diff options
Diffstat (limited to 'kernel/perf_counter.c')
-rw-r--r-- | kernel/perf_counter.c | 3526 |
1 files changed, 3526 insertions, 0 deletions
diff --git a/kernel/perf_counter.c b/kernel/perf_counter.c new file mode 100644 index 000000000000..59a926d04baf --- /dev/null +++ b/kernel/perf_counter.c | |||
@@ -0,0 +1,3526 @@ | |||
1 | /* | ||
2 | * Performance counter core code | ||
3 | * | ||
4 | * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> | ||
5 | * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar | ||
6 | * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | ||
7 | * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> | ||
8 | * | ||
9 | * For licensing details see kernel-base/COPYING | ||
10 | */ | ||
11 | |||
12 | #include <linux/fs.h> | ||
13 | #include <linux/mm.h> | ||
14 | #include <linux/cpu.h> | ||
15 | #include <linux/smp.h> | ||
16 | #include <linux/file.h> | ||
17 | #include <linux/poll.h> | ||
18 | #include <linux/sysfs.h> | ||
19 | #include <linux/ptrace.h> | ||
20 | #include <linux/percpu.h> | ||
21 | #include <linux/vmstat.h> | ||
22 | #include <linux/hardirq.h> | ||
23 | #include <linux/rculist.h> | ||
24 | #include <linux/uaccess.h> | ||
25 | #include <linux/syscalls.h> | ||
26 | #include <linux/anon_inodes.h> | ||
27 | #include <linux/kernel_stat.h> | ||
28 | #include <linux/perf_counter.h> | ||
29 | #include <linux/dcache.h> | ||
30 | |||
31 | #include <asm/irq_regs.h> | ||
32 | |||
33 | /* | ||
34 | * Each CPU has a list of per CPU counters: | ||
35 | */ | ||
36 | DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); | ||
37 | |||
38 | int perf_max_counters __read_mostly = 1; | ||
39 | static int perf_reserved_percpu __read_mostly; | ||
40 | static int perf_overcommit __read_mostly = 1; | ||
41 | |||
42 | static atomic_t nr_counters __read_mostly; | ||
43 | static atomic_t nr_mmap_tracking __read_mostly; | ||
44 | static atomic_t nr_munmap_tracking __read_mostly; | ||
45 | static atomic_t nr_comm_tracking __read_mostly; | ||
46 | |||
47 | int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */ | ||
48 | int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */ | ||
49 | |||
50 | /* | ||
51 | * Lock for (sysadmin-configurable) counter reservations: | ||
52 | */ | ||
53 | static DEFINE_SPINLOCK(perf_resource_lock); | ||
54 | |||
55 | /* | ||
56 | * Architecture provided APIs - weak aliases: | ||
57 | */ | ||
58 | extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter) | ||
59 | { | ||
60 | return NULL; | ||
61 | } | ||
62 | |||
63 | void __weak hw_perf_disable(void) { barrier(); } | ||
64 | void __weak hw_perf_enable(void) { barrier(); } | ||
65 | |||
66 | void __weak hw_perf_counter_setup(int cpu) { barrier(); } | ||
67 | int __weak hw_perf_group_sched_in(struct perf_counter *group_leader, | ||
68 | struct perf_cpu_context *cpuctx, | ||
69 | struct perf_counter_context *ctx, int cpu) | ||
70 | { | ||
71 | return 0; | ||
72 | } | ||
73 | |||
74 | void __weak perf_counter_print_debug(void) { } | ||
75 | |||
76 | static DEFINE_PER_CPU(int, disable_count); | ||
77 | |||
78 | void __perf_disable(void) | ||
79 | { | ||
80 | __get_cpu_var(disable_count)++; | ||
81 | } | ||
82 | |||
83 | bool __perf_enable(void) | ||
84 | { | ||
85 | return !--__get_cpu_var(disable_count); | ||
86 | } | ||
87 | |||
88 | void perf_disable(void) | ||
89 | { | ||
90 | __perf_disable(); | ||
91 | hw_perf_disable(); | ||
92 | } | ||
93 | |||
94 | void perf_enable(void) | ||
95 | { | ||
96 | if (__perf_enable()) | ||
97 | hw_perf_enable(); | ||
98 | } | ||
99 | |||
100 | static void | ||
101 | list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx) | ||
102 | { | ||
103 | struct perf_counter *group_leader = counter->group_leader; | ||
104 | |||
105 | /* | ||
106 | * Depending on whether it is a standalone or sibling counter, | ||
107 | * add it straight to the context's counter list, or to the group | ||
108 | * leader's sibling list: | ||
109 | */ | ||
110 | if (group_leader == counter) | ||
111 | list_add_tail(&counter->list_entry, &ctx->counter_list); | ||
112 | else { | ||
113 | list_add_tail(&counter->list_entry, &group_leader->sibling_list); | ||
114 | group_leader->nr_siblings++; | ||
115 | } | ||
116 | |||
117 | list_add_rcu(&counter->event_entry, &ctx->event_list); | ||
118 | ctx->nr_counters++; | ||
119 | } | ||
120 | |||
121 | static void | ||
122 | list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx) | ||
123 | { | ||
124 | struct perf_counter *sibling, *tmp; | ||
125 | |||
126 | ctx->nr_counters--; | ||
127 | |||
128 | list_del_init(&counter->list_entry); | ||
129 | list_del_rcu(&counter->event_entry); | ||
130 | |||
131 | if (counter->group_leader != counter) | ||
132 | counter->group_leader->nr_siblings--; | ||
133 | |||
134 | /* | ||
135 | * If this was a group counter with sibling counters then | ||
136 | * upgrade the siblings to singleton counters by adding them | ||
137 | * to the context list directly: | ||
138 | */ | ||
139 | list_for_each_entry_safe(sibling, tmp, | ||
140 | &counter->sibling_list, list_entry) { | ||
141 | |||
142 | list_move_tail(&sibling->list_entry, &ctx->counter_list); | ||
143 | sibling->group_leader = sibling; | ||
144 | } | ||
145 | } | ||
146 | |||
147 | static void | ||
148 | counter_sched_out(struct perf_counter *counter, | ||
149 | struct perf_cpu_context *cpuctx, | ||
150 | struct perf_counter_context *ctx) | ||
151 | { | ||
152 | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
153 | return; | ||
154 | |||
155 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
156 | counter->tstamp_stopped = ctx->time; | ||
157 | counter->pmu->disable(counter); | ||
158 | counter->oncpu = -1; | ||
159 | |||
160 | if (!is_software_counter(counter)) | ||
161 | cpuctx->active_oncpu--; | ||
162 | ctx->nr_active--; | ||
163 | if (counter->hw_event.exclusive || !cpuctx->active_oncpu) | ||
164 | cpuctx->exclusive = 0; | ||
165 | } | ||
166 | |||
167 | static void | ||
168 | group_sched_out(struct perf_counter *group_counter, | ||
169 | struct perf_cpu_context *cpuctx, | ||
170 | struct perf_counter_context *ctx) | ||
171 | { | ||
172 | struct perf_counter *counter; | ||
173 | |||
174 | if (group_counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
175 | return; | ||
176 | |||
177 | counter_sched_out(group_counter, cpuctx, ctx); | ||
178 | |||
179 | /* | ||
180 | * Schedule out siblings (if any): | ||
181 | */ | ||
182 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) | ||
183 | counter_sched_out(counter, cpuctx, ctx); | ||
184 | |||
185 | if (group_counter->hw_event.exclusive) | ||
186 | cpuctx->exclusive = 0; | ||
187 | } | ||
188 | |||
189 | /* | ||
190 | * Cross CPU call to remove a performance counter | ||
191 | * | ||
192 | * We disable the counter on the hardware level first. After that we | ||
193 | * remove it from the context list. | ||
194 | */ | ||
195 | static void __perf_counter_remove_from_context(void *info) | ||
196 | { | ||
197 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
198 | struct perf_counter *counter = info; | ||
199 | struct perf_counter_context *ctx = counter->ctx; | ||
200 | unsigned long flags; | ||
201 | |||
202 | /* | ||
203 | * If this is a task context, we need to check whether it is | ||
204 | * the current task context of this cpu. If not it has been | ||
205 | * scheduled out before the smp call arrived. | ||
206 | */ | ||
207 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
208 | return; | ||
209 | |||
210 | spin_lock_irqsave(&ctx->lock, flags); | ||
211 | |||
212 | counter_sched_out(counter, cpuctx, ctx); | ||
213 | |||
214 | counter->task = NULL; | ||
215 | |||
216 | /* | ||
217 | * Protect the list operation against NMI by disabling the | ||
218 | * counters on a global level. NOP for non NMI based counters. | ||
219 | */ | ||
220 | perf_disable(); | ||
221 | list_del_counter(counter, ctx); | ||
222 | perf_enable(); | ||
223 | |||
224 | if (!ctx->task) { | ||
