diff options
Diffstat (limited to 'kernel/perf_counter.c')
-rw-r--r-- | kernel/perf_counter.c | 855 |
1 files changed, 555 insertions, 300 deletions
diff --git a/kernel/perf_counter.c b/kernel/perf_counter.c index a641eb753b8c..f274e1959885 100644 --- a/kernel/perf_counter.c +++ b/kernel/perf_counter.c | |||
@@ -42,6 +42,7 @@ static int perf_overcommit __read_mostly = 1; | |||
42 | static atomic_t nr_counters __read_mostly; | 42 | static atomic_t nr_counters __read_mostly; |
43 | static atomic_t nr_mmap_counters __read_mostly; | 43 | static atomic_t nr_mmap_counters __read_mostly; |
44 | static atomic_t nr_comm_counters __read_mostly; | 44 | static atomic_t nr_comm_counters __read_mostly; |
45 | static atomic_t nr_task_counters __read_mostly; | ||
45 | 46 | ||
46 | /* | 47 | /* |
47 | * perf counter paranoia level: | 48 | * perf counter paranoia level: |
@@ -87,6 +88,7 @@ void __weak hw_perf_disable(void) { barrier(); } | |||
87 | void __weak hw_perf_enable(void) { barrier(); } | 88 | void __weak hw_perf_enable(void) { barrier(); } |
88 | 89 | ||
89 | void __weak hw_perf_counter_setup(int cpu) { barrier(); } | 90 | void __weak hw_perf_counter_setup(int cpu) { barrier(); } |
91 | void __weak hw_perf_counter_setup_online(int cpu) { barrier(); } | ||
90 | 92 | ||
91 | int __weak | 93 | int __weak |
92 | hw_perf_group_sched_in(struct perf_counter *group_leader, | 94 | hw_perf_group_sched_in(struct perf_counter *group_leader, |
@@ -146,6 +148,28 @@ static void put_ctx(struct perf_counter_context *ctx) | |||
146 | } | 148 | } |
147 | } | 149 | } |
148 | 150 | ||
151 | static void unclone_ctx(struct perf_counter_context *ctx) | ||
152 | { | ||
153 | if (ctx->parent_ctx) { | ||
154 | put_ctx(ctx->parent_ctx); | ||
155 | ctx->parent_ctx = NULL; | ||
156 | } | ||
157 | } | ||
158 | |||
159 | /* | ||
160 | * If we inherit counters we want to return the parent counter id | ||
161 | * to userspace. | ||
162 | */ | ||
163 | static u64 primary_counter_id(struct perf_counter *counter) | ||
164 | { | ||
165 | u64 id = counter->id; | ||
166 | |||
167 | if (counter->parent) | ||
168 | id = counter->parent->id; | ||
169 | |||
170 | return id; | ||
171 | } | ||
172 | |||
149 | /* | 173 | /* |
150 | * Get the perf_counter_context for a task and lock it. | 174 | * Get the perf_counter_context for a task and lock it. |
151 | * This has to cope with with the fact that until it is locked, | 175 | * This has to cope with with the fact that until it is locked, |
@@ -283,6 +307,10 @@ counter_sched_out(struct perf_counter *counter, | |||
283 | return; | 307 | return; |
284 | 308 | ||
285 | counter->state = PERF_COUNTER_STATE_INACTIVE; | 309 | counter->state = PERF_COUNTER_STATE_INACTIVE; |
310 | if (counter->pending_disable) { | ||
311 | counter->pending_disable = 0; | ||
312 | counter->state = PERF_COUNTER_STATE_OFF; | ||
313 | } | ||
286 | counter->tstamp_stopped = ctx->time; | 314 | counter->tstamp_stopped = ctx->time; |
287 | counter->pmu->disable(counter); | 315 | counter->pmu->disable(counter); |
288 | counter->oncpu = -1; | 316 | counter->oncpu = -1; |
@@ -1081,7 +1109,7 @@ static void perf_counter_sync_stat(struct perf_counter_context *ctx, | |||
1081 | __perf_counter_sync_stat(counter, next_counter); | 1109 | __perf_counter_sync_stat(counter, next_counter); |
1082 | 1110 | ||
1083 | counter = list_next_entry(counter, event_entry); | 1111 | counter = list_next_entry(counter, event_entry); |
1084 | next_counter = list_next_entry(counter, event_entry); | 1112 | next_counter = list_next_entry(next_counter, event_entry); |
1085 | } | 1113 | } |
1086 | } | 1114 | } |
1087 | 1115 | ||
@@ -1288,7 +1316,6 @@ static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu) | |||
1288 | #define MAX_INTERRUPTS (~0ULL) | 1316 | #define MAX_INTERRUPTS (~0ULL) |
1289 | 1317 | ||
1290 | static void perf_log_throttle(struct perf_counter *counter, int enable); | 1318 | static void perf_log_throttle(struct perf_counter *counter, int enable); |
1291 | static void perf_log_period(struct perf_counter *counter, u64 period); | ||
1292 | 1319 | ||
1293 | static void perf_adjust_period(struct perf_counter *counter, u64 events) | 1320 | static void perf_adjust_period(struct perf_counter *counter, u64 events) |
1294 | { | 1321 | { |
@@ -1307,8 +1334,6 @@ static void perf_adjust_period(struct perf_counter *counter, u64 events) | |||
1307 | if (!sample_period) | 1334 | if (!sample_period) |
1308 | sample_period = 1; | 1335 | sample_period = 1; |
1309 | 1336 | ||
1310 | perf_log_period(counter, sample_period); | ||
1311 | |||
1312 | hwc->sample_period = sample_period; | 1337 | hwc->sample_period = sample_period; |
1313 | } | 1338 | } |
1314 | 1339 | ||
@@ -1463,10 +1488,8 @@ static void perf_counter_enable_on_exec(struct task_struct *task) | |||
1463 | /* | 1488 | /* |
1464 | * Unclone this context if we enabled any counter. | 1489 | * Unclone this context if we enabled any counter. |
1465 | */ | 1490 | */ |
1466 | if (enabled && ctx->parent_ctx) { | 1491 | if (enabled) |
1467 | put_ctx(ctx->parent_ctx); | 1492 | unclone_ctx(ctx); |
1468 | ctx->parent_ctx = NULL; | ||
1469 | } | ||
1470 | 1493 | ||
1471 | spin_unlock(&ctx->lock); | 1494 | spin_unlock(&ctx->lock); |
1472 | 1495 | ||
@@ -1480,10 +1503,21 @@ static void perf_counter_enable_on_exec(struct task_struct *task) | |||
1480 | */ | 1503 | */ |
1481 | static void __perf_counter_read(void *info) | 1504 | static void __perf_counter_read(void *info) |
1482 | { | 1505 | { |
1506 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
1483 | struct perf_counter *counter = info; | 1507 | struct perf_counter *counter = info; |
1484 | struct perf_counter_context *ctx = counter->ctx; | 1508 | struct perf_counter_context *ctx = counter->ctx; |
1485 | unsigned long flags; | 1509 | unsigned long flags; |
1486 | 1510 | ||
1511 | /* | ||
1512 | * If this is a task context, we need to check whether it is | ||
1513 | * the current task context of this cpu. If not it has been | ||
1514 | * scheduled out before the smp call arrived. In that case | ||
1515 | * counter->count would have been updated to a recent sample | ||
1516 | * when the counter was scheduled out. | ||
1517 | */ | ||
1518 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
1519 | return; | ||
1520 | |||
1487 | local_irq_save(flags); | 1521 | local_irq_save(flags); |
1488 | if (ctx->is_active) | 1522 | if (ctx->is_active) |
1489 | update_context_time(ctx); | 1523 | update_context_time(ctx); |
@@ -1526,7 +1560,6 @@ __perf_counter_init_context(struct perf_counter_context *ctx, | |||
1526 | 1560 | ||
1527 | static struct perf_counter_context *find_get_context(pid_t pid, int cpu) | 1561 | static struct perf_counter_context *find_get_context(pid_t pid, int cpu) |
1528 | { | 1562 | { |
1529 | struct perf_counter_context *parent_ctx; | ||
1530 | struct perf_counter_context *ctx; | 1563 | struct perf_counter_context *ctx; |
1531 | struct perf_cpu_context *cpuctx; | 1564 | struct perf_cpu_context *cpuctx; |
1532 | struct task_struct *task; | 1565 | struct task_struct *task; |
@@ -1586,11 +1619,7 @@ static struct perf_counter_context *find_get_context(pid_t pid, int cpu) | |||
1586 | retry: | 1619 | retry: |
1587 | ctx = perf_lock_task_context(task, &flags); | 1620 | ctx = perf_lock_task_context(task, &flags); |
