 | |||
678 | if (!is_software_event(leader)) | ||
679 | return 0; | ||
680 | |||
681 | list_for_each_entry(event, &leader->sibling_list, group_entry) | ||
682 | if (!is_software_event(event)) | ||
683 | return 0; | ||
684 | |||
685 | return 1; | ||
686 | } | ||
687 | |||
688 | /* | ||
689 | * Work out whether we can put this event group on the CPU now. | ||
690 | */ | ||
691 | static int group_can_go_on(struct perf_event *event, | ||
692 | struct perf_cpu_context *cpuctx, | ||
693 | int can_add_hw) | ||
694 | { | ||
695 | /* | ||
696 | * Groups consisting entirely of software events can always go on. | ||
697 | */ | ||
698 | if (is_software_only_group(event)) | ||
699 | return 1; | ||
700 | /* | ||
701 | * If an exclusive group is already on, no other hardware | ||
702 | * events can go on. | ||
703 | */ | ||
704 | if (cpuctx->exclusive) | ||
705 | return 0; | ||
706 | /* | ||
707 | * If this group is exclusive and there are already | ||
708 | * events on the CPU, it can't go on. | ||
709 | */ | ||
710 | if (event->attr.exclusive && cpuctx->active_oncpu) | ||
711 | return 0; | ||
712 | /* | ||
713 | * Otherwise, try to add it if all previous groups were able | ||
714 | * to go on. | ||
715 | */ | ||
716 | return can_add_hw; | ||
717 | } | ||
718 | |||
719 | static void add_event_to_ctx(struct perf_event *event, | ||
720 | struct perf_event_context *ctx) | ||
721 | { | ||
722 | list_add_event(event, ctx); | ||
723 | event->tstamp_enabled = ctx->time; | ||
724 | event->tstamp_running = ctx->time; | ||
725 | event->tstamp_stopped = ctx->time; | ||
726 | } | ||
727 | |||
728 | /* | ||
729 | * Cross CPU call to install and enable a performance event | ||
730 | * | ||
731 | * Must be called with ctx->mutex held | ||
732 | */ | ||
733 | static void __perf_install_in_context(void *info) | ||
734 | { | ||
735 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
736 | struct perf_event *event = info; | ||
737 | struct perf_event_context *ctx = event->ctx; | ||
738 | struct perf_event *leader = event->group_leader; | ||
739 | int cpu = smp_processor_id(); | ||
740 | int err; | ||
741 | |||
742 | /* | ||
743 | * If this is a task context, we need to check whether it is | ||
744 | * the current task context of this cpu. If not it has been | ||
745 | * scheduled out before the smp call arrived. | ||
746 | * Or possibly this is the right context but it isn't | ||
747 | * on this cpu because it had no events. | ||
748 | */ | ||
749 | if (ctx->task && cpuctx->task_ctx != ctx) { | ||
750 | if (cpuctx->task_ctx || ctx->task != current) | ||
751 | return; | ||
752 | cpuctx->task_ctx = ctx; | ||
753 | } | ||
754 | |||
755 | spin_lock(&ctx->lock); | ||
756 | ctx->is_active = 1; | ||
757 | update_context_time(ctx); | ||
758 | |||
759 | /* | ||
760 | * Protect the list operation against NMI by disabling the | ||
761 | * events on a global level. NOP for non NMI based events. | ||
762 | */ | ||
763 | perf_disable(); | ||
764 | |||
765 | add_event_to_ctx(event, ctx); | ||
766 | |||
767 | /* | ||
768 | * Don't put the event on if it is disabled or if | ||
769 | * it is in a group and the group isn't on. | ||
770 | */ | ||
771 | if (event->state != PERF_EVENT_STATE_INACTIVE || | ||
772 | (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)) | ||
773 | goto unlock; | ||
774 | |||
775 | /* | ||
776 | * An exclusive event can't go on if there are already active | ||
777 | * hardware events, and no hardware event can go on if there | ||
778 | * is already an exclusive event on. | ||
779 | */ | ||
780 | if (!group_can_go_on(event, cpuctx, 1)) | ||
781 | err = -EEXIST; | ||
782 | else | ||
783 | err = event_sched_in(event, cpuctx, ctx, cpu); | ||
784 | |||
785 | if (err) { | ||
786 | /* | ||
787 | * This event couldn't go on. If it is in a group | ||
788 | * then we have to pull the whole group off. | ||
789 | * If the event group is pinned then put it in error state. | ||
790 | */ | ||
791 | if (leader != event) | ||
792 | group_sched_out(leader, cpuctx, ctx); | ||
793 | if (leader->attr.pinned) { | ||
794 | update_group_times(leader); | ||
795 | leader->state = PERF_EVENT_STATE_ERROR; | ||
796 | } | ||
797 | } | ||
798 | |||
799 | if (!err && !ctx->task && cpuctx->max_pertask) | ||
800 | cpuctx->max_pertask--; | ||
801 | |||
802 | unlock: | ||
803 | perf_enable(); | ||
804 | |||
805 | spin_unlock(&ctx->lock); | ||
806 | } | ||
807 | |||
808 | /* | ||
809 | * Attach a performance event to a context | ||
810 | * | ||
811 | * First we add the event to the list with the hardware enable bit | ||
812 | * in event->hw_config cleared. | ||
813 | * | ||
814 | * If the event is attached to a task which is on a CPU we use a smp | ||
815 | * call to enable it in the task context. The task might have been | ||
816 | * scheduled away, but we check this in the smp call again. | ||
817 | * | ||
818 | * Must be called with ctx->mutex held. | ||
819 | */ | ||
820 | static void | ||
821 | perf_install_in_context(struct perf_event_context *ctx, | ||
822 | struct perf_event *event, | ||
823 | int cpu) | ||
824 | { | ||
825 | struct task_struct *task = ctx->task; | ||
826 | |||
827 | if (!task) { | ||
828 | /* | ||
829 | * Per cpu events are installed via an smp call and | ||
830 | * the install is always sucessful. | ||
831 | */ | ||
832 | smp_call_function_single(cpu, __perf_install_in_context, | ||
833 | event, 1); | ||
834 | return; | ||
835 | } | ||
836 | |||
837 | retry: | ||
838 | task_oncpu_function_call(task, __perf_install_in_context, | ||
839 | event); | ||
840 | |||
841 | spin_lock_irq(&ctx->lock); | ||
842 | /* | ||
843 | * we need to retry the smp call. | ||
844 | */ | ||
845 | if (ctx->is_active && list_empty(&event->group_entry)) { | ||
846 | spin_unlock_irq(&ctx->lock); | ||
847 | goto retry; | ||
848 | } | ||
849 | |||
850 | /* | ||
851 | * The lock prevents that this context is scheduled in so we | ||
852 | * can add the event safely, if it the call above did not | ||
853 | * succeed. | ||
854 | */ | ||
855 | if (list_empty(&event->group_entry)) | ||
856 | add_event_to_ctx(event, ctx); | ||
857 | spin_unlock_irq(&ctx->lock); | ||
858 | } | ||
859 | |||
860 | /* | ||
861 | * Put a event into inactive state and update time fields. | ||
862 | * Enabling the leader of a group effectively enables all | ||
863 | * the group members that aren't explicitly disabled, so we | ||
864 | * have to update their ->tstamp_enabled also. | ||
865 | * Note: this works for group members as well as group leaders | ||
866 | * since the non-leader members' sibling_lists will be empty. | ||
867 | */ | ||
868 | static void __perf_event_mark_enabled(struct perf_event *event, | ||
869 | struct perf_event_context *ctx) | ||
870 | { | ||
871 | struct perf_event *sub; | ||
872 | |||
873 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
874 | event->tstamp_enabled = ctx->time - event->total_time_enabled; | ||
875 | list_for_each_entry(sub, &event->sibling_list, group_entry) | ||
876 | if (sub->state >= PERF_EVENT_STATE_INACTIVE) | ||
877 | sub->tstamp_enabled = | ||
878 | ctx->time - sub->total_time_enabled; | ||
879 | } | ||
880 | |||
881 | /* | ||
882 | * Cross CPU call to enable a performance event | ||
883 | */ | ||
884 | static void __perf_event_enable(void *info) | ||
885 | { | ||
886 | struct perf_event *event = info; | ||
887 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
888 | struct perf_event_context *ctx = event->ctx; | ||
889 | struct perf_event *leader = event->group_leader; | ||
890 | int err; | ||
891 | |||
892 | /* | ||
893 | * If this is a per-task event, need to check whether this | ||
894 | * event's task is the current task on this cpu. | ||
895 | */ | ||
896 | if (ctx->task && cpuctx->task_ctx != ctx) { | ||
897 | if (cpuctx->task_ctx || ctx->task != current) | ||
898 | return; | ||
899 | cpuctx->task_ctx = ctx; | ||
900 | } | ||
901 | |||
902 | spin_lock(&ctx->lock); | ||
903 | ctx->is_active = 1; | ||
904 | update_context_time(ctx); | ||
905 | |||
906 | if (event->state >= PERF_EVENT_STATE_INACTIVE) | ||
907 | goto unlock; | ||
908 | __perf_event_mark_enabled(event, ctx); | ||
909 | |||
910 | /* | ||
911 | * If the event is in a group and isn't the group leader, | ||
912 | * then don't put it on unless the group is on. | ||
913 | */ | ||
914 | if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) | ||
915 | goto unlock; | ||
916 | |||
917 | if (!group_can_go_on(event, cpuctx, 1)) { | ||
918 | err = -EEXIST; | ||
919 | } else { | ||
920 | perf_disable(); | ||
921 | if (event == leader) | ||
922 | err = group_sched_in(event, cpuctx, ctx, | ||
923 | smp_processor_id()); | ||
924 | else | ||
925 | err = event_sched_in(event, cpuctx, ctx, | ||
926 | smp_processor_id()); | ||
927 | perf_enable(); | ||
928 | } | ||
929 | |||
930 | if (err) { | ||
931 | /* | ||
932 | * If this event can't go on and it's part of a | ||
933 | * group, then the whole group has to come off. | ||
934 | */ | ||
935 | if (leader != event) | ||
936 | group_sched_out(leader, cpuctx, ctx); | ||
937 | if (leader->attr.pinned) { | ||
938 | update_group_times(leader); | ||
939 | leader->state = PERF_EVENT_STATE_ERROR; | ||
940 | } | ||
941 | } | ||
942 | |||
943 | unlock: | ||
944 | spin_unlock(&ctx->lock); | ||
945 | } | ||
946 | |||
947 | /* | ||
948 | * Enable a event. | ||
949 | * | ||
950 | * If event->ctx is a cloned context, callers must make sure that | ||
951 | * every task struct that event->ctx->task could possibly point to | ||
952 | * remains valid. This condition is satisfied when called through | ||
953 | * perf_event_for_each_child or perf_event_for_each as described | ||
954 | * for perf_event_disable. | ||
955 | */ | ||
956 | static void perf_event_enable(struct perf_event *event) | ||
957 | { | ||
958 | struct perf_event_context *ctx = event->ctx; | ||
959 | struct task_struct *task = ctx->task; | ||
960 | |||
961 | if (!task) { | ||
962 | /* | ||
963 | * Enable the event on the cpu that it's on | ||
964 | */ | ||
965 | smp_call_function_single(event->cpu, __perf_event_enable, | ||
966 | event, 1); | ||
967 | return; | ||
968 | } | ||
969 | |||
970 | spin_lock_irq(&ctx->lock); | ||
971 | if (event->state >= PERF_EVENT_STATE_INACTIVE) | ||
972 | goto out; | ||
973 | |||
974 | /* | ||
975 | * If the event is in error state, clear that first. | ||
976 | * That way, if we see the event in error state below, we | ||
977 | * know that it has gone back into error state, as distinct | ||
978 | * from the task having been scheduled away before the | ||
979 | * cross-call arrived. | ||
980 | */ | ||
981 | if (event->state == PERF_EVENT_STATE_ERROR) | ||
982 | event->state = PERF_EVENT_STATE_OFF; | ||
983 | |||
984 | retry: | ||
985 | spin_unlock_irq(&ctx->lock); | ||
986 | task_oncpu_function_call(task, __perf_event_enable, event); | ||
987 | |||
988 | spin_lock_irq(&ctx->lock); | ||
989 | |||
990 | /* | ||
991 | * If the context is active and the event is still off, | ||
992 | * we need to retry the cross-call. | ||
993 | */ | ||
994 | if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) | ||
995 | goto retry; | ||
996 | |||
997 | /* | ||
998 | * Since we have the lock this context can't be scheduled | ||
999 | * in, so we can change the state safely. | ||
1000 | */ | ||
1001 | if (event->state == PERF_EVENT_STATE_OFF) | ||
1002 | __perf_event_mark_enabled(event, ctx); | ||
1003 | |||
1004 | out: | ||
1005 | spin_unlock_irq(&ctx->lock); | ||
1006 | } | ||
1007 | |||
1008 | static int perf_event_refresh(struct perf_event *event, int refresh) | ||
1009 | { | ||
1010 | /* | ||
1011 | * not supported on inherited events | ||
1012 | */ | ||
1013 | if (event->attr.inherit) | ||
1014 | return -EINVAL; | ||
1015 | |||
1016 | atomic_add(refresh, &event->event_limit); | ||
1017 | perf_event_enable(event); | ||
1018 | |||
1019 | return 0; | ||
1020 | } | ||
1021 | |||
1022 | void __perf_event_sched_out(struct perf_event_context *ctx, | ||
1023 | struct perf_cpu_context *cpuctx) | ||
1024 | { | ||
1025 | struct perf_event *event; | ||
1026 | |||
1027 | spin_lock(&ctx->lock); | ||
1028 | ctx->is_active = 0; | ||
1029 | if (likely(!ctx->nr_events)) | ||
1030 | goto out; | ||
1031 | update_context_time(ctx); | ||
1032 | |||
1033 | perf_disable(); | ||
1034 | if (ctx->nr_active) | ||
1035 | list_for_each_entry(event, &ctx->group_list, group_entry) | ||
1036 | group_sched_out(event, cpuctx, ctx); | ||
1037 | |||
1038 | perf_enable(); | ||
1039 | out: | ||
1040 | spin_unlock(&ctx->lock); | ||
1041 | } | ||
1042 | |||
1043 | /* | ||
1044 | * Test whether two contexts are equivalent, i.e. whether they | ||
1045 | * have both been cloned from the same version of the same context | ||
1046 | * and they both have the same number of enabled events. | ||
1047 | * If the number of enabled events is the same, then the set | ||
1048 | * of enabled events should be the same, because these are both | ||
1049 | * inherited contexts, therefore we can't access individual events | ||
1050 | * in them directly with an fd; we can only enable/disable all | ||
1051 | * events via prctl, or enable/disable all events in a family | ||
1052 | * via ioctl, which will have the same effect on both contexts. | ||
1053 | */ | ||
1054 | static int context_equiv(struct perf_event_context *ctx1, | ||
1055 | struct perf_event_context *ctx2) | ||
1056 | { | ||
1057 | return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx | ||
1058 | && ctx1->parent_gen == ctx2->parent_gen | ||
1059 | && !ctx1->pin_count && !ctx2->pin_count; | ||
1060 | } | ||
1061 | |||
1062 | static void __perf_event_read(void *event); | ||
1063 | |||
1064 | static void __perf_event_sync_stat(struct perf_event *event, | ||
1065 | struct perf_event *next_event) | ||
1066 | { | ||
1067 | u64 value; | ||
1068 | |||
1069 | if (!event->attr.inherit_stat) | ||
1070 | return; | ||
1071 | |||
1072 | /* | ||
1073 | * Update the event value, we cannot use perf_event_read() | ||
1074 | * because we're in the middle of a context switch and have IRQs | ||
1075 | * disabled, which upsets smp_call_function_single(), however | ||
1076 | * we know the event must be on the current CPU, therefore we | ||
1077 | * don't need to use it. | ||
1078 | */ | ||
1079 | switch (event->state) { | ||
1080 | case PERF_EVENT_STATE_ACTIVE: | ||
1081 | __perf_event_read(event); | ||
1082 | break; | ||
1083 | |||
1084 | case PERF_EVENT_STATE_INACTIVE: | ||
1085 | update_event_times(event); | ||
1086 | break; | ||
1087 | |||
1088 | default: | ||
1089 | break; | ||
1090 | } | ||
1091 | |||
1092 | /* | ||
1093 | * In order to keep per-task stats reliable we need to flip the event | ||
1094 | * values when we flip the contexts. | ||
1095 | */ | ||
1096 | value = atomic64_read(&next_event->count); | ||
1097 | value = atomic64_xchg(&event->count, value); | ||
1098 | atomic64_set(&next_event->count, value); | ||
1099 | |||
1100 | swap(event->total_time_enabled, next_event->total_time_enabled); | ||
1101 | swap(event->total_time_running, next_event->total_time_running); | ||
1102 | |||
1103 | /* | ||
1104 | * Since we swizzled the values, update the user visible data too. | ||
1105 | */ | ||
1106 | perf_event_update_userpage(event); | ||
1107 | perf_event_update_userpage(next_event); | ||
1108 | } | ||
1109 | |||
1110 | #define list_next_entry(pos, member) \ | ||
1111 | list_entry(pos->member.next, typeof(*pos), member) | ||
1112 | |||
1113 | static void perf_event_sync_stat(struct perf_event_context *ctx, | ||
1114 | struct perf_event_context *next_ctx) | ||
1115 | { | ||
1116 | struct perf_event *event, *next_event; | ||
1117 | |||
1118 | if (!ctx->nr_stat) | ||
1119 | return; | ||
1120 | |||
1121 | event = list_first_entry(&ctx->event_list, | ||
1122 | struct perf_event, event_entry); | ||
1123 | |||
1124 | next_event = list_first_entry(&next_ctx->event_list, | ||
1125 | struct perf_event, event_entry); | ||
1126 | |||
1127 | while (&event->event_entry != &ctx->event_list && | ||
1128 | &next_event->event_entry != &next_ctx->event_list) { | ||
1129 | |||
1130 | __perf_event_sync_stat(event, next_event); | ||
1131 | |||
1132 | event = list_next_entry(event, event_entry); | ||
1133 | next_event = list_next_entry(next_event, event_entry); | ||
1134 | } | ||
1135 | } | ||
1136 | |||
1137 | /* | ||
1138 | * Called from scheduler to remove the events of the current task, | ||
1139 | * with interrupts disabled. | ||
1140 | * | ||
1141 | * We stop each event and update the event value in event->count. | ||
1142 | * | ||
1143 | * This does not protect us against NMI, but disable() | ||
1144 | * sets the disabled bit in the control field of event _before_ | ||
1145 | * accessing the event control register. If a NMI hits, then it will | ||
1146 | * not restart the event. | ||
1147 | */ | ||
1148 | void perf_event_task_sched_out(struct task_struct *task, | ||
1149 | struct task_struct *next, int cpu) | ||
1150 | { | ||
1151 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1152 | struct perf_event_context *ctx = task->perf_event_ctxp; | ||
1153 | struct perf_event_context *next_ctx; | ||
1154 | struct perf_event_context *parent; | ||
1155 | struct pt_regs *regs; | ||
1156 | int do_switch = 1; | ||
1157 | |||
1158 | regs = task_pt_regs(task); | ||
1159 | perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0); | ||
1160 | |||
1161 | if (likely(!ctx || !cpuctx->task_ctx)) | ||
1162 | return; | ||
1163 | |||
1164 | update_context_time(ctx); | ||
1165 | |||
1166 | rcu_read_lock(); | ||
1167 | parent = rcu_dereference(ctx->parent_ctx); | ||
1168 | next_ctx = next->perf_event_ctxp; | ||
1169 | if (parent && next_ctx && | ||
1170 | rcu_dereference(next_ctx->parent_ctx) == parent) { | ||
1171 | /* | ||
1172 | * Looks like the two contexts are clones, so we might be | ||
1173 | * able to optimize the context switch. We lock both | ||
1174 | * contexts and check that they are clones under the | ||
1175 | * lock (including re-checking that neither has been | ||
1176 | * uncloned in the meantime). It doesn't matter which | ||
1177 | * order we take the locks because no other cpu could | ||
1178 | * be trying to lock both of these tasks. | ||
1179 | */ | ||
1180 | spin_lock(&ctx->lock); | ||
1181 | spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); | ||
1182 | if (context_equiv(ctx, next_ctx)) { | ||
1183 | /* | ||
1184 | * XXX do we need a memory barrier of sorts | ||
1185 | * wrt to rcu_dereference() of perf_event_ctxp | ||