225 | /* | ||
226 | * Allow more per task counters with respect to the | ||
227 | * reservation: | ||
228 | */ | ||
229 | cpuctx->max_pertask = | ||
230 | min(perf_max_counters - ctx->nr_counters, | ||
231 | perf_max_counters - perf_reserved_percpu); | ||
232 | } | ||
233 | |||
234 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
235 | } | ||
236 | |||
237 | |||
238 | /* | ||
239 | * Remove the counter from a task's (or a CPU's) list of counters. | ||
240 | * | ||
241 | * Must be called with counter->mutex and ctx->mutex held. | ||
242 | * | ||
243 | * CPU counters are removed with a smp call. For task counters we only | ||
244 | * call when the task is on a CPU. | ||
245 | */ | ||
246 | static void perf_counter_remove_from_context(struct perf_counter *counter) | ||
247 | { | ||
248 | struct perf_counter_context *ctx = counter->ctx; | ||
249 | struct task_struct *task = ctx->task; | ||
250 | |||
251 | if (!task) { | ||
252 | /* | ||
253 | * Per cpu counters are removed via an smp call and | ||
254 | * the removal is always sucessful. | ||
255 | */ | ||
256 | smp_call_function_single(counter->cpu, | ||
257 | __perf_counter_remove_from_context, | ||
258 | counter, 1); | ||
259 | return; | ||
260 | } | ||
261 | |||
262 | retry: | ||
263 | task_oncpu_function_call(task, __perf_counter_remove_from_context, | ||
264 | counter); | ||
265 | |||
266 | spin_lock_irq(&ctx->lock); | ||
267 | /* | ||
268 | * If the context is active we need to retry the smp call. | ||
269 | */ | ||
270 | if (ctx->nr_active && !list_empty(&counter->list_entry)) { | ||
271 | spin_unlock_irq(&ctx->lock); | ||
272 | goto retry; | ||
273 | } | ||
274 | |||
275 | /* | ||
276 | * The lock prevents that this context is scheduled in so we | ||
277 | * can remove the counter safely, if the call above did not | ||
278 | * succeed. | ||
279 | */ | ||
280 | if (!list_empty(&counter->list_entry)) { | ||
281 | list_del_counter(counter, ctx); | ||
282 | counter->task = NULL; | ||
283 | } | ||
284 | spin_unlock_irq(&ctx->lock); | ||
285 | } | ||
286 | |||
287 | static inline u64 perf_clock(void) | ||
288 | { | ||
289 | return cpu_clock(smp_processor_id()); | ||
290 | } | ||
291 | |||
292 | /* | ||
293 | * Update the record of the current time in a context. | ||
294 | */ | ||
295 | static void update_context_time(struct perf_counter_context *ctx) | ||
296 | { | ||
297 | u64 now = perf_clock(); | ||
298 | |||
299 | ctx->time += now - ctx->timestamp; | ||
300 | ctx->timestamp = now; | ||
301 | } | ||
302 | |||
303 | /* | ||
304 | * Update the total_time_enabled and total_time_running fields for a counter. | ||
305 | */ | ||
306 | static void update_counter_times(struct perf_counter *counter) | ||
307 | { | ||
308 | struct perf_counter_context *ctx = counter->ctx; | ||
309 | u64 run_end; | ||
310 | |||
311 | if (counter->state < PERF_COUNTER_STATE_INACTIVE) | ||
312 | return; | ||
313 | |||
314 | counter->total_time_enabled = ctx->time - counter->tstamp_enabled; | ||
315 | |||
316 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) | ||
317 | run_end = counter->tstamp_stopped; | ||
318 | else | ||
319 | run_end = ctx->time; | ||
320 | |||
321 | counter->total_time_running = run_end - counter->tstamp_running; | ||
322 | } | ||
323 | |||
324 | /* | ||
325 | * Update total_time_enabled and total_time_running for all counters in a group. | ||
326 | */ | ||
327 | static void update_group_times(struct perf_counter *leader) | ||
328 | { | ||
329 | struct perf_counter *counter; | ||
330 | |||
331 | update_counter_times(leader); | ||
332 | list_for_each_entry(counter, &leader->sibling_list, list_entry) | ||
333 | update_counter_times(counter); | ||
334 | } | ||
335 | |||
336 | /* | ||
337 | * Cross CPU call to disable a performance counter | ||
338 | */ | ||
339 | static void __perf_counter_disable(void *info) | ||
340 | { | ||
341 | struct perf_counter *counter = info; | ||
342 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
343 | struct perf_counter_context *ctx = counter->ctx; | ||
344 | unsigned long flags; | ||
345 | |||
346 | /* | ||
347 | * If this is a per-task counter, need to check whether this | ||
348 | * counter's task is the current task on this cpu. | ||
349 | */ | ||
350 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
351 | return; | ||
352 | |||
353 | spin_lock_irqsave(&ctx->lock, flags); | ||
354 | |||
355 | /* | ||
356 | * If the counter is on, turn it off. | ||
357 | * If it is in error state, leave it in error state. | ||
358 | */ | ||
359 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) { | ||
360 | update_context_time(ctx); | ||
361 | update_counter_times(counter); | ||
362 | if (counter == counter->group_leader) | ||
363 | group_sched_out(counter, cpuctx, ctx); | ||
364 | else | ||
365 | counter_sched_out(counter, cpuctx, ctx); | ||
366 | counter->state = PERF_COUNTER_STATE_OFF; | ||
367 | } | ||
368 | |||
369 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
370 | } | ||
371 | |||
372 | /* | ||
373 | * Disable a counter. | ||
374 | */ | ||
375 | static void perf_counter_disable(struct perf_counter *counter) | ||
376 | { | ||
377 | struct perf_counter_context *ctx = counter->ctx; | ||
378 | struct task_struct *task = ctx->task; | ||
379 | |||
380 | if (!task) { | ||
381 | /* | ||
382 | * Disable the counter on the cpu that it's on | ||
383 | */ | ||
384 | smp_call_function_single(counter->cpu, __perf_counter_disable, | ||
385 | counter, 1); | ||
386 | return; | ||
387 | } | ||
388 | |||
389 | retry: | ||
390 | task_oncpu_function_call(task, __perf_counter_disable, counter); | ||
391 | |||
392 | spin_lock_irq(&ctx->lock); | ||
393 | /* | ||
394 | * If the counter is still active, we need to retry the cross-call. | ||
395 | */ | ||
396 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) { | ||
397 | spin_unlock_irq(&ctx->lock); | ||
398 | goto retry; | ||
399 | } | ||
400 | |||
401 | /* | ||
402 | * Since we have the lock this context can't be scheduled | ||
403 | * in, so we can change the state safely. | ||
404 | */ | ||
405 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | ||
406 | update_counter_times(counter); | ||
407 | counter->state = PERF_COUNTER_STATE_OFF; | ||
408 | } | ||
409 | |||
410 | spin_unlock_irq(&ctx->lock); | ||
411 | } | ||
412 | |||
413 | static int | ||
414 | counter_sched_in(struct perf_counter *counter, | ||
415 | struct perf_cpu_context *cpuctx, | ||
416 | struct perf_counter_context *ctx, | ||
417 | int cpu) | ||
418 | { | ||
419 | if (counter->state <= PERF_COUNTER_STATE_OFF) | ||
420 | return 0; | ||
421 | |||
422 | counter->state = PERF_COUNTER_STATE_ACTIVE; | ||
423 | counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */ | ||
424 | /* | ||
425 | * The new state must be visible before we turn it on in the hardware: | ||
426 | */ | ||
427 | smp_wmb(); | ||
428 | |||
429 | if (counter->pmu->enable(counter)) { | ||
430 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
431 | counter->oncpu = -1; | ||
432 | return -EAGAIN; | ||
433 | } | ||
434 | |||
435 | counter->tstamp_running += ctx->time - counter->tstamp_stopped; | ||
436 | |||
437 | if (!is_software_counter(counter)) | ||
438 | cpuctx->active_oncpu++; | ||
439 | ctx->nr_active++; | ||
440 | |||
441 | if (counter->hw_event.exclusive) | ||
442 | cpuctx->exclusive = 1; | ||
443 | |||
444 | return 0; | ||
445 | } | ||
446 | |||
447 | static int | ||
448 | group_sched_in(struct perf_counter *group_counter, | ||
449 | struct perf_cpu_context *cpuctx, | ||
450 | struct perf_counter_context *ctx, | ||
451 | int cpu) | ||
452 | { | ||
453 | struct perf_counter *counter, *partial_group; | ||
454 | int ret; | ||
455 | |||
456 | if (group_counter->state == PERF_COUNTER_STATE_OFF) | ||
457 | return 0; | ||
458 | |||
459 | ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu); | ||
460 | if (ret) | ||
461 | return ret < 0 ? ret : 0; | ||
462 | |||
463 | group_counter->prev_state = group_counter->state; | ||