1588 | if (ctx) { | 1621 | if (ctx) { |
1589 | parent_ctx = ctx->parent_ctx; | 1622 | unclone_ctx(ctx); |
1590 | if (parent_ctx) { | ||
1591 | put_ctx(parent_ctx); | ||
1592 | ctx->parent_ctx = NULL; /* no longer a clone */ | ||
1593 | } | ||
1594 | spin_unlock_irqrestore(&ctx->lock, flags); | 1623 | spin_unlock_irqrestore(&ctx->lock, flags); |
1595 | } | 1624 | } |
1596 | 1625 | ||
@@ -1642,6 +1671,8 @@ static void free_counter(struct perf_counter *counter) | |||
1642 | atomic_dec(&nr_mmap_counters); | 1671 | atomic_dec(&nr_mmap_counters); |
1643 | if (counter->attr.comm) | 1672 | if (counter->attr.comm) |
1644 | atomic_dec(&nr_comm_counters); | 1673 | atomic_dec(&nr_comm_counters); |
1674 | if (counter->attr.task) | ||
1675 | atomic_dec(&nr_task_counters); | ||
1645 | } | 1676 | } |
1646 | 1677 | ||
1647 | if (counter->destroy) | 1678 | if (counter->destroy) |
@@ -1676,14 +1707,133 @@ static int perf_release(struct inode *inode, struct file *file) | |||
1676 | return 0; | 1707 | return 0; |
1677 | } | 1708 | } |
1678 | 1709 | ||
1710 | static int perf_counter_read_size(struct perf_counter *counter) | ||
1711 | { | ||
1712 | int entry = sizeof(u64); /* value */ | ||
1713 | int size = 0; | ||
1714 | int nr = 1; | ||
1715 | |||
1716 | if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
1717 | size += sizeof(u64); | ||
1718 | |||
1719 | if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
1720 | size += sizeof(u64); | ||
1721 | |||
1722 | if (counter->attr.read_format & PERF_FORMAT_ID) | ||
1723 | entry += sizeof(u64); | ||
1724 | |||
1725 | if (counter->attr.read_format & PERF_FORMAT_GROUP) { | ||
1726 | nr += counter->group_leader->nr_siblings; | ||
1727 | size += sizeof(u64); | ||
1728 | } | ||
1729 | |||
1730 | size += entry * nr; | ||
1731 | |||
1732 | return size; | ||
1733 | } | ||
1734 | |||
1735 | static u64 perf_counter_read_value(struct perf_counter *counter) | ||
1736 | { | ||
1737 | struct perf_counter *child; | ||
1738 | u64 total = 0; | ||
1739 | |||
1740 | total += perf_counter_read(counter); | ||
1741 | list_for_each_entry(child, &counter->child_list, child_list) | ||
1742 | total += perf_counter_read(child); | ||
1743 | |||
1744 | return total; | ||
1745 | } | ||
1746 | |||
1747 | static int perf_counter_read_entry(struct perf_counter *counter, | ||
1748 | u64 read_format, char __user *buf) | ||
1749 | { | ||
1750 | int n = 0, count = 0; | ||
1751 | u64 values[2]; | ||
1752 | |||
1753 | values[n++] = perf_counter_read_value(counter); | ||
1754 | if (read_format & PERF_FORMAT_ID) | ||
1755 | values[n++] = primary_counter_id(counter); | ||
1756 | |||
1757 | count = n * sizeof(u64); | ||
1758 | |||
1759 | if (copy_to_user(buf, values, count)) | ||
1760 | return -EFAULT; | ||
1761 | |||
1762 | return count; | ||
1763 | } | ||
1764 | |||
1765 | static int perf_counter_read_group(struct perf_counter *counter, | ||
1766 | u64 read_format, char __user *buf) | ||
1767 | { | ||
1768 | struct perf_counter *leader = counter->group_leader, *sub; | ||
1769 | int n = 0, size = 0, err = -EFAULT; | ||
1770 | u64 values[3]; | ||
1771 | |||
1772 | values[n++] = 1 + leader->nr_siblings; | ||
1773 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
1774 | values[n++] = leader->total_time_enabled + | ||
1775 | atomic64_read(&leader->child_total_time_enabled); | ||
1776 | } | ||
1777 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
1778 | values[n++] = leader->total_time_running + | ||
1779 | atomic64_read(&leader->child_total_time_running); | ||
1780 | } | ||
1781 | |||
1782 | size = n * sizeof(u64); | ||
1783 | |||
1784 | if (copy_to_user(buf, values, size)) | ||
1785 | return -EFAULT; | ||
1786 | |||
1787 | err = perf_counter_read_entry(leader, read_format, buf + size); | ||
1788 | if (err < 0) | ||
1789 | return err; | ||
1790 | |||
1791 | size += err; | ||
1792 | |||
1793 | list_for_each_entry(sub, &leader->sibling_list, list_entry) { | ||
1794 | err = perf_counter_read_entry(sub, read_format, | ||
1795 | buf + size); | ||
1796 | if (err < 0) | ||
1797 | return err; | ||
1798 | |||
1799 | size += err; | ||
1800 | } | ||
1801 | |||
1802 | return size; | ||
1803 | } | ||
1804 | |||
1805 | static int perf_counter_read_one(struct perf_counter *counter, | ||
1806 | u64 read_format, char __user *buf) | ||
1807 | { | ||
1808 | u64 values[4]; | ||
1809 | int n = 0; | ||
1810 | |||
1811 | values[n++] = perf_counter_read_value(counter); | ||
1812 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
1813 | values[n++] = counter->total_time_enabled + | ||
1814 | atomic64_read(&counter->child_total_time_enabled); | ||
1815 | } | ||
1816 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
1817 | values[n++] = counter->total_time_running + | ||
1818 | atomic64_read(&counter->child_total_time_running); | ||
1819 | } | ||
1820 | if (read_format & PERF_FORMAT_ID) | ||
1821 | values[n++] = primary_counter_id(counter); | ||
1822 | |||
1823 | if (copy_to_user(buf, values, n * sizeof(u64))) | ||
1824 | return -EFAULT; | ||
1825 | |||
1826 | return n * sizeof(u64); | ||
1827 | } | ||
1828 | |||
1679 | /* | 1829 | /* |
1680 | * Read the performance counter - simple non blocking version for now | 1830 | * Read the performance counter - simple non blocking version for now |
1681 | */ | 1831 | */ |
1682 | static ssize_t | 1832 | static ssize_t |
1683 | perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count) | 1833 | perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count) |
1684 | { | 1834 | { |
1685 | u64 values[4]; | 1835 | u64 read_format = counter->attr.read_format; |
1686 | int n; | 1836 | int ret; |
1687 | 1837 | ||
1688 | /* | 1838 | /* |
1689 | * Return end-of-file for a read on a counter that is in | 1839 | * Return end-of-file for a read on a counter that is in |
@@ -1693,28 +1843,18 @@ perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count) | |||
1693 | if (counter->state == PERF_COUNTER_STATE_ERROR) | 1843 | if (counter->state == PERF_COUNTER_STATE_ERROR) |
1694 | return 0; | 1844 | return 0; |
1695 | 1845 | ||
1846 | if (count < perf_counter_read_size(counter)) | ||
1847 | return -ENOSPC; | ||
1848 | |||
1696 | WARN_ON_ONCE(counter->ctx->parent_ctx); | 1849 | WARN_ON_ONCE(counter->ctx->parent_ctx); |
1697 | mutex_lock(&counter->child_mutex); | 1850 | mutex_lock(&counter->child_mutex); |
1698 | values[0] = perf_counter_read(counter); | 1851 | if (read_format & PERF_FORMAT_GROUP) |
1699 | n = 1; | 1852 | ret = perf_counter_read_group(counter, read_format, buf); |
1700 | if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | 1853 | else |
1701 | values[n++] = counter->total_time_enabled + | 1854 | ret = perf_counter_read_one(counter, read_format, buf); |
1702 | atomic64_read(&counter->child_total_time_enabled); | ||
1703 | if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
1704 | values[n++] = counter->total_time_running + | ||
1705 | atomic64_read(&counter->child_total_time_running); | ||
1706 | if (counter->attr.read_format & PERF_FORMAT_ID) | ||
1707 | values[n++] = counter->id; | ||
1708 | mutex_unlock(&counter->child_mutex); | 1855 | mutex_unlock(&counter->child_mutex); |
1709 | 1856 | ||
1710 | if (count < n * sizeof(u64)) | 1857 | return ret; |
1711 | return -EINVAL; | ||
1712 | count = n * sizeof(u64); | ||