1186 | */ | ||
1187 | task->perf_event_ctxp = next_ctx; | ||
1188 | next->perf_event_ctxp = ctx; | ||
1189 | ctx->task = next; | ||
1190 | next_ctx->task = task; | ||
1191 | do_switch = 0; | ||
1192 | |||
1193 | perf_event_sync_stat(ctx, next_ctx); | ||
1194 | } | ||
1195 | spin_unlock(&next_ctx->lock); | ||
1196 | spin_unlock(&ctx->lock); | ||
1197 | } | ||
1198 | rcu_read_unlock(); | ||
1199 | |||
1200 | if (do_switch) { | ||
1201 | __perf_event_sched_out(ctx, cpuctx); | ||
1202 | cpuctx->task_ctx = NULL; | ||
1203 | } | ||
1204 | } | ||
1205 | |||
1206 | /* | ||
1207 | * Called with IRQs disabled | ||
1208 | */ | ||
1209 | static void __perf_event_task_sched_out(struct perf_event_context *ctx) | ||
1210 | { | ||
1211 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
1212 | |||
1213 | if (!cpuctx->task_ctx) | ||
1214 | return; | ||
1215 | |||
1216 | if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) | ||
1217 | return; | ||
1218 | |||
1219 | __perf_event_sched_out(ctx, cpuctx); | ||
1220 | cpuctx->task_ctx = NULL; | ||
1221 | } | ||
1222 | |||
1223 | /* | ||
1224 | * Called with IRQs disabled | ||
1225 | */ | ||
1226 | static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx) | ||
1227 | { | ||
1228 | __perf_event_sched_out(&cpuctx->ctx, cpuctx); | ||
1229 | } | ||
1230 | |||
1231 | static void | ||
1232 | __perf_event_sched_in(struct perf_event_context *ctx, | ||
1233 | struct perf_cpu_context *cpuctx, int cpu) | ||
1234 | { | ||
1235 | struct perf_event *event; | ||
1236 | int can_add_hw = 1; | ||
1237 | |||
1238 | spin_lock(&ctx->lock); | ||
1239 | ctx->is_active = 1; | ||
1240 | if (likely(!ctx->nr_events)) | ||
1241 | goto out; | ||
1242 | |||
1243 | ctx->timestamp = perf_clock(); | ||
1244 | |||
1245 | perf_disable(); | ||
1246 | |||
1247 | /* | ||
1248 | * First go through the list and put on any pinned groups | ||
1249 | * in order to give them the best chance of going on. | ||
1250 | */ | ||
1251 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
1252 | if (event->state <= PERF_EVENT_STATE_OFF || | ||
1253 | !event->attr.pinned) | ||
1254 | continue; | ||
1255 | if (event->cpu != -1 && event->cpu != cpu) | ||
1256 | continue; | ||
1257 | |||
1258 | if (group_can_go_on(event, cpuctx, 1)) | ||
1259 | group_sched_in(event, cpuctx, ctx, cpu); | ||
1260 | |||
1261 | /* | ||
1262 | * If this pinned group hasn't been scheduled, | ||
1263 | * put it in error state. | ||
1264 | */ | ||
1265 | if (event->state == PERF_EVENT_STATE_INACTIVE) { | ||
1266 | update_group_times(event); | ||
1267 | event->state = PERF_EVENT_STATE_ERROR; | ||
1268 | } | ||
1269 | } | ||
1270 | |||
1271 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
1272 | /* | ||
1273 | * Ignore events in OFF or ERROR state, and | ||
1274 | * ignore pinned events since we did them already. | ||
1275 | */ | ||
1276 | if (event->state <= PERF_EVENT_STATE_OFF || | ||
1277 | event->attr.pinned) | ||
1278 | continue; | ||
1279 | |||
1280 | /* | ||
1281 | * Listen to the 'cpu' scheduling filter constraint | ||
1282 | * of events: | ||
1283 | */ | ||
1284 | if (event->cpu != -1 && event->cpu != cpu) | ||
1285 | continue; | ||
1286 | |||
1287 | if (group_can_go_on(event, cpuctx, can_add_hw)) | ||
1288 | if (group_sched_in(event, cpuctx, ctx, cpu)) | ||
1289 | can_add_hw = 0; | ||
1290 | } | ||
1291 | perf_enable(); | ||
1292 | out: | ||
1293 | spin_unlock(&ctx->lock); | ||
1294 | } | ||
1295 | |||
1296 | /* | ||
1297 | * Called from scheduler to add the events of the current task | ||
1298 | * with interrupts disabled. | ||
1299 | * | ||
1300 | * We restore the event value and then enable it. | ||
1301 | * | ||
1302 | * This does not protect us against NMI, but enable() | ||
1303 | * sets the enabled bit in the control field of event _before_ | ||
1304 | * accessing the event control register. If a NMI hits, then it will | ||
1305 | * keep the event running. | ||
1306 | */ | ||
1307 | void perf_event_task_sched_in(struct task_struct *task, int cpu) | ||
1308 | { | ||
1309 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1310 | struct perf_event_context *ctx = task->perf_event_ctxp; | ||
1311 | |||
1312 | if (likely(!ctx)) | ||
1313 | return; | ||
1314 | if (cpuctx->task_ctx == ctx) | ||
1315 | return; | ||
1316 | __perf_event_sched_in(ctx, cpuctx, cpu); | ||
1317 | cpuctx->task_ctx = ctx; | ||
1318 | } | ||
1319 | |||
1320 | static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu) | ||
1321 | { | ||
1322 | struct perf_event_context *ctx = &cpuctx->ctx; | ||
1323 | |||
1324 | __perf_event_sched_in(ctx, cpuctx, cpu); | ||
1325 | } | ||
1326 | |||
1327 | #define MAX_INTERRUPTS (~0ULL) | ||
1328 | |||
1329 | static void perf_log_throttle(struct perf_event *event, int enable); | ||
1330 | |||
1331 | static void perf_adjust_period(struct perf_event *event, u64 events) | ||
1332 | { | ||
1333 | struct hw_perf_event *hwc = &event->hw; | ||
1334 | u64 period, sample_period; | ||
1335 | s64 delta; | ||
1336 | |||
1337 | events *= hwc->sample_period; | ||
1338 | period = div64_u64(events, event->attr.sample_freq); | ||
1339 | |||
1340 | delta = (s64)(period - hwc->sample_period); | ||
1341 | delta = (delta + 7) / 8; /* low pass filter */ | ||
1342 | |||
1343 | sample_period = hwc->sample_period + delta; | ||
1344 | |||
1345 | if (!sample_period) | ||
1346 | sample_period = 1; | ||
1347 | |||
1348 | hwc->sample_period = sample_period; | ||
1349 | } | ||
1350 | |||
1351 | static void perf_ctx_adjust_freq(struct perf_event_context *ctx) | ||
1352 | { | ||
1353 | struct perf_event *event; | ||
1354 | struct hw_perf_event *hwc; | ||
1355 | u64 interrupts, freq; | ||
1356 | |||
1357 | spin_lock(&ctx->lock); | ||
1358 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
1359 | if (event->state != PERF_EVENT_STATE_ACTIVE) | ||
1360 | continue; | ||
1361 | |||
1362 | hwc = &event->hw; | ||
1363 | |||
1364 | interrupts = hwc->interrupts; | ||
1365 | hwc->interrupts = 0; | ||
1366 | |||
1367 | /* | ||
1368 | * unthrottle events on the tick | ||
1369 | */ | ||
1370 | if (interrupts == MAX_INTERRUPTS) { | ||
1371 | perf_log_throttle(event, 1); | ||
1372 | event->pmu->unthrottle(event); | ||
1373 | interrupts = 2*sysctl_perf_event_sample_rate/HZ; | ||
1374 | } | ||
1375 | |||
1376 | if (!event->attr.freq || !event->attr.sample_freq) | ||
1377 | continue; | ||
1378 | |||
1379 | /* | ||
1380 | * if the specified freq < HZ then we need to skip ticks | ||
1381 | */ | ||
1382 | if (event->attr.sample_freq < HZ) { | ||
1383 | freq = event->attr.sample_freq; | ||
1384 | |||
1385 | hwc->freq_count += freq; | ||
1386 | hwc->freq_interrupts += interrupts; | ||
1387 | |||
1388 | if (hwc->freq_count < HZ) | ||
1389 | continue; | ||
1390 | |||
1391 | interrupts = hwc->freq_interrupts; | ||
1392 | hwc->freq_interrupts = 0; | ||
1393 | hwc->freq_count -= HZ; | ||
1394 | } else | ||
1395 | freq = HZ; | ||
1396 | |||
1397 | perf_adjust_period(event, freq * interrupts); | ||
1398 | |||
1399 | /* | ||
1400 | * In order to avoid being stalled by an (accidental) huge | ||
1401 | * sample period, force reset the sample period if we didn't | ||
1402 | * get any events in this freq period. | ||
1403 | */ | ||
1404 | if (!interrupts) { | ||
1405 | perf_disable(); | ||
1406 | event->pmu->disable(event); | ||
1407 | atomic64_set(&hwc->period_left, 0); | ||
1408 | event->pmu->enable(event); | ||
1409 | perf_enable(); | ||
1410 | } | ||
1411 | } | ||
1412 | spin_unlock(&ctx->lock); | ||
1413 | } | ||
1414 | |||
1415 | /* | ||
1416 | * Round-robin a context's events: | ||
1417 | */ | ||
1418 | static void rotate_ctx(struct perf_event_context *ctx) | ||
1419 | { | ||
1420 | struct perf_event *event; | ||
1421 | |||
1422 | if (!ctx->nr_events) | ||
1423 | return; | ||
1424 | |||
1425 | spin_lock(&ctx->lock); | ||
1426 | /* | ||
1427 | * Rotate the first entry last (works just fine for group events too): | ||
1428 | */ | ||
1429 | perf_disable(); | ||
1430 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
1431 | list_move_tail(&event->group_entry, &ctx->group_list); | ||
1432 | break; | ||
1433 | } | ||
1434 | perf_enable(); | ||
1435 | |||
1436 | spin_unlock(&ctx->lock); | ||
1437 | } | ||
1438 | |||
1439 | void perf_event_task_tick(struct task_struct *curr, int cpu) | ||
1440 | { | ||
1441 | struct perf_cpu_context *cpuctx; | ||
1442 | struct perf_event_context *ctx; | ||
1443 | |||
1444 | if (!atomic_read(&nr_events)) | ||
1445 | return; | ||
1446 | |||
1447 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1448 | ctx = curr->perf_event_ctxp; | ||
1449 | |||
1450 | perf_ctx_adjust_freq(&cpuctx->ctx); | ||
1451 | if (ctx) | ||
1452 | perf_ctx_adjust_freq(ctx); | ||
1453 | |||
1454 | perf_event_cpu_sched_out(cpuctx); | ||
1455 | if (ctx) | ||
1456 | __perf_event_task_sched_out(ctx); | ||
1457 | |||
1458 | rotate_ctx(&cpuctx->ctx); | ||
1459 | if (ctx) | ||
1460 | rotate_ctx(ctx); | ||
1461 | |||
1462 | perf_event_cpu_sched_in(cpuctx, cpu); | ||
1463 | if (ctx) | ||
1464 | perf_event_task_sched_in(curr, cpu); | ||
1465 | } | ||
1466 | |||
1467 | /* | ||
1468 | * Enable all of a task's events that have been marked enable-on-exec. | ||
1469 | * This expects task == current. | ||
1470 | */ | ||
1471 | static void perf_event_enable_on_exec(struct task_struct *task) | ||
1472 | { | ||
1473 | struct perf_event_context *ctx; | ||
1474 | struct perf_event *event; | ||
1475 | unsigned long flags; | ||
1476 | int enabled = 0; | ||
1477 | |||
1478 | local_irq_save(flags); | ||
1479 | ctx = task->perf_event_ctxp; | ||
1480 | if (!ctx || !ctx->nr_events) | ||
1481 | goto out; | ||
1482 | |||
1483 | __perf_event_task_sched_out(ctx); | ||
1484 | |||
1485 | spin_lock(&ctx->lock); | ||
1486 | |||
1487 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
1488 | if (!event->attr.enable_on_exec) | ||
1489 | continue; | ||
1490 | event->attr.enable_on_exec = 0; | ||
1491 | if (event->state >= PERF_EVENT_STATE_INACTIVE) | ||
1492 | continue; | ||
1493 | __perf_event_mark_enabled(event, ctx); | ||
1494 | enabled = 1; | ||
1495 | } | ||
1496 | |||
1497 | /* | ||
1498 | * Unclone this context if we enabled any event. | ||
1499 | */ | ||
1500 | if (enabled) | ||
1501 | unclone_ctx(ctx); | ||
1502 | |||
1503 | spin_unlock(&ctx->lock); | ||
1504 | |||
1505 | perf_event_task_sched_in(task, smp_processor_id()); | ||
1506 | out: | ||
1507 | local_irq_restore(flags); | ||
1508 | } | ||
1509 | |||
1510 | /* | ||
1511 | * Cross CPU call to read the hardware event | ||
1512 | */ | ||
1513 | static void __perf_event_read(void *info) | ||
1514 | { | ||
1515 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
1516 | struct perf_event *event = info; | ||
1517 | struct perf_event_context *ctx = event->ctx; | ||
1518 | unsigned long flags; | ||
1519 | |||
1520 | /* | ||
1521 | * If this is a task context, we need to check whether it is | ||
1522 | * the current task context of this cpu. If not it has been | ||
1523 | * scheduled out before the smp call arrived. In that case | ||
1524 | * event->count would have been updated to a recent sample | ||
1525 | * when the event was scheduled out. | ||
1526 | */ | ||
1527 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
1528 | return; | ||
1529 | |||
1530 | local_irq_save(flags); | ||
1531 | if (ctx->is_active) | ||
1532 | update_context_time(ctx); | ||
1533 | event->pmu->read(event); | ||
1534 | update_event_times(event); | ||
1535 | local_irq_restore(flags); | ||
1536 | } | ||
1537 | |||
1538 | static u64 perf_event_read(struct perf_event *event) | ||
1539 | { | ||
1540 | /* | ||
1541 | * If event is enabled and currently active on a CPU, update the | ||
1542 | * value in the event structure: | ||
1543 | */ | ||
1544 | if (event->state == PERF_EVENT_STATE_ACTIVE) { | ||
1545 | smp_call_function_single(event->oncpu, | ||
1546 | __perf_event_read, event, 1); | ||
1547 | } else if (event->state == PERF_EVENT_STATE_INACTIVE) { | ||
1548 | update_event_times(event); | ||
1549 | } | ||
1550 | |||
1551 | return atomic64_read(&event->count); | ||
1552 | } | ||
1553 | |||
1554 | /* | ||
1555 | * Initialize the perf_event context in a task_struct: | ||
1556 | */ | ||
1557 | static void | ||
1558 | __perf_event_init_context(struct perf_event_context *ctx, | ||
1559 | struct task_struct *task) | ||
1560 | { | ||
1561 | memset(ctx, 0, sizeof(*ctx)); | ||
1562 | spin_lock_init(&ctx->lock); | ||
1563 | mutex_init(&ctx->mutex); | ||
1564 | INIT_LIST_HEAD(&ctx->group_list); | ||
1565 | INIT_LIST_HEAD(&ctx->event_list); | ||
1566 | atomic_set(&ctx->refcount, 1); | ||
1567 | ctx->task = task; | ||
1568 | } | ||
1569 | |||
1570 | static struct perf_event_context *find_get_context(pid_t pid, int cpu) | ||
1571 | { | ||
1572 | struct perf_event_context *ctx; | ||
1573 | struct perf_cpu_context *cpuctx; | ||
1574 | struct task_struct *task; | ||
1575 | unsigned long flags; | ||
1576 | int err; | ||
1577 | |||
1578 | /* | ||
1579 | * If cpu is not a wildcard then this is a percpu event: | ||
1580 | */ | ||
1581 | if (cpu != -1) { | ||
1582 | /* Must be root to operate on a CPU event: */ | ||
1583 | if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) | ||
1584 | return ERR_PTR(-EACCES); | ||
1585 | |||
1586 | if (cpu < 0 || cpu > num_possible_cpus()) | ||
1587 | return ERR_PTR(-EINVAL); | ||
1588 | |||
1589 | /* | ||
1590 | * We could be clever and allow to attach a event to an | ||
1591 | * offline CPU and activate it when the CPU comes up, but | ||
1592 | * that's for later. | ||
1593 | */ | ||
1594 | if (!cpu_isset(cpu, cpu_online_map)) | ||
1595 | return ERR_PTR(-ENODEV); | ||
1596 | |||
1597 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1598 | ctx = &cpuctx->ctx; | ||
1599 | get_ctx(ctx); | ||
1600 | |||
1601 | return ctx; | ||
1602 | } | ||
1603 | |||
1604 | rcu_read_lock(); | ||
1605 | if (!pid) | ||
1606 | task = current; | ||
1607 | else | ||
1608 | task = find_task_by_vpid(pid); | ||
1609 | if (task) | ||
1610 | get_task_struct(task); | ||
1611 | rcu_read_unlock(); | ||
1612 | |||
1613 | if (!task) | ||
1614 | return ERR_PTR(-ESRCH); | ||
1615 | |||
1616 | /* | ||
1617 | * Can't attach events to a dying task. | ||
1618 | */ | ||
1619 | err = -ESRCH; | ||
1620 | if (task->flags & PF_EXITING) | ||
1621 | goto errout; | ||
1622 | |||
1623 | /* Reuse ptrace permission checks for now. */ | ||
1624 | err = -EACCES; | ||
1625 | if (!ptrace_may_access(task, PTRACE_MODE_READ)) | ||
1626 | goto errout; | ||
1627 | |||
1628 | retry: | ||
1629 | ctx = perf_lock_task_context(task, &flags); | ||
1630 | if (ctx) { | ||
1631 | unclone_ctx(ctx); | ||
1632 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
1633 | } | ||
1634 | |||
1635 | if (!ctx) { | ||
1636 | ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL); | ||
1637 | err = -ENOMEM; | ||
1638 | if (!ctx) | ||
1639 | goto errout; | ||
1640 | __perf_event_init_context(ctx, task); | ||
1641 | get_ctx(ctx); | ||
1642 | if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) { | ||
1643 | /* | ||
1644 | * We raced with some other task; use | ||
1645 | * the context they set. | ||
1646 | */ | ||
1647 | kfree(ctx); | ||
1648 | goto retry; | ||
1649 | } | ||
1650 | get_task_struct(task); | ||
1651 | } | ||
1652 | |||
1653 | put_task_struct(task); | ||
1654 | return ctx; | ||
1655 | |||
1656 | errout: | ||
1657 | put_task_struct(task); | ||
1658 | return ERR_PTR(err); | ||
1659 | } | ||
1660 | |||
1661 | static void free_event_rcu(struct rcu_head *head) | ||
1662 | { | ||
1663 | struct perf_event *event; | ||
1664 | |||
1665 | event = container_of(head, struct perf_event, rcu_head); | ||
1666 | if (event->ns) | ||
1667 | put_pid_ns(event->ns); | ||
1668 | kfree(event); | ||
1669 | } | ||
1670 | |||
1671 | static void perf_pending_sync(struct perf_event *event); | ||
1672 | |||
1673 | static void free_event(struct perf_event *event) | ||
1674 | { | ||
1675 | perf_pending_sync(event); | ||
1676 | |||
1677 | if (!event->parent) { | ||
1678 | atomic_dec(&nr_events); | ||
1679 | if (event->attr.mmap) | ||
1680 | atomic_dec(&nr_mmap_events); | ||
1681 | if (event->attr.comm) | ||
1682 | atomic_dec(&nr_comm_events); | ||
1683 | if (event->attr.task) | ||
1684 | atomic_dec(&nr_task_events); | ||
1685 | } | ||
1686 | |||
1687 | if (event->output) { | ||
1688 | fput(event->output->filp); | ||
1689 | event->output = NULL; | ||
1690 | } | ||
1691 | |||
1692 | if (event->destroy) | ||
1693 | event->destroy(event); | ||
1694 | |||
1695 | put_ctx(event->ctx); | ||
1696 | call_rcu(&event->rcu_head, free_event_rcu); | ||
1697 | } | ||
1698 | |||
1699 | /* | ||
1700 | * Called when the last reference to the file is gone. | ||
1701 | */ | ||
1702 | static int perf_release(struct inode *inode, struct file *file) | ||
1703 | { | ||
1704 | struct perf_event *event = file->private_data; | ||
1705 | struct perf_event_context *ctx = event->ctx; | ||
1706 | |||
1707 | file->private_data = NULL; | ||
1708 | |||
1709 | WARN_ON_ONCE(ctx->parent_ctx); | ||
1710 | mutex_lock(&ctx->mutex); | ||
1711 | perf_event_remove_from_context(event); | ||
1712 | mutex_unlock(&ctx->mutex); | ||
1713 | |||
1714 | mutex_lock(&event->owner->perf_event_mutex); | ||
1715 | list_del_init(&event->owner_entry); | ||
1716 | mutex_unlock(&event->owner->perf_event_mutex); | ||
1717 | put_task_struct(event->owner); | ||
1718 | |||
1719 | free_event(event); | ||
1720 | |||
1721 | return 0; | ||
1722 | } | ||
1723 | |||
1724 | static int perf_event_read_size(struct perf_event *event) | ||
1725 | { | ||
1726 | int entry = sizeof(u64); /* value */ | ||
1727 | int size = 0; | ||
1728 | int nr = 1; | ||
1729 | |||
1730 | if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
1731 | size += sizeof(u64); | ||
1732 | |||
1733 | if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
1734 | size += sizeof(u64); | ||
1735 | |||
1736 | if (event->attr.read_format & PERF_FORMAT_ID) | ||
1737 | entry += sizeof(u64); | ||
1738 | |||
1739 | if (event->attr.read_format & PERF_FORMAT_GROUP) { | ||
1740 | nr += event->group_leader->nr_siblings; | ||
1741 | size += sizeof(u64); | ||
1742 | } | ||
1743 | |||
1744 | size += entry * nr; | ||
1745 | |||
1746 | return size; | ||
1747 | } | ||
1748 | |||
1749 | static u64 perf_event_read_value(struct perf_event *event) | ||
1750 | { | ||
1751 | struct perf_event *child; | ||
1752 | u64 total = 0; | ||
1753 | |||
1754 | total += perf_event_read(event); | ||