464 | if (counter_sched_in(group_counter, cpuctx, ctx, cpu)) | ||
465 | return -EAGAIN; | ||
466 | |||
467 | /* | ||
468 | * Schedule in siblings as one group (if any): | ||
469 | */ | ||
470 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) { | ||
471 | counter->prev_state = counter->state; | ||
472 | if (counter_sched_in(counter, cpuctx, ctx, cpu)) { | ||
473 | partial_group = counter; | ||
474 | goto group_error; | ||
475 | } | ||
476 | } | ||
477 | |||
478 | return 0; | ||
479 | |||
480 | group_error: | ||
481 | /* | ||
482 | * Groups can be scheduled in as one unit only, so undo any | ||
483 | * partial group before returning: | ||
484 | */ | ||
485 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) { | ||
486 | if (counter == partial_group) | ||
487 | break; | ||
488 | counter_sched_out(counter, cpuctx, ctx); | ||
489 | } | ||
490 | counter_sched_out(group_counter, cpuctx, ctx); | ||
491 | |||
492 | return -EAGAIN; | ||
493 | } | ||
494 | |||
495 | /* | ||
496 | * Return 1 for a group consisting entirely of software counters, | ||
497 | * 0 if the group contains any hardware counters. | ||
498 | */ | ||
499 | static int is_software_only_group(struct perf_counter *leader) | ||
500 | { | ||
501 | struct perf_counter *counter; | ||
502 | |||
503 | if (!is_software_counter(leader)) | ||
504 | return 0; | ||
505 | |||
506 | list_for_each_entry(counter, &leader->sibling_list, list_entry) | ||
507 | if (!is_software_counter(counter)) | ||
508 | return 0; | ||
509 | |||
510 | return 1; | ||
511 | } | ||
512 | |||
513 | /* | ||
514 | * Work out whether we can put this counter group on the CPU now. | ||
515 | */ | ||
516 | static int group_can_go_on(struct perf_counter *counter, | ||
517 | struct perf_cpu_context *cpuctx, | ||
518 | int can_add_hw) | ||
519 | { | ||
520 | /* | ||
521 | * Groups consisting entirely of software counters can always go on. | ||
522 | */ | ||
523 | if (is_software_only_group(counter)) | ||
524 | return 1; | ||
525 | /* | ||
526 | * If an exclusive group is already on, no other hardware | ||
527 | * counters can go on. | ||
528 | */ | ||
529 | if (cpuctx->exclusive) | ||
530 | return 0; | ||
531 | /* | ||
532 | * If this group is exclusive and there are already | ||
533 | * counters on the CPU, it can't go on. | ||
534 | */ | ||
535 | if (counter->hw_event.exclusive && cpuctx->active_oncpu) | ||
536 | return 0; | ||
537 | /* | ||
538 | * Otherwise, try to add it if all previous groups were able | ||
539 | * to go on. | ||
540 | */ | ||
541 | return can_add_hw; | ||
542 | } | ||
543 | |||
544 | static void add_counter_to_ctx(struct perf_counter *counter, | ||
545 | struct perf_counter_context *ctx) | ||
546 | { | ||
547 | list_add_counter(counter, ctx); | ||
548 | counter->prev_state = PERF_COUNTER_STATE_OFF; | ||
549 | counter->tstamp_enabled = ctx->time; | ||
550 | counter->tstamp_running = ctx->time; | ||
551 | counter->tstamp_stopped = ctx->time; | ||
552 | } | ||
553 | |||
554 | /* | ||
555 | * Cross CPU call to install and enable a performance counter | ||
556 | */ | ||
557 | static void __perf_install_in_context(void *info) | ||
558 | { | ||
559 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
560 | struct perf_counter *counter = info; | ||
561 | struct perf_counter_context *ctx = counter->ctx; | ||
562 | struct perf_counter *leader = counter->group_leader; | ||
563 | int cpu = smp_processor_id(); | ||
564 | unsigned long flags; | ||
565 | int err; | ||
566 | |||
567 | /* | ||
568 | * If this is a task context, we need to check whether it is | ||
569 | * the current task context of this cpu. If not it has been | ||
570 | * scheduled out before the smp call arrived. | ||
571 | */ | ||
572 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
573 | return; | ||
574 | |||
575 | spin_lock_irqsave(&ctx->lock, flags); | ||
576 | update_context_time(ctx); | ||
577 | |||
578 | /* | ||
579 | * Protect the list operation against NMI by disabling the | ||
580 | * counters on a global level. NOP for non NMI based counters. | ||
581 | */ | ||
582 | perf_disable(); | ||
583 | |||
584 | add_counter_to_ctx(counter, ctx); | ||
585 | |||
586 | /* | ||
587 | * Don't put the counter on if it is disabled or if | ||
588 | * it is in a group and the group isn't on. | ||
589 | */ | ||
590 | if (counter->state != PERF_COUNTER_STATE_INACTIVE || | ||
591 | (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)) | ||
592 | goto unlock; | ||
593 | |||
594 | /* | ||
595 | * An exclusive counter can't go on if there are already active | ||
596 | * hardware counters, and no hardware counter can go on if there | ||
597 | * is already an exclusive counter on. | ||
598 | */ | ||
599 | if (!group_can_go_on(counter, cpuctx, 1)) | ||
600 | err = -EEXIST; | ||
601 | else | ||
602 | err = counter_sched_in(counter, cpuctx, ctx, cpu); | ||
603 | |||
604 | if (err) { | ||
605 | /* | ||
606 | * This counter couldn't go on. If it is in a group | ||
607 | * then we have to pull the whole group off. | ||
608 | * If the counter group is pinned then put it in error state. | ||
609 | */ | ||
610 | if (leader != counter) | ||
611 | group_sched_out(leader, cpuctx, ctx); | ||
612 | if (leader->hw_event.pinned) { | ||
613 | update_group_times(leader); | ||
614 | leader->state = PERF_COUNTER_STATE_ERROR; | ||
615 | } | ||
616 | } | ||
617 | |||
618 | if (!err && !ctx->task && cpuctx->max_pertask) | ||
619 | cpuctx->max_pertask--; | ||
620 | |||
621 | unlock: | ||
622 | perf_enable(); | ||
623 | |||
624 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
625 | } | ||
626 | |||
627 | /* | ||
628 | * Attach a performance counter to a context | ||
629 | * | ||
630 | * First we add the counter to the list with the hardware enable bit | ||
631 | * in counter->hw_config cleared. | ||
632 | * | ||
633 | * If the counter is attached to a task which is on a CPU we use a smp | ||
634 | * call to enable it in the task context. The task might have been | ||
635 | * scheduled away, but we check this in the smp call again. | ||
636 | * | ||
637 | * Must be called with ctx->mutex held. | ||
638 | */ | ||
639 | static void | ||
640 | perf_install_in_context(struct perf_counter_context *ctx, | ||
641 | struct perf_counter *counter, | ||
642 | int cpu) | ||
643 | { | ||
644 | struct task_struct *task = ctx->task; | ||
645 | |||
646 | if (!task) { | ||
647 | /* | ||
648 | * Per cpu counters are installed via an smp call and | ||
649 | * the install is always sucessful. | ||
650 | */ | ||
651 | smp_call_function_single(cpu, __perf_install_in_context, | ||
652 | counter, 1); | ||
653 | return; | ||
654 | } | ||
655 | |||
656 | counter->task = task; | ||
657 | retry: | ||
658 | task_oncpu_function_call(task, __perf_install_in_context, | ||
659 | counter); | ||
660 | |||
661 | spin_lock_irq(&ctx->lock); | ||
662 | /* | ||
663 | * we need to retry the smp call. | ||
664 | */ | ||
665 | if (ctx->is_active && list_empty(&counter->list_entry)) { | ||
666 | spin_unlock_irq(&ctx->lock); | ||
667 | goto retry; | ||
668 | } | ||
669 | |||
670 | /* | ||
671 | * The lock prevents that this context is scheduled in so we | ||
672 | * can add the counter safely, if it the call above did not | ||
673 | * succeed. | ||
674 | */ | ||
675 | if (list_empty(&counter->list_entry)) | ||
676 | add_counter_to_ctx(counter, ctx); | ||
677 | spin_unlock_irq(&ctx->lock); | ||
678 | } | ||
679 | |||
680 | /* | ||
681 | * Cross CPU call to enable a performance counter | ||
682 | */ | ||
683 | static void __perf_counter_enable(void *info) | ||
684 | { | ||
685 | struct perf_counter *counter = info; | ||
686 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
687 | struct perf_counter_context *ctx = counter->ctx; | ||
688 | struct perf_counter *leader = counter->group_leader; | ||
689 | unsigned long flags; | ||
690 | int err; | ||
691 | |||
692 | /* | ||
693 | * If this is a per-task counter, need to check whether this | ||