1713 | |||
1714 | if (copy_to_user(buf, values, count)) | ||
1715 | return -EFAULT; | ||
1716 | |||
1717 | return count; | ||
1718 | } | 1858 | } |
1719 | 1859 | ||
1720 | static ssize_t | 1860 | static ssize_t |
@@ -1811,8 +1951,6 @@ static int perf_counter_period(struct perf_counter *counter, u64 __user *arg) | |||
1811 | 1951 | ||
1812 | counter->attr.sample_freq = value; | 1952 | counter->attr.sample_freq = value; |
1813 | } else { | 1953 | } else { |
1814 | perf_log_period(counter, value); | ||
1815 | |||
1816 | counter->attr.sample_period = value; | 1954 | counter->attr.sample_period = value; |
1817 | counter->hw.sample_period = value; | 1955 | counter->hw.sample_period = value; |
1818 | } | 1956 | } |
@@ -1881,6 +2019,10 @@ int perf_counter_task_disable(void) | |||
1881 | return 0; | 2019 | return 0; |
1882 | } | 2020 | } |
1883 | 2021 | ||
2022 | #ifndef PERF_COUNTER_INDEX_OFFSET | ||
2023 | # define PERF_COUNTER_INDEX_OFFSET 0 | ||
2024 | #endif | ||
2025 | |||
1884 | static int perf_counter_index(struct perf_counter *counter) | 2026 | static int perf_counter_index(struct perf_counter *counter) |
1885 | { | 2027 | { |
1886 | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | 2028 | if (counter->state != PERF_COUNTER_STATE_ACTIVE) |
@@ -2220,7 +2362,7 @@ static void perf_pending_counter(struct perf_pending_entry *entry) | |||
2220 | 2362 | ||
2221 | if (counter->pending_disable) { | 2363 | if (counter->pending_disable) { |
2222 | counter->pending_disable = 0; | 2364 | counter->pending_disable = 0; |
2223 | perf_counter_disable(counter); | 2365 | __perf_counter_disable(counter); |
2224 | } | 2366 | } |
2225 | 2367 | ||
2226 | if (counter->pending_wakeup) { | 2368 | if (counter->pending_wakeup) { |
@@ -2605,7 +2747,80 @@ static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p) | |||
2605 | return task_pid_nr_ns(p, counter->ns); | 2747 | return task_pid_nr_ns(p, counter->ns); |
2606 | } | 2748 | } |
2607 | 2749 | ||
2608 | static void perf_counter_output(struct perf_counter *counter, int nmi, | 2750 | static void perf_output_read_one(struct perf_output_handle *handle, |
2751 | struct perf_counter *counter) | ||
2752 | { | ||
2753 | u64 read_format = counter->attr.read_format; | ||
2754 | u64 values[4]; | ||
2755 | int n = 0; | ||
2756 | |||
2757 | values[n++] = atomic64_read(&counter->count); | ||
2758 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
2759 | values[n++] = counter->total_time_enabled + | ||
2760 | atomic64_read(&counter->child_total_time_enabled); | ||
2761 | } | ||
2762 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
2763 | values[n++] = counter->total_time_running + | ||
2764 | atomic64_read(&counter->child_total_time_running); | ||
2765 | } | ||
2766 | if (read_format & PERF_FORMAT_ID) | ||
2767 | values[n++] = primary_counter_id(counter); | ||
2768 | |||
2769 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
2770 | } | ||
2771 | |||
2772 | /* | ||
2773 | * XXX PERF_FORMAT_GROUP vs inherited counters seems difficult. | ||
2774 | */ | ||
2775 | static void perf_output_read_group(struct perf_output_handle *handle, | ||
2776 | struct perf_counter *counter) | ||
2777 | { | ||
2778 | struct perf_counter *leader = counter->group_leader, *sub; | ||
2779 | u64 read_format = counter->attr.read_format; | ||
2780 | u64 values[5]; | ||
2781 | int n = 0; | ||
2782 | |||
2783 | values[n++] = 1 + leader->nr_siblings; | ||
2784 | |||
2785 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
2786 | values[n++] = leader->total_time_enabled; | ||
2787 | |||
2788 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
2789 | values[n++] = leader->total_time_running; | ||
2790 | |||
2791 | if (leader != counter) | ||
2792 | leader->pmu->read(leader); | ||
2793 | |||
2794 | values[n++] = atomic64_read(&leader->count); | ||
2795 | if (read_format & PERF_FORMAT_ID) | ||
2796 | values[n++] = primary_counter_id(leader); | ||
2797 | |||
2798 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
2799 | |||
2800 | list_for_each_entry(sub, &leader->sibling_list, list_entry) { | ||
2801 | n = 0; | ||
2802 | |||
2803 | if (sub != counter) | ||
2804 | sub->pmu->read(sub); | ||
2805 | |||
2806 | values[n++] = atomic64_read(&sub->count); | ||
2807 | if (read_format & PERF_FORMAT_ID) | ||
2808 | values[n++] = primary_counter_id(sub); | ||
2809 | |||
2810 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
2811 | } | ||
2812 | } | ||
2813 | |||
2814 | static void perf_output_read(struct perf_output_handle *handle, | ||
2815 | struct perf_counter *counter) | ||
2816 | { | ||
2817 | if (counter->attr.read_format & PERF_FORMAT_GROUP) | ||
2818 | perf_output_read_group(handle, counter); | ||
2819 | else | ||
2820 | perf_output_read_one(handle, counter); | ||
2821 | } | ||
2822 | |||
2823 | void perf_counter_output(struct perf_counter *counter, int nmi, | ||
2609 | struct perf_sample_data *data) | 2824 | struct perf_sample_data *data) |
2610 | { | 2825 | { |
2611 | int ret; | 2826 | int ret; |
@@ -2616,10 +2831,6 @@ static void perf_counter_output(struct perf_counter *counter, int nmi, | |||
2616 | struct { | 2831 | struct { |
2617 | u32 pid, tid; | 2832 | u32 pid, tid; |
2618 | } tid_entry; | 2833 | } tid_entry; |
2619 | struct { | ||
2620 | u64 id; | ||
2621 | u64 counter; | ||
2622 | } group_entry; | ||
2623 | struct perf_callchain_entry *callchain = NULL; | 2834 | struct perf_callchain_entry *callchain = NULL; |
2624 | int callchain_size = 0; | 2835 | int callchain_size = 0; |
2625 | u64 time; | 2836 | u64 time; |
@@ -2661,19 +2872,21 @@ static void perf_counter_output(struct perf_counter *counter, int nmi, | |||
2661 | if (sample_type & PERF_SAMPLE_ID) | 2872 | if (sample_type & PERF_SAMPLE_ID) |
2662 | header.size += sizeof(u64); | 2873 | header.size += sizeof(u64); |
2663 | 2874 | ||
2875 | if (sample_type & PERF_SAMPLE_STREAM_ID) | ||
2876 | header.size += sizeof(u64); | ||
2877 | |||
2664 | if (sample_type & PERF_SAMPLE_CPU) { | 2878 | if (sample_type & PERF_SAMPLE_CPU) { |
2665 | header.size += sizeof(cpu_entry); | 2879 | header.size += sizeof(cpu_entry); |
2666 | 2880 | ||
2667 | cpu_entry.cpu = raw_smp_processor_id(); | 2881 | cpu_entry.cpu = raw_smp_processor_id(); |
2882 | cpu_entry.reserved = 0; | ||
2668 | } | 2883 | } |
2669 | 2884 | ||
2670 | if (sample_type & PERF_SAMPLE_PERIOD) | 2885 | if (sample_type & PERF_SAMPLE_PERIOD) |
2671 | header.size += sizeof(u64); | 2886 | header.size += sizeof(u64); |
2672 | 2887 | ||
2673 | if (sample_type & PERF_SAMPLE_GROUP) { | 2888 | if (sample_type & PERF_SAMPLE_READ) |
2674 | header.size += sizeof(u64) + | 2889 | header.size += perf_counter_read_size(counter); |
2675 | counter->nr_siblings * sizeof(group_entry); | ||
2676 | } | ||
2677 | 2890 | ||
2678 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | 2891 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { |
2679 | callchain = perf_callchain(data->regs); | 2892 | callchain = perf_callchain(data->regs); |
@@ -2685,6 +2898,18 @@ static void perf_counter_output(struct perf_counter *counter, int nmi, | |||
2685 | header.size += sizeof(u64); | 2898 | header.size += sizeof(u64); |
2686 | } | 2899 | } |
2687 | 2900 | ||
2901 | if (sample_type & PERF_SAMPLE_RAW) { | ||
2902 | int size = sizeof(u32); | ||
2903 | |||
2904 | if (data->raw) | ||