1755 | list_for_each_entry(child, &event->child_list, child_list) | ||
1756 | total += perf_event_read(child); | ||
1757 | |||
1758 | return total; | ||
1759 | } | ||
1760 | |||
1761 | static int perf_event_read_entry(struct perf_event *event, | ||
1762 | u64 read_format, char __user *buf) | ||
1763 | { | ||
1764 | int n = 0, count = 0; | ||
1765 | u64 values[2]; | ||
1766 | |||
1767 | values[n++] = perf_event_read_value(event); | ||
1768 | if (read_format & PERF_FORMAT_ID) | ||
1769 | values[n++] = primary_event_id(event); | ||
1770 | |||
1771 | count = n * sizeof(u64); | ||
1772 | |||
1773 | if (copy_to_user(buf, values, count)) | ||
1774 | return -EFAULT; | ||
1775 | |||
1776 | return count; | ||
1777 | } | ||
1778 | |||
1779 | static int perf_event_read_group(struct perf_event *event, | ||
1780 | u64 read_format, char __user *buf) | ||
1781 | { | ||
1782 | struct perf_event *leader = event->group_leader, *sub; | ||
1783 | int n = 0, size = 0, err = -EFAULT; | ||
1784 | u64 values[3]; | ||
1785 | |||
1786 | values[n++] = 1 + leader->nr_siblings; | ||
1787 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
1788 | values[n++] = leader->total_time_enabled + | ||
1789 | atomic64_read(&leader->child_total_time_enabled); | ||
1790 | } | ||
1791 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
1792 | values[n++] = leader->total_time_running + | ||
1793 | atomic64_read(&leader->child_total_time_running); | ||
1794 | } | ||
1795 | |||
1796 | size = n * sizeof(u64); | ||
1797 | |||
1798 | if (copy_to_user(buf, values, size)) | ||
1799 | return -EFAULT; | ||
1800 | |||
1801 | err = perf_event_read_entry(leader, read_format, buf + size); | ||
1802 | if (err < 0) | ||
1803 | return err; | ||
1804 | |||
1805 | size += err; | ||
1806 | |||
1807 | list_for_each_entry(sub, &leader->sibling_list, group_entry) { | ||
1808 | err = perf_event_read_entry(sub, read_format, | ||
1809 | buf + size); | ||
1810 | if (err < 0) | ||
1811 | return err; | ||
1812 | |||
1813 | size += err; | ||
1814 | } | ||
1815 | |||
1816 | return size; | ||
1817 | } | ||
1818 | |||
1819 | static int perf_event_read_one(struct perf_event *event, | ||
1820 | u64 read_format, char __user *buf) | ||
1821 | { | ||
1822 | u64 values[4]; | ||
1823 | int n = 0; | ||
1824 | |||
1825 | values[n++] = perf_event_read_value(event); | ||
1826 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
1827 | values[n++] = event->total_time_enabled + | ||
1828 | atomic64_read(&event->child_total_time_enabled); | ||
1829 | } | ||
1830 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
1831 | values[n++] = event->total_time_running + | ||
1832 | atomic64_read(&event->child_total_time_running); | ||
1833 | } | ||
1834 | if (read_format & PERF_FORMAT_ID) | ||
1835 | values[n++] = primary_event_id(event); | ||
1836 | |||
1837 | if (copy_to_user(buf, values, n * sizeof(u64))) | ||
1838 | return -EFAULT; | ||
1839 | |||
1840 | return n * sizeof(u64); | ||
1841 | } | ||
1842 | |||
1843 | /* | ||
1844 | * Read the performance event - simple non blocking version for now | ||
1845 | */ | ||
1846 | static ssize_t | ||
1847 | perf_read_hw(struct perf_event *event, char __user *buf, size_t count) | ||
1848 | { | ||
1849 | u64 read_format = event->attr.read_format; | ||
1850 | int ret; | ||
1851 | |||
1852 | /* | ||
1853 | * Return end-of-file for a read on a event that is in | ||
1854 | * error state (i.e. because it was pinned but it couldn't be | ||
1855 | * scheduled on to the CPU at some point). | ||
1856 | */ | ||
1857 | if (event->state == PERF_EVENT_STATE_ERROR) | ||
1858 | return 0; | ||
1859 | |||
1860 | if (count < perf_event_read_size(event)) | ||
1861 | return -ENOSPC; | ||
1862 | |||
1863 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
1864 | mutex_lock(&event->child_mutex); | ||
1865 | if (read_format & PERF_FORMAT_GROUP) | ||
1866 | ret = perf_event_read_group(event, read_format, buf); | ||
1867 | else | ||
1868 | ret = perf_event_read_one(event, read_format, buf); | ||
1869 | mutex_unlock(&event->child_mutex); | ||
1870 | |||
1871 | return ret; | ||
1872 | } | ||
1873 | |||
1874 | static ssize_t | ||
1875 | perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) | ||
1876 | { | ||
1877 | struct perf_event *event = file->private_data; | ||
1878 | |||
1879 | return perf_read_hw(event, buf, count); | ||
1880 | } | ||
1881 | |||
1882 | static unsigned int perf_poll(struct file *file, poll_table *wait) | ||
1883 | { | ||
1884 | struct perf_event *event = file->private_data; | ||
1885 | struct perf_mmap_data *data; | ||
1886 | unsigned int events = POLL_HUP; | ||
1887 | |||
1888 | rcu_read_lock(); | ||
1889 | data = rcu_dereference(event->data); | ||
1890 | if (data) | ||
1891 | events = atomic_xchg(&data->poll, 0); | ||
1892 | rcu_read_unlock(); | ||
1893 | |||
1894 | poll_wait(file, &event->waitq, wait); | ||
1895 | |||
1896 | return events; | ||
1897 | } | ||
1898 | |||
1899 | static void perf_event_reset(struct perf_event *event) | ||
1900 | { | ||
1901 | (void)perf_event_read(event); | ||
1902 | atomic64_set(&event->count, 0); | ||
1903 | perf_event_update_userpage(event); | ||
1904 | } | ||
1905 | |||
1906 | /* | ||
1907 | * Holding the top-level event's child_mutex means that any | ||
1908 | * descendant process that has inherited this event will block | ||
1909 | * in sync_child_event if it goes to exit, thus satisfying the | ||
1910 | * task existence requirements of perf_event_enable/disable. | ||
1911 | */ | ||
1912 | static void perf_event_for_each_child(struct perf_event *event, | ||
1913 | void (*func)(struct perf_event *)) | ||
1914 | { | ||
1915 | struct perf_event *child; | ||
1916 | |||
1917 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
1918 | mutex_lock(&event->child_mutex); | ||
1919 | func(event); | ||
1920 | list_for_each_entry(child, &event->child_list, child_list) | ||
1921 | func(child); | ||
1922 | mutex_unlock(&event->child_mutex); | ||
1923 | } | ||
1924 | |||
1925 | static void perf_event_for_each(struct perf_event *event, | ||
1926 | void (*func)(struct perf_event *)) | ||
1927 | { | ||
1928 | struct perf_event_context *ctx = event->ctx; | ||
1929 | struct perf_event *sibling; | ||
1930 | |||
1931 | WARN_ON_ONCE(ctx->parent_ctx); | ||
1932 | mutex_lock(&ctx->mutex); | ||
1933 | event = event->group_leader; | ||
1934 | |||
1935 | perf_event_for_each_child(event, func); | ||
1936 | func(event); | ||
1937 | list_for_each_entry(sibling, &event->sibling_list, group_entry) | ||
1938 | perf_event_for_each_child(event, func); | ||
1939 | mutex_unlock(&ctx->mutex); | ||
1940 | } | ||
1941 | |||
1942 | static int perf_event_period(struct perf_event *event, u64 __user *arg) | ||
1943 | { | ||
1944 | struct perf_event_context *ctx = event->ctx; | ||
1945 | unsigned long size; | ||
1946 | int ret = 0; | ||
1947 | u64 value; | ||
1948 | |||
1949 | if (!event->attr.sample_period) | ||
1950 | return -EINVAL; | ||
1951 | |||
1952 | size = copy_from_user(&value, arg, sizeof(value)); | ||
1953 | if (size != sizeof(value)) | ||
1954 | return -EFAULT; | ||
1955 | |||
1956 | if (!value) | ||
1957 | return -EINVAL; | ||
1958 | |||
1959 | spin_lock_irq(&ctx->lock); | ||
1960 | if (event->attr.freq) { | ||
1961 | if (value > sysctl_perf_event_sample_rate) { | ||
1962 | ret = -EINVAL; | ||
1963 | goto unlock; | ||
1964 | } | ||
1965 | |||
1966 | event->attr.sample_freq = value; | ||
1967 | } else { | ||
1968 | event->attr.sample_period = value; | ||
1969 | event->hw.sample_period = value; | ||
1970 | } | ||
1971 | unlock: | ||
1972 | spin_unlock_irq(&ctx->lock); | ||
1973 | |||
1974 | return ret; | ||
1975 | } | ||
1976 | |||
1977 | int perf_event_set_output(struct perf_event *event, int output_fd); | ||
1978 | |||
1979 | static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) | ||
1980 | { | ||
1981 | struct perf_event *event = file->private_data; | ||
1982 | void (*func)(struct perf_event *); | ||
1983 | u32 flags = arg; | ||
1984 | |||
1985 | switch (cmd) { | ||
1986 | case PERF_EVENT_IOC_ENABLE: | ||
1987 | func = perf_event_enable; | ||
1988 | break; | ||
1989 | case PERF_EVENT_IOC_DISABLE: | ||
1990 | func = perf_event_disable; | ||
1991 | break; | ||
1992 | case PERF_EVENT_IOC_RESET: | ||
1993 | func = perf_event_reset; | ||
1994 | break; | ||
1995 | |||
1996 | case PERF_EVENT_IOC_REFRESH: | ||
1997 | return perf_event_refresh(event, arg); | ||
1998 | |||
1999 | case PERF_EVENT_IOC_PERIOD: | ||
2000 | return perf_event_period(event, (u64 __user *)arg); | ||
2001 | |||
2002 | case PERF_EVENT_IOC_SET_OUTPUT: | ||
2003 | return perf_event_set_output(event, arg); | ||
2004 | |||
2005 | default: | ||
2006 | return -ENOTTY; | ||
2007 | } | ||
2008 | |||
2009 | if (flags & PERF_IOC_FLAG_GROUP) | ||
2010 | perf_event_for_each(event, func); | ||
2011 | else | ||
2012 | perf_event_for_each_child(event, func); | ||
2013 | |||
2014 | return 0; | ||
2015 | } | ||
2016 | |||
2017 | int perf_event_task_enable(void) | ||
2018 | { | ||
2019 | struct perf_event *event; | ||
2020 | |||
2021 | mutex_lock(¤t->perf_event_mutex); | ||
2022 | list_for_each_entry(event, ¤t->perf_event_list, owner_entry) | ||
2023 | perf_event_for_each_child(event, perf_event_enable); | ||
2024 | mutex_unlock(¤t->perf_event_mutex); | ||
2025 | |||
2026 | return 0; | ||
2027 | } | ||
2028 | |||
2029 | int perf_event_task_disable(void) | ||
2030 | { | ||
2031 | struct perf_event *event; | ||
2032 | |||
2033 | mutex_lock(¤t->perf_event_mutex); | ||
2034 | list_for_each_entry(event, ¤t->perf_event_list, owner_entry) | ||
2035 | perf_event_for_each_child(event, perf_event_disable); | ||
2036 | mutex_unlock(¤t->perf_event_mutex); | ||
2037 | |||
2038 | return 0; | ||
2039 | } | ||
2040 | |||
2041 | #ifndef PERF_EVENT_INDEX_OFFSET | ||
2042 | # define PERF_EVENT_INDEX_OFFSET 0 | ||
2043 | #endif | ||
2044 | |||
2045 | static int perf_event_index(struct perf_event *event) | ||
2046 | { | ||
2047 | if (event->state != PERF_EVENT_STATE_ACTIVE) | ||
2048 | return 0; | ||
2049 | |||
2050 | return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET; | ||
2051 | } | ||
2052 | |||
2053 | /* | ||
2054 | * Callers need to ensure there can be no nesting of this function, otherwise | ||
2055 | * the seqlock logic goes bad. We can not serialize this because the arch | ||
2056 | * code calls this from NMI context. | ||
2057 | */ | ||
2058 | void perf_event_update_userpage(struct perf_event *event) | ||
2059 | { | ||
2060 | struct perf_event_mmap_page *userpg; | ||
2061 | struct perf_mmap_data *data; | ||
2062 | |||
2063 | rcu_read_lock(); | ||
2064 | data = rcu_dereference(event->data); | ||
2065 | if (!data) | ||
2066 | goto unlock; | ||
2067 | |||
2068 | userpg = data->user_page; | ||
2069 | |||
2070 | /* | ||
2071 | * Disable preemption so as to not let the corresponding user-space | ||
2072 | * spin too long if we get preempted. | ||
2073 | */ | ||
2074 | preempt_disable(); | ||
2075 | ++userpg->lock; | ||
2076 | barrier(); | ||
2077 | userpg->index = perf_event_index(event); | ||
2078 | userpg->offset = atomic64_read(&event->count); | ||
2079 | if (event->state == PERF_EVENT_STATE_ACTIVE) | ||
2080 | userpg->offset -= atomic64_read(&event->hw.prev_count); | ||
2081 | |||
2082 | userpg->time_enabled = event->total_time_enabled + | ||
2083 | atomic64_read(&event->child_total_time_enabled); | ||
2084 | |||
2085 | userpg->time_running = event->total_time_running + | ||
2086 | atomic64_read(&event->child_total_time_running); | ||
2087 | |||
2088 | barrier(); | ||
2089 | ++userpg->lock; | ||
2090 | preempt_enable(); | ||
2091 | unlock: | ||
2092 | rcu_read_unlock(); | ||
2093 | } | ||
2094 | |||
2095 | static unsigned long perf_data_size(struct perf_mmap_data *data) | ||
2096 | { | ||
2097 | return data->nr_pages << (PAGE_SHIFT + data->data_order); | ||
2098 | } | ||
2099 | |||
2100 | #ifndef CONFIG_PERF_USE_VMALLOC | ||
2101 | |||
2102 | /* | ||
2103 | * Back perf_mmap() with regular GFP_KERNEL-0 pages. | ||
2104 | */ | ||
2105 | |||
2106 | static struct page * | ||
2107 | perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff) | ||
2108 | { | ||
2109 | if (pgoff > data->nr_pages) | ||
2110 | return NULL; | ||
2111 | |||
2112 | if (pgoff == 0) | ||
2113 | return virt_to_page(data->user_page); | ||
2114 | |||
2115 | return virt_to_page(data->data_pages[pgoff - 1]); | ||
2116 | } | ||
2117 | |||
2118 | static struct perf_mmap_data * | ||
2119 | perf_mmap_data_alloc(struct perf_event *event, int nr_pages) | ||
2120 | { | ||
2121 | struct perf_mmap_data *data; | ||
2122 | unsigned long size; | ||
2123 | int i; | ||
2124 | |||
2125 | WARN_ON(atomic_read(&event->mmap_count)); | ||
2126 | |||
2127 | size = sizeof(struct perf_mmap_data); | ||
2128 | size += nr_pages * sizeof(void *); | ||
2129 | |||
2130 | data = kzalloc(size, GFP_KERNEL); | ||
2131 | if (!data) | ||
2132 | goto fail; | ||
2133 | |||
2134 | data->user_page = (void *)get_zeroed_page(GFP_KERNEL); | ||
2135 | if (!data->user_page) | ||
2136 | goto fail_user_page; | ||
2137 | |||
2138 | for (i = 0; i < nr_pages; i++) { | ||
2139 | data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL); | ||
2140 | if (!data->data_pages[i]) | ||
2141 | goto fail_data_pages; | ||
2142 | } | ||
2143 | |||
2144 | data->data_order = 0; | ||
2145 | data->nr_pages = nr_pages; | ||
2146 | |||
2147 | return data; | ||
2148 | |||
2149 | fail_data_pages: | ||
2150 | for (i--; i >= 0; i--) | ||
2151 | free_page((unsigned long)data->data_pages[i]); | ||
2152 | |||
2153 | free_page((unsigned long)data->user_page); | ||
2154 | |||
2155 | fail_user_page: | ||
2156 | kfree(data); | ||
2157 | |||
2158 | fail: | ||
2159 | return NULL; | ||
2160 | } | ||
2161 | |||
2162 | static void perf_mmap_free_page(unsigned long addr) | ||
2163 | { | ||
2164 | struct page *page = virt_to_page((void *)addr); | ||
2165 | |||
2166 | page->mapping = NULL; | ||
2167 | __free_page(page); | ||
2168 | } | ||
2169 | |||
2170 | static void perf_mmap_data_free(struct perf_mmap_data *data) | ||
2171 | { | ||
2172 | int i; | ||
2173 | |||
2174 | perf_mmap_free_page((unsigned long)data->user_page); | ||
2175 | for (i = 0; i < data->nr_pages; i++) | ||
2176 | perf_mmap_free_page((unsigned long)data->data_pages[i]); | ||
2177 | } | ||
2178 | |||
2179 | #else | ||
2180 | |||
2181 | /* | ||
2182 | * Back perf_mmap() with vmalloc memory. | ||
2183 | * | ||
2184 | * Required for architectures that have d-cache aliasing issues. | ||
2185 | */ | ||
2186 | |||
2187 | static struct page * | ||
2188 | perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff) | ||
2189 | { | ||
2190 | if (pgoff > (1UL << data->data_order)) | ||
2191 | return NULL; | ||
2192 | |||
2193 | return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE); | ||
2194 | } | ||
2195 | |||
2196 | static void perf_mmap_unmark_page(void *addr) | ||
2197 | { | ||
2198 | struct page *page = vmalloc_to_page(addr); | ||
2199 | |||
2200 | page->mapping = NULL; | ||
2201 | } | ||
2202 | |||
2203 | static void perf_mmap_data_free_work(struct work_struct *work) | ||
2204 | { | ||
2205 | struct perf_mmap_data *data; | ||
2206 | void *base; | ||
2207 | int i, nr; | ||
2208 | |||
2209 | data = container_of(work, struct perf_mmap_data, work); | ||
2210 | nr = 1 << data->data_order; | ||
2211 | |||
2212 | base = data->user_page; | ||
2213 | for (i = 0; i < nr + 1; i++) | ||
2214 | perf_mmap_unmark_page(base + (i * PAGE_SIZE)); | ||
2215 | |||
2216 | vfree(base); | ||
2217 | } | ||
2218 | |||
2219 | static void perf_mmap_data_free(struct perf_mmap_data *data) | ||
2220 | { | ||
2221 | schedule_work(&data->work); | ||
2222 | } | ||
2223 | |||
2224 | static struct perf_mmap_data * | ||
2225 | perf_mmap_data_alloc(struct perf_event *event, int nr_pages) | ||
2226 | { | ||
2227 | struct perf_mmap_data *data; | ||
2228 | unsigned long size; | ||
2229 | void *all_buf; | ||
2230 | |||
2231 | WARN_ON(atomic_read(&event->mmap_count)); | ||
2232 | |||
2233 | size = sizeof(struct perf_mmap_data); | ||
2234 | size += sizeof(void *); | ||
2235 | |||
2236 | data = kzalloc(size, GFP_KERNEL); | ||
2237 | if (!data) | ||
2238 | goto fail; | ||
2239 | |||
2240 | INIT_WORK(&data->work, perf_mmap_data_free_work); | ||
2241 | |||
2242 | all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE); | ||
2243 | if (!all_buf) | ||
2244 | goto fail_all_buf; | ||
2245 | |||
2246 | data->user_page = all_buf; | ||
2247 | data->data_pages[0] = all_buf + PAGE_SIZE; | ||
2248 | data->data_order = ilog2(nr_pages); | ||
2249 | data->nr_pages = 1; | ||
2250 | |||
2251 | return data; | ||
2252 | |||
2253 | fail_all_buf: | ||
2254 | kfree(data); | ||
2255 | |||
2256 | fail: | ||
2257 | return NULL; | ||
2258 | } | ||
2259 | |||
2260 | #endif | ||
2261 | |||
2262 | static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | ||
2263 | { | ||
2264 | struct perf_event *event = vma->vm_file->private_data; | ||
2265 | struct perf_mmap_data *data; | ||
2266 | int ret = VM_FAULT_SIGBUS; | ||
2267 | |||
2268 | if (vmf->flags & FAULT_FLAG_MKWRITE) { | ||
2269 | if (vmf->pgoff == 0) | ||
2270 | ret = 0; | ||
2271 | return ret; | ||
2272 | } | ||
2273 | |||
2274 | rcu_read_lock(); | ||
2275 | data = rcu_dereference(event->data); | ||
2276 | if (!data) | ||
2277 | goto unlock; | ||
2278 | |||
2279 | if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) | ||
2280 | goto unlock; | ||
2281 | |||
2282 | vmf->page = perf_mmap_to_page(data, vmf->pgoff); | ||
2283 | if (!vmf->page) | ||
2284 | goto unlock; | ||
2285 | |||
2286 | get_page(vmf->page); | ||
2287 | vmf->page->mapping = vma->vm_file->f_mapping; | ||
2288 | vmf->page->index = vmf->pgoff; | ||
2289 | |||
2290 | ret = 0; | ||
2291 | unlock: | ||
2292 | rcu_read_unlock(); | ||
2293 | |||
2294 | return ret; | ||
2295 | } | ||
2296 | |||
2297 | static void | ||
2298 | perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data) | ||
2299 | { | ||
2300 | long max_size = perf_data_size(data); | ||
2301 | |||
2302 | atomic_set(&data->lock, -1); | ||
2303 | |||
2304 | if (event->attr.watermark) { | ||
2305 | data->watermark = min_t(long, max_size, | ||
2306 | event->attr.wakeup_watermark); | ||
2307 | } | ||
2308 | |||
2309 | if (!data->watermark) | ||
2310 | data->watermark = max_t(long, PAGE_SIZE, max_size / 2); | ||
2311 | |||
2312 | |||
2313 | rcu_assign_pointer(event->data, data); | ||
2314 | } | ||
2315 | |||
2316 | static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head) | ||