694 | * counter's task is the current task on this cpu. | ||
695 | */ | ||
696 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
697 | return; | ||
698 | |||
699 | spin_lock_irqsave(&ctx->lock, flags); | ||
700 | update_context_time(ctx); | ||
701 | |||
702 | counter->prev_state = counter->state; | ||
703 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
704 | goto unlock; | ||
705 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
706 | counter->tstamp_enabled = ctx->time - counter->total_time_enabled; | ||
707 | |||
708 | /* | ||
709 | * If the counter is in a group and isn't the group leader, | ||
710 | * then don't put it on unless the group is on. | ||
711 | */ | ||
712 | if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE) | ||
713 | goto unlock; | ||
714 | |||
715 | if (!group_can_go_on(counter, cpuctx, 1)) { | ||
716 | err = -EEXIST; | ||
717 | } else { | ||
718 | perf_disable(); | ||
719 | if (counter == leader) | ||
720 | err = group_sched_in(counter, cpuctx, ctx, | ||
721 | smp_processor_id()); | ||
722 | else | ||
723 | err = counter_sched_in(counter, cpuctx, ctx, | ||
724 | smp_processor_id()); | ||
725 | perf_enable(); | ||
726 | } | ||
727 | |||
728 | if (err) { | ||
729 | /* | ||
730 | * If this counter can't go on and it's part of a | ||
731 | * group, then the whole group has to come off. | ||
732 | */ | ||
733 | if (leader != counter) | ||
734 | group_sched_out(leader, cpuctx, ctx); | ||
735 | if (leader->hw_event.pinned) { | ||
736 | update_group_times(leader); | ||
737 | leader->state = PERF_COUNTER_STATE_ERROR; | ||
738 | } | ||
739 | } | ||
740 | |||
741 | unlock: | ||
742 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
743 | } | ||
744 | |||
745 | /* | ||
746 | * Enable a counter. | ||
747 | */ | ||
748 | static void perf_counter_enable(struct perf_counter *counter) | ||
749 | { | ||
750 | struct perf_counter_context *ctx = counter->ctx; | ||
751 | struct task_struct *task = ctx->task; | ||
752 | |||
753 | if (!task) { | ||
754 | /* | ||
755 | * Enable the counter on the cpu that it's on | ||
756 | */ | ||
757 | smp_call_function_single(counter->cpu, __perf_counter_enable, | ||
758 | counter, 1); | ||
759 | return; | ||
760 | } | ||
761 | |||
762 | spin_lock_irq(&ctx->lock); | ||
763 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
764 | goto out; | ||
765 | |||
766 | /* | ||
767 | * If the counter is in error state, clear that first. | ||
768 | * That way, if we see the counter in error state below, we | ||
769 | * know that it has gone back into error state, as distinct | ||
770 | * from the task having been scheduled away before the | ||
771 | * cross-call arrived. | ||
772 | */ | ||
773 | if (counter->state == PERF_COUNTER_STATE_ERROR) | ||
774 | counter->state = PERF_COUNTER_STATE_OFF; | ||
775 | |||
776 | retry: | ||
777 | spin_unlock_irq(&ctx->lock); | ||
778 | task_oncpu_function_call(task, __perf_counter_enable, counter); | ||
779 | |||
780 | spin_lock_irq(&ctx->lock); | ||
781 | |||
782 | /* | ||
783 | * If the context is active and the counter is still off, | ||
784 | * we need to retry the cross-call. | ||
785 | */ | ||
786 | if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF) | ||
787 | goto retry; | ||
788 | |||
789 | /* | ||
790 | * Since we have the lock this context can't be scheduled | ||
791 | * in, so we can change the state safely. | ||
792 | */ | ||
793 | if (counter->state == PERF_COUNTER_STATE_OFF) { | ||
794 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
795 | counter->tstamp_enabled = | ||
796 | ctx->time - counter->total_time_enabled; | ||
797 | } | ||
798 | out: | ||
799 | spin_unlock_irq(&ctx->lock); | ||
800 | } | ||
801 | |||
802 | static int perf_counter_refresh(struct perf_counter *counter, int refresh) | ||
803 | { | ||
804 | /* | ||
805 | * not supported on inherited counters | ||
806 | */ | ||
807 | if (counter->hw_event.inherit) | ||
808 | return -EINVAL; | ||
809 | |||
810 | atomic_add(refresh, &counter->event_limit); | ||
811 | perf_counter_enable(counter); | ||
812 | |||
813 | return 0; | ||
814 | } | ||
815 | |||
816 | void __perf_counter_sched_out(struct perf_counter_context *ctx, | ||
817 | struct perf_cpu_context *cpuctx) | ||
818 | { | ||
819 | struct perf_counter *counter; | ||
820 | |||
821 | spin_lock(&ctx->lock); | ||
822 | ctx->is_active = 0; | ||
823 | if (likely(!ctx->nr_counters)) | ||
824 | goto out; | ||
825 | update_context_time(ctx); | ||
826 | |||
827 | perf_disable(); | ||
828 | if (ctx->nr_active) { | ||
829 | list_for_each_entry(counter, &ctx->counter_list, list_entry) | ||
830 | group_sched_out(counter, cpuctx, ctx); | ||
831 | } | ||
832 | perf_enable(); | ||
833 | out: | ||
834 | spin_unlock(&ctx->lock); | ||
835 | } | ||
836 | |||
837 | /* | ||
838 | * Called from scheduler to remove the counters of the current task, | ||
839 | * with interrupts disabled. | ||
840 | * | ||
841 | * We stop each counter and update the counter value in counter->count. | ||
842 | * | ||
843 | * This does not protect us against NMI, but disable() | ||
844 | * sets the disabled bit in the control field of counter _before_ | ||
845 | * accessing the counter control register. If a NMI hits, then it will | ||
846 | * not restart the counter. | ||
847 | */ | ||
848 | void perf_counter_task_sched_out(struct task_struct *task, int cpu) | ||
849 | { | ||
850 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
851 | struct perf_counter_context *ctx = &task->perf_counter_ctx; | ||
852 | struct pt_regs *regs; | ||
853 | |||
854 | if (likely(!cpuctx->task_ctx)) | ||
855 | return; | ||
856 | |||
857 | update_context_time(ctx); | ||
858 | |||
859 | regs = task_pt_regs(task); | ||
860 | perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0); | ||
861 | __perf_counter_sched_out(ctx, cpuctx); | ||
862 | |||
863 | cpuctx->task_ctx = NULL; | ||
864 | } | ||
865 | |||
866 | static void __perf_counter_task_sched_out(struct perf_counter_context *ctx) | ||
867 | { | ||
868 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
869 | |||
870 | __perf_counter_sched_out(ctx, cpuctx); | ||
871 | cpuctx->task_ctx = NULL; | ||
872 | } | ||
873 | |||
874 | static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx) | ||
875 | { | ||
876 | __perf_counter_sched_out(&cpuctx->ctx, cpuctx); | ||
877 | } | ||
878 | |||
879 | static void | ||
880 | __perf_counter_sched_in(struct perf_counter_context *ctx, | ||
881 | struct perf_cpu_context *cpuctx, int cpu) | ||
882 | { | ||
883 | struct perf_counter *counter; | ||
884 | int can_add_hw = 1; | ||
885 | |||
886 | spin_lock(&ctx->lock); | ||
887 | ctx->is_active = 1; | ||
888 | if (likely(!ctx->nr_counters)) | ||
889 | goto out; | ||
890 | |||
891 | ctx->timestamp = perf_clock(); | ||
892 | |||
893 | perf_disable(); | ||
894 | |||
895 | /* | ||
896 | * First go through the list and put on any pinned groups | ||
897 | * in order to give them the best chance of going on. | ||
898 | */ | ||
899 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
900 | if (counter->state <= PERF_COUNTER_STATE_OFF || | ||
901 | !counter->hw_event.pinned) | ||
902 | continue; | ||
903 | if (counter->cpu != -1 && counter->cpu != cpu) | ||
904 | continue; | ||
905 | |||
906 | if (group_can_go_on(counter, cpuctx, 1)) | ||
907 | group_sched_in(counter, cpuctx, ctx, cpu); | ||
908 | |||
909 | /* | ||
910 | * If this pinned group hasn't been scheduled, | ||
911 | * put it in error state. | ||
912 | */ | ||
913 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | ||
914 | update_group_times(counter); | ||
915 | counter->state = PERF_COUNTER_STATE_ERROR; | ||
916 | } | ||
917 | } | ||
918 | |||
919 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
920 | /* | ||
921 | * Ignore counters in OFF or ERROR state, and | ||
922 | * ignore pinned counters since we did them already. | ||
923 | */ | ||
924 | if (counter->state <= PERF_COUNTER_STATE_OFF || | ||
925 | counter->hw_event.pinned) | ||
926 | continue; | ||