2905 | size += data->raw->size; | ||
2906 | else | ||
2907 | size += sizeof(u32); | ||
2908 | |||
2909 | WARN_ON_ONCE(size & (sizeof(u64)-1)); | ||
2910 | header.size += size; | ||
2911 | } | ||
2912 | |||
2688 | ret = perf_output_begin(&handle, counter, header.size, nmi, 1); | 2913 | ret = perf_output_begin(&handle, counter, header.size, nmi, 1); |
2689 | if (ret) | 2914 | if (ret) |
2690 | return; | 2915 | return; |
@@ -2703,7 +2928,13 @@ static void perf_counter_output(struct perf_counter *counter, int nmi, | |||
2703 | if (sample_type & PERF_SAMPLE_ADDR) | 2928 | if (sample_type & PERF_SAMPLE_ADDR) |
2704 | perf_output_put(&handle, data->addr); | 2929 | perf_output_put(&handle, data->addr); |
2705 | 2930 | ||
2706 | if (sample_type & PERF_SAMPLE_ID) | 2931 | if (sample_type & PERF_SAMPLE_ID) { |
2932 | u64 id = primary_counter_id(counter); | ||
2933 | |||
2934 | perf_output_put(&handle, id); | ||
2935 | } | ||
2936 | |||
2937 | if (sample_type & PERF_SAMPLE_STREAM_ID) | ||
2707 | perf_output_put(&handle, counter->id); | 2938 | perf_output_put(&handle, counter->id); |
2708 | 2939 | ||
2709 | if (sample_type & PERF_SAMPLE_CPU) | 2940 | if (sample_type & PERF_SAMPLE_CPU) |
@@ -2712,26 +2943,8 @@ static void perf_counter_output(struct perf_counter *counter, int nmi, | |||
2712 | if (sample_type & PERF_SAMPLE_PERIOD) | 2943 | if (sample_type & PERF_SAMPLE_PERIOD) |
2713 | perf_output_put(&handle, data->period); | 2944 | perf_output_put(&handle, data->period); |
2714 | 2945 | ||
2715 | /* | 2946 | if (sample_type & PERF_SAMPLE_READ) |
2716 | * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult. | 2947 | perf_output_read(&handle, counter); |
2717 | */ | ||
2718 | if (sample_type & PERF_SAMPLE_GROUP) { | ||
2719 | struct perf_counter *leader, *sub; | ||
2720 | u64 nr = counter->nr_siblings; | ||
2721 | |||
2722 | perf_output_put(&handle, nr); | ||
2723 | |||
2724 | leader = counter->group_leader; | ||
2725 | list_for_each_entry(sub, &leader->sibling_list, list_entry) { | ||
2726 | if (sub != counter) | ||
2727 | sub->pmu->read(sub); | ||
2728 | |||
2729 | group_entry.id = sub->id; | ||
2730 | group_entry.counter = atomic64_read(&sub->count); | ||
2731 | |||
2732 | perf_output_put(&handle, group_entry); | ||
2733 | } | ||
2734 | } | ||
2735 | 2948 | ||
2736 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | 2949 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { |
2737 | if (callchain) | 2950 | if (callchain) |
@@ -2742,6 +2955,22 @@ static void perf_counter_output(struct perf_counter *counter, int nmi, | |||
2742 | } | 2955 | } |
2743 | } | 2956 | } |
2744 | 2957 | ||
2958 | if (sample_type & PERF_SAMPLE_RAW) { | ||
2959 | if (data->raw) { | ||
2960 | perf_output_put(&handle, data->raw->size); | ||
2961 | perf_output_copy(&handle, data->raw->data, data->raw->size); | ||
2962 | } else { | ||
2963 | struct { | ||
2964 | u32 size; | ||
2965 | u32 data; | ||
2966 | } raw = { | ||
2967 | .size = sizeof(u32), | ||
2968 | .data = 0, | ||
2969 | }; | ||
2970 | perf_output_put(&handle, raw); | ||
2971 | } | ||
2972 | } | ||
2973 | |||
2745 | perf_output_end(&handle); | 2974 | perf_output_end(&handle); |
2746 | } | 2975 | } |
2747 | 2976 | ||
@@ -2754,8 +2983,6 @@ struct perf_read_event { | |||
2754 | 2983 | ||
2755 | u32 pid; | 2984 | u32 pid; |
2756 | u32 tid; | 2985 | u32 tid; |
2757 | u64 value; | ||
2758 | u64 format[3]; | ||
2759 | }; | 2986 | }; |
2760 | 2987 | ||
2761 | static void | 2988 | static void |
@@ -2767,87 +2994,74 @@ perf_counter_read_event(struct perf_counter *counter, | |||
2767 | .header = { | 2994 | .header = { |
2768 | .type = PERF_EVENT_READ, | 2995 | .type = PERF_EVENT_READ, |
2769 | .misc = 0, | 2996 | .misc = 0, |
2770 | .size = sizeof(event) - sizeof(event.format), | 2997 | .size = sizeof(event) + perf_counter_read_size(counter), |
2771 | }, | 2998 | }, |
2772 | .pid = perf_counter_pid(counter, task), | 2999 | .pid = perf_counter_pid(counter, task), |
2773 | .tid = perf_counter_tid(counter, task), | 3000 | .tid = perf_counter_tid(counter, task), |
2774 | .value = atomic64_read(&counter->count), | ||
2775 | }; | 3001 | }; |
2776 | int ret, i = 0; | 3002 | int ret; |
2777 | |||
2778 | if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
2779 | event.header.size += sizeof(u64); | ||
2780 | event.format[i++] = counter->total_time_enabled; | ||
2781 | } | ||
2782 | |||
2783 | if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
2784 | event.header.size += sizeof(u64); | ||
2785 | event.format[i++] = counter->total_time_running; | ||
2786 | } | ||
2787 | |||
2788 | if (counter->attr.read_format & PERF_FORMAT_ID) { | ||
2789 | u64 id; | ||
2790 | |||
2791 | event.header.size += sizeof(u64); | ||
2792 | if (counter->parent) | ||
2793 | id = counter->parent->id; | ||
2794 | else | ||
2795 | id = counter->id; | ||
2796 | |||
2797 | event.format[i++] = id; | ||
2798 | } | ||
2799 | 3003 | ||
2800 | ret = perf_output_begin(&handle, counter, event.header.size, 0, 0); | 3004 | ret = perf_output_begin(&handle, counter, event.header.size, 0, 0); |
2801 | if (ret) | 3005 | if (ret) |
2802 | return; | 3006 | return; |
2803 | 3007 | ||
2804 | perf_output_copy(&handle, &event, event.header.size); | 3008 | perf_output_put(&handle, event); |
3009 | perf_output_read(&handle, counter); | ||
3010 | |||
2805 | perf_output_end(&handle); | 3011 | perf_output_end(&handle); |
2806 | } | 3012 | } |
2807 | 3013 | ||
2808 | /* | 3014 | /* |
2809 | * fork tracking | 3015 | * task tracking -- fork/exit |
3016 | * | ||
3017 | * enabled by: attr.comm | attr.mmap | attr.task | ||
2810 | */ | 3018 | */ |
2811 | 3019 | ||
2812 | struct perf_fork_event { | 3020 | struct perf_task_event { |
2813 | struct task_struct *task; | 3021 | struct task_struct *task; |
3022 | struct perf_counter_context *task_ctx; | ||
2814 | 3023 | ||
2815 | struct { | 3024 | struct { |
2816 | struct perf_event_header header; | 3025 | struct perf_event_header header; |
2817 | 3026 | ||
2818 | u32 pid; | 3027 | u32 pid; |
2819 | u32 ppid; | 3028 | u32 ppid; |
3029 | u32 tid; | ||
3030 | u32 ptid; | ||
2820 | } event; | 3031 | } event; |
2821 | }; | 3032 | }; |
2822 | 3033 | ||
2823 | static void perf_counter_fork_output(struct perf_counter *counter, | 3034 | static void perf_counter_task_output(struct perf_counter *counter, |
2824 | struct perf_fork_event *fork_event) | 3035 | struct perf_task_event *task_event) |
2825 | { | 3036 | { |
2826 | struct perf_output_handle handle; | 3037 | struct perf_output_handle handle; |
2827 | int size = fork_event->event.header.size; | 3038 | int size = task_event->event.header.size; |
2828 | struct task_struct *task = fork_event->task; | 3039 | struct task_struct *task = task_event->task; |
2829 | int ret = perf_output_begin(&handle, counter, size, 0, 0); | 3040 | int ret = perf_output_begin(&handle, counter, size, 0, 0); |
2830 | 3041 | ||
2831 | if (ret) | 3042 | if (ret) |
2832 | return; | 3043 | return; |
2833 | 3044 | ||
2834 | fork_event->event.pid = perf_counter_pid(counter, task); | 3045 | task_event->event.pid = perf_counter_pid(counter, task); |
2835 | fork_event->event.ppid = perf_counter_pid(counter, task->real_parent); | 3046 | task_event->event.ppid = perf_counter_pid(counter, current); |
2836 | 3047 | ||