2317 | { | ||
2318 | struct perf_mmap_data *data; | ||
2319 | |||
2320 | data = container_of(rcu_head, struct perf_mmap_data, rcu_head); | ||
2321 | perf_mmap_data_free(data); | ||
2322 | kfree(data); | ||
2323 | } | ||
2324 | |||
2325 | static void perf_mmap_data_release(struct perf_event *event) | ||
2326 | { | ||
2327 | struct perf_mmap_data *data = event->data; | ||
2328 | |||
2329 | WARN_ON(atomic_read(&event->mmap_count)); | ||
2330 | |||
2331 | rcu_assign_pointer(event->data, NULL); | ||
2332 | call_rcu(&data->rcu_head, perf_mmap_data_free_rcu); | ||
2333 | } | ||
2334 | |||
2335 | static void perf_mmap_open(struct vm_area_struct *vma) | ||
2336 | { | ||
2337 | struct perf_event *event = vma->vm_file->private_data; | ||
2338 | |||
2339 | atomic_inc(&event->mmap_count); | ||
2340 | } | ||
2341 | |||
2342 | static void perf_mmap_close(struct vm_area_struct *vma) | ||
2343 | { | ||
2344 | struct perf_event *event = vma->vm_file->private_data; | ||
2345 | |||
2346 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
2347 | if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { | ||
2348 | unsigned long size = perf_data_size(event->data); | ||
2349 | struct user_struct *user = current_user(); | ||
2350 | |||
2351 | atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm); | ||
2352 | vma->vm_mm->locked_vm -= event->data->nr_locked; | ||
2353 | perf_mmap_data_release(event); | ||
2354 | mutex_unlock(&event->mmap_mutex); | ||
2355 | } | ||
2356 | } | ||
2357 | |||
2358 | static const struct vm_operations_struct perf_mmap_vmops = { | ||
2359 | .open = perf_mmap_open, | ||
2360 | .close = perf_mmap_close, | ||
2361 | .fault = perf_mmap_fault, | ||
2362 | .page_mkwrite = perf_mmap_fault, | ||
2363 | }; | ||
2364 | |||
2365 | static int perf_mmap(struct file *file, struct vm_area_struct *vma) | ||
2366 | { | ||
2367 | struct perf_event *event = file->private_data; | ||
2368 | unsigned long user_locked, user_lock_limit; | ||
2369 | struct user_struct *user = current_user(); | ||
2370 | unsigned long locked, lock_limit; | ||
2371 | struct perf_mmap_data *data; | ||
2372 | unsigned long vma_size; | ||
2373 | unsigned long nr_pages; | ||
2374 | long user_extra, extra; | ||
2375 | int ret = 0; | ||
2376 | |||
2377 | if (!(vma->vm_flags & VM_SHARED)) | ||
2378 | return -EINVAL; | ||
2379 | |||
2380 | vma_size = vma->vm_end - vma->vm_start; | ||
2381 | nr_pages = (vma_size / PAGE_SIZE) - 1; | ||
2382 | |||
2383 | /* | ||
2384 | * If we have data pages ensure they're a power-of-two number, so we | ||
2385 | * can do bitmasks instead of modulo. | ||
2386 | */ | ||
2387 | if (nr_pages != 0 && !is_power_of_2(nr_pages)) | ||
2388 | return -EINVAL; | ||
2389 | |||
2390 | if (vma_size != PAGE_SIZE * (1 + nr_pages)) | ||
2391 | return -EINVAL; | ||
2392 | |||
2393 | if (vma->vm_pgoff != 0) | ||
2394 | return -EINVAL; | ||
2395 | |||
2396 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
2397 | mutex_lock(&event->mmap_mutex); | ||
2398 | if (event->output) { | ||
2399 | ret = -EINVAL; | ||
2400 | goto unlock; | ||
2401 | } | ||
2402 | |||
2403 | if (atomic_inc_not_zero(&event->mmap_count)) { | ||
2404 | if (nr_pages != event->data->nr_pages) | ||
2405 | ret = -EINVAL; | ||
2406 | goto unlock; | ||
2407 | } | ||
2408 | |||
2409 | user_extra = nr_pages + 1; | ||
2410 | user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); | ||
2411 | |||
2412 | /* | ||
2413 | * Increase the limit linearly with more CPUs: | ||
2414 | */ | ||
2415 | user_lock_limit *= num_online_cpus(); | ||
2416 | |||
2417 | user_locked = atomic_long_read(&user->locked_vm) + user_extra; | ||
2418 | |||
2419 | extra = 0; | ||
2420 | if (user_locked > user_lock_limit) | ||
2421 | extra = user_locked - user_lock_limit; | ||
2422 | |||
2423 | lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; | ||
2424 | lock_limit >>= PAGE_SHIFT; | ||
2425 | locked = vma->vm_mm->locked_vm + extra; | ||
2426 | |||
2427 | if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && | ||
2428 | !capable(CAP_IPC_LOCK)) { | ||
2429 | ret = -EPERM; | ||
2430 | goto unlock; | ||
2431 | } | ||
2432 | |||
2433 | WARN_ON(event->data); | ||
2434 | |||
2435 | data = perf_mmap_data_alloc(event, nr_pages); | ||
2436 | ret = -ENOMEM; | ||
2437 | if (!data) | ||
2438 | goto unlock; | ||
2439 | |||
2440 | ret = 0; | ||
2441 | perf_mmap_data_init(event, data); | ||
2442 | |||
2443 | atomic_set(&event->mmap_count, 1); | ||
2444 | atomic_long_add(user_extra, &user->locked_vm); | ||
2445 | vma->vm_mm->locked_vm += extra; | ||
2446 | event->data->nr_locked = extra; | ||
2447 | if (vma->vm_flags & VM_WRITE) | ||
2448 | event->data->writable = 1; | ||
2449 | |||
2450 | unlock: | ||
2451 | mutex_unlock(&event->mmap_mutex); | ||
2452 | |||
2453 | vma->vm_flags |= VM_RESERVED; | ||
2454 | vma->vm_ops = &perf_mmap_vmops; | ||
2455 | |||
2456 | return ret; | ||
2457 | } | ||
2458 | |||
2459 | static int perf_fasync(int fd, struct file *filp, int on) | ||
2460 | { | ||
2461 | struct inode *inode = filp->f_path.dentry->d_inode; | ||
2462 | struct perf_event *event = filp->private_data; | ||
2463 | int retval; | ||
2464 | |||
2465 | mutex_lock(&inode->i_mutex); | ||
2466 | retval = fasync_helper(fd, filp, on, &event->fasync); | ||
2467 | mutex_unlock(&inode->i_mutex); | ||
2468 | |||
2469 | if (retval < 0) | ||
2470 | return retval; | ||
2471 | |||
2472 | return 0; | ||
2473 | } | ||
2474 | |||
2475 | static const struct file_operations perf_fops = { | ||
2476 | .release = perf_release, | ||
2477 | .read = perf_read, | ||
2478 | .poll = perf_poll, | ||
2479 | .unlocked_ioctl = perf_ioctl, | ||
2480 | .compat_ioctl = perf_ioctl, | ||
2481 | .mmap = perf_mmap, | ||
2482 | .fasync = perf_fasync, | ||
2483 | }; | ||
2484 | |||
2485 | /* | ||
2486 | * Perf event wakeup | ||
2487 | * | ||
2488 | * If there's data, ensure we set the poll() state and publish everything | ||
2489 | * to user-space before waking everybody up. | ||
2490 | */ | ||
2491 | |||
2492 | void perf_event_wakeup(struct perf_event *event) | ||
2493 | { | ||
2494 | wake_up_all(&event->waitq); | ||
2495 | |||
2496 | if (event->pending_kill) { | ||
2497 | kill_fasync(&event->fasync, SIGIO, event->pending_kill); | ||
2498 | event->pending_kill = 0; | ||
2499 | } | ||
2500 | } | ||
2501 | |||
2502 | /* | ||
2503 | * Pending wakeups | ||
2504 | * | ||
2505 | * Handle the case where we need to wakeup up from NMI (or rq->lock) context. | ||
2506 | * | ||
2507 | * The NMI bit means we cannot possibly take locks. Therefore, maintain a | ||
2508 | * single linked list and use cmpxchg() to add entries lockless. | ||
2509 | */ | ||
2510 | |||
2511 | static void perf_pending_event(struct perf_pending_entry *entry) | ||
2512 | { | ||
2513 | struct perf_event *event = container_of(entry, | ||
2514 | struct perf_event, pending); | ||
2515 | |||
2516 | if (event->pending_disable) { | ||
2517 | event->pending_disable = 0; | ||
2518 | __perf_event_disable(event); | ||
2519 | } | ||
2520 | |||
2521 | if (event->pending_wakeup) { | ||
2522 | event->pending_wakeup = 0; | ||
2523 | perf_event_wakeup(event); | ||
2524 | } | ||
2525 | } | ||
2526 | |||
2527 | #define PENDING_TAIL ((struct perf_pending_entry *)-1UL) | ||
2528 | |||
2529 | static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = { | ||
2530 | PENDING_TAIL, | ||
2531 | }; | ||
2532 | |||
2533 | static void perf_pending_queue(struct perf_pending_entry *entry, | ||
2534 | void (*func)(struct perf_pending_entry *)) | ||
2535 | { | ||
2536 | struct perf_pending_entry **head; | ||
2537 | |||
2538 | if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL) | ||
2539 | return; | ||
2540 | |||
2541 | entry->func = func; | ||
2542 | |||
2543 | head = &get_cpu_var(perf_pending_head); | ||
2544 | |||
2545 | do { | ||
2546 | entry->next = *head; | ||
2547 | } while (cmpxchg(head, entry->next, entry) != entry->next); | ||
2548 | |||
2549 | set_perf_event_pending(); | ||
2550 | |||
2551 | put_cpu_var(perf_pending_head); | ||
2552 | } | ||
2553 | |||
2554 | static int __perf_pending_run(void) | ||
2555 | { | ||
2556 | struct perf_pending_entry *list; | ||
2557 | int nr = 0; | ||
2558 | |||
2559 | list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL); | ||
2560 | while (list != PENDING_TAIL) { | ||
2561 | void (*func)(struct perf_pending_entry *); | ||
2562 | struct perf_pending_entry *entry = list; | ||
2563 | |||
2564 | list = list->next; | ||
2565 | |||
2566 | func = entry->func; | ||
2567 | entry->next = NULL; | ||
2568 | /* | ||
2569 | * Ensure we observe the unqueue before we issue the wakeup, | ||
2570 | * so that we won't be waiting forever. | ||
2571 | * -- see perf_not_pending(). | ||
2572 | */ | ||
2573 | smp_wmb(); | ||
2574 | |||
2575 | func(entry); | ||
2576 | nr++; | ||
2577 | } | ||
2578 | |||
2579 | return nr; | ||
2580 | } | ||
2581 | |||
2582 | static inline int perf_not_pending(struct perf_event *event) | ||
2583 | { | ||
2584 | /* | ||
2585 | * If we flush on whatever cpu we run, there is a chance we don't | ||
2586 | * need to wait. | ||
2587 | */ | ||
2588 | get_cpu(); | ||
2589 | __perf_pending_run(); | ||
2590 | put_cpu(); | ||
2591 | |||
2592 | /* | ||
2593 | * Ensure we see the proper queue state before going to sleep | ||
2594 | * so that we do not miss the wakeup. -- see perf_pending_handle() | ||
2595 | */ | ||
2596 | smp_rmb(); | ||
2597 | return event->pending.next == NULL; | ||
2598 | } | ||
2599 | |||
2600 | static void perf_pending_sync(struct perf_event *event) | ||
2601 | { | ||
2602 | wait_event(event->waitq, perf_not_pending(event)); | ||
2603 | } | ||
2604 | |||
2605 | void perf_event_do_pending(void) | ||
2606 | { | ||
2607 | __perf_pending_run(); | ||
2608 | } | ||
2609 | |||
2610 | /* | ||
2611 | * Callchain support -- arch specific | ||
2612 | */ | ||
2613 | |||
2614 | __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) | ||
2615 | { | ||
2616 | return NULL; | ||
2617 | } | ||
2618 | |||
2619 | /* | ||
2620 | * Output | ||
2621 | */ | ||
2622 | static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail, | ||
2623 | unsigned long offset, unsigned long head) | ||
2624 | { | ||
2625 | unsigned long mask; | ||
2626 | |||
2627 | if (!data->writable) | ||
2628 | return true; | ||
2629 | |||
2630 | mask = perf_data_size(data) - 1; | ||
2631 | |||
2632 | offset = (offset - tail) & mask; | ||
2633 | head = (head - tail) & mask; | ||
2634 | |||
2635 | if ((int)(head - offset) < 0) | ||
2636 | return false; | ||
2637 | |||
2638 | return true; | ||
2639 | } | ||
2640 | |||
2641 | static void perf_output_wakeup(struct perf_output_handle *handle) | ||
2642 | { | ||
2643 | atomic_set(&handle->data->poll, POLL_IN); | ||
2644 | |||
2645 | if (handle->nmi) { | ||
2646 | handle->event->pending_wakeup = 1; | ||
2647 | perf_pending_queue(&handle->event->pending, | ||
2648 | perf_pending_event); | ||
2649 | } else | ||
2650 | perf_event_wakeup(handle->event); | ||
2651 | } | ||
2652 | |||
2653 | /* | ||
2654 | * Curious locking construct. | ||
2655 | * | ||
2656 | * We need to ensure a later event_id doesn't publish a head when a former | ||
2657 | * event_id isn't done writing. However since we need to deal with NMIs we | ||
2658 | * cannot fully serialize things. | ||
2659 | * | ||
2660 | * What we do is serialize between CPUs so we only have to deal with NMI | ||
2661 | * nesting on a single CPU. | ||
2662 | * | ||
2663 | * We only publish the head (and generate a wakeup) when the outer-most | ||
2664 | * event_id completes. | ||
2665 | */ | ||
2666 | static void perf_output_lock(struct perf_output_handle *handle) | ||
2667 | { | ||
2668 | struct perf_mmap_data *data = handle->data; | ||
2669 | int cpu; | ||
2670 | |||
2671 | handle->locked = 0; | ||
2672 | |||
2673 | local_irq_save(handle->flags); | ||
2674 | cpu = smp_processor_id(); | ||
2675 | |||
2676 | if (in_nmi() && atomic_read(&data->lock) == cpu) | ||
2677 | return; | ||
2678 | |||
2679 | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | ||
2680 | cpu_relax(); | ||
2681 | |||
2682 | handle->locked = 1; | ||
2683 | } | ||
2684 | |||
2685 | static void perf_output_unlock(struct perf_output_handle *handle) | ||
2686 | { | ||
2687 | struct perf_mmap_data *data = handle->data; | ||
2688 | unsigned long head; | ||
2689 | int cpu; | ||
2690 | |||
2691 | data->done_head = data->head; | ||
2692 | |||
2693 | if (!handle->locked) | ||
2694 | goto out; | ||
2695 | |||
2696 | again: | ||
2697 | /* | ||
2698 | * The xchg implies a full barrier that ensures all writes are done | ||
2699 | * before we publish the new head, matched by a rmb() in userspace when | ||
2700 | * reading this position. | ||
2701 | */ | ||
2702 | while ((head = atomic_long_xchg(&data->done_head, 0))) | ||
2703 | data->user_page->data_head = head; | ||
2704 | |||
2705 | /* | ||
2706 | * NMI can happen here, which means we can miss a done_head update. | ||
2707 | */ | ||
2708 | |||
2709 | cpu = atomic_xchg(&data->lock, -1); | ||
2710 | WARN_ON_ONCE(cpu != smp_processor_id()); | ||
2711 | |||
2712 | /* | ||
2713 | * Therefore we have to validate we did not indeed do so. | ||
2714 | */ | ||
2715 | if (unlikely(atomic_long_read(&data->done_head))) { | ||
2716 | /* | ||
2717 | * Since we had it locked, we can lock it again. | ||
2718 | */ | ||
2719 | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | ||
2720 | cpu_relax(); | ||
2721 | |||
2722 | goto again; | ||
2723 | } | ||
2724 | |||
2725 | if (atomic_xchg(&data->wakeup, 0)) | ||
2726 | perf_output_wakeup(handle); | ||
2727 | out: | ||
2728 | local_irq_restore(handle->flags); | ||
2729 | } | ||
2730 | |||
2731 | void perf_output_copy(struct perf_output_handle *handle, | ||
2732 | const void *buf, unsigned int len) | ||
2733 | { | ||
2734 | unsigned int pages_mask; | ||
2735 | unsigned long offset; | ||
2736 | unsigned int size; | ||
2737 | void **pages; | ||
2738 | |||
2739 | offset = handle->offset; | ||
2740 | pages_mask = handle->data->nr_pages - 1; | ||
2741 | pages = handle->data->data_pages; | ||
2742 | |||
2743 | do { | ||
2744 | unsigned long page_offset; | ||
2745 | unsigned long page_size; | ||
2746 | int nr; | ||
2747 | |||
2748 | nr = (offset >> PAGE_SHIFT) & pages_mask; | ||
2749 | page_size = 1UL << (handle->data->data_order + PAGE_SHIFT); | ||
2750 | page_offset = offset & (page_size - 1); | ||
2751 | size = min_t(unsigned int, page_size - page_offset, len); | ||
2752 | |||
2753 | memcpy(pages[nr] + page_offset, buf, size); | ||
2754 | |||
2755 | len -= size; | ||
2756 | buf += size; | ||
2757 | offset += size; | ||
2758 | } while (len); | ||
2759 | |||
2760 | handle->offset = offset; | ||
2761 | |||
2762 | /* | ||
2763 | * Check we didn't copy past our reservation window, taking the | ||
2764 | * possible unsigned int wrap into account. | ||
2765 | */ | ||
2766 | WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0); | ||
2767 | } | ||
2768 | |||
2769 | int perf_output_begin(struct perf_output_handle *handle, | ||
2770 | struct perf_event *event, unsigned int size, | ||
2771 | int nmi, int sample) | ||
2772 | { | ||
2773 | struct perf_event *output_event; | ||
2774 | struct perf_mmap_data *data; | ||
2775 | unsigned long tail, offset, head; | ||
2776 | int have_lost; | ||
2777 | struct { | ||
2778 | struct perf_event_header header; | ||
2779 | u64 id; | ||
2780 | u64 lost; | ||
2781 | } lost_event; | ||
2782 | |||
2783 | rcu_read_lock(); | ||
2784 | /* | ||
2785 | * For inherited events we send all the output towards the parent. | ||
2786 | */ | ||
2787 | if (event->parent) | ||
2788 | event = event->parent; | ||
2789 | |||
2790 | output_event = rcu_dereference(event->output); | ||
2791 | if (output_event) | ||
2792 | event = output_event; | ||
2793 | |||
2794 | data = rcu_dereference(event->data); | ||
2795 | if (!data) | ||
2796 | goto out; | ||
2797 | |||
2798 | handle->data = data; | ||
2799 | handle->event = event; | ||
2800 | handle->nmi = nmi; | ||
2801 | handle->sample = sample; | ||
2802 | |||
2803 | if (!data->nr_pages) | ||
2804 | goto fail; | ||
2805 | |||
2806 | have_lost = atomic_read(&data->lost); | ||
2807 | if (have_lost) | ||
2808 | size += sizeof(lost_event); | ||
2809 | |||
2810 | perf_output_lock(handle); | ||
2811 | |||
2812 | do { | ||
2813 | /* | ||
2814 | * Userspace could choose to issue a mb() before updating the | ||
2815 | * tail pointer. So that all reads will be completed before the | ||
2816 | * write is issued. | ||
2817 | */ | ||
2818 | tail = ACCESS_ONCE(data->user_page->data_tail); | ||
2819 | smp_rmb(); | ||
2820 | offset = head = atomic_long_read(&data->head); | ||
2821 | head += size; | ||
2822 | if (unlikely(!perf_output_space(data, tail, offset, head))) | ||
2823 | goto fail; | ||
2824 | } while (atomic_long_cmpxchg(&data->head, offset, head) != offset); | ||
2825 | |||
2826 | handle->offset = offset; | ||
2827 | handle->head = head; | ||
2828 | |||
2829 | if (head - tail > data->watermark) | ||
2830 | atomic_set(&data->wakeup, 1); | ||
2831 | |||
2832 | if (have_lost) { | ||
2833 | lost_event.header.type = PERF_RECORD_LOST; | ||
2834 | lost_event.header.misc = 0; | ||
2835 | lost_event.header.size = sizeof(lost_event); | ||
2836 | lost_event.id = event->id; | ||
2837 | lost_event.lost = atomic_xchg(&data->lost, 0); | ||
2838 | |||
2839 | perf_output_put(handle, lost_event); | ||
2840 | } | ||
2841 | |||
2842 | return 0; | ||
2843 | |||
2844 | fail: | ||
2845 | atomic_inc(&data->lost); | ||
2846 | perf_output_unlock(handle); | ||
2847 | out: | ||
2848 | rcu_read_unlock(); | ||
2849 | |||
2850 | return -ENOSPC; | ||
2851 | } | ||
2852 | |||
2853 | void perf_output_end(struct perf_output_handle *handle) | ||
2854 | { | ||
2855 | struct perf_event *event = handle->event; | ||
2856 | struct perf_mmap_data *data = handle->data; | ||
2857 | |||
2858 | int wakeup_events = event->attr.wakeup_events; | ||
2859 | |||
2860 | if (handle->sample && wakeup_events) { | ||
2861 | int events = atomic_inc_return(&data->events); | ||
2862 | if (events >= wakeup_events) { | ||
2863 | atomic_sub(wakeup_events, &data->events); | ||
2864 | atomic_set(&data->wakeup, 1); | ||
2865 | } | ||
2866 | } | ||
2867 | |||
2868 | perf_output_unlock(handle); | ||
2869 | rcu_read_unlock(); | ||
2870 | } | ||
2871 | |||
2872 | static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) | ||
2873 | { | ||
2874 | /* | ||
2875 | * only top level events have the pid namespace they were created in | ||