927 | |||
928 | /* | ||
929 | * Listen to the 'cpu' scheduling filter constraint | ||
930 | * of counters: | ||
931 | */ | ||
932 | if (counter->cpu != -1 && counter->cpu != cpu) | ||
933 | continue; | ||
934 | |||
935 | if (group_can_go_on(counter, cpuctx, can_add_hw)) { | ||
936 | if (group_sched_in(counter, cpuctx, ctx, cpu)) | ||
937 | can_add_hw = 0; | ||
938 | } | ||
939 | } | ||
940 | perf_enable(); | ||
941 | out: | ||
942 | spin_unlock(&ctx->lock); | ||
943 | } | ||
944 | |||
945 | /* | ||
946 | * Called from scheduler to add the counters of the current task | ||
947 | * with interrupts disabled. | ||
948 | * | ||
949 | * We restore the counter value and then enable it. | ||
950 | * | ||
951 | * This does not protect us against NMI, but enable() | ||
952 | * sets the enabled bit in the control field of counter _before_ | ||
953 | * accessing the counter control register. If a NMI hits, then it will | ||
954 | * keep the counter running. | ||
955 | */ | ||
956 | void perf_counter_task_sched_in(struct task_struct *task, int cpu) | ||
957 | { | ||
958 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
959 | struct perf_counter_context *ctx = &task->perf_counter_ctx; | ||
960 | |||
961 | __perf_counter_sched_in(ctx, cpuctx, cpu); | ||
962 | cpuctx->task_ctx = ctx; | ||
963 | } | ||
964 | |||
965 | static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu) | ||
966 | { | ||
967 | struct perf_counter_context *ctx = &cpuctx->ctx; | ||
968 | |||
969 | __perf_counter_sched_in(ctx, cpuctx, cpu); | ||
970 | } | ||
971 | |||
972 | int perf_counter_task_disable(void) | ||
973 | { | ||
974 | struct task_struct *curr = current; | ||
975 | struct perf_counter_context *ctx = &curr->perf_counter_ctx; | ||
976 | struct perf_counter *counter; | ||
977 | unsigned long flags; | ||
978 | |||
979 | if (likely(!ctx->nr_counters)) | ||
980 | return 0; | ||
981 | |||
982 | local_irq_save(flags); | ||
983 | |||
984 | __perf_counter_task_sched_out(ctx); | ||
985 | |||
986 | spin_lock(&ctx->lock); | ||
987 | |||
988 | /* | ||
989 | * Disable all the counters: | ||
990 | */ | ||
991 | perf_disable(); | ||
992 | |||
993 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
994 | if (counter->state != PERF_COUNTER_STATE_ERROR) { | ||
995 | update_group_times(counter); | ||
996 | counter->state = PERF_COUNTER_STATE_OFF; | ||
997 | } | ||
998 | } | ||
999 | |||
1000 | perf_enable(); | ||
1001 | |||
1002 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
1003 | |||
1004 | return 0; | ||
1005 | } | ||
1006 | |||
1007 | int perf_counter_task_enable(void) | ||
1008 | { | ||
1009 | struct task_struct *curr = current; | ||
1010 | struct perf_counter_context *ctx = &curr->perf_counter_ctx; | ||
1011 | struct perf_counter *counter; | ||
1012 | unsigned long flags; | ||
1013 | int cpu; | ||
1014 | |||
1015 | if (likely(!ctx->nr_counters)) | ||
1016 | return 0; | ||
1017 | |||
1018 | local_irq_save(flags); | ||
1019 | cpu = smp_processor_id(); | ||
1020 | |||
1021 | __perf_counter_task_sched_out(ctx); | ||
1022 | |||
1023 | spin_lock(&ctx->lock); | ||
1024 | |||
1025 | /* | ||
1026 | * Disable all the counters: | ||
1027 | */ | ||
1028 | perf_disable(); | ||
1029 | |||
1030 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
1031 | if (counter->state > PERF_COUNTER_STATE_OFF) | ||
1032 | continue; | ||
1033 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
1034 | counter->tstamp_enabled = | ||
1035 | ctx->time - counter->total_time_enabled; | ||
1036 | counter->hw_event.disabled = 0; | ||
1037 | } | ||
1038 | perf_enable(); | ||
1039 | |||
1040 | spin_unlock(&ctx->lock); | ||
1041 | |||
1042 | perf_counter_task_sched_in(curr, cpu); | ||
1043 | |||
1044 | local_irq_restore(flags); | ||
1045 | |||
1046 | return 0; | ||
1047 | } | ||
1048 | |||
1049 | void perf_adjust_freq(struct perf_counter_context *ctx) | ||
1050 | { | ||
1051 | struct perf_counter *counter; | ||
1052 | u64 irq_period; | ||
1053 | u64 events, period; | ||
1054 | s64 delta; | ||
1055 | |||
1056 | spin_lock(&ctx->lock); | ||
1057 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
1058 | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
1059 | continue; | ||
1060 | |||
1061 | if (!counter->hw_event.freq || !counter->hw_event.irq_freq) | ||
1062 | continue; | ||
1063 | |||
1064 | events = HZ * counter->hw.interrupts * counter->hw.irq_period; | ||
1065 | period = div64_u64(events, counter->hw_event.irq_freq); | ||
1066 | |||
1067 | delta = (s64)(1 + period - counter->hw.irq_period); | ||
1068 | delta >>= 1; | ||
1069 | |||
1070 | irq_period = counter->hw.irq_period + delta; | ||
1071 | |||
1072 | if (!irq_period) | ||
1073 | irq_period = 1; | ||
1074 | |||
1075 | counter->hw.irq_period = irq_period; | ||
1076 | counter->hw.interrupts = 0; | ||
1077 | } | ||
1078 | spin_unlock(&ctx->lock); | ||
1079 | } | ||
1080 | |||
1081 | /* | ||
1082 | * Round-robin a context's counters: | ||
1083 | */ | ||
1084 | static void rotate_ctx(struct perf_counter_context *ctx) | ||
1085 | { | ||
1086 | struct perf_counter *counter; | ||
1087 | |||
1088 | if (!ctx->nr_counters) | ||
1089 | return; | ||
1090 | |||
1091 | spin_lock(&ctx->lock); | ||
1092 | /* | ||
1093 | * Rotate the first entry last (works just fine for group counters too): | ||
1094 | */ | ||
1095 | perf_disable(); | ||
1096 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
1097 | list_move_tail(&counter->list_entry, &ctx->counter_list); | ||
1098 | break; | ||
1099 | } | ||
1100 | perf_enable(); | ||
1101 | |||
1102 | spin_unlock(&ctx->lock); | ||
1103 | } | ||
1104 | |||
1105 | void perf_counter_task_tick(struct task_struct *curr, int cpu) | ||
1106 | { | ||
1107 | struct perf_cpu_context *cpuctx; | ||
1108 | struct perf_counter_context *ctx; | ||
1109 | |||
1110 | if (!atomic_read(&nr_counters)) | ||
1111 | return; | ||
1112 | |||
1113 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1114 | ctx = &curr->perf_counter_ctx; | ||
1115 | |||
1116 | perf_adjust_freq(&cpuctx->ctx); | ||
1117 | perf_adjust_freq(ctx); | ||
1118 | |||
1119 | perf_counter_cpu_sched_out(cpuctx); | ||
1120 | __perf_counter_task_sched_out(ctx); | ||
1121 | |||
1122 | rotate_ctx(&cpuctx->ctx); | ||
1123 | rotate_ctx(ctx); | ||
1124 | |||
1125 | perf_counter_cpu_sched_in(cpuctx, cpu); | ||
1126 | perf_counter_task_sched_in(curr, cpu); | ||
1127 | } | ||
1128 | |||
1129 | /* | ||
1130 | * Cross CPU call to read the hardware counter | ||
1131 | */ | ||
1132 | static void __read(void *info) | ||
1133 | { | ||
1134 | struct perf_counter *counter = info; | ||
1135 | struct perf_counter_context *ctx = counter->ctx; | ||
1136 | unsigned long flags; | ||
1137 | |||
1138 | local_irq_save(flags); | ||
1139 | if (ctx->is_active) | ||
1140 | update_context_time(ctx); | ||
1141 | counter->pmu->read(counter); | ||
1142 | update_counter_times(counter); | ||
1143 | local_irq_restore(flags); | ||
1144 | } | ||
1145 | |||
1146 | static u64 perf_counter_read(struct perf_counter *counter) | ||
1147 | { | ||
1148 | /* | ||
1149 | * If counter is enabled and currently active on a CPU, update the | ||
1150 | * value in the counter structure: | ||
1151 | */ | ||
1152 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) { | ||
1153 | smp_call_function_single(counter->oncpu, | ||
1154 | __read, counter, 1); | ||
1155 | } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | ||
1156 | update_counter_times(counter); | ||
1157 | } | ||
1158 | |||
1159 | return atomic64_read(&counter->count); | ||
1160 | } | ||
1161 | |||
1162 | static void put_context(struct perf_counter_context *ctx) | ||
1163 | { | ||
1164 | if (ctx->task) | ||
1165 | put_task_struct(ctx->task); | ||
1166 | } | ||
1167 | |||
1168 | static struct perf_counter_context *find_get_context(pid_t pid, int cpu) | ||
1169 | { | ||
1170 | struct perf_cpu_context *cpuctx; | ||
1171 | struct perf_counter_context *ctx; | ||
1172 | struct task_struct *task; | ||
1173 | |||
1174 | /* | ||