2837 | perf_output_put(&handle, fork_event->event); | 3048 | task_event->event.tid = perf_counter_tid(counter, task); |
3049 | task_event->event.ptid = perf_counter_tid(counter, current); | ||
3050 | |||
3051 | perf_output_put(&handle, task_event->event); | ||
2838 | perf_output_end(&handle); | 3052 | perf_output_end(&handle); |
2839 | } | 3053 | } |
2840 | 3054 | ||
2841 | static int perf_counter_fork_match(struct perf_counter *counter) | 3055 | static int perf_counter_task_match(struct perf_counter *counter) |
2842 | { | 3056 | { |
2843 | if (counter->attr.comm || counter->attr.mmap) | 3057 | if (counter->attr.comm || counter->attr.mmap || counter->attr.task) |
2844 | return 1; | 3058 | return 1; |
2845 | 3059 | ||
2846 | return 0; | 3060 | return 0; |
2847 | } | 3061 | } |
2848 | 3062 | ||
2849 | static void perf_counter_fork_ctx(struct perf_counter_context *ctx, | 3063 | static void perf_counter_task_ctx(struct perf_counter_context *ctx, |
2850 | struct perf_fork_event *fork_event) | 3064 | struct perf_task_event *task_event) |
2851 | { | 3065 | { |
2852 | struct perf_counter *counter; | 3066 | struct perf_counter *counter; |
2853 | 3067 | ||
@@ -2856,51 +3070,62 @@ static void perf_counter_fork_ctx(struct perf_counter_context *ctx, | |||
2856 | 3070 | ||
2857 | rcu_read_lock(); | 3071 | rcu_read_lock(); |
2858 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | 3072 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { |
2859 | if (perf_counter_fork_match(counter)) | 3073 | if (perf_counter_task_match(counter)) |
2860 | perf_counter_fork_output(counter, fork_event); | 3074 | perf_counter_task_output(counter, task_event); |
2861 | } | 3075 | } |
2862 | rcu_read_unlock(); | 3076 | rcu_read_unlock(); |
2863 | } | 3077 | } |
2864 | 3078 | ||
2865 | static void perf_counter_fork_event(struct perf_fork_event *fork_event) | 3079 | static void perf_counter_task_event(struct perf_task_event *task_event) |
2866 | { | 3080 | { |
2867 | struct perf_cpu_context *cpuctx; | 3081 | struct perf_cpu_context *cpuctx; |
2868 | struct perf_counter_context *ctx; | 3082 | struct perf_counter_context *ctx = task_event->task_ctx; |
2869 | 3083 | ||
2870 | cpuctx = &get_cpu_var(perf_cpu_context); | 3084 | cpuctx = &get_cpu_var(perf_cpu_context); |
2871 | perf_counter_fork_ctx(&cpuctx->ctx, fork_event); | 3085 | perf_counter_task_ctx(&cpuctx->ctx, task_event); |
2872 | put_cpu_var(perf_cpu_context); | 3086 | put_cpu_var(perf_cpu_context); |
2873 | 3087 | ||
2874 | rcu_read_lock(); | 3088 | rcu_read_lock(); |
2875 | /* | 3089 | if (!ctx) |
2876 | * doesn't really matter which of the child contexts the | 3090 | ctx = rcu_dereference(task_event->task->perf_counter_ctxp); |
2877 | * events ends up in. | ||
2878 | */ | ||
2879 | ctx = rcu_dereference(current->perf_counter_ctxp); | ||
2880 | if (ctx) | 3091 | if (ctx) |
2881 | perf_counter_fork_ctx(ctx, fork_event); | 3092 | perf_counter_task_ctx(ctx, task_event); |
2882 | rcu_read_unlock(); | 3093 | rcu_read_unlock(); |
2883 | } | 3094 | } |
2884 | 3095 | ||
2885 | void perf_counter_fork(struct task_struct *task) | 3096 | static void perf_counter_task(struct task_struct *task, |
3097 | struct perf_counter_context *task_ctx, | ||
3098 | int new) | ||
2886 | { | 3099 | { |
2887 | struct perf_fork_event fork_event; | 3100 | struct perf_task_event task_event; |
2888 | 3101 | ||
2889 | if (!atomic_read(&nr_comm_counters) && | 3102 | if (!atomic_read(&nr_comm_counters) && |
2890 | !atomic_read(&nr_mmap_counters)) | 3103 | !atomic_read(&nr_mmap_counters) && |
3104 | !atomic_read(&nr_task_counters)) | ||
2891 | return; | 3105 | return; |
2892 | 3106 | ||
2893 | fork_event = (struct perf_fork_event){ | 3107 | task_event = (struct perf_task_event){ |
2894 | .task = task, | 3108 | .task = task, |
2895 | .event = { | 3109 | .task_ctx = task_ctx, |
3110 | .event = { | ||
2896 | .header = { | 3111 | .header = { |
2897 | .type = PERF_EVENT_FORK, | 3112 | .type = new ? PERF_EVENT_FORK : PERF_EVENT_EXIT, |
2898 | .size = sizeof(fork_event.event), | 3113 | .misc = 0, |
3114 | .size = sizeof(task_event.event), | ||
2899 | }, | 3115 | }, |
3116 | /* .pid */ | ||
3117 | /* .ppid */ | ||
3118 | /* .tid */ | ||
3119 | /* .ptid */ | ||
2900 | }, | 3120 | }, |
2901 | }; | 3121 | }; |
2902 | 3122 | ||
2903 | perf_counter_fork_event(&fork_event); | 3123 | perf_counter_task_event(&task_event); |
3124 | } | ||
3125 | |||
3126 | void perf_counter_fork(struct task_struct *task) | ||
3127 | { | ||
3128 | perf_counter_task(task, NULL, 1); | ||
2904 | } | 3129 | } |
2905 | 3130 | ||
2906 | /* | 3131 | /* |
@@ -2968,8 +3193,10 @@ static void perf_counter_comm_event(struct perf_comm_event *comm_event) | |||
2968 | struct perf_cpu_context *cpuctx; | 3193 | struct perf_cpu_context *cpuctx; |
2969 | struct perf_counter_context *ctx; | 3194 | struct perf_counter_context *ctx; |
2970 | unsigned int size; | 3195 | unsigned int size; |
2971 | char *comm = comm_event->task->comm; | 3196 | char comm[TASK_COMM_LEN]; |
2972 | 3197 | ||
3198 | memset(comm, 0, sizeof(comm)); | ||
3199 | strncpy(comm, comm_event->task->comm, sizeof(comm)); | ||
2973 | size = ALIGN(strlen(comm)+1, sizeof(u64)); | 3200 | size = ALIGN(strlen(comm)+1, sizeof(u64)); |
2974 | 3201 | ||
2975 | comm_event->comm = comm; | 3202 | comm_event->comm = comm; |
@@ -3004,8 +3231,16 @@ void perf_counter_comm(struct task_struct *task) | |||
3004 | 3231 | ||
3005 | comm_event = (struct perf_comm_event){ | 3232 | comm_event = (struct perf_comm_event){ |
3006 | .task = task, | 3233 | .task = task, |
3234 | /* .comm */ | ||
3235 | /* .comm_size */ | ||
3007 | .event = { | 3236 | .event = { |
3008 | .header = { .type = PERF_EVENT_COMM, }, | 3237 | .header = { |
3238 | .type = PERF_EVENT_COMM, | ||
3239 | .misc = 0, | ||
3240 | /* .size */ | ||
3241 | }, | ||
3242 | /* .pid */ | ||
3243 | /* .tid */ | ||
3009 | }, | 3244 | }, |
3010 | }; | 3245 | }; |
3011 | 3246 | ||
@@ -3088,8 +3323,15 @@ static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event) | |||
3088 | char *buf = NULL; | 3323 | char *buf = NULL; |
3089 | const char *name; | 3324 | const char *name; |
3090 | 3325 | ||
3326 | memset(tmp, 0, sizeof(tmp)); | ||
3327 | |||
3091 | if (file) { | 3328 | if (file) { |
3092 | buf = kzalloc(PATH_MAX, GFP_KERNEL); | 3329 | /* |
3330 | * d_path works from the end of the buffer backwards, so we | ||
3331 | * need to add enough zero bytes after the string to handle | ||
3332 | * the 64bit alignment we do later. | ||
3333 | */ | ||
3334 | buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); | ||
3093 | if (!buf) { | 3335 | if (!buf) { |
3094 | name = strncpy(tmp, "//enomem", sizeof(tmp)); | 3336 | name = strncpy(tmp, "//enomem", sizeof(tmp)); |
3095 | goto got_name; | 3337 | goto got_name; |
@@ -3100,9 +3342,11 @@ static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event) | |||
3100 | goto got_name; | 3342 | goto got_name; |
3101 | } | 3343 | } |
3102 | } else { | 3344 | } else { |
3103 | name = arch_vma_name(mmap_event->vma); | 3345 | if (arch_vma_name(mmap_event->vma)) { |
3104 | if (name) | 3346 | name = strncpy(tmp, arch_vma_name(mmap_event->vma), |
3347 | sizeof(tmp)); | ||
3105 | goto got_name; | 3348 | goto got_name; |
3349 | } | ||
3106 | 3350 | ||
3107 | if (!vma->vm_mm) { | 3351 | if (!vma->vm_mm) { |