2876 | */ | ||
2877 | if (event->parent) | ||
2878 | event = event->parent; | ||
2879 | |||
2880 | return task_tgid_nr_ns(p, event->ns); | ||
2881 | } | ||
2882 | |||
2883 | static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) | ||
2884 | { | ||
2885 | /* | ||
2886 | * only top level events have the pid namespace they were created in | ||
2887 | */ | ||
2888 | if (event->parent) | ||
2889 | event = event->parent; | ||
2890 | |||
2891 | return task_pid_nr_ns(p, event->ns); | ||
2892 | } | ||
2893 | |||
2894 | static void perf_output_read_one(struct perf_output_handle *handle, | ||
2895 | struct perf_event *event) | ||
2896 | { | ||
2897 | u64 read_format = event->attr.read_format; | ||
2898 | u64 values[4]; | ||
2899 | int n = 0; | ||
2900 | |||
2901 | values[n++] = atomic64_read(&event->count); | ||
2902 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
2903 | values[n++] = event->total_time_enabled + | ||
2904 | atomic64_read(&event->child_total_time_enabled); | ||
2905 | } | ||
2906 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
2907 | values[n++] = event->total_time_running + | ||
2908 | atomic64_read(&event->child_total_time_running); | ||
2909 | } | ||
2910 | if (read_format & PERF_FORMAT_ID) | ||
2911 | values[n++] = primary_event_id(event); | ||
2912 | |||
2913 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
2914 | } | ||
2915 | |||
2916 | /* | ||
2917 | * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. | ||
2918 | */ | ||
2919 | static void perf_output_read_group(struct perf_output_handle *handle, | ||
2920 | struct perf_event *event) | ||
2921 | { | ||
2922 | struct perf_event *leader = event->group_leader, *sub; | ||
2923 | u64 read_format = event->attr.read_format; | ||
2924 | u64 values[5]; | ||
2925 | int n = 0; | ||
2926 | |||
2927 | values[n++] = 1 + leader->nr_siblings; | ||
2928 | |||
2929 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
2930 | values[n++] = leader->total_time_enabled; | ||
2931 | |||
2932 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
2933 | values[n++] = leader->total_time_running; | ||
2934 | |||
2935 | if (leader != event) | ||
2936 | leader->pmu->read(leader); | ||
2937 | |||
2938 | values[n++] = atomic64_read(&leader->count); | ||
2939 | if (read_format & PERF_FORMAT_ID) | ||
2940 | values[n++] = primary_event_id(leader); | ||
2941 | |||
2942 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
2943 | |||
2944 | list_for_each_entry(sub, &leader->sibling_list, group_entry) { | ||
2945 | n = 0; | ||
2946 | |||
2947 | if (sub != event) | ||
2948 | sub->pmu->read(sub); | ||
2949 | |||
2950 | values[n++] = atomic64_read(&sub->count); | ||
2951 | if (read_format & PERF_FORMAT_ID) | ||
2952 | values[n++] = primary_event_id(sub); | ||
2953 | |||
2954 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
2955 | } | ||
2956 | } | ||
2957 | |||
2958 | static void perf_output_read(struct perf_output_handle *handle, | ||
2959 | struct perf_event *event) | ||
2960 | { | ||
2961 | if (event->attr.read_format & PERF_FORMAT_GROUP) | ||
2962 | perf_output_read_group(handle, event); | ||
2963 | else | ||
2964 | perf_output_read_one(handle, event); | ||
2965 | } | ||
2966 | |||
2967 | void perf_output_sample(struct perf_output_handle *handle, | ||
2968 | struct perf_event_header *header, | ||
2969 | struct perf_sample_data *data, | ||
2970 | struct perf_event *event) | ||
2971 | { | ||
2972 | u64 sample_type = data->type; | ||
2973 | |||
2974 | perf_output_put(handle, *header); | ||
2975 | |||
2976 | if (sample_type & PERF_SAMPLE_IP) | ||
2977 | perf_output_put(handle, data->ip); | ||
2978 | |||
2979 | if (sample_type & PERF_SAMPLE_TID) | ||
2980 | perf_output_put(handle, data->tid_entry); | ||
2981 | |||
2982 | if (sample_type & PERF_SAMPLE_TIME) | ||
2983 | perf_output_put(handle, data->time); | ||
2984 | |||
2985 | if (sample_type & PERF_SAMPLE_ADDR) | ||
2986 | perf_output_put(handle, data->addr); | ||
2987 | |||
2988 | if (sample_type & PERF_SAMPLE_ID) | ||
2989 | perf_output_put(handle, data->id); | ||
2990 | |||
2991 | if (sample_type & PERF_SAMPLE_STREAM_ID) | ||
2992 | perf_output_put(handle, data->stream_id); | ||
2993 | |||
2994 | if (sample_type & PERF_SAMPLE_CPU) | ||
2995 | perf_output_put(handle, data->cpu_entry); | ||
2996 | |||
2997 | if (sample_type & PERF_SAMPLE_PERIOD) | ||
2998 | perf_output_put(handle, data->period); | ||
2999 | |||
3000 | if (sample_type & PERF_SAMPLE_READ) | ||
3001 | perf_output_read(handle, event); | ||
3002 | |||
3003 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | ||
3004 | if (data->callchain) { | ||
3005 | int size = 1; | ||
3006 | |||
3007 | if (data->callchain) | ||
3008 | size += data->callchain->nr; | ||
3009 | |||
3010 | size *= sizeof(u64); | ||
3011 | |||
3012 | perf_output_copy(handle, data->callchain, size); | ||
3013 | } else { | ||
3014 | u64 nr = 0; | ||
3015 | perf_output_put(handle, nr); | ||
3016 | } | ||
3017 | } | ||
3018 | |||
3019 | if (sample_type & PERF_SAMPLE_RAW) { | ||
3020 | if (data->raw) { | ||
3021 | perf_output_put(handle, data->raw->size); | ||
3022 | perf_output_copy(handle, data->raw->data, | ||
3023 | data->raw->size); | ||
3024 | } else { | ||
3025 | struct { | ||
3026 | u32 size; | ||
3027 | u32 data; | ||
3028 | } raw = { | ||
3029 | .size = sizeof(u32), | ||
3030 | .data = 0, | ||
3031 | }; | ||
3032 | perf_output_put(handle, raw); | ||
3033 | } | ||
3034 | } | ||
3035 | } | ||
3036 | |||
3037 | void perf_prepare_sample(struct perf_event_header *header, | ||
3038 | struct perf_sample_data *data, | ||
3039 | struct perf_event *event, | ||
3040 | struct pt_regs *regs) | ||
3041 | { | ||
3042 | u64 sample_type = event->attr.sample_type; | ||
3043 | |||
3044 | data->type = sample_type; | ||
3045 | |||
3046 | header->type = PERF_RECORD_SAMPLE; | ||
3047 | header->size = sizeof(*header); | ||
3048 | |||
3049 | header->misc = 0; | ||
3050 | header->misc |= perf_misc_flags(regs); | ||
3051 | |||
3052 | if (sample_type & PERF_SAMPLE_IP) { | ||
3053 | data->ip = perf_instruction_pointer(regs); | ||
3054 | |||
3055 | header->size += sizeof(data->ip); | ||
3056 | } | ||
3057 | |||
3058 | if (sample_type & PERF_SAMPLE_TID) { | ||
3059 | /* namespace issues */ | ||
3060 | data->tid_entry.pid = perf_event_pid(event, current); | ||
3061 | data->tid_entry.tid = perf_event_tid(event, current); | ||
3062 | |||
3063 | header->size += sizeof(data->tid_entry); | ||
3064 | } | ||
3065 | |||
3066 | if (sample_type & PERF_SAMPLE_TIME) { | ||
3067 | data->time = perf_clock(); | ||
3068 | |||
3069 | header->size += sizeof(data->time); | ||
3070 | } | ||
3071 | |||
3072 | if (sample_type & PERF_SAMPLE_ADDR) | ||
3073 | header->size += sizeof(data->addr); | ||
3074 | |||
3075 | if (sample_type & PERF_SAMPLE_ID) { | ||
3076 | data->id = primary_event_id(event); | ||
3077 | |||
3078 | header->size += sizeof(data->id); | ||
3079 | } | ||
3080 | |||
3081 | if (sample_type & PERF_SAMPLE_STREAM_ID) { | ||
3082 | data->stream_id = event->id; | ||
3083 | |||
3084 | header->size += sizeof(data->stream_id); | ||
3085 | } | ||
3086 | |||
3087 | if (sample_type & PERF_SAMPLE_CPU) { | ||
3088 | data->cpu_entry.cpu = raw_smp_processor_id(); | ||
3089 | data->cpu_entry.reserved = 0; | ||
3090 | |||
3091 | header->size += sizeof(data->cpu_entry); | ||
3092 | } | ||
3093 | |||
3094 | if (sample_type & PERF_SAMPLE_PERIOD) | ||
3095 | header->size += sizeof(data->period); | ||
3096 | |||
3097 | if (sample_type & PERF_SAMPLE_READ) | ||
3098 | header->size += perf_event_read_size(event); | ||
3099 | |||
3100 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | ||
3101 | int size = 1; | ||
3102 | |||
3103 | data->callchain = perf_callchain(regs); | ||
3104 | |||
3105 | if (data->callchain) | ||
3106 | size += data->callchain->nr; | ||
3107 | |||
3108 | header->size += size * sizeof(u64); | ||
3109 | } | ||
3110 | |||
3111 | if (sample_type & PERF_SAMPLE_RAW) { | ||
3112 | int size = sizeof(u32); | ||
3113 | |||
3114 | if (data->raw) | ||
3115 | size += data->raw->size; | ||
3116 | else | ||
3117 | size += sizeof(u32); | ||
3118 | |||
3119 | WARN_ON_ONCE(size & (sizeof(u64)-1)); | ||
3120 | header->size += size; | ||
3121 | } | ||
3122 | } | ||
3123 | |||
3124 | static void perf_event_output(struct perf_event *event, int nmi, | ||
3125 | struct perf_sample_data *data, | ||
3126 | struct pt_regs *regs) | ||
3127 | { | ||
3128 | struct perf_output_handle handle; | ||
3129 | struct perf_event_header header; | ||
3130 | |||
3131 | perf_prepare_sample(&header, data, event, regs); | ||
3132 | |||
3133 | if (perf_output_begin(&handle, event, header.size, nmi, 1)) | ||
3134 | return; | ||
3135 | |||
3136 | perf_output_sample(&handle, &header, data, event); | ||
3137 | |||
3138 | perf_output_end(&handle); | ||
3139 | } | ||
3140 | |||
3141 | /* | ||
3142 | * read event_id | ||
3143 | */ | ||
3144 | |||
3145 | struct perf_read_event { | ||
3146 | struct perf_event_header header; | ||
3147 | |||
3148 | u32 pid; | ||
3149 | u32 tid; | ||
3150 | }; | ||
3151 | |||
3152 | static void | ||
3153 | perf_event_read_event(struct perf_event *event, | ||
3154 | struct task_struct *task) | ||
3155 | { | ||
3156 | struct perf_output_handle handle; | ||
3157 | struct perf_read_event read_event = { | ||
3158 | .header = { | ||
3159 | .type = PERF_RECORD_READ, | ||
3160 | .misc = 0, | ||
3161 | .size = sizeof(read_event) + perf_event_read_size(event), | ||
3162 | }, | ||
3163 | .pid = perf_event_pid(event, task), | ||
3164 | .tid = perf_event_tid(event, task), | ||
3165 | }; | ||
3166 | int ret; | ||
3167 | |||
3168 | ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0); | ||
3169 | if (ret) | ||
3170 | return; | ||
3171 | |||
3172 | perf_output_put(&handle, read_event); | ||
3173 | perf_output_read(&handle, event); | ||
3174 | |||
3175 | perf_output_end(&handle); | ||
3176 | } | ||
3177 | |||
3178 | /* | ||
3179 | * task tracking -- fork/exit | ||
3180 | * | ||
3181 | * enabled by: attr.comm | attr.mmap | attr.task | ||
3182 | */ | ||
3183 | |||
3184 | struct perf_task_event { | ||
3185 | struct task_struct *task; | ||
3186 | struct perf_event_context *task_ctx; | ||
3187 | |||
3188 | struct { | ||
3189 | struct perf_event_header header; | ||
3190 | |||
3191 | u32 pid; | ||
3192 | u32 ppid; | ||
3193 | u32 tid; | ||
3194 | u32 ptid; | ||
3195 | u64 time; | ||
3196 | } event_id; | ||
3197 | }; | ||
3198 | |||
3199 | static void perf_event_task_output(struct perf_event *event, | ||
3200 | struct perf_task_event *task_event) | ||
3201 | { | ||
3202 | struct perf_output_handle handle; | ||
3203 | int size; | ||
3204 | struct task_struct *task = task_event->task; | ||
3205 | int ret; | ||
3206 | |||
3207 | size = task_event->event_id.header.size; | ||
3208 | ret = perf_output_begin(&handle, event, size, 0, 0); | ||
3209 | |||
3210 | if (ret) | ||
3211 | return; | ||
3212 | |||
3213 | task_event->event_id.pid = perf_event_pid(event, task); | ||
3214 | task_event->event_id.ppid = perf_event_pid(event, current); | ||
3215 | |||
3216 | task_event->event_id.tid = perf_event_tid(event, task); | ||
3217 | task_event->event_id.ptid = perf_event_tid(event, current); | ||
3218 | |||
3219 | task_event->event_id.time = perf_clock(); | ||
3220 | |||
3221 | perf_output_put(&handle, task_event->event_id); | ||
3222 | |||
3223 | perf_output_end(&handle); | ||
3224 | } | ||
3225 | |||
3226 | static int perf_event_task_match(struct perf_event *event) | ||
3227 | { | ||
3228 | if (event->attr.comm || event->attr.mmap || event->attr.task) | ||
3229 | return 1; | ||
3230 | |||
3231 | return 0; | ||
3232 | } | ||
3233 | |||
3234 | static void perf_event_task_ctx(struct perf_event_context *ctx, | ||
3235 | struct perf_task_event *task_event) | ||
3236 | { | ||
3237 | struct perf_event *event; | ||
3238 | |||
3239 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
3240 | return; | ||
3241 | |||
3242 | rcu_read_lock(); | ||
3243 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
3244 | if (perf_event_task_match(event)) | ||
3245 | perf_event_task_output(event, task_event); | ||
3246 | } | ||
3247 | rcu_read_unlock(); | ||
3248 | } | ||
3249 | |||
3250 | static void perf_event_task_event(struct perf_task_event *task_event) | ||
3251 | { | ||
3252 | struct perf_cpu_context *cpuctx; | ||
3253 | struct perf_event_context *ctx = task_event->task_ctx; | ||
3254 | |||
3255 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
3256 | perf_event_task_ctx(&cpuctx->ctx, task_event); | ||
3257 | put_cpu_var(perf_cpu_context); | ||
3258 | |||
3259 | rcu_read_lock(); | ||
3260 | if (!ctx) | ||
3261 | ctx = rcu_dereference(task_event->task->perf_event_ctxp); | ||
3262 | if (ctx) | ||
3263 | perf_event_task_ctx(ctx, task_event); | ||
3264 | rcu_read_unlock(); | ||
3265 | } | ||
3266 | |||
3267 | static void perf_event_task(struct task_struct *task, | ||
3268 | struct perf_event_context *task_ctx, | ||
3269 | int new) | ||
3270 | { | ||
3271 | struct perf_task_event task_event; | ||
3272 | |||
3273 | if (!atomic_read(&nr_comm_events) && | ||
3274 | !atomic_read(&nr_mmap_events) && | ||
3275 | !atomic_read(&nr_task_events)) | ||
3276 | return; | ||
3277 | |||
3278 | task_event = (struct perf_task_event){ | ||
3279 | .task = task, | ||
3280 | .task_ctx = task_ctx, | ||
3281 | .event_id = { | ||
3282 | .header = { | ||
3283 | .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, | ||
3284 | .misc = 0, | ||
3285 | .size = sizeof(task_event.event_id), | ||
3286 | }, | ||
3287 | /* .pid */ | ||
3288 | /* .ppid */ | ||
3289 | /* .tid */ | ||
3290 | /* .ptid */ | ||
3291 | }, | ||
3292 | }; | ||
3293 | |||
3294 | perf_event_task_event(&task_event); | ||
3295 | } | ||
3296 | |||
3297 | void perf_event_fork(struct task_struct *task) | ||
3298 | { | ||
3299 | perf_event_task(task, NULL, 1); | ||
3300 | } | ||
3301 | |||
3302 | /* | ||
3303 | * comm tracking | ||
3304 | */ | ||
3305 | |||
3306 | struct perf_comm_event { | ||
3307 | struct task_struct *task; | ||
3308 | char *comm; | ||
3309 | int comm_size; | ||
3310 | |||
3311 | struct { | ||
3312 | struct perf_event_header header; | ||
3313 | |||
3314 | u32 pid; | ||
3315 | u32 tid; | ||
3316 | } event_id; | ||
3317 | }; | ||
3318 | |||
3319 | static void perf_event_comm_output(struct perf_event *event, | ||
3320 | struct perf_comm_event *comm_event) | ||
3321 | { | ||
3322 | struct perf_output_handle handle; | ||
3323 | int size = comm_event->event_id.header.size; | ||
3324 | int ret = perf_output_begin(&handle, event, size, 0, 0); | ||
3325 | |||
3326 | if (ret) | ||
3327 | return; | ||
3328 | |||
3329 | comm_event->event_id.pid = perf_event_pid(event, comm_event->task); | ||
3330 | comm_event->event_id.tid = perf_event_tid(event, comm_event->task); | ||
3331 | |||
3332 | perf_output_put(&handle, comm_event->event_id); | ||
3333 | perf_output_copy(&handle, comm_event->comm, | ||
3334 | comm_event->comm_size); | ||
3335 | perf_output_end(&handle); | ||
3336 | } | ||
3337 | |||
3338 | static int perf_event_comm_match(struct perf_event *event) | ||
3339 | { | ||
3340 | if (event->attr.comm) | ||
3341 | return 1; | ||
3342 | |||
3343 | return 0; | ||
3344 | } | ||
3345 | |||
3346 | static void perf_event_comm_ctx(struct perf_event_context *ctx, | ||
3347 | struct perf_comm_event *comm_event) | ||
3348 | { | ||
3349 | struct perf_event *event; | ||
3350 | |||
3351 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
3352 | return; | ||
3353 | |||
3354 | rcu_read_lock(); | ||
3355 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
3356 | if (perf_event_comm_match(event)) | ||
3357 | perf_event_comm_output(event, comm_event); | ||
3358 | } | ||
3359 | rcu_read_unlock(); | ||
3360 | } | ||
3361 | |||
3362 | static void perf_event_comm_event(struct perf_comm_event *comm_event) | ||
3363 | { | ||
3364 | struct perf_cpu_context *cpuctx; | ||
3365 | struct perf_event_context *ctx; | ||
3366 | unsigned int size; | ||
3367 | char comm[TASK_COMM_LEN]; | ||
3368 | |||
3369 | memset(comm, 0, sizeof(comm)); | ||
3370 | strncpy(comm, comm_event->task->comm, sizeof(comm)); | ||
3371 | size = ALIGN(strlen(comm)+1, sizeof(u64)); | ||
3372 | |||
3373 | comm_event->comm = comm; | ||
3374 | comm_event->comm_size = size; | ||
3375 | |||
3376 | comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; | ||
3377 | |||
3378 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
3379 | perf_event_comm_ctx(&cpuctx->ctx, comm_event); | ||
3380 | put_cpu_var(perf_cpu_context); | ||
3381 | |||
3382 | rcu_read_lock(); | ||
3383 | /* | ||
3384 | * doesn't really matter which of the child contexts the | ||
3385 | * events ends up in. | ||
3386 | */ | ||
3387 | ctx = rcu_dereference(current->perf_event_ctxp); | ||
3388 | if (ctx) | ||
3389 | perf_event_comm_ctx(ctx, comm_event); | ||
3390 | rcu_read_unlock(); | ||
3391 | } | ||
3392 | |||
3393 | void perf_event_comm(struct task_struct *task) | ||
3394 | { | ||
3395 | struct perf_comm_event comm_event; | ||
3396 | |||
3397 | if (task->perf_event_ctxp) | ||
3398 | perf_event_enable_on_exec(task); | ||
3399 | |||
3400 | if (!atomic_read(&nr_comm_events)) | ||
3401 | return; | ||
3402 | |||
3403 | comm_event = (struct perf_comm_event){ | ||
3404 | .task = task, | ||
3405 | /* .comm */ | ||
3406 | /* .comm_size */ | ||
3407 | .event_id = { | ||
3408 | .header = { | ||
3409 | .type = PERF_RECORD_COMM, | ||
3410 | .misc = 0, | ||
3411 | /* .size */ | ||
3412 | }, | ||
3413 | /* .pid */ | ||
3414 | /* .tid */ | ||
3415 | }, | ||
3416 | }; | ||
3417 | |||
3418 | perf_event_comm_event(&comm_event); | ||
3419 | } | ||
3420 | |||
3421 | /* | ||
3422 | * mmap tracking | ||
3423 | */ | ||
3424 | |||
3425 | struct perf_mmap_event { | ||
3426 | struct vm_area_struct *vma; | ||
3427 | |||
3428 | const char *file_name; | ||
3429 | int file_size; | ||
3430 | |||
3431 | struct { | ||
3432 | struct perf_event_header header; | ||
3433 | |||
3434 | u32 pid; | ||
3435 | u32 tid; | ||
3436 | u64 start; | ||
3437 | u64 len; | ||
3438 | u64 pgoff; | ||
3439 | } event_id; | ||
3440 | }; | ||
3441 | |||
3442 | static void perf_event_mmap_output(struct perf_event *event, | ||
3443 | struct perf_mmap_event *mmap_event) | ||
3444 | { | ||
3445 | struct perf_output_handle handle; | ||
3446 | int size = mmap_event->event_id.header.size; | ||
3447 | int ret = perf_output_begin(&handle, event, size, 0, 0); | ||
3448 | |||