1175 | * If cpu is not a wildcard then this is a percpu counter: | ||
1176 | */ | ||
1177 | if (cpu != -1) { | ||
1178 | /* Must be root to operate on a CPU counter: */ | ||
1179 | if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN)) | ||
1180 | return ERR_PTR(-EACCES); | ||
1181 | |||
1182 | if (cpu < 0 || cpu > num_possible_cpus()) | ||
1183 | return ERR_PTR(-EINVAL); | ||
1184 | |||
1185 | /* | ||
1186 | * We could be clever and allow to attach a counter to an | ||
1187 | * offline CPU and activate it when the CPU comes up, but | ||
1188 | * that's for later. | ||
1189 | */ | ||
1190 | if (!cpu_isset(cpu, cpu_online_map)) | ||
1191 | return ERR_PTR(-ENODEV); | ||
1192 | |||
1193 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1194 | ctx = &cpuctx->ctx; | ||
1195 | |||
1196 | return ctx; | ||
1197 | } | ||
1198 | |||
1199 | rcu_read_lock(); | ||
1200 | if (!pid) | ||
1201 | task = current; | ||
1202 | else | ||
1203 | task = find_task_by_vpid(pid); | ||
1204 | if (task) | ||
1205 | get_task_struct(task); | ||
1206 | rcu_read_unlock(); | ||
1207 | |||
1208 | if (!task) | ||
1209 | return ERR_PTR(-ESRCH); | ||
1210 | |||
1211 | ctx = &task->perf_counter_ctx; | ||
1212 | ctx->task = task; | ||
1213 | |||
1214 | /* Reuse ptrace permission checks for now. */ | ||
1215 | if (!ptrace_may_access(task, PTRACE_MODE_READ)) { | ||
1216 | put_context(ctx); | ||
1217 | return ERR_PTR(-EACCES); | ||
1218 | } | ||
1219 | |||
1220 | return ctx; | ||
1221 | } | ||
1222 | |||
1223 | static void free_counter_rcu(struct rcu_head *head) | ||
1224 | { | ||
1225 | struct perf_counter *counter; | ||
1226 | |||
1227 | counter = container_of(head, struct perf_counter, rcu_head); | ||
1228 | kfree(counter); | ||
1229 | } | ||
1230 | |||
1231 | static void perf_pending_sync(struct perf_counter *counter); | ||
1232 | |||
1233 | static void free_counter(struct perf_counter *counter) | ||
1234 | { | ||
1235 | perf_pending_sync(counter); | ||
1236 | |||
1237 | atomic_dec(&nr_counters); | ||
1238 | if (counter->hw_event.mmap) | ||
1239 | atomic_dec(&nr_mmap_tracking); | ||
1240 | if (counter->hw_event.munmap) | ||
1241 | atomic_dec(&nr_munmap_tracking); | ||
1242 | if (counter->hw_event.comm) | ||
1243 | atomic_dec(&nr_comm_tracking); | ||
1244 | |||
1245 | if (counter->destroy) | ||
1246 | counter->destroy(counter); | ||
1247 | |||
1248 | call_rcu(&counter->rcu_head, free_counter_rcu); | ||
1249 | } | ||
1250 | |||
1251 | /* | ||
1252 | * Called when the last reference to the file is gone. | ||
1253 | */ | ||
1254 | static int perf_release(struct inode *inode, struct file *file) | ||
1255 | { | ||
1256 | struct perf_counter *counter = file->private_data; | ||
1257 | struct perf_counter_context *ctx = counter->ctx; | ||
1258 | |||
1259 | file->private_data = NULL; | ||
1260 | |||
1261 | mutex_lock(&ctx->mutex); | ||
1262 | mutex_lock(&counter->mutex); | ||
1263 | |||
1264 | perf_counter_remove_from_context(counter); | ||
1265 | |||
1266 | mutex_unlock(&counter->mutex); | ||
1267 | mutex_unlock(&ctx->mutex); | ||
1268 | |||
1269 | free_counter(counter); | ||
1270 | put_context(ctx); | ||
1271 | |||
1272 | return 0; | ||
1273 | } | ||
1274 | |||
1275 | /* | ||
1276 | * Read the performance counter - simple non blocking version for now | ||
1277 | */ | ||
1278 | static ssize_t | ||
1279 | perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count) | ||
1280 | { | ||
1281 | u64 values[3]; | ||
1282 | int n; | ||
1283 | |||
1284 | /* | ||
1285 | * Return end-of-file for a read on a counter that is in | ||
1286 | * error state (i.e. because it was pinned but it couldn't be | ||
1287 | * scheduled on to the CPU at some point). | ||
1288 | */ | ||
1289 | if (counter->state == PERF_COUNTER_STATE_ERROR) | ||
1290 | return 0; | ||
1291 | |||
1292 | mutex_lock(&counter->mutex); | ||
1293 | values[0] = perf_counter_read(counter); | ||
1294 | n = 1; | ||
1295 | if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
1296 | values[n++] = counter->total_time_enabled + | ||
1297 | atomic64_read(&counter->child_total_time_enabled); | ||
1298 | if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
1299 | values[n++] = counter->total_time_running + | ||
1300 | atomic64_read(&counter->child_total_time_running); | ||
1301 | mutex_unlock(&counter->mutex); | ||
1302 | |||
1303 | if (count < n * sizeof(u64)) | ||
1304 | return -EINVAL; | ||
1305 | count = n * sizeof(u64); | ||
1306 | |||
1307 | if (copy_to_user(buf, values, count)) | ||
1308 | return -EFAULT; | ||
1309 | |||
1310 | return count; | ||
1311 | } | ||
1312 | |||
1313 | static ssize_t | ||
1314 | perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) | ||
1315 | { | ||
1316 | struct perf_counter *counter = file->private_data; | ||
1317 | |||
1318 | return perf_read_hw(counter, buf, count); | ||
1319 | } | ||
1320 | |||
1321 | static unsigned int perf_poll(struct file *file, poll_table *wait) | ||
1322 | { | ||
1323 | struct perf_counter *counter = file->private_data; | ||
1324 | struct perf_mmap_data *data; | ||
1325 | unsigned int events = POLL_HUP; | ||
1326 | |||
1327 | rcu_read_lock(); | ||
1328 | data = rcu_dereference(counter->data); | ||
1329 | if (data) | ||
1330 | events = atomic_xchg(&data->poll, 0); | ||
1331 | rcu_read_unlock(); | ||
1332 | |||
1333 | poll_wait(file, &counter->waitq, wait); | ||
1334 | |||
1335 | return events; | ||
1336 | } | ||
1337 | |||
1338 | static void perf_counter_reset(struct perf_counter *counter) | ||
1339 | { | ||
1340 | (void)perf_counter_read(counter); | ||
1341 | atomic64_set(&counter->count, 0); | ||
1342 | perf_counter_update_userpage(counter); | ||
1343 | } | ||
1344 | |||
1345 | static void perf_counter_for_each_sibling(struct perf_counter *counter, | ||
1346 | void (*func)(struct perf_counter *)) | ||
1347 | { | ||
1348 | struct perf_counter_context *ctx = counter->ctx; | ||
1349 | struct perf_counter *sibling; | ||
1350 | |||
1351 | spin_lock_irq(&ctx->lock); | ||
1352 | counter = counter->group_leader; | ||
1353 | |||
1354 | func(counter); | ||
1355 | list_for_each_entry(sibling, &counter->sibling_list, list_entry) | ||
1356 | func(sibling); | ||
1357 | spin_unlock_irq(&ctx->lock); | ||
1358 | } | ||
1359 | |||
1360 | static void perf_counter_for_each_child(struct perf_counter *counter, | ||
1361 | void (*func)(struct perf_counter *)) | ||
1362 | { | ||
1363 | struct perf_counter *child; | ||
1364 | |||
1365 | mutex_lock(&counter->mutex); | ||
1366 | func(counter); | ||
1367 | list_for_each_entry(child, &counter->child_list, child_list) | ||
1368 | func(child); | ||
1369 | mutex_unlock(&counter->mutex); | ||
1370 | } | ||
1371 | |||
1372 | static void perf_counter_for_each(struct perf_counter *counter, | ||
1373 | void (*func)(struct perf_counter *)) | ||
1374 | { | ||
1375 | struct perf_counter *child; | ||
1376 | |||
1377 | mutex_lock(&counter->mutex); | ||
1378 | perf_counter_for_each_sibling(counter, func); | ||
1379 | list_for_each_entry(child, &counter->child_list, child_list) | ||
1380 | perf_counter_for_each_sibling(child, func); | ||
1381 | mutex_unlock(&counter->mutex); | ||
1382 | } | ||
1383 | |||
1384 | static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) | ||
1385 | { | ||
1386 | struct perf_counter *counter = file->private_data; | ||
1387 | void (*func)(struct perf_counter *); | ||
1388 | u32 flags = arg; | ||
1389 | |||
1390 | switch (cmd) { | ||
1391 | case PERF_COUNTER_IOC_ENABLE: | ||
1392 | func = perf_counter_enable; | ||
1393 | break; | ||
1394 | case PERF_COUNTER_IOC_DISABLE: | ||
1395 | func = perf_counter_disable; | ||
1396 | break; | ||
1397 | case PERF_COUNTER_IOC_RESET: | ||
1398 | func = perf_counter_reset; | ||
1399 | break; | ||
1400 | |||
1401 | case PERF_COUNTER_IOC_REFRESH: | ||
1402 | return perf_counter_refresh(counter, arg); | ||
1403 | default: | ||
1404 | return -ENOTTY; | ||
1405 | } | ||
1406 | |||
1407 | if (flags & PERF_IOC_FLAG_GROUP) | ||