3108 | name = strncpy(tmp, "[vdso]", sizeof(tmp)); | 3352 | name = strncpy(tmp, "[vdso]", sizeof(tmp)); |
@@ -3147,8 +3391,16 @@ void __perf_counter_mmap(struct vm_area_struct *vma) | |||
3147 | 3391 | ||
3148 | mmap_event = (struct perf_mmap_event){ | 3392 | mmap_event = (struct perf_mmap_event){ |
3149 | .vma = vma, | 3393 | .vma = vma, |
3394 | /* .file_name */ | ||
3395 | /* .file_size */ | ||
3150 | .event = { | 3396 | .event = { |
3151 | .header = { .type = PERF_EVENT_MMAP, }, | 3397 | .header = { |
3398 | .type = PERF_EVENT_MMAP, | ||
3399 | .misc = 0, | ||
3400 | /* .size */ | ||
3401 | }, | ||
3402 | /* .pid */ | ||
3403 | /* .tid */ | ||
3152 | .start = vma->vm_start, | 3404 | .start = vma->vm_start, |
3153 | .len = vma->vm_end - vma->vm_start, | 3405 | .len = vma->vm_end - vma->vm_start, |
3154 | .pgoff = vma->vm_pgoff, | 3406 | .pgoff = vma->vm_pgoff, |
@@ -3159,49 +3411,6 @@ void __perf_counter_mmap(struct vm_area_struct *vma) | |||
3159 | } | 3411 | } |
3160 | 3412 | ||
3161 | /* | 3413 | /* |
3162 | * Log sample_period changes so that analyzing tools can re-normalize the | ||
3163 | * event flow. | ||
3164 | */ | ||
3165 | |||
3166 | struct freq_event { | ||
3167 | struct perf_event_header header; | ||
3168 | u64 time; | ||
3169 | u64 id; | ||
3170 | u64 period; | ||
3171 | }; | ||
3172 | |||
3173 | static void perf_log_period(struct perf_counter *counter, u64 period) | ||
3174 | { | ||
3175 | struct perf_output_handle handle; | ||
3176 | struct freq_event event; | ||
3177 | int ret; | ||
3178 | |||
3179 | if (counter->hw.sample_period == period) | ||
3180 | return; | ||
3181 | |||
3182 | if (counter->attr.sample_type & PERF_SAMPLE_PERIOD) | ||
3183 | return; | ||
3184 | |||
3185 | event = (struct freq_event) { | ||
3186 | .header = { | ||
3187 | .type = PERF_EVENT_PERIOD, | ||
3188 | .misc = 0, | ||
3189 | .size = sizeof(event), | ||
3190 | }, | ||
3191 | .time = sched_clock(), | ||
3192 | .id = counter->id, | ||
3193 | .period = period, | ||
3194 | }; | ||
3195 | |||
3196 | ret = perf_output_begin(&handle, counter, sizeof(event), 1, 0); | ||
3197 | if (ret) | ||
3198 | return; | ||
3199 | |||
3200 | perf_output_put(&handle, event); | ||
3201 | perf_output_end(&handle); | ||
3202 | } | ||
3203 | |||
3204 | /* | ||
3205 | * IRQ throttle logging | 3414 | * IRQ throttle logging |
3206 | */ | 3415 | */ |
3207 | 3416 | ||
@@ -3214,16 +3423,21 @@ static void perf_log_throttle(struct perf_counter *counter, int enable) | |||
3214 | struct perf_event_header header; | 3423 | struct perf_event_header header; |
3215 | u64 time; | 3424 | u64 time; |
3216 | u64 id; | 3425 | u64 id; |
3426 | u64 stream_id; | ||
3217 | } throttle_event = { | 3427 | } throttle_event = { |
3218 | .header = { | 3428 | .header = { |
3219 | .type = PERF_EVENT_THROTTLE + 1, | 3429 | .type = PERF_EVENT_THROTTLE, |
3220 | .misc = 0, | 3430 | .misc = 0, |
3221 | .size = sizeof(throttle_event), | 3431 | .size = sizeof(throttle_event), |
3222 | }, | 3432 | }, |
3223 | .time = sched_clock(), | 3433 | .time = sched_clock(), |
3224 | .id = counter->id, | 3434 | .id = primary_counter_id(counter), |
3435 | .stream_id = counter->id, | ||
3225 | }; | 3436 | }; |
3226 | 3437 | ||
3438 | if (enable) | ||
3439 | throttle_event.header.type = PERF_EVENT_UNTHROTTLE; | ||
3440 | |||
3227 | ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0); | 3441 | ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0); |
3228 | if (ret) | 3442 | if (ret) |
3229 | return; | 3443 | return; |
@@ -3300,125 +3514,111 @@ int perf_counter_overflow(struct perf_counter *counter, int nmi, | |||
3300 | * Generic software counter infrastructure | 3514 | * Generic software counter infrastructure |
3301 | */ | 3515 | */ |
3302 | 3516 | ||
3303 | static void perf_swcounter_update(struct perf_counter *counter) | 3517 | /* |
3518 | * We directly increment counter->count and keep a second value in | ||
3519 | * counter->hw.period_left to count intervals. This period counter | ||
3520 | * is kept in the range [-sample_period, 0] so that we can use the | ||
3521 | * sign as trigger. | ||
3522 | */ | ||
3523 | |||
3524 | static u64 perf_swcounter_set_period(struct perf_counter *counter) | ||
3304 | { | 3525 | { |
3305 | struct hw_perf_counter *hwc = &counter->hw; | 3526 | struct hw_perf_counter *hwc = &counter->hw; |
3306 | u64 prev, now; | 3527 | u64 period = hwc->last_period; |
3307 | s64 delta; | 3528 | u64 nr, offset; |
3529 | s64 old, val; | ||
3530 | |||
3531 | hwc->last_period = hwc->sample_period; | ||
3308 | 3532 | ||
3309 | again: | 3533 | again: |
3310 | prev = atomic64_read(&hwc->prev_count); | 3534 | old = val = atomic64_read(&hwc->period_left); |
3311 | now = atomic64_read(&hwc->count); | 3535 | if (val < 0) |
3312 | if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev) | 3536 | return 0; |
3313 | goto again; | ||
3314 | 3537 | ||
3315 | delta = now - prev; | 3538 | nr = div64_u64(period + val, period); |
3539 | offset = nr * period; | ||
3540 | val -= offset; | ||
3541 | if (atomic64_cmpxchg(&hwc->period_left, old, val) != old) | ||
3542 | goto again; | ||
3316 | 3543 | ||
3317 | atomic64_add(delta, &counter->count); | 3544 | return nr; |
3318 | atomic64_sub(delta, &hwc->period_left); | ||
3319 | } | 3545 | } |
3320 | 3546 | ||
3321 | static void perf_swcounter_set_period(struct perf_counter *counter) | 3547 | static void perf_swcounter_overflow(struct perf_counter *counter, |
3548 | int nmi, struct perf_sample_data *data) | ||
3322 | { | 3549 | { |
3323 | struct hw_perf_counter *hwc = &counter->hw; | 3550 | struct hw_perf_counter *hwc = &counter->hw; |
3324 | s64 left = atomic64_read(&hwc->period_left); | 3551 | u64 overflow; |
3325 | s64 period = hwc->sample_period; | ||
3326 | 3552 | ||
3327 | if (unlikely(left <= -period)) { | 3553 | data->period = counter->hw.last_period; |
3328 | left = period; | 3554 | overflow = perf_swcounter_set_period(counter); |
3329 | atomic64_set(&hwc->period_left, left); | ||
3330 | hwc->last_period = period; | ||
3331 | } | ||
3332 | 3555 | ||
3333 | if (unlikely(left <= 0)) { | 3556 | if (hwc->interrupts == MAX_INTERRUPTS) |
3334 | left += period; | 3557 | return; |
3335 | atomic64_add(period, &hwc->period_left); | ||
3336 | hwc->last_period = period; | ||
3337 | } | ||
3338 | 3558 | ||
3339 | atomic64_set(&hwc->prev_count, -left); | 3559 | for (; overflow; overflow--) { |
3340 | atomic64_set(&hwc->count, -left); | 3560 | if (perf_counter_overflow(counter, nmi, data)) { |
3561 | /* | ||
3562 | * We inhibit the overflow from happening when | ||
3563 | * hwc->interrupts == MAX_INTERRUPTS. | ||
3564 | */ | ||
3565 | break; | ||
3566 | } | ||
3567 | } | ||
3341 | } | 3568 | } |
3342 | 3569 | ||
3343 | static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer) | 3570 | static void perf_swcounter_unthrottle(struct perf_counter *counter) |
3344 | { | 3571 | { |
3345 | enum hrtimer_restart ret = HRTIMER_RESTART; | ||
3346 | struct perf_sample_data data; | ||
3347 | struct perf_counter *counter; | ||
3348 | u64 period; | ||
3349 | |||
3350 | counter = container_of(hrtimer, struct perf_counter, hw.hrtimer); | ||
3351 | counter->pmu->read(counter); | ||
3352 | |||
3353 | data.addr = 0; | ||
3354 | data.regs = get_irq_regs(); | ||
3355 | /* | 3572 | /* |