3449 | if (ret) | ||
3450 | return; | ||
3451 | |||
3452 | mmap_event->event_id.pid = perf_event_pid(event, current); | ||
3453 | mmap_event->event_id.tid = perf_event_tid(event, current); | ||
3454 | |||
3455 | perf_output_put(&handle, mmap_event->event_id); | ||
3456 | perf_output_copy(&handle, mmap_event->file_name, | ||
3457 | mmap_event->file_size); | ||
3458 | perf_output_end(&handle); | ||
3459 | } | ||
3460 | |||
3461 | static int perf_event_mmap_match(struct perf_event *event, | ||
3462 | struct perf_mmap_event *mmap_event) | ||
3463 | { | ||
3464 | if (event->attr.mmap) | ||
3465 | return 1; | ||
3466 | |||
3467 | return 0; | ||
3468 | } | ||
3469 | |||
3470 | static void perf_event_mmap_ctx(struct perf_event_context *ctx, | ||
3471 | struct perf_mmap_event *mmap_event) | ||
3472 | { | ||
3473 | struct perf_event *event; | ||
3474 | |||
3475 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
3476 | return; | ||
3477 | |||
3478 | rcu_read_lock(); | ||
3479 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
3480 | if (perf_event_mmap_match(event, mmap_event)) | ||
3481 | perf_event_mmap_output(event, mmap_event); | ||
3482 | } | ||
3483 | rcu_read_unlock(); | ||
3484 | } | ||
3485 | |||
3486 | static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) | ||
3487 | { | ||
3488 | struct perf_cpu_context *cpuctx; | ||
3489 | struct perf_event_context *ctx; | ||
3490 | struct vm_area_struct *vma = mmap_event->vma; | ||
3491 | struct file *file = vma->vm_file; | ||
3492 | unsigned int size; | ||
3493 | char tmp[16]; | ||
3494 | char *buf = NULL; | ||
3495 | const char *name; | ||
3496 | |||
3497 | memset(tmp, 0, sizeof(tmp)); | ||
3498 | |||
3499 | if (file) { | ||
3500 | /* | ||
3501 | * d_path works from the end of the buffer backwards, so we | ||
3502 | * need to add enough zero bytes after the string to handle | ||
3503 | * the 64bit alignment we do later. | ||
3504 | */ | ||
3505 | buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); | ||
3506 | if (!buf) { | ||
3507 | name = strncpy(tmp, "//enomem", sizeof(tmp)); | ||
3508 | goto got_name; | ||
3509 | } | ||
3510 | name = d_path(&file->f_path, buf, PATH_MAX); | ||
3511 | if (IS_ERR(name)) { | ||
3512 | name = strncpy(tmp, "//toolong", sizeof(tmp)); | ||
3513 | goto got_name; | ||
3514 | } | ||
3515 | } else { | ||
3516 | if (arch_vma_name(mmap_event->vma)) { | ||
3517 | name = strncpy(tmp, arch_vma_name(mmap_event->vma), | ||
3518 | sizeof(tmp)); | ||
3519 | goto got_name; | ||
3520 | } | ||
3521 | |||
3522 | if (!vma->vm_mm) { | ||
3523 | name = strncpy(tmp, "[vdso]", sizeof(tmp)); | ||
3524 | goto got_name; | ||
3525 | } | ||
3526 | |||
3527 | name = strncpy(tmp, "//anon", sizeof(tmp)); | ||
3528 | goto got_name; | ||
3529 | } | ||
3530 | |||
3531 | got_name: | ||
3532 | size = ALIGN(strlen(name)+1, sizeof(u64)); | ||
3533 | |||
3534 | mmap_event->file_name = name; | ||
3535 | mmap_event->file_size = size; | ||
3536 | |||
3537 | mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; | ||
3538 | |||
3539 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
3540 | perf_event_mmap_ctx(&cpuctx->ctx, mmap_event); | ||
3541 | put_cpu_var(perf_cpu_context); | ||
3542 | |||
3543 | rcu_read_lock(); | ||
3544 | /* | ||
3545 | * doesn't really matter which of the child contexts the | ||
3546 | * events ends up in. | ||
3547 | */ | ||
3548 | ctx = rcu_dereference(current->perf_event_ctxp); | ||
3549 | if (ctx) | ||
3550 | perf_event_mmap_ctx(ctx, mmap_event); | ||
3551 | rcu_read_unlock(); | ||
3552 | |||
3553 | kfree(buf); | ||
3554 | } | ||
3555 | |||
3556 | void __perf_event_mmap(struct vm_area_struct *vma) | ||
3557 | { | ||
3558 | struct perf_mmap_event mmap_event; | ||
3559 | |||
3560 | if (!atomic_read(&nr_mmap_events)) | ||
3561 | return; | ||
3562 | |||
3563 | mmap_event = (struct perf_mmap_event){ | ||
3564 | .vma = vma, | ||
3565 | /* .file_name */ | ||
3566 | /* .file_size */ | ||
3567 | .event_id = { | ||
3568 | .header = { | ||
3569 | .type = PERF_RECORD_MMAP, | ||
3570 | .misc = 0, | ||
3571 | /* .size */ | ||
3572 | }, | ||
3573 | /* .pid */ | ||
3574 | /* .tid */ | ||
3575 | .start = vma->vm_start, | ||
3576 | .len = vma->vm_end - vma->vm_start, | ||
3577 | .pgoff = vma->vm_pgoff, | ||
3578 | }, | ||
3579 | }; | ||
3580 | |||
3581 | perf_event_mmap_event(&mmap_event); | ||
3582 | } | ||
3583 | |||
3584 | /* | ||
3585 | * IRQ throttle logging | ||
3586 | */ | ||
3587 | |||
3588 | static void perf_log_throttle(struct perf_event *event, int enable) | ||
3589 | { | ||
3590 | struct perf_output_handle handle; | ||
3591 | int ret; | ||
3592 | |||
3593 | struct { | ||
3594 | struct perf_event_header header; | ||
3595 | u64 time; | ||
3596 | u64 id; | ||
3597 | u64 stream_id; | ||
3598 | } throttle_event = { | ||
3599 | .header = { | ||
3600 | .type = PERF_RECORD_THROTTLE, | ||
3601 | .misc = 0, | ||
3602 | .size = sizeof(throttle_event), | ||
3603 | }, | ||
3604 | .time = perf_clock(), | ||
3605 | .id = primary_event_id(event), | ||
3606 | .stream_id = event->id, | ||
3607 | }; | ||
3608 | |||
3609 | if (enable) | ||
3610 | throttle_event.header.type = PERF_RECORD_UNTHROTTLE; | ||
3611 | |||
3612 | ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0); | ||
3613 | if (ret) | ||
3614 | return; | ||
3615 | |||
3616 | perf_output_put(&handle, throttle_event); | ||
3617 | perf_output_end(&handle); | ||
3618 | } | ||
3619 | |||
3620 | /* | ||
3621 | * Generic event overflow handling, sampling. | ||
3622 | */ | ||
3623 | |||
3624 | static int __perf_event_overflow(struct perf_event *event, int nmi, | ||
3625 | int throttle, struct perf_sample_data *data, | ||
3626 | struct pt_regs *regs) | ||
3627 | { | ||
3628 | int events = atomic_read(&event->event_limit); | ||
3629 | struct hw_perf_event *hwc = &event->hw; | ||
3630 | int ret = 0; | ||
3631 | |||
3632 | throttle = (throttle && event->pmu->unthrottle != NULL); | ||
3633 | |||
3634 | if (!throttle) { | ||
3635 | hwc->interrupts++; | ||
3636 | } else { | ||
3637 | if (hwc->interrupts != MAX_INTERRUPTS) { | ||
3638 | hwc->interrupts++; | ||
3639 | if (HZ * hwc->interrupts > | ||
3640 | (u64)sysctl_perf_event_sample_rate) { | ||
3641 | hwc->interrupts = MAX_INTERRUPTS; | ||
3642 | perf_log_throttle(event, 0); | ||
3643 | ret = 1; | ||
3644 | } | ||
3645 | } else { | ||
3646 | /* | ||
3647 | * Keep re-disabling events even though on the previous | ||
3648 | * pass we disabled it - just in case we raced with a | ||
3649 | * sched-in and the event got enabled again: | ||
3650 | */ | ||
3651 | ret = 1; | ||
3652 | } | ||
3653 | } | ||
3654 | |||
3655 | if (event->attr.freq) { | ||
3656 | u64 now = perf_clock(); | ||
3657 | s64 delta = now - hwc->freq_stamp; | ||
3658 | |||
3659 | hwc->freq_stamp = now; | ||
3660 | |||
3661 | if (delta > 0 && delta < TICK_NSEC) | ||
3662 | perf_adjust_period(event, NSEC_PER_SEC / (int)delta); | ||
3663 | } | ||
3664 | |||
3665 | /* | ||
3666 | * XXX event_limit might not quite work as expected on inherited | ||
3667 | * events | ||
3668 | */ | ||
3669 | |||
3670 | event->pending_kill = POLL_IN; | ||
3671 | if (events && atomic_dec_and_test(&event->event_limit)) { | ||
3672 | ret = 1; | ||
3673 | event->pending_kill = POLL_HUP; | ||
3674 | if (nmi) { | ||
3675 | event->pending_disable = 1; | ||
3676 | perf_pending_queue(&event->pending, | ||
3677 | perf_pending_event); | ||
3678 | } else | ||
3679 | perf_event_disable(event); | ||
3680 | } | ||
3681 | |||
3682 | perf_event_output(event, nmi, data, regs); | ||
3683 | return ret; | ||
3684 | } | ||
3685 | |||
3686 | int perf_event_overflow(struct perf_event *event, int nmi, | ||
3687 | struct perf_sample_data *data, | ||
3688 | struct pt_regs *regs) | ||
3689 | { | ||
3690 | return __perf_event_overflow(event, nmi, 1, data, regs); | ||
3691 | } | ||
3692 | |||
3693 | /* | ||
3694 | * Generic software event infrastructure | ||
3695 | */ | ||
3696 | |||
3697 | /* | ||
3698 | * We directly increment event->count and keep a second value in | ||
3699 | * event->hw.period_left to count intervals. This period event | ||
3700 | * is kept in the range [-sample_period, 0] so that we can use the | ||
3701 | * sign as trigger. | ||
3702 | */ | ||
3703 | |||
3704 | static u64 perf_swevent_set_period(struct perf_event *event) | ||
3705 | { | ||
3706 | struct hw_perf_event *hwc = &event->hw; | ||
3707 | u64 period = hwc->last_period; | ||
3708 | u64 nr, offset; | ||
3709 | s64 old, val; | ||
3710 | |||
3711 | hwc->last_period = hwc->sample_period; | ||
3712 | |||
3713 | again: | ||
3714 | old = val = atomic64_read(&hwc->period_left); | ||
3715 | if (val < 0) | ||
3716 | return 0; | ||
3717 | |||
3718 | nr = div64_u64(period + val, period); | ||
3719 | offset = nr * period; | ||
3720 | val -= offset; | ||
3721 | if (atomic64_cmpxchg(&hwc->period_left, old, val) != old) | ||
3722 | goto again; | ||
3723 | |||
3724 | return nr; | ||
3725 | } | ||
3726 | |||
3727 | static void perf_swevent_overflow(struct perf_event *event, | ||
3728 | int nmi, struct perf_sample_data *data, | ||
3729 | struct pt_regs *regs) | ||
3730 | { | ||
3731 | struct hw_perf_event *hwc = &event->hw; | ||
3732 | int throttle = 0; | ||
3733 | u64 overflow; | ||
3734 | |||
3735 | data->period = event->hw.last_period; | ||
3736 | overflow = perf_swevent_set_period(event); | ||
3737 | |||
3738 | if (hwc->interrupts == MAX_INTERRUPTS) | ||
3739 | return; | ||
3740 | |||
3741 | for (; overflow; overflow--) { | ||
3742 | if (__perf_event_overflow(event, nmi, throttle, | ||
3743 | data, regs)) { | ||
3744 | /* | ||
3745 | * We inhibit the overflow from happening when | ||
3746 | * hwc->interrupts == MAX_INTERRUPTS. | ||
3747 | */ | ||
3748 | break; | ||
3749 | } | ||
3750 | throttle = 1; | ||
3751 | } | ||
3752 | } | ||
3753 | |||
3754 | static void perf_swevent_unthrottle(struct perf_event *event) | ||
3755 | { | ||
3756 | /* | ||
3757 | * Nothing to do, we already reset hwc->interrupts. | ||
3758 | */ | ||
3759 | } | ||
3760 | |||
3761 | static void perf_swevent_add(struct perf_event *event, u64 nr, | ||
3762 | int nmi, struct perf_sample_data *data, | ||
3763 | struct pt_regs *regs) | ||
3764 | { | ||
3765 | struct hw_perf_event *hwc = &event->hw; | ||
3766 | |||
3767 | atomic64_add(nr, &event->count); | ||
3768 | |||
3769 | if (!hwc->sample_period) | ||
3770 | return; | ||
3771 | |||
3772 | if (!regs) | ||
3773 | return; | ||
3774 | |||
3775 | if (!atomic64_add_negative(nr, &hwc->period_left)) | ||
3776 | perf_swevent_overflow(event, nmi, data, regs); | ||
3777 | } | ||
3778 | |||
3779 | static int perf_swevent_is_counting(struct perf_event *event) | ||
3780 | { | ||
3781 | /* | ||
3782 | * The event is active, we're good! | ||
3783 | */ | ||
3784 | if (event->state == PERF_EVENT_STATE_ACTIVE) | ||
3785 | return 1; | ||
3786 | |||
3787 | /* | ||
3788 | * The event is off/error, not counting. | ||
3789 | */ | ||
3790 | if (event->state != PERF_EVENT_STATE_INACTIVE) | ||
3791 | return 0; | ||
3792 | |||
3793 | /* | ||
3794 | * The event is inactive, if the context is active | ||
3795 | * we're part of a group that didn't make it on the 'pmu', | ||
3796 | * not counting. | ||
3797 | */ | ||
3798 | if (event->ctx->is_active) | ||
3799 | return 0; | ||
3800 | |||
3801 | /* | ||
3802 | * We're inactive and the context is too, this means the | ||
3803 | * task is scheduled out, we're counting events that happen | ||
3804 | * to us, like migration events. | ||
3805 | */ | ||
3806 | return 1; | ||
3807 | } | ||
3808 | |||
3809 | static int perf_swevent_match(struct perf_event *event, | ||
3810 | enum perf_type_id type, | ||
3811 | u32 event_id, struct pt_regs *regs) | ||
3812 | { | ||
3813 | if (!perf_swevent_is_counting(event)) | ||
3814 | return 0; | ||
3815 | |||
3816 | if (event->attr.type != type) | ||
3817 | return 0; | ||
3818 | if (event->attr.config != event_id) | ||
3819 | return 0; | ||
3820 | |||
3821 | if (regs) { | ||
3822 | if (event->attr.exclude_user && user_mode(regs)) | ||
3823 | return 0; | ||
3824 | |||
3825 | if (event->attr.exclude_kernel && !user_mode(regs)) | ||
3826 | return 0; | ||
3827 | } | ||
3828 | |||
3829 | return 1; | ||
3830 | } | ||
3831 | |||
3832 | static void perf_swevent_ctx_event(struct perf_event_context *ctx, | ||
3833 | enum perf_type_id type, | ||
3834 | u32 event_id, u64 nr, int nmi, | ||
3835 | struct perf_sample_data *data, | ||
3836 | struct pt_regs *regs) | ||
3837 | { | ||
3838 | struct perf_event *event; | ||
3839 | |||
3840 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
3841 | return; | ||
3842 | |||
3843 | rcu_read_lock(); | ||
3844 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
3845 | if (perf_swevent_match(event, type, event_id, regs)) | ||
3846 | perf_swevent_add(event, nr, nmi, data, regs); | ||
3847 | } | ||
3848 | rcu_read_unlock(); | ||
3849 | } | ||
3850 | |||
3851 | static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx) | ||
3852 | { | ||
3853 | if (in_nmi()) | ||
3854 | return &cpuctx->recursion[3]; | ||
3855 | |||
3856 | if (in_irq()) | ||
3857 | return &cpuctx->recursion[2]; | ||
3858 | |||
3859 | if (in_softirq()) | ||
3860 | return &cpuctx->recursion[1]; | ||
3861 | |||
3862 | return &cpuctx->recursion[0]; | ||
3863 | } | ||
3864 | |||
3865 | static void do_perf_sw_event(enum perf_type_id type, u32 event_id, | ||
3866 | u64 nr, int nmi, | ||
3867 | struct perf_sample_data *data, | ||
3868 | struct pt_regs *regs) | ||
3869 | { | ||
3870 | struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context); | ||
3871 | int *recursion = perf_swevent_recursion_context(cpuctx); | ||
3872 | struct perf_event_context *ctx; | ||
3873 | |||
3874 | if (*recursion) | ||
3875 | goto out; | ||
3876 | |||
3877 | (*recursion)++; | ||
3878 | barrier(); | ||
3879 | |||
3880 | perf_swevent_ctx_event(&cpuctx->ctx, type, event_id, | ||
3881 | nr, nmi, data, regs); | ||
3882 | rcu_read_lock(); | ||
3883 | /* | ||
3884 | * doesn't really matter which of the child contexts the | ||
3885 | * events ends up in. | ||
3886 | */ | ||
3887 | ctx = rcu_dereference(current->perf_event_ctxp); | ||
3888 | if (ctx) | ||
3889 | perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs); | ||
3890 | rcu_read_unlock(); | ||
3891 | |||
3892 | barrier(); | ||
3893 | (*recursion)--; | ||
3894 | |||
3895 | out: | ||
3896 | put_cpu_var(perf_cpu_context); | ||
3897 | } | ||
3898 | |||
3899 | void __perf_sw_event(u32 event_id, u64 nr, int nmi, | ||
3900 | struct pt_regs *regs, u64 addr) | ||
3901 | { | ||
3902 | struct perf_sample_data data = { | ||
3903 | .addr = addr, | ||
3904 | }; | ||
3905 | |||
3906 | do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, | ||
3907 | &data, regs); | ||
3908 | } | ||
3909 | |||
3910 | static void perf_swevent_read(struct perf_event *event) | ||
3911 | { | ||
3912 | } | ||
3913 | |||
3914 | static int perf_swevent_enable(struct perf_event *event) | ||
3915 | { | ||
3916 | struct hw_perf_event *hwc = &event->hw; | ||
3917 | |||
3918 | if (hwc->sample_period) { | ||
3919 | hwc->last_period = hwc->sample_period; | ||
3920 | perf_swevent_set_period(event); | ||
3921 | } | ||
3922 | return 0; | ||
3923 | } | ||
3924 | |||
3925 | static void perf_swevent_disable(struct perf_event *event) | ||
3926 | { | ||
3927 | } | ||
3928 | |||
3929 | static const struct pmu perf_ops_generic = { | ||
3930 | .enable = perf_swevent_enable, | ||
3931 | .disable = perf_swevent_disable, | ||
3932 | .read = perf_swevent_read, | ||
3933 | .unthrottle = perf_swevent_unthrottle, | ||
3934 | }; | ||
3935 | |||
3936 | /* | ||
3937 | * hrtimer based swevent callback | ||
3938 | */ | ||
3939 | |||
3940 | static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) | ||
3941 | { | ||
3942 | enum hrtimer_restart ret = HRTIMER_RESTART; | ||
3943 | struct perf_sample_data data; | ||
3944 | struct pt_regs *regs; | ||
3945 | struct perf_event *event; | ||
3946 | u64 period; | ||
3947 | |||
3948 | event = container_of(hrtimer, struct perf_event, hw.hrtimer); | ||
3949 | event->pmu->read(event); | ||
3950 | |||
3951 | data.addr = 0; | ||
3952 | regs = get_irq_regs(); | ||
3953 | /* | ||
3954 | * In case we exclude kernel IPs or are somehow not in interrupt | ||
3955 | * context, provide the next best thing, the user IP. | ||
3956 | */ | ||
3957 | if ((event->attr.exclude_kernel || !regs) && | ||
3958 | !event->attr.exclude_user) | ||
3959 | regs = task_pt_regs(current); | ||
3960 | |||
3961 | if (regs) { | ||
3962 | if (perf_event_overflow(event, 0, &data, regs)) | ||
3963 | ret = HRTIMER_NORESTART; | ||
3964 | } | ||
3965 | |||
3966 | period = max_t(u64, 10000, event->hw.sample_period); | ||
3967 | hrtimer_forward_now(hrtimer, ns_to_ktime(period)); | ||
3968 | |||
3969 | return ret; | ||
3970 | } | ||
3971 | |||
3972 | /* | ||
3973 | * Software event: cpu wall time clock | ||
3974 | */ | ||
3975 | |||
3976 | static void cpu_clock_perf_event_update(struct perf_event *event) | ||
3977 | { | ||
3978 | int cpu = raw_smp_processor_id(); | ||
3979 | s64 prev; | ||
3980 | u64 now; | ||
3981 | |||
3982 | now = cpu_clock(cpu); | ||
3983 | prev = atomic64_read(&event->hw.prev_count); | ||
3984 | atomic64_set(&event->hw.prev_count, now); | ||
3985 | atomic64_add(now - prev, &event->count); | ||
3986 | } | ||
3987 | |||
3988 | static int cpu_clock_perf_event_enable(struct perf_event *event) | ||
3989 | { | ||
3990 | struct hw_perf_event *hwc = &event->hw; | ||
3991 | int cpu = raw_smp_processor_id(); | ||
3992 | |||
3993 | atomic64_set(&hwc->prev_count, cpu_clock(cpu)); | ||
3994 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
3995 | hwc->hrtimer.function = perf_swevent_hrtimer; | ||
3996 | if (hwc->sample_period) { | ||
3997 | u64 period = max_t(u64, 10000, hwc->sample_period); | ||
3998 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
3999 | ns_to_ktime(period), 0, | ||
4000 | HRTIMER_MODE_REL, 0); | ||
4001 | } | ||
4002 | |||
4003 | return 0; | ||
4004 | } | ||
4005 | |||
4006 | static void cpu_clock_perf_event_disable(struct perf_event *event) | ||
4007 | { | ||
4008 | if (event->hw.sample_period) | ||
4009 | hrtimer_cancel(&event->hw.hrtimer); | ||
4010 | cpu_clock_perf_event_update(event); | ||
4011 | } | ||
4012 | |||
4013 | static void cpu_clock_perf_event_read(struct perf_event *event) | ||
4014 | { | ||
4015 | cpu_clock_perf_event_update(event); | ||
4016 | } | ||
4017 | |||
4018 | static const struct pmu perf_ops_cpu_clock = { | ||