1408 | perf_counter_for_each(counter, func); | ||
1409 | else | ||
1410 | perf_counter_for_each_child(counter, func); | ||
1411 | |||
1412 | return 0; | ||
1413 | } | ||
1414 | |||
1415 | /* | ||
1416 | * Callers need to ensure there can be no nesting of this function, otherwise | ||
1417 | * the seqlock logic goes bad. We can not serialize this because the arch | ||
1418 | * code calls this from NMI context. | ||
1419 | */ | ||
1420 | void perf_counter_update_userpage(struct perf_counter *counter) | ||
1421 | { | ||
1422 | struct perf_mmap_data *data; | ||
1423 | struct perf_counter_mmap_page *userpg; | ||
1424 | |||
1425 | rcu_read_lock(); | ||
1426 | data = rcu_dereference(counter->data); | ||
1427 | if (!data) | ||
1428 | goto unlock; | ||
1429 | |||
1430 | userpg = data->user_page; | ||
1431 | |||
1432 | /* | ||
1433 | * Disable preemption so as to not let the corresponding user-space | ||
1434 | * spin too long if we get preempted. | ||
1435 | */ | ||
1436 | preempt_disable(); | ||
1437 | ++userpg->lock; | ||
1438 | barrier(); | ||
1439 | userpg->index = counter->hw.idx; | ||
1440 | userpg->offset = atomic64_read(&counter->count); | ||
1441 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) | ||
1442 | userpg->offset -= atomic64_read(&counter->hw.prev_count); | ||
1443 | |||
1444 | barrier(); | ||
1445 | ++userpg->lock; | ||
1446 | preempt_enable(); | ||
1447 | unlock: | ||
1448 | rcu_read_unlock(); | ||
1449 | } | ||
1450 | |||
1451 | static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | ||
1452 | { | ||
1453 | struct perf_counter *counter = vma->vm_file->private_data; | ||
1454 | struct perf_mmap_data *data; | ||
1455 | int ret = VM_FAULT_SIGBUS; | ||
1456 | |||
1457 | rcu_read_lock(); | ||
1458 | data = rcu_dereference(counter->data); | ||
1459 | if (!data) | ||
1460 | goto unlock; | ||
1461 | |||
1462 | if (vmf->pgoff == 0) { | ||
1463 | vmf->page = virt_to_page(data->user_page); | ||
1464 | } else { | ||
1465 | int nr = vmf->pgoff - 1; | ||
1466 | |||
1467 | if ((unsigned)nr > data->nr_pages) | ||
1468 | goto unlock; | ||
1469 | |||
1470 | vmf->page = virt_to_page(data->data_pages[nr]); | ||
1471 | } | ||
1472 | get_page(vmf->page); | ||
1473 | ret = 0; | ||
1474 | unlock: | ||
1475 | rcu_read_unlock(); | ||
1476 | |||
1477 | return ret; | ||
1478 | } | ||
1479 | |||
1480 | static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages) | ||
1481 | { | ||
1482 | struct perf_mmap_data *data; | ||
1483 | unsigned long size; | ||
1484 | int i; | ||
1485 | |||
1486 | WARN_ON(atomic_read(&counter->mmap_count)); | ||
1487 | |||
1488 | size = sizeof(struct perf_mmap_data); | ||
1489 | size += nr_pages * sizeof(void *); | ||
1490 | |||
1491 | data = kzalloc(size, GFP_KERNEL); | ||
1492 | if (!data) | ||
1493 | goto fail; | ||
1494 | |||
1495 | data->user_page = (void *)get_zeroed_page(GFP_KERNEL); | ||
1496 | if (!data->user_page) | ||
1497 | goto fail_user_page; | ||
1498 | |||
1499 | for (i = 0; i < nr_pages; i++) { | ||
1500 | data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL); | ||
1501 | if (!data->data_pages[i]) | ||
1502 | goto fail_data_pages; | ||
1503 | } | ||
1504 | |||
1505 | data->nr_pages = nr_pages; | ||
1506 | atomic_set(&data->lock, -1); | ||
1507 | |||
1508 | rcu_assign_pointer(counter->data, data); | ||
1509 | |||
1510 | return 0; | ||
1511 | |||
1512 | fail_data_pages: | ||
1513 | for (i--; i >= 0; i--) | ||
1514 | free_page((unsigned long)data->data_pages[i]); | ||
1515 | |||
1516 | free_page((unsigned long)data->user_page); | ||
1517 | |||
1518 | fail_user_page: | ||
1519 | kfree(data); | ||
1520 | |||
1521 | fail: | ||
1522 | return -ENOMEM; | ||
1523 | } | ||
1524 | |||
1525 | static void __perf_mmap_data_free(struct rcu_head *rcu_head) | ||
1526 | { | ||
1527 | struct perf_mmap_data *data = container_of(rcu_head, | ||
1528 | struct perf_mmap_data, rcu_head); | ||
1529 | int i; | ||
1530 | |||
1531 | free_page((unsigned long)data->user_page); | ||
1532 | for (i = 0; i < data->nr_pages; i++) | ||
1533 | free_page((unsigned long)data->data_pages[i]); | ||
1534 | kfree(data); | ||
1535 | } | ||
1536 | |||
1537 | static void perf_mmap_data_free(struct perf_counter *counter) | ||
1538 | { | ||
1539 | struct perf_mmap_data *data = counter->data; | ||
1540 | |||
1541 | WARN_ON(atomic_read(&counter->mmap_count)); | ||
1542 | |||
1543 | rcu_assign_pointer(counter->data, NULL); | ||
1544 | call_rcu(&data->rcu_head, __perf_mmap_data_free); | ||
1545 | } | ||
1546 | |||
1547 | static void perf_mmap_open(struct vm_area_struct *vma) | ||
1548 | { | ||
1549 | struct perf_counter *counter = vma->vm_file->private_data; | ||
1550 | |||
1551 | atomic_inc(&counter->mmap_count); | ||
1552 | } | ||
1553 | |||
1554 | static void perf_mmap_close(struct vm_area_struct *vma) | ||
1555 | { | ||
1556 | struct perf_counter *counter = vma->vm_file->private_data; | ||
1557 | |||
1558 | if (atomic_dec_and_mutex_lock(&counter->mmap_count, | ||
1559 | &counter->mmap_mutex)) { | ||
1560 | struct user_struct *user = current_user(); | ||
1561 | |||
1562 | atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm); | ||
1563 | vma->vm_mm->locked_vm -= counter->data->nr_locked; | ||
1564 | perf_mmap_data_free(counter); | ||
1565 | mutex_unlock(&counter->mmap_mutex); | ||
1566 | } | ||
1567 | } | ||
1568 | |||
1569 | static struct vm_operations_struct perf_mmap_vmops = { | ||
1570 | .open = perf_mmap_open, | ||
1571 | .close = perf_mmap_close, | ||
1572 | .fault = perf_mmap_fault, | ||
1573 | }; | ||
1574 | |||
1575 | static int perf_mmap(struct file *file, struct vm_area_struct *vma) | ||
1576 | { | ||
1577 | struct perf_counter *counter = file->private_data; | ||
1578 | struct user_struct *user = current_user(); | ||
1579 | unsigned long vma_size; | ||
1580 | unsigned long nr_pages; | ||
1581 | unsigned long user_locked, user_lock_limit; | ||
1582 | unsigned long locked, lock_limit; | ||
1583 | long user_extra, extra; | ||
1584 | int ret = 0; | ||
1585 | |||
1586 | if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE)) | ||
1587 | return -EINVAL; | ||
1588 | |||
1589 | vma_size = vma->vm_end - vma->vm_start; | ||
1590 | nr_pages = (vma_size / PAGE_SIZE) - 1; | ||
1591 | |||
1592 | /* | ||
1593 | * If we have data pages ensure they're a power-of-two number, so we | ||
1594 | * can do bitmasks instead of modulo. | ||
1595 | */ | ||
1596 | if (nr_pages != 0 && !is_power_of_2(nr_pages)) | ||
1597 | return -EINVAL; | ||
1598 | |||
1599 | if (vma_size != PAGE_SIZE * (1 + nr_pages)) | ||
1600 | return -EINVAL; | ||
1601 | |||
1602 | if (vma->vm_pgoff != 0) | ||
1603 | return -EINVAL; | ||
1604 | |||
1605 | mutex_lock(&counter->mmap_mutex); | ||
1606 | if (atomic_inc_not_zero(&counter->mmap_count)) { | ||
1607 | if (nr_pages != counter->data->nr_pages) | ||
1608 | ret = -EINVAL; | ||
1609 | goto unlock; | ||
1610 | } | ||
1611 | |||
1612 | user_extra = nr_pages + 1; | ||
1613 | user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10); | ||
1614 | user_locked = atomic_long_read(&user->locked_vm) + user_extra; | ||
1615 | |||
1616 | extra = 0; | ||
1617 | if (user_locked > user_lock_limit) | ||
1618 | extra = user_locked - user_lock_limit; | ||
1619 | |||
1620 | lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; | ||
1621 | lock_limit >>= PAGE_SHIFT; | ||
1622 | locked = vma->vm_mm->locked_vm + extra; | ||
1623 | |||
1624 | if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) { | ||
1625 | ret = -EPERM; | ||
1626 | goto unlock; | ||
1627 | } | ||
1628 | |||
1629 | WARN_ON(counter->data); | ||
1630 | ret = perf_mmap_data_alloc(counter, nr_pages); | ||
1631 | if (ret) | ||
1632 | goto unlock; | ||
1633 | |||
1634 | atomic_set(&counter->mmap_count, 1); | ||
1635 | atomic_long_add(user_extra, &user->locked_vm); | ||
1636 | vma->vm_mm->locked_vm += extra; | ||
1637 | counter->data->nr_locked = extra; | ||
1638 | unlock: | ||
1639 | mutex_unlock(&counter->mmap_mutex); | ||
1640 | |||