3356 | * In case we exclude kernel IPs or are somehow not in interrupt | 3573 | * Nothing to do, we already reset hwc->interrupts. |
3357 | * context, provide the next best thing, the user IP. | ||
3358 | */ | 3574 | */ |
3359 | if ((counter->attr.exclude_kernel || !data.regs) && | 3575 | } |
3360 | !counter->attr.exclude_user) | ||
3361 | data.regs = task_pt_regs(current); | ||
3362 | 3576 | ||
3363 | if (data.regs) { | 3577 | static void perf_swcounter_add(struct perf_counter *counter, u64 nr, |
3364 | if (perf_counter_overflow(counter, 0, &data)) | 3578 | int nmi, struct perf_sample_data *data) |
3365 | ret = HRTIMER_NORESTART; | 3579 | { |
3366 | } | 3580 | struct hw_perf_counter *hwc = &counter->hw; |
3367 | 3581 | ||
3368 | period = max_t(u64, 10000, counter->hw.sample_period); | 3582 | atomic64_add(nr, &counter->count); |
3369 | hrtimer_forward_now(hrtimer, ns_to_ktime(period)); | ||
3370 | 3583 | ||
3371 | return ret; | 3584 | if (!hwc->sample_period) |
3372 | } | 3585 | return; |
3373 | 3586 | ||
3374 | static void perf_swcounter_overflow(struct perf_counter *counter, | 3587 | if (!data->regs) |
3375 | int nmi, struct perf_sample_data *data) | 3588 | return; |
3376 | { | ||
3377 | data->period = counter->hw.last_period; | ||
3378 | 3589 | ||
3379 | perf_swcounter_update(counter); | 3590 | if (!atomic64_add_negative(nr, &hwc->period_left)) |
3380 | perf_swcounter_set_period(counter); | 3591 | perf_swcounter_overflow(counter, nmi, data); |
3381 | if (perf_counter_overflow(counter, nmi, data)) | ||
3382 | /* soft-disable the counter */ | ||
3383 | ; | ||
3384 | } | 3592 | } |
3385 | 3593 | ||
3386 | static int perf_swcounter_is_counting(struct perf_counter *counter) | 3594 | static int perf_swcounter_is_counting(struct perf_counter *counter) |
3387 | { | 3595 | { |
3388 | struct perf_counter_context *ctx; | 3596 | /* |
3389 | unsigned long flags; | 3597 | * The counter is active, we're good! |
3390 | int count; | 3598 | */ |
3391 | |||
3392 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) | 3599 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) |
3393 | return 1; | 3600 | return 1; |
3394 | 3601 | ||
3602 | /* | ||
3603 | * The counter is off/error, not counting. | ||
3604 | */ | ||
3395 | if (counter->state != PERF_COUNTER_STATE_INACTIVE) | 3605 | if (counter->state != PERF_COUNTER_STATE_INACTIVE) |
3396 | return 0; | 3606 | return 0; |
3397 | 3607 | ||
3398 | /* | 3608 | /* |
3399 | * If the counter is inactive, it could be just because | 3609 | * The counter is inactive, if the context is active |
3400 | * its task is scheduled out, or because it's in a group | 3610 | * we're part of a group that didn't make it on the 'pmu', |
3401 | * which could not go on the PMU. We want to count in | 3611 | * not counting. |
3402 | * the first case but not the second. If the context is | ||
3403 | * currently active then an inactive software counter must | ||
3404 | * be the second case. If it's not currently active then | ||
3405 | * we need to know whether the counter was active when the | ||
3406 | * context was last active, which we can determine by | ||
3407 | * comparing counter->tstamp_stopped with ctx->time. | ||
3408 | * | ||
3409 | * We are within an RCU read-side critical section, | ||
3410 | * which protects the existence of *ctx. | ||
3411 | */ | 3612 | */ |
3412 | ctx = counter->ctx; | 3613 | if (counter->ctx->is_active) |
3413 | spin_lock_irqsave(&ctx->lock, flags); | 3614 | return 0; |
3414 | count = 1; | 3615 | |
3415 | /* Re-check state now we have the lock */ | 3616 | /* |
3416 | if (counter->state < PERF_COUNTER_STATE_INACTIVE || | 3617 | * We're inactive and the context is too, this means the |
3417 | counter->ctx->is_active || | 3618 | * task is scheduled out, we're counting events that happen |
3418 | counter->tstamp_stopped < ctx->time) | 3619 | * to us, like migration events. |
3419 | count = 0; | 3620 | */ |
3420 | spin_unlock_irqrestore(&ctx->lock, flags); | 3621 | return 1; |
3421 | return count; | ||
3422 | } | 3622 | } |
3423 | 3623 | ||
3424 | static int perf_swcounter_match(struct perf_counter *counter, | 3624 | static int perf_swcounter_match(struct perf_counter *counter, |
@@ -3444,15 +3644,6 @@ static int perf_swcounter_match(struct perf_counter *counter, | |||
3444 | return 1; | 3644 | return 1; |
3445 | } | 3645 | } |
3446 | 3646 | ||
3447 | static void perf_swcounter_add(struct perf_counter *counter, u64 nr, | ||
3448 | int nmi, struct perf_sample_data *data) | ||
3449 | { | ||
3450 | int neg = atomic64_add_negative(nr, &counter->hw.count); | ||
3451 | |||
3452 | if (counter->hw.sample_period && !neg && data->regs) | ||
3453 | perf_swcounter_overflow(counter, nmi, data); | ||
3454 | } | ||
3455 | |||
3456 | static void perf_swcounter_ctx_event(struct perf_counter_context *ctx, | 3647 | static void perf_swcounter_ctx_event(struct perf_counter_context *ctx, |
3457 | enum perf_type_id type, | 3648 | enum perf_type_id type, |
3458 | u32 event, u64 nr, int nmi, | 3649 | u32 event, u64 nr, int nmi, |
@@ -3531,27 +3722,66 @@ void __perf_swcounter_event(u32 event, u64 nr, int nmi, | |||
3531 | 3722 | ||
3532 | static void perf_swcounter_read(struct perf_counter *counter) | 3723 | static void perf_swcounter_read(struct perf_counter *counter) |
3533 | { | 3724 | { |
3534 | perf_swcounter_update(counter); | ||
3535 | } | 3725 | } |
3536 | 3726 | ||
3537 | static int perf_swcounter_enable(struct perf_counter *counter) | 3727 | static int perf_swcounter_enable(struct perf_counter *counter) |
3538 | { | 3728 | { |
3539 | perf_swcounter_set_period(counter); | 3729 | struct hw_perf_counter *hwc = &counter->hw; |
3730 | |||
3731 | if (hwc->sample_period) { | ||
3732 | hwc->last_period = hwc->sample_period; | ||
3733 | perf_swcounter_set_period(counter); | ||
3734 | } | ||
3540 | return 0; | 3735 | return 0; |
3541 | } | 3736 | } |
3542 | 3737 | ||
3543 | static void perf_swcounter_disable(struct perf_counter *counter) | 3738 | static void perf_swcounter_disable(struct perf_counter *counter) |
3544 | { | 3739 | { |
3545 | perf_swcounter_update(counter); | ||
3546 | } | 3740 | } |
3547 | 3741 | ||
3548 | static const struct pmu perf_ops_generic = { | 3742 | static const struct pmu perf_ops_generic = { |
3549 | .enable = perf_swcounter_enable, | 3743 | .enable = perf_swcounter_enable, |
3550 | .disable = perf_swcounter_disable, | 3744 | .disable = perf_swcounter_disable, |
3551 | .read = perf_swcounter_read, | 3745 | .read = perf_swcounter_read, |
3746 | .unthrottle = perf_swcounter_unthrottle, | ||
3552 | }; | 3747 | }; |
3553 | 3748 | ||
3554 | /* | 3749 | /* |
3750 | * hrtimer based swcounter callback | ||
3751 | */ | ||
3752 | |||
3753 | static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer) | ||
3754 | { | ||
3755 | enum hrtimer_restart ret = HRTIMER_RESTART; | ||
3756 | struct perf_sample_data data; | ||
3757 | struct perf_counter *counter; | ||
3758 | u64 period; | ||
3759 | |||
3760 | counter = container_of(hrtimer, struct perf_counter, hw.hrtimer); | ||
3761 | counter->pmu->read(counter); | ||
3762 | |||
3763 | data.addr = 0; | ||
3764 | data.regs = get_irq_regs(); | ||
3765 | /* | ||
3766 | * In case we exclude kernel IPs or are somehow not in interrupt | ||
3767 | * context, provide the next best thing, the user IP. | ||