4019 | .enable = cpu_clock_perf_event_enable, | ||
4020 | .disable = cpu_clock_perf_event_disable, | ||
4021 | .read = cpu_clock_perf_event_read, | ||
4022 | }; | ||
4023 | |||
4024 | /* | ||
4025 | * Software event: task time clock | ||
4026 | */ | ||
4027 | |||
4028 | static void task_clock_perf_event_update(struct perf_event *event, u64 now) | ||
4029 | { | ||
4030 | u64 prev; | ||
4031 | s64 delta; | ||
4032 | |||
4033 | prev = atomic64_xchg(&event->hw.prev_count, now); | ||
4034 | delta = now - prev; | ||
4035 | atomic64_add(delta, &event->count); | ||
4036 | } | ||
4037 | |||
4038 | static int task_clock_perf_event_enable(struct perf_event *event) | ||
4039 | { | ||
4040 | struct hw_perf_event *hwc = &event->hw; | ||
4041 | u64 now; | ||
4042 | |||
4043 | now = event->ctx->time; | ||
4044 | |||
4045 | atomic64_set(&hwc->prev_count, now); | ||
4046 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
4047 | hwc->hrtimer.function = perf_swevent_hrtimer; | ||
4048 | if (hwc->sample_period) { | ||
4049 | u64 period = max_t(u64, 10000, hwc->sample_period); | ||
4050 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
4051 | ns_to_ktime(period), 0, | ||
4052 | HRTIMER_MODE_REL, 0); | ||
4053 | } | ||
4054 | |||
4055 | return 0; | ||
4056 | } | ||
4057 | |||
4058 | static void task_clock_perf_event_disable(struct perf_event *event) | ||
4059 | { | ||
4060 | if (event->hw.sample_period) | ||
4061 | hrtimer_cancel(&event->hw.hrtimer); | ||
4062 | task_clock_perf_event_update(event, event->ctx->time); | ||
4063 | |||
4064 | } | ||
4065 | |||
4066 | static void task_clock_perf_event_read(struct perf_event *event) | ||
4067 | { | ||
4068 | u64 time; | ||
4069 | |||
4070 | if (!in_nmi()) { | ||
4071 | update_context_time(event->ctx); | ||
4072 | time = event->ctx->time; | ||
4073 | } else { | ||
4074 | u64 now = perf_clock(); | ||
4075 | u64 delta = now - event->ctx->timestamp; | ||
4076 | time = event->ctx->time + delta; | ||
4077 | } | ||
4078 | |||
4079 | task_clock_perf_event_update(event, time); | ||
4080 | } | ||
4081 | |||
4082 | static const struct pmu perf_ops_task_clock = { | ||
4083 | .enable = task_clock_perf_event_enable, | ||
4084 | .disable = task_clock_perf_event_disable, | ||
4085 | .read = task_clock_perf_event_read, | ||
4086 | }; | ||
4087 | |||
4088 | #ifdef CONFIG_EVENT_PROFILE | ||
4089 | void perf_tp_event(int event_id, u64 addr, u64 count, void *record, | ||
4090 | int entry_size) | ||
4091 | { | ||
4092 | struct perf_raw_record raw = { | ||
4093 | .size = entry_size, | ||
4094 | .data = record, | ||
4095 | }; | ||
4096 | |||
4097 | struct perf_sample_data data = { | ||
4098 | .addr = addr, | ||
4099 | .raw = &raw, | ||
4100 | }; | ||
4101 | |||
4102 | struct pt_regs *regs = get_irq_regs(); | ||
4103 | |||
4104 | if (!regs) | ||
4105 | regs = task_pt_regs(current); | ||
4106 | |||
4107 | do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, | ||
4108 | &data, regs); | ||
4109 | } | ||
4110 | EXPORT_SYMBOL_GPL(perf_tp_event); | ||
4111 | |||
4112 | extern int ftrace_profile_enable(int); | ||
4113 | extern void ftrace_profile_disable(int); | ||
4114 | |||
4115 | static void tp_perf_event_destroy(struct perf_event *event) | ||
4116 | { | ||
4117 | ftrace_profile_disable(event->attr.config); | ||
4118 | } | ||
4119 | |||
4120 | static const struct pmu *tp_perf_event_init(struct perf_event *event) | ||
4121 | { | ||
4122 | /* | ||
4123 | * Raw tracepoint data is a severe data leak, only allow root to | ||
4124 | * have these. | ||
4125 | */ | ||
4126 | if ((event->attr.sample_type & PERF_SAMPLE_RAW) && | ||
4127 | perf_paranoid_tracepoint_raw() && | ||
4128 | !capable(CAP_SYS_ADMIN)) | ||
4129 | return ERR_PTR(-EPERM); | ||
4130 | |||
4131 | if (ftrace_profile_enable(event->attr.config)) | ||
4132 | return NULL; | ||
4133 | |||
4134 | event->destroy = tp_perf_event_destroy; | ||
4135 | |||
4136 | return &perf_ops_generic; | ||
4137 | } | ||
4138 | #else | ||
4139 | static const struct pmu *tp_perf_event_init(struct perf_event *event) | ||
4140 | { | ||
4141 | return NULL; | ||
4142 | } | ||
4143 | #endif | ||
4144 | |||
4145 | atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX]; | ||
4146 | |||
4147 | static void sw_perf_event_destroy(struct perf_event *event) | ||
4148 | { | ||
4149 | u64 event_id = event->attr.config; | ||
4150 | |||
4151 | WARN_ON(event->parent); | ||
4152 | |||
4153 | atomic_dec(&perf_swevent_enabled[event_id]); | ||
4154 | } | ||
4155 | |||
4156 | static const struct pmu *sw_perf_event_init(struct perf_event *event) | ||
4157 | { | ||
4158 | const struct pmu *pmu = NULL; | ||
4159 | u64 event_id = event->attr.config; | ||
4160 | |||
4161 | /* | ||
4162 | * Software events (currently) can't in general distinguish | ||
4163 | * between user, kernel and hypervisor events. | ||
4164 | * However, context switches and cpu migrations are considered | ||
4165 | * to be kernel events, and page faults are never hypervisor | ||
4166 | * events. | ||
4167 | */ | ||
4168 | switch (event_id) { | ||
4169 | case PERF_COUNT_SW_CPU_CLOCK: | ||
4170 | pmu = &perf_ops_cpu_clock; | ||
4171 | |||
4172 | break; | ||
4173 | case PERF_COUNT_SW_TASK_CLOCK: | ||
4174 | /* | ||
4175 | * If the user instantiates this as a per-cpu event, | ||
4176 | * use the cpu_clock event instead. | ||
4177 | */ | ||
4178 | if (event->ctx->task) | ||
4179 | pmu = &perf_ops_task_clock; | ||
4180 | else | ||
4181 | pmu = &perf_ops_cpu_clock; | ||
4182 | |||
4183 | break; | ||
4184 | case PERF_COUNT_SW_PAGE_FAULTS: | ||
4185 | case PERF_COUNT_SW_PAGE_FAULTS_MIN: | ||
4186 | case PERF_COUNT_SW_PAGE_FAULTS_MAJ: | ||
4187 | case PERF_COUNT_SW_CONTEXT_SWITCHES: | ||
4188 | case PERF_COUNT_SW_CPU_MIGRATIONS: | ||
4189 | if (!event->parent) { | ||
4190 | atomic_inc(&perf_swevent_enabled[event_id]); | ||
4191 | event->destroy = sw_perf_event_destroy; | ||
4192 | } | ||
4193 | pmu = &perf_ops_generic; | ||
4194 | break; | ||
4195 | } | ||
4196 | |||
4197 | return pmu; | ||
4198 | } | ||
4199 | |||
4200 | /* | ||
4201 | * Allocate and initialize a event structure | ||
4202 | */ | ||
4203 | static struct perf_event * | ||
4204 | perf_event_alloc(struct perf_event_attr *attr, | ||
4205 | int cpu, | ||
4206 | struct perf_event_context *ctx, | ||
4207 | struct perf_event *group_leader, | ||
4208 | struct perf_event *parent_event, | ||
4209 | gfp_t gfpflags) | ||
4210 | { | ||
4211 | const struct pmu *pmu; | ||
4212 | struct perf_event *event; | ||
4213 | struct hw_perf_event *hwc; | ||
4214 | long err; | ||
4215 | |||
4216 | event = kzalloc(sizeof(*event), gfpflags); | ||
4217 | if (!event) | ||
4218 | return ERR_PTR(-ENOMEM); | ||
4219 | |||
4220 | /* | ||
4221 | * Single events are their own group leaders, with an | ||
4222 | * empty sibling list: | ||
4223 | */ | ||
4224 | if (!group_leader) | ||
4225 | group_leader = event; | ||
4226 | |||
4227 | mutex_init(&event->child_mutex); | ||
4228 | INIT_LIST_HEAD(&event->child_list); | ||
4229 | |||
4230 | INIT_LIST_HEAD(&event->group_entry); | ||
4231 | INIT_LIST_HEAD(&event->event_entry); | ||
4232 | INIT_LIST_HEAD(&event->sibling_list); | ||
4233 | init_waitqueue_head(&event->waitq); | ||
4234 | |||
4235 | mutex_init(&event->mmap_mutex); | ||
4236 | |||
4237 | event->cpu = cpu; | ||
4238 | event->attr = *attr; | ||
4239 | event->group_leader = group_leader; | ||
4240 | event->pmu = NULL; | ||
4241 | event->ctx = ctx; | ||
4242 | event->oncpu = -1; | ||
4243 | |||
4244 | event->parent = parent_event; | ||
4245 | |||
4246 | event->ns = get_pid_ns(current->nsproxy->pid_ns); | ||
4247 | event->id = atomic64_inc_return(&perf_event_id); | ||
4248 | |||
4249 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
4250 | |||
4251 | if (attr->disabled) | ||
4252 | event->state = PERF_EVENT_STATE_OFF; | ||
4253 | |||
4254 | pmu = NULL; | ||
4255 | |||
4256 | hwc = &event->hw; | ||
4257 | hwc->sample_period = attr->sample_period; | ||
4258 | if (attr->freq && attr->sample_freq) | ||
4259 | hwc->sample_period = 1; | ||
4260 | hwc->last_period = hwc->sample_period; | ||
4261 | |||
4262 | atomic64_set(&hwc->period_left, hwc->sample_period); | ||
4263 | |||
4264 | /* | ||
4265 | * we currently do not support PERF_FORMAT_GROUP on inherited events | ||
4266 | */ | ||
4267 | if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) | ||
4268 | goto done; | ||
4269 | |||
4270 | switch (attr->type) { | ||
4271 | case PERF_TYPE_RAW: | ||
4272 | case PERF_TYPE_HARDWARE: | ||
4273 | case PERF_TYPE_HW_CACHE: | ||
4274 | pmu = hw_perf_event_init(event); | ||
4275 | break; | ||
4276 | |||
4277 | case PERF_TYPE_SOFTWARE: | ||
4278 | pmu = sw_perf_event_init(event); | ||
4279 | break; | ||
4280 | |||
4281 | case PERF_TYPE_TRACEPOINT: | ||
4282 | pmu = tp_perf_event_init(event); | ||
4283 | break; | ||
4284 | |||
4285 | default: | ||
4286 | break; | ||
4287 | } | ||
4288 | done: | ||
4289 | err = 0; | ||
4290 | if (!pmu) | ||
4291 | err = -EINVAL; | ||
4292 | else if (IS_ERR(pmu)) | ||
4293 | err = PTR_ERR(pmu); | ||
4294 | |||
4295 | if (err) { | ||
4296 | if (event->ns) | ||
4297 | put_pid_ns(event->ns); | ||
4298 | kfree(event); | ||
4299 | return ERR_PTR(err); | ||
4300 | } | ||
4301 | |||
4302 | event->pmu = pmu; | ||
4303 | |||
4304 | if (!event->parent) { | ||
4305 | atomic_inc(&nr_events); | ||
4306 | if (event->attr.mmap) | ||
4307 | atomic_inc(&nr_mmap_events); | ||
4308 | if (event->attr.comm) | ||
4309 | atomic_inc(&nr_comm_events); | ||
4310 | if (event->attr.task) | ||
4311 | atomic_inc(&nr_task_events); | ||
4312 | } | ||
4313 | |||
4314 | return event; | ||
4315 | } | ||
4316 | |||
4317 | static int perf_copy_attr(struct perf_event_attr __user *uattr, | ||
4318 | struct perf_event_attr *attr) | ||
4319 | { | ||
4320 | u32 size; | ||
4321 | int ret; | ||
4322 | |||
4323 | if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) | ||
4324 | return -EFAULT; | ||
4325 | |||
4326 | /* | ||
4327 | * zero the full structure, so that a short copy will be nice. | ||
4328 | */ | ||
4329 | memset(attr, 0, sizeof(*attr)); | ||
4330 | |||
4331 | ret = get_user(size, &uattr->size); | ||
4332 | if (ret) | ||
4333 | return ret; | ||
4334 | |||
4335 | if (size > PAGE_SIZE) /* silly large */ | ||
4336 | goto err_size; | ||
4337 | |||
4338 | if (!size) /* abi compat */ | ||
4339 | size = PERF_ATTR_SIZE_VER0; | ||
4340 | |||
4341 | if (size < PERF_ATTR_SIZE_VER0) | ||
4342 | goto err_size; | ||
4343 | |||
4344 | /* | ||
4345 | * If we're handed a bigger struct than we know of, | ||
4346 | * ensure all the unknown bits are 0 - i.e. new | ||
4347 | * user-space does not rely on any kernel feature | ||
4348 | * extensions we dont know about yet. | ||
4349 | */ | ||
4350 | if (size > sizeof(*attr)) { | ||
4351 | unsigned char __user *addr; | ||
4352 | unsigned char __user *end; | ||
4353 | unsigned char val; | ||
4354 | |||
4355 | addr = (void __user *)uattr + sizeof(*attr); | ||
4356 | end = (void __user *)uattr + size; | ||
4357 | |||
4358 | for (; addr < end; addr++) { | ||
4359 | ret = get_user(val, addr); | ||
4360 | if (ret) | ||
4361 | return ret; | ||
4362 | if (val) | ||
4363 | goto err_size; | ||
4364 | } | ||
4365 | size = sizeof(*attr); | ||
4366 | } | ||
4367 | |||
4368 | ret = copy_from_user(attr, uattr, size); | ||
4369 | if (ret) | ||
4370 | return -EFAULT; | ||
4371 | |||
4372 | /* | ||
4373 | * If the type exists, the corresponding creation will verify | ||
4374 | * the attr->config. | ||
4375 | */ | ||
4376 | if (attr->type >= PERF_TYPE_MAX) | ||
4377 | return -EINVAL; | ||
4378 | |||
4379 | if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) | ||
4380 | return -EINVAL; | ||
4381 | |||
4382 | if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) | ||
4383 | return -EINVAL; | ||
4384 | |||
4385 | if (attr->read_format & ~(PERF_FORMAT_MAX-1)) | ||
4386 | return -EINVAL; | ||
4387 | |||
4388 | out: | ||
4389 | return ret; | ||
4390 | |||
4391 | err_size: | ||
4392 | put_user(sizeof(*attr), &uattr->size); | ||
4393 | ret = -E2BIG; | ||
4394 | goto out; | ||
4395 | } | ||
4396 | |||
4397 | int perf_event_set_output(struct perf_event *event, int output_fd) | ||
4398 | { | ||
4399 | struct perf_event *output_event = NULL; | ||
4400 | struct file *output_file = NULL; | ||
4401 | struct perf_event *old_output; | ||
4402 | int fput_needed = 0; | ||
4403 | int ret = -EINVAL; | ||
4404 | |||
4405 | if (!output_fd) | ||
4406 | goto set; | ||
4407 | |||
4408 | output_file = fget_light(output_fd, &fput_needed); | ||
4409 | if (!output_file) | ||
4410 | return -EBADF; | ||
4411 | |||
4412 | if (output_file->f_op != &perf_fops) | ||
4413 | goto out; | ||
4414 | |||
4415 | output_event = output_file->private_data; | ||
4416 | |||
4417 | /* Don't chain output fds */ | ||
4418 | if (output_event->output) | ||
4419 | goto out; | ||
4420 | |||
4421 | /* Don't set an output fd when we already have an output channel */ | ||
4422 | if (event->data) | ||
4423 | goto out; | ||
4424 | |||
4425 | atomic_long_inc(&output_file->f_count); | ||
4426 | |||
4427 | set: | ||
4428 | mutex_lock(&event->mmap_mutex); | ||
4429 | old_output = event->output; | ||
4430 | rcu_assign_pointer(event->output, output_event); | ||
4431 | mutex_unlock(&event->mmap_mutex); | ||
4432 | |||
4433 | if (old_output) { | ||
4434 | /* | ||
4435 | * we need to make sure no existing perf_output_*() | ||
4436 | * is still referencing this event. | ||
4437 | */ | ||
4438 | synchronize_rcu(); | ||
4439 | fput(old_output->filp); | ||
4440 | } | ||
4441 | |||
4442 | ret = 0; | ||
4443 | out: | ||
4444 | fput_light(output_file, fput_needed); | ||
4445 | return ret; | ||
4446 | } | ||
4447 | |||
4448 | /** | ||
4449 | * sys_perf_event_open - open a performance event, associate it to a task/cpu | ||
4450 | * | ||
4451 | * @attr_uptr: event_id type attributes for monitoring/sampling | ||
4452 | * @pid: target pid | ||
4453 | * @cpu: target cpu | ||
4454 | * @group_fd: group leader event fd | ||
4455 | */ | ||
4456 | SYSCALL_DEFINE5(perf_event_open, | ||
4457 | struct perf_event_attr __user *, attr_uptr, | ||
4458 | pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) | ||
4459 | { | ||
4460 | struct perf_event *event, *group_leader; | ||
4461 | struct perf_event_attr attr; | ||
4462 | struct perf_event_context *ctx; | ||
4463 | struct file *event_file = NULL; | ||
4464 | struct file *group_file = NULL; | ||
4465 | int fput_needed = 0; | ||
4466 | int fput_needed2 = 0; | ||
4467 | int err; | ||
4468 | |||
4469 | /* for future expandability... */ | ||
4470 | if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT)) | ||
4471 | return -EINVAL; | ||
4472 | |||
4473 | err = perf_copy_attr(attr_uptr, &attr); | ||
4474 | if (err) | ||
4475 | return err; | ||
4476 | |||
4477 | if (!attr.exclude_kernel) { | ||
4478 | if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) | ||
4479 | return -EACCES; | ||
4480 | } | ||
4481 | |||
4482 | if (attr.freq) { | ||
4483 | if (attr.sample_freq > sysctl_perf_event_sample_rate) | ||
4484 | return -EINVAL; | ||
4485 | } | ||
4486 | |||
4487 | /* | ||
4488 | * Get the target context (task or percpu): | ||
4489 | */ | ||
4490 | ctx = find_get_context(pid, cpu); | ||
4491 | if (IS_ERR(ctx)) | ||
4492 | return PTR_ERR(ctx); | ||
4493 | |||
4494 | /* | ||
4495 | * Look up the group leader (we will attach this event to it): | ||
4496 | */ | ||
4497 | group_leader = NULL; | ||
4498 | if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) { | ||
4499 | err = -EINVAL; | ||
4500 | group_file = fget_light(group_fd, &fput_needed); | ||
4501 | if (!group_file) | ||
4502 | goto err_put_context; | ||
4503 | if (group_file->f_op != &perf_fops) | ||
4504 | goto err_put_context; | ||
4505 | |||
4506 | group_leader = group_file->private_data; | ||
4507 | /* | ||
4508 | * Do not allow a recursive hierarchy (this new sibling | ||
4509 | * becoming part of another group-sibling): | ||
4510 | */ | ||
4511 | if (group_leader->group_leader != group_leader) | ||
4512 | goto err_put_context; | ||
4513 | /* | ||
4514 | * Do not allow to attach to a group in a different | ||
4515 | * task or CPU context: | ||
4516 | */ | ||
4517 | if (group_leader->ctx != ctx) | ||
4518 | goto err_put_context; | ||
4519 | /* | ||
4520 | * Only a group leader can be exclusive or pinned | ||
4521 | */ | ||
4522 | if (attr.exclusive || attr.pinned) | ||
4523 | goto err_put_context; | ||
4524 | } | ||
4525 | |||
4526 | event = perf_event_alloc(&attr, cpu, ctx, group_leader, | ||
4527 | NULL, GFP_KERNEL); | ||
4528 | err = PTR_ERR(event); | ||
4529 | if (IS_ERR(event)) | ||
4530 | goto err_put_context; | ||
4531 | |||
4532 | err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0); | ||
4533 | if (err < 0) | ||
4534 | goto err_free_put_context; | ||
4535 | |||
4536 | event_file = fget_light(err, &fput_needed2); | ||
4537 | if (!event_file) | ||
4538 | goto err_free_put_context; | ||
4539 | |||
4540 | if (flags & PERF_FLAG_FD_OUTPUT) { | ||
4541 | err = perf_event_set_output(event, group_fd); | ||
4542 | if (err) | ||
4543 | goto err_fput_free_put_context; | ||
4544 | } | ||
4545 | |||
4546 | event->filp = event_file; | ||
4547 | WARN_ON_ONCE(ctx->parent_ctx); | ||
4548 | mutex_lock(&ctx->mutex); | ||
4549 | perf_install_in_context(ctx, event, cpu); | ||
4550 | ++ctx->generation; | ||
4551 | mutex_unlock(&ctx->mutex); | ||
4552 | |||
4553 | event->owner = current; | ||
4554 | get_task_struct(current); | ||
4555 | mutex_lock(¤t->perf_event_mutex); | ||
4556 | list_add_tail(&event->owner_entry, ¤t->perf_event_list); | ||
4557 | mutex_unlock(¤t->perf_event_mutex); | ||
4558 | |||
4559 | err_fput_free_put_context: | ||
4560 | fput_light(event_file, fput_needed2); | ||
4561 | |||
4562 | err_free_put_context: | ||
4563 | if (err < 0) | ||
4564 | kfree(event); | ||
4565 | |||
4566 | err_put_context: | ||
4567 | if (err < 0) | ||
4568 | put_ctx(ctx); | ||
4569 | |||
4570 | fput_light(group_file, fput_needed); | ||
4571 | |||
4572 | return err; | ||
4573 | } | ||
4574 | |||
4575 | /* | ||
4576 | * inherit a event from parent task to child task: | ||
4577 | */ | ||
4578 | static struct perf_event * | ||
4579 | inherit_event(struct perf_event *parent_event, | ||
4580 | struct task_struct *parent, | ||
4581 | struct perf_event_context *parent_ctx, | ||
4582 | struct task_struct *child, | ||
4583 | struct perf_event *group_leader, | ||
4584 | struct perf_event_context *child_ctx) | ||
4585 | { | ||
4586 | struct perf_event *child_event; | ||
4587 | |||
4588 | /* | ||
4589 | * Instead of creating recursive hierarchies of events, | ||
4590 | * we link inherited events back to the original parent, | ||
4591 | * which has a filp for sure, which we use as the reference | ||
4592 | * count: | ||
4593 | */ | ||
4594 | if (parent_event->parent) | ||
4595 | parent_event = parent_event->parent; | ||
4596 | |||
4597 | child_event = perf_event_alloc(&parent_event->attr, | ||
4598 | parent_event->cpu, child_ctx, | ||
4599 | group_leader, parent_event, | ||
4600 | GFP_KERNEL); | ||
4601 | if (IS_ERR(child_event)) | ||
4602 | return child_event; | ||
4603 | get_ctx(child_ctx); | ||
4604 | |||
4605 | /* | ||
4606 | * Make the child state follow the state of the parent event, | ||
4607 | * not its attr.disabled bit. We hold the parent's mutex, | ||
4608 | * so we won't race with perf_event_{en, dis}able_family. | ||
4609 | */ | ||
4610 | if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) | ||
4611 | child_event->state = PERF_EVENT_STATE_INACTIVE; | ||
4612 | else | ||
4613 | child_event->state = PERF_EVENT_STATE_OFF; | ||
4614 | |||
4615 | if (parent_event->attr.freq) | ||
4616 | child_event->hw.sample_period = parent_event->hw.sample_period; | ||
4617 | |||
4618 | /* | ||
4619 | * Link it up in the child's context: | ||
4620 | */ | ||
4621 | add_event_to_ctx(child_event, child_ctx); | ||
4622 | |||
4623 | /* | ||
4624 | * Get a reference to the parent filp - we will fput it | ||
4625 | * when the child event exits. This is safe to do because | ||
4626 | * we are in the parent and we know that the filp still | ||
4627 | * exists and has a nonzero count: | ||
4628 | */ | ||
4629 | atomic_long_inc(&parent_event->filp->f_count); | ||
4630 | |||
4631 | /* | ||
4632 | * Link this into the parent event's child list | ||
4633 | */ | ||
4634 | WARN_ON_ONCE(parent_event->ctx->parent_ctx); | ||
4635 | mutex_lock(&parent_event->child_mutex); | ||
4636 | list_add_tail(&child_event->child_list, &parent_event->child_list); | ||
4637 | mutex_unlock(&parent_event->child_mutex); | ||
4638 | |||
4639 | return child_event; | ||
4640 | } | ||
4641 | |||
4642 | static int inherit_group(struct perf_event *parent_event, | ||
4643 | struct task_struct *parent, | ||
4644 | struct perf_event_context *parent_ctx, | ||
4645 | struct task_struct *child, | ||
4646 | struct perf_event_context *child_ctx) | ||
4647 | { | ||
4648 | struct perf_event *leader; | ||
4649 | struct perf_event *sub; | ||
4650 | struct perf_event *child_ctr; | ||
4651 | |||
4652 | leader = inherit_event(parent_event, parent, parent_ctx, | ||
4653 | child, NULL, child_ctx); | ||
4654 | if (IS_ERR(leader)) | ||
4655 | return PTR_ERR(leader); | ||
4656 | list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { | ||
4657 | child_ctr = inherit_event(sub, parent, parent_ctx, | ||
4658 | child, leader, child_ctx); | ||
4659 | if (IS_ERR(child_ctr)) | ||
4660 | return PTR_ERR(child_ctr); | ||
4661 | } | ||
4662 | return 0; | ||
4663 | } | ||
4664 | |||
4665 | static void sync_child_event(struct perf_event *child_event, | ||
4666 | struct task_struct *child) | ||
4667 | { | ||
4668 | struct perf_event *parent_event = child_event->parent; | ||
4669 | u64 child_val; | ||
4670 | |||
4671 | if (child_event->attr.inherit_stat) | ||
4672 | perf_event_read_event(child_event, child); | ||
4673 | |||
4674 | child_val = atomic64_read(&child_event->count); | ||
4675 | |||
4676 | /* | ||
4677 | * Add back the child's count to the parent's count: | ||
4678 | */ | ||
4679 | atomic64_add(child_val, &parent_event->count); | ||
4680 | atomic64_add(child_event->total_time_enabled, | ||
4681 | &parent_event->child_total_time_enabled); | ||
4682 | atomic64_add(child_event->total_time_running, | ||
4683 | &parent_event->child_total_time_running); | ||
4684 | |||
4685 | /* | ||
4686 | * Remove this event from the parent's list | ||
4687 | */ | ||
4688 | WARN_ON_ONCE(parent_event->ctx->parent_ctx); | ||
4689 | mutex_lock(&parent_event->child_mutex); | ||
4690 | list_del_init(&child_event->child_list); | ||
4691 | mutex_unlock(&parent_event->child_mutex); | ||
4692 | |||
4693 | /* | ||
4694 | * Release the parent event, if this was the last | ||
4695 | * reference to it. | ||
4696 | */ | ||
4697 | fput(parent_event->filp); | ||
4698 | } | ||
4699 | |||
4700 | static void | ||
4701 | __perf_event_exit_task(struct perf_event *child_event, | ||
4702 | struct perf_event_context *child_ctx, | ||
4703 | struct task_struct *child) | ||
4704 | { | ||
4705 | struct perf_event *parent_event; | ||
4706 | |||
4707 | update_event_times(child_event); | ||
4708 | perf_event_remove_from_context(child_event); | ||
4709 | |||
4710 | parent_event = child_event->parent; | ||
4711 | /* | ||
4712 | * It can happen that parent exits first, and has events | ||
4713 | * that are still around due to the child reference. These | ||
4714 | * events need to be zapped - but otherwise linger. | ||
4715 | */ | ||
4716 | if (parent_event) { | ||
4717 | sync_child_event(child_event, child); | ||
4718 | free_event(child_event); | ||
4719 | } | ||
4720 | } | ||
4721 | |||
4722 | /* | ||
4723 | * When a child task exits, feed back event values to parent events. | ||
4724 | */ | ||
4725 | void perf_event_exit_task(struct task_struct *child) | ||
4726 | { | ||
4727 | struct perf_event *child_event, *tmp; | ||
4728 | struct perf_event_context *child_ctx; | ||
4729 | unsigned long flags; | ||
4730 | |||
4731 | if (likely(!child->perf_event_ctxp)) { | ||
4732 | perf_event_task(child, NULL, 0); | ||
4733 | return; | ||
4734 | } | ||
4735 | |||
4736 | local_irq_save(flags); | ||
4737 | /* | ||
4738 | * We can't reschedule here because interrupts are disabled, | ||
4739 | * and either child is current or it is a task that can't be | ||
4740 | * scheduled, so we are now safe from rescheduling changing | ||
4741 | * our context. | ||
4742 | */ | ||
4743 | child_ctx = child->perf_event_ctxp; | ||
4744 | __perf_event_task_sched_out(child_ctx); | ||
4745 | |||
4746 | /* | ||
4747 | * Take the context lock here so that if find_get_context is | ||
4748 | * reading child->perf_event_ctxp, we wait until it has | ||
4749 | * incremented the context's refcount before we do put_ctx below. | ||
4750 | */ | ||
4751 | spin_lock(&child_ctx->lock); | ||
4752 | child->perf_event_ctxp = NULL; | ||
4753 | /* | ||
4754 | * If this context is a clone; unclone it so it can't get | ||
4755 | * swapped to another process while we're removing all | ||
4756 | * the events from it. | ||
4757 | */ | ||
4758 | unclone_ctx(child_ctx); | ||
4759 | spin_unlock_irqrestore(&child_ctx->lock, flags); | ||
4760 | |||
4761 | /* | ||
4762 | * Report the task dead after unscheduling the events so that we | ||
4763 | * won't get any samples after PERF_RECORD_EXIT. We can however still | ||
4764 | * get a few PERF_RECORD_READ events. | ||
4765 | */ | ||
4766 | perf_event_task(child, child_ctx, 0); | ||
4767 | |||
4768 | /* | ||
4769 | * We can recurse on the same lock type through: | ||
4770 | * | ||
4771 | * __perf_event_exit_task() | ||
4772 | * sync_child_event() | ||
4773 | * fput(parent_event->filp) | ||
4774 | * perf_release() | ||
4775 | * mutex_lock(&ctx->mutex) | ||
4776 | * | ||
4777 | * But since its the parent context it won't be the same instance. | ||
4778 | */ | ||
4779 | mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING); | ||
4780 | |||
4781 | again: | ||
4782 | list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list, | ||
4783 | group_entry) | ||
4784 | __perf_event_exit_task(child_event, child_ctx, child); | ||
4785 | |||
4786 | /* | ||
4787 | * If the last event was a group event, it will have appended all | ||
4788 | * its siblings to the list, but we obtained 'tmp' before that which | ||
4789 | * will still point to the list head terminating the iteration. | ||
4790 | */ | ||
4791 | if (!list_empty(&child_ctx->group_list)) | ||
4792 | goto again; | ||
4793 | |||
4794 | mutex_unlock(&child_ctx->mutex); | ||
4795 | |||
4796 | put_ctx(child_ctx); | ||
4797 | } | ||
4798 | |||
4799 | /* | ||
4800 | * free an unexposed, unused context as created by inheritance by | ||
4801 | * init_task below, used by fork() in case of fail. | ||
4802 | */ | ||
4803 | void perf_event_free_task(struct task_struct *task) | ||
4804 | { | ||
4805 | struct perf_event_context *ctx = task->perf_event_ctxp; | ||
4806 | struct perf_event *event, *tmp; | ||
4807 | |||
4808 | if (!ctx) | ||
4809 | return; | ||
4810 | |||
4811 | mutex_lock(&ctx->mutex); | ||
4812 | again: | ||
4813 | list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) { | ||
4814 | struct perf_event *parent = event->parent; | ||
4815 | |||
4816 | if (WARN_ON_ONCE(!parent)) | ||
4817 | continue; | ||
4818 | |||
4819 | mutex_lock(&parent->child_mutex); | ||
4820 | list_del_init(&event->child_list); | ||
4821 | mutex_unlock(&parent->child_mutex); | ||
4822 | |||
4823 | fput(parent->filp); | ||
4824 | |||
4825 | list_del_event(event, ctx); | ||
4826 | free_event(event); | ||
4827 | } | ||
4828 | |||
4829 | if (!list_empty(&ctx->group_list)) | ||
4830 | goto again; | ||
4831 | |||
4832 | mutex_unlock(&ctx->mutex); | ||
4833 | |||
4834 | put_ctx(ctx); | ||
4835 | } | ||
4836 | |||
4837 | /* | ||
4838 | * Initialize the perf_event context in task_struct | ||
4839 | */ | ||
4840 | int perf_event_init_task(struct task_struct *child) | ||
4841 | { | ||
4842 | struct perf_event_context *child_ctx, *parent_ctx; | ||
4843 | struct perf_event_context *cloned_ctx; | ||
4844 | struct perf_event *event; | ||
4845 | struct task_struct *parent = current; | ||
4846 | int inherited_all = 1; | ||
4847 | int ret = 0; | ||
4848 | |||
4849 | child->perf_event_ctxp = NULL; | ||
4850 | |||
4851 | mutex_init(&child->perf_event_mutex); | ||
4852 | INIT_LIST_HEAD(&child->perf_event_list); | ||
4853 | |||
4854 | if (likely(!parent->perf_event_ctxp)) | ||
4855 | return 0; | ||
4856 | |||
4857 | /* | ||
4858 | * This is executed from the parent task context, so inherit | ||
4859 | * events that have been marked for cloning. | ||
4860 | * First allocate and initialize a context for the child. | ||
4861 | */ | ||
4862 | |||
4863 | child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL); | ||
4864 | if (!child_ctx) | ||
4865 | return -ENOMEM; | ||
4866 | |||
4867 | __perf_event_init_context(child_ctx, child); | ||
4868 | child->perf_event_ctxp = child_ctx; | ||
4869 | get_task_struct(child); | ||
4870 | |||
4871 | /* | ||
4872 | * If the parent's context is a clone, pin it so it won't get | ||
4873 | * swapped under us. | ||
4874 | */ | ||
4875 | parent_ctx = perf_pin_task_context(parent); | ||
4876 | |||
4877 | /* | ||
4878 | * No need to check if parent_ctx != NULL here; since we saw | ||
4879 | * it non-NULL earlier, the only reason for it to become NULL | ||
4880 | * is if we exit, and since we're currently in the middle of | ||
4881 | * a fork we can't be exiting at the same time. | ||
4882 | */ | ||
4883 | |||
4884 | /* | ||
4885 | * Lock the parent list. No need to lock the child - not PID | ||
4886 | * hashed yet and not running, so nobody can access it. | ||
4887 | */ | ||
4888 | mutex_lock(&parent_ctx->mutex); | ||
4889 | |||
4890 | /* | ||
4891 | * We dont have to disable NMIs - we are only looking at | ||
4892 | * the list, not manipulating it: | ||
4893 | */ | ||
4894 | list_for_each_entry(event, &parent_ctx->group_list, group_entry) { | ||
4895 | |||
4896 | if (!event->attr.inherit) { | ||
4897 | inherited_all = 0; | ||
4898 | continue; | ||
4899 | } | ||
4900 | |||
4901 | ret = inherit_group(event, parent, parent_ctx, | ||
4902 | child, child_ctx); | ||
4903 | if (ret) { | ||
4904 | inherited_all = 0; | ||
4905 | break; | ||
4906 | } | ||
4907 | } | ||
4908 | |||
4909 | if (inherited_all) { | ||
4910 | /* | ||
4911 | * Mark the child context as a clone of the parent | ||
4912 | * context, or of whatever the parent is a clone of. | ||
4913 | * Note that if the parent is a clone, it could get | ||
4914 | * uncloned at any point, but that doesn't matter | ||
4915 | * because the list of events and the generation | ||
4916 | * count can't have changed since we took the mutex. | ||
4917 | */ | ||
4918 | cloned_ctx = rcu_dereference(parent_ctx->parent_ctx); | ||
4919 | if (cloned_ctx) { | ||
4920 | child_ctx->parent_ctx = cloned_ctx; | ||
4921 | child_ctx->parent_gen = parent_ctx->parent_gen; | ||
4922 | } else { | ||
4923 | child_ctx->parent_ctx = parent_ctx; | ||
4924 | child_ctx->parent_gen = parent_ctx->generation; | ||
4925 | } | ||
4926 | get_ctx(child_ctx->parent_ctx); | ||
4927 | } | ||
4928 | |||
4929 | mutex_unlock(&parent_ctx->mutex); | ||
4930 | |||
4931 | perf_unpin_context(parent_ctx); | ||
4932 | |||
4933 | return ret; | ||
4934 | } | ||
4935 | |||
4936 | static void __cpuinit perf_event_init_cpu(int cpu) | ||
4937 | { | ||
4938 | struct perf_cpu_context *cpuctx; | ||
4939 | |||
4940 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
4941 | __perf_event_init_context(&cpuctx->ctx, NULL); | ||
4942 | |||
4943 | spin_lock(&perf_resource_lock); | ||
4944 | cpuctx->max_pertask = perf_max_events - perf_reserved_percpu; | ||
4945 | spin_unlock(&perf_resource_lock); | ||
4946 | |||
4947 | hw_perf_event_setup(cpu); | ||
4948 | } | ||
4949 | |||
4950 | #ifdef CONFIG_HOTPLUG_CPU | ||
4951 | static void __perf_event_exit_cpu(void *info) | ||
4952 | { | ||
4953 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
4954 | struct perf_event_context *ctx = &cpuctx->ctx; | ||
4955 | struct perf_event *event, *tmp; | ||
4956 | |||
4957 | list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) | ||
4958 | __perf_event_remove_from_context(event); | ||
4959 | } | ||
4960 | static void perf_event_exit_cpu(int cpu) | ||
4961 | { | ||
4962 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
4963 | struct perf_event_context *ctx = &cpuctx->ctx; | ||
4964 | |||
4965 | mutex_lock(&ctx->mutex); | ||
4966 | smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1); | ||
4967 | mutex_unlock(&ctx->mutex); | ||
4968 | } | ||
4969 | #else | ||
4970 | static inline void perf_event_exit_cpu(int cpu) { } | ||
4971 | #endif | ||
4972 | |||
4973 | static int __cpuinit | ||
4974 | perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) | ||
4975 | { | ||
4976 | unsigned int cpu = (long)hcpu; | ||
4977 | |||
4978 | switch (action) { | ||
4979 | |||
4980 | case CPU_UP_PREPARE: | ||
4981 | case CPU_UP_PREPARE_FROZEN: | ||
4982 | perf_event_init_cpu(cpu); | ||
4983 | break; | ||
4984 | |||
4985 | case CPU_ONLINE: | ||
4986 | case CPU_ONLINE_FROZEN: | ||
4987 | hw_perf_event_setup_online(cpu); | ||
4988 | break; | ||
4989 | |||
4990 | case CPU_DOWN_PREPARE: | ||
4991 | case CPU_DOWN_PREPARE_FROZEN: | ||
4992 | perf_event_exit_cpu(cpu); | ||
4993 | break; | ||
4994 | |||
4995 | default: | ||
4996 | break; | ||
4997 | } | ||
4998 | |||
4999 | return NOTIFY_OK; | ||
5000 | } | ||
5001 | |||
5002 | /* | ||
5003 | * This has to have a higher priority than migration_notifier in sched.c. | ||
5004 | */ | ||
5005 | static struct notifier_block __cpuinitdata perf_cpu_nb = { | ||
5006 | .notifier_call = perf_cpu_notify, | ||
5007 | .priority = 20, | ||
5008 | }; | ||
5009 | |||
5010 | void __init perf_event_init(void) | ||
5011 | { | ||
5012 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE, | ||
5013 | (void *)(long)smp_processor_id()); | ||
5014 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE, | ||
5015 | (void *)(long)smp_processor_id()); | ||
5016 | register_cpu_notifier(&perf_cpu_nb); | ||
5017 | } | ||
5018 | |||
5019 | static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf) | ||
5020 | { | ||
5021 | return sprintf(buf, "%d\n", perf_reserved_percpu); | ||
5022 | } | ||
5023 | |||
5024 | static ssize_t | ||
5025 | perf_set_reserve_percpu(struct sysdev_class *class, | ||
5026 | const char *buf, | ||
5027 | size_t count) | ||
5028 | { | ||
5029 | struct perf_cpu_context *cpuctx; | ||
5030 | unsigned long val; | ||
5031 | int err, cpu, mpt; | ||
5032 | |||
5033 | err = strict_strtoul(buf, 10, &val); | ||
5034 | if (err) | ||
5035 | return err; | ||
5036 | if (val > perf_max_events) | ||
5037 | return -EINVAL; | ||
5038 | |||
5039 | spin_lock(&perf_resource_lock); | ||
5040 | perf_reserved_percpu = val; | ||
5041 | for_each_online_cpu(cpu) { | ||
5042 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
5043 | spin_lock_irq(&cpuctx->ctx.lock); | ||
5044 | mpt = min(perf_max_events - cpuctx->ctx.nr_events, | ||
5045 | perf_max_events - perf_reserved_percpu); | ||
5046 | cpuctx->max_pertask = mpt; | ||
5047 | spin_unlock_irq(&cpuctx->ctx.lock); | ||
5048 | } | ||
5049 | spin_unlock(&perf_resource_lock); | ||
5050 | |||
5051 | return count; | ||
5052 | } | ||
5053 | |||
5054 | static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf) | ||
5055 | { | ||
5056 | return sprintf(buf, "%d\n", perf_overcommit); | ||
5057 | } | ||
5058 | |||
5059 | static ssize_t | ||
5060 | perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count) | ||
5061 | { | ||
5062 | unsigned long val; | ||
5063 | int err; | ||
5064 | |||
5065 | err = strict_strtoul(buf, 10, &val); | ||
5066 | if (err) | ||
5067 | return err; | ||
5068 | if (val > 1) | ||
5069 | return -EINVAL; | ||
5070 | |||
5071 | spin_lock(&perf_resource_lock); | ||
5072 | perf_overcommit = val; | ||
5073 | spin_unlock(&perf_resource_lock); | ||
5074 | |||
5075 | return count; | ||
5076 | } | ||
5077 | |||
5078 | static SYSDEV_CLASS_ATTR( | ||
5079 | reserve_percpu, | ||
5080 | 0644, | ||
5081 | perf_show_reserve_percpu, | ||
5082 | perf_set_reserve_percpu | ||
5083 | ); | ||
5084 | |||
5085 | static SYSDEV_CLASS_ATTR( | ||
5086 | overcommit, | ||
5087 | 0644, | ||
5088 | perf_show_overcommit, | ||
5089 | perf_set_overcommit | ||
5090 | ); | ||
5091 | |||
5092 | static struct attribute *perfclass_attrs[] = { | ||
5093 | &attr_reserve_percpu.attr, | ||
5094 | &attr_overcommit.attr, | ||
5095 | NULL | ||
5096 | }; | ||
5097 | |||
5098 | static struct attribute_group perfclass_attr_group = { | ||
5099 | .attrs = perfclass_attrs, | ||
5100 | .name = "perf_events", | ||
5101 | }; | ||
5102 | |||
5103 | static int __init perf_event_sysfs_init(void) | ||
5104 | { | ||
5105 | return sysfs_create_group(&cpu_sysdev_class.kset.kobj, | ||
5106 | &perfclass_attr_group); | ||
5107 | } | ||
5108 | device_initcall(perf_event_sysfs_init); | ||