3768 | */ | ||
3769 | if ((counter->attr.exclude_kernel || !data.regs) && | ||
3770 | !counter->attr.exclude_user) | ||
3771 | data.regs = task_pt_regs(current); | ||
3772 | |||
3773 | if (data.regs) { | ||
3774 | if (perf_counter_overflow(counter, 0, &data)) | ||
3775 | ret = HRTIMER_NORESTART; | ||
3776 | } | ||
3777 | |||
3778 | period = max_t(u64, 10000, counter->hw.sample_period); | ||
3779 | hrtimer_forward_now(hrtimer, ns_to_ktime(period)); | ||
3780 | |||
3781 | return ret; | ||
3782 | } | ||
3783 | |||
3784 | /* | ||
3555 | * Software counter: cpu wall time clock | 3785 | * Software counter: cpu wall time clock |
3556 | */ | 3786 | */ |
3557 | 3787 | ||
@@ -3668,17 +3898,24 @@ static const struct pmu perf_ops_task_clock = { | |||
3668 | }; | 3898 | }; |
3669 | 3899 | ||
3670 | #ifdef CONFIG_EVENT_PROFILE | 3900 | #ifdef CONFIG_EVENT_PROFILE |
3671 | void perf_tpcounter_event(int event_id) | 3901 | void perf_tpcounter_event(int event_id, u64 addr, u64 count, void *record, |
3902 | int entry_size) | ||
3672 | { | 3903 | { |
3904 | struct perf_raw_record raw = { | ||
3905 | .size = entry_size, | ||
3906 | .data = record, | ||
3907 | }; | ||
3908 | |||
3673 | struct perf_sample_data data = { | 3909 | struct perf_sample_data data = { |
3674 | .regs = get_irq_regs(); | 3910 | .regs = get_irq_regs(), |
3675 | .addr = 0, | 3911 | .addr = addr, |
3912 | .raw = &raw, | ||
3676 | }; | 3913 | }; |
3677 | 3914 | ||
3678 | if (!data.regs) | 3915 | if (!data.regs) |
3679 | data.regs = task_pt_regs(current); | 3916 | data.regs = task_pt_regs(current); |
3680 | 3917 | ||
3681 | do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, &data); | 3918 | do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, &data); |
3682 | } | 3919 | } |
3683 | EXPORT_SYMBOL_GPL(perf_tpcounter_event); | 3920 | EXPORT_SYMBOL_GPL(perf_tpcounter_event); |
3684 | 3921 | ||
@@ -3687,16 +3924,20 @@ extern void ftrace_profile_disable(int); | |||
3687 | 3924 | ||
3688 | static void tp_perf_counter_destroy(struct perf_counter *counter) | 3925 | static void tp_perf_counter_destroy(struct perf_counter *counter) |
3689 | { | 3926 | { |
3690 | ftrace_profile_disable(perf_event_id(&counter->attr)); | 3927 | ftrace_profile_disable(counter->attr.config); |
3691 | } | 3928 | } |
3692 | 3929 | ||
3693 | static const struct pmu *tp_perf_counter_init(struct perf_counter *counter) | 3930 | static const struct pmu *tp_perf_counter_init(struct perf_counter *counter) |
3694 | { | 3931 | { |
3695 | int event_id = perf_event_id(&counter->attr); | 3932 | /* |
3696 | int ret; | 3933 | * Raw tracepoint data is a severe data leak, only allow root to |
3934 | * have these. | ||
3935 | */ | ||
3936 | if ((counter->attr.sample_type & PERF_SAMPLE_RAW) && | ||
3937 | !capable(CAP_SYS_ADMIN)) | ||
3938 | return ERR_PTR(-EPERM); | ||
3697 | 3939 | ||
3698 | ret = ftrace_profile_enable(event_id); | 3940 | if (ftrace_profile_enable(counter->attr.config)) |
3699 | if (ret) | ||
3700 | return NULL; | 3941 | return NULL; |
3701 | 3942 | ||
3702 | counter->destroy = tp_perf_counter_destroy; | 3943 | counter->destroy = tp_perf_counter_destroy; |
@@ -3829,9 +4070,9 @@ perf_counter_alloc(struct perf_counter_attr *attr, | |||
3829 | atomic64_set(&hwc->period_left, hwc->sample_period); | 4070 | atomic64_set(&hwc->period_left, hwc->sample_period); |
3830 | 4071 | ||
3831 | /* | 4072 | /* |
3832 | * we currently do not support PERF_SAMPLE_GROUP on inherited counters | 4073 | * we currently do not support PERF_FORMAT_GROUP on inherited counters |
3833 | */ | 4074 | */ |
3834 | if (attr->inherit && (attr->sample_type & PERF_SAMPLE_GROUP)) | 4075 | if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) |
3835 | goto done; | 4076 | goto done; |
3836 | 4077 | ||
3837 | switch (attr->type) { | 4078 | switch (attr->type) { |
@@ -3874,6 +4115,8 @@ done: | |||
3874 | atomic_inc(&nr_mmap_counters); | 4115 | atomic_inc(&nr_mmap_counters); |
3875 | if (counter->attr.comm) | 4116 | if (counter->attr.comm) |
3876 | atomic_inc(&nr_comm_counters); | 4117 | atomic_inc(&nr_comm_counters); |
4118 | if (counter->attr.task) | ||
4119 | atomic_inc(&nr_task_counters); | ||
3877 | } | 4120 | } |
3878 | 4121 | ||
3879 | return counter; | 4122 | return counter; |
@@ -4235,8 +4478,10 @@ void perf_counter_exit_task(struct task_struct *child) | |||
4235 | struct perf_counter_context *child_ctx; | 4478 | struct perf_counter_context *child_ctx; |
4236 | unsigned long flags; | 4479 | unsigned long flags; |
4237 | 4480 | ||
4238 | if (likely(!child->perf_counter_ctxp)) | 4481 | if (likely(!child->perf_counter_ctxp)) { |
4482 | perf_counter_task(child, NULL, 0); | ||
4239 | return; | 4483 | return; |
4484 | } | ||
4240 | 4485 | ||
4241 | local_irq_save(flags); | 4486 | local_irq_save(flags); |
4242 | /* | 4487 | /* |
@@ -4255,17 +4500,20 @@ void perf_counter_exit_task(struct task_struct *child) | |||
4255 | */ | 4500 | */ |
4256 | spin_lock(&child_ctx->lock); | 4501 | spin_lock(&child_ctx->lock); |
4257 | child->perf_counter_ctxp = NULL; | 4502 | child->perf_counter_ctxp = NULL; |
4258 | if (child_ctx->parent_ctx) { | 4503 | /* |
4259 | /* | 4504 | * If this context is a clone; unclone it so it can't get |
4260 | * This context is a clone; unclone it so it can't get | 4505 | * swapped to another process while we're removing all |
4261 | * swapped to another process while we're removing all | 4506 | * the counters from it. |
4262 | * the counters from it. | 4507 | */ |
4263 | */ | 4508 | unclone_ctx(child_ctx); |
4264 | put_ctx(child_ctx->parent_ctx); | 4509 | spin_unlock_irqrestore(&child_ctx->lock, flags); |
4265 | child_ctx->parent_ctx = NULL; | 4510 | |
4266 | } | 4511 | /* |
4267 | spin_unlock(&child_ctx->lock); | 4512 | * Report the task dead after unscheduling the counters so that we |
4268 | local_irq_restore(flags); | 4513 | * won't get any samples after PERF_EVENT_EXIT. We can however still |
4514 | * get a few PERF_EVENT_READ events. | ||
4515 | */ | ||
4516 | perf_counter_task(child, child_ctx, 0); | ||
4269 | 4517 | ||
4270 | /* | 4518 | /* |
4271 | * We can recurse on the same lock type through: | 4519 | * We can recurse on the same lock type through: |
@@ -4486,6 +4734,11 @@ perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) | |||
4486 | perf_counter_init_cpu(cpu); | 4734 | perf_counter_init_cpu(cpu); |
4487 | break; | 4735 | break; |
4488 | 4736 | ||
4737 | case CPU_ONLINE: | ||
4738 | case CPU_ONLINE_FROZEN: | ||
4739 | hw_perf_counter_setup_online(cpu); | ||
4740 | break; | ||
4741 | |||
4489 | case CPU_DOWN_PREPARE: | 4742 | case CPU_DOWN_PREPARE: |
4490 | case CPU_DOWN_PREPARE_FROZEN: | 4743 | case CPU_DOWN_PREPARE_FROZEN: |
4491 | perf_counter_exit_cpu(cpu); | 4744 | perf_counter_exit_cpu(cpu); |
@@ -4510,6 +4763,8 @@ void __init perf_counter_init(void) | |||
4510 | { | 4763 | { |
4511 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE, | 4764 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE, |
4512 | (void *)(long)smp_processor_id()); | 4765 | (void *)(long)smp_processor_id()); |
4766 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE, | ||
4767 | (void *)(long)smp_processor_id()); | ||
4513 | register_cpu_notifier(&perf_cpu_nb); | 4768 | register_cpu_notifier(&perf_cpu_nb); |
4514 | } | 4769 | } |
4515 | 4770 | ||