1641 | vma->vm_flags &= ~VM_MAYWRITE; | ||
1642 | vma->vm_flags |= VM_RESERVED; | ||
1643 | vma->vm_ops = &perf_mmap_vmops; | ||
1644 | |||
1645 | return ret; | ||
1646 | } | ||
1647 | |||
1648 | static int perf_fasync(int fd, struct file *filp, int on) | ||
1649 | { | ||
1650 | struct perf_counter *counter = filp->private_data; | ||
1651 | struct inode *inode = filp->f_path.dentry->d_inode; | ||
1652 | int retval; | ||
1653 | |||
1654 | mutex_lock(&inode->i_mutex); | ||
1655 | retval = fasync_helper(fd, filp, on, &counter->fasync); | ||
1656 | mutex_unlock(&inode->i_mutex); | ||
1657 | |||
1658 | if (retval < 0) | ||
1659 | return retval; | ||
1660 | |||
1661 | return 0; | ||
1662 | } | ||
1663 | |||
1664 | static const struct file_operations perf_fops = { | ||
1665 | .release = perf_release, | ||
1666 | .read = perf_read, | ||
1667 | .poll = perf_poll, | ||
1668 | .unlocked_ioctl = perf_ioctl, | ||
1669 | .compat_ioctl = perf_ioctl, | ||
1670 | .mmap = perf_mmap, | ||
1671 | .fasync = perf_fasync, | ||
1672 | }; | ||
1673 | |||
1674 | /* | ||
1675 | * Perf counter wakeup | ||
1676 | * | ||
1677 | * If there's data, ensure we set the poll() state and publish everything | ||
1678 | * to user-space before waking everybody up. | ||
1679 | */ | ||
1680 | |||
1681 | void perf_counter_wakeup(struct perf_counter *counter) | ||
1682 | { | ||
1683 | wake_up_all(&counter->waitq); | ||
1684 | |||
1685 | if (counter->pending_kill) { | ||
1686 | kill_fasync(&counter->fasync, SIGIO, counter->pending_kill); | ||
1687 | counter->pending_kill = 0; | ||
1688 | } | ||
1689 | } | ||
1690 | |||
1691 | /* | ||
1692 | * Pending wakeups | ||
1693 | * | ||
1694 | * Handle the case where we need to wakeup up from NMI (or rq->lock) context. | ||
1695 | * | ||
1696 | * The NMI bit means we cannot possibly take locks. Therefore, maintain a | ||
1697 | * single linked list and use cmpxchg() to add entries lockless. | ||
1698 | */ | ||
1699 | |||
1700 | static void perf_pending_counter(struct perf_pending_entry *entry) | ||
1701 | { | ||
1702 | struct perf_counter *counter = container_of(entry, | ||
1703 | struct perf_counter, pending); | ||
1704 | |||
1705 | if (counter->pending_disable) { | ||
1706 | counter->pending_disable = 0; | ||
1707 | perf_counter_disable(counter); | ||
1708 | } | ||
1709 | |||
1710 | if (counter->pending_wakeup) { | ||
1711 | counter->pending_wakeup = 0; | ||
1712 | perf_counter_wakeup(counter); | ||
1713 | } | ||
1714 | } | ||
1715 | |||
1716 | #define PENDING_TAIL ((struct perf_pending_entry *)-1UL) | ||
1717 | |||
1718 | static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = { | ||
1719 | PENDING_TAIL, | ||
1720 | }; | ||
1721 | |||
1722 | static void perf_pending_queue(struct perf_pending_entry *entry, | ||
1723 | void (*func)(struct perf_pending_entry *)) | ||
1724 | { | ||
1725 | struct perf_pending_entry **head; | ||
1726 | |||
1727 | if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL) | ||
1728 | return; | ||
1729 | |||
1730 | entry->func = func; | ||
1731 | |||
1732 | head = &get_cpu_var(perf_pending_head); | ||
1733 | |||
1734 | do { | ||
1735 | entry->next = *head; | ||
1736 | } while (cmpxchg(head, entry->next, entry) != entry->next); | ||
1737 | |||
1738 | set_perf_counter_pending(); | ||
1739 | |||
1740 | put_cpu_var(perf_pending_head); | ||
1741 | } | ||
1742 | |||
1743 | static int __perf_pending_run(void) | ||
1744 | { | ||
1745 | struct perf_pending_entry *list; | ||
1746 | int nr = 0; | ||
1747 | |||
1748 | list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL); | ||
1749 | while (list != PENDING_TAIL) { | ||
1750 | void (*func)(struct perf_pending_entry *); | ||
1751 | struct perf_pending_entry *entry = list; | ||
1752 | |||
1753 | list = list->next; | ||
1754 | |||
1755 | func = entry->func; | ||
1756 | entry->next = NULL; | ||
1757 | /* | ||
1758 | * Ensure we observe the unqueue before we issue the wakeup, | ||
1759 | * so that we won't be waiting forever. | ||
1760 | * -- see perf_not_pending(). | ||
1761 | */ | ||
1762 | smp_wmb(); | ||
1763 | |||
1764 | func(entry); | ||
1765 | nr++; | ||
1766 | } | ||
1767 | |||
1768 | return nr; | ||
1769 | } | ||
1770 | |||
1771 | static inline int perf_not_pending(struct perf_counter *counter) | ||
1772 | { | ||
1773 | /* | ||
1774 | * If we flush on whatever cpu we run, there is a chance we don't | ||
1775 | * need to wait. | ||
1776 | */ | ||
1777 | get_cpu(); | ||
1778 | __perf_pending_run(); | ||
1779 | put_cpu(); | ||
1780 | |||
1781 | /* | ||
1782 | * Ensure we see the proper queue state before going to sleep | ||
1783 | * so that we do not miss the wakeup. -- see perf_pending_handle() | ||
1784 | */ | ||
1785 | smp_rmb(); | ||
1786 | return counter->pending.next == NULL; | ||
1787 | } | ||
1788 | |||
1789 | static void perf_pending_sync(struct perf_counter *counter) | ||
1790 | { | ||
1791 | wait_event(counter->waitq, perf_not_pending(counter)); | ||
1792 | } | ||
1793 | |||
1794 | void perf_counter_do_pending(void) | ||
1795 | { | ||
1796 | __perf_pending_run(); | ||
1797 | } | ||
1798 | |||
1799 | /* | ||
1800 | * Callchain support -- arch specific | ||
1801 | */ | ||
1802 | |||
1803 | __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) | ||
1804 | { | ||
1805 | return NULL; | ||
1806 | } | ||
1807 | |||
1808 | /* | ||
1809 | * Output | ||
1810 | */ | ||
1811 | |||
1812 | struct perf_output_handle { | ||
1813 | struct perf_counter *counter; | ||
1814 | struct perf_mmap_data *data; | ||
1815 | unsigned int offset; | ||
1816 | unsigned int head; | ||
1817 | int nmi; | ||
1818 | int overflow; | ||
1819 | int locked; | ||
1820 | unsigned long flags; | ||
1821 | }; | ||
1822 | |||
1823 | static void perf_output_wakeup(struct perf_output_handle *handle) | ||
1824 | { | ||
1825 | atomic_set(&handle->data->poll, POLL_IN); | ||
1826 | |||
1827 | if (handle->nmi) { | ||
1828 | handle->counter->pending_wakeup = 1; | ||
1829 | perf_pending_queue(&handle->counter->pending, | ||
1830 | perf_pending_counter); | ||
1831 | } else | ||
1832 | perf_counter_wakeup(handle->counter); | ||
1833 | } | ||
1834 | |||
1835 | /* | ||
1836 | * Curious locking construct. | ||
1837 | * | ||
1838 | * We need to ensure a later event doesn't publish a head when a former | ||
1839 | * event isn't done writing. However since we need to deal with NMIs we | ||
1840 | * cannot fully serialize things. | ||
1841 | * | ||
1842 | * What we do is serialize between CPUs so we only have to deal with NMI | ||
1843 | * nesting on a single CPU. | ||
1844 | * | ||
1845 | * We only publish the head (and generate a wakeup) when the outer-most | ||
1846 | * event completes. | ||
1847 | */ | ||
1848 | static void perf_output_lock(struct perf_output_handle *handle) | ||
1849 | { | ||
1850 | struct perf_mmap_data *data = handle->data; | ||
1851 | int cpu; | ||
1852 | |||
1853 | handle->locked = 0; | ||
1854 | |||
1855 | local_irq_save(handle->flags); | ||
1856 | cpu = smp_processor_id(); | ||
1857 | |||
1858 | if (in_nmi() && atomic_read(&data->lock) == cpu) | ||
1859 | return; | ||
1860 | |||
1861 | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | ||
1862 | cpu_relax(); | ||
1863 | |||
1864 | handle->locked = 1; | ||
1865 | } | ||
1866 | |||
1867 | static void perf_output_unlock(struct perf_output_handle *handle) | ||
1868 | { | ||
1869 | struct perf_mmap_data *data = handle->data; | ||
1870 | int head, cpu; | ||
1871 | |||
1872 | data->done_head = data->head; | ||
1873 | |||
1874 | if (!handle->locked) | ||
1875 | goto out; | ||
1876 | |||
1877 | again: | ||
1878 | /* | ||
1879 | * The xchg implies a full barrier that ensures all writes are done | ||
1880 | * before we publish the new head, matched by a rmb() in userspace when | ||
1881 | * reading this position. | ||
1882 | */ | ||
1883 | while ((head = atomic_xchg(&data->done_head, 0))) | ||
1884 | data->user_page->data_head = head; | ||
1885 | |||
1886 | /* | ||
1887 | * NMI can happen here, which means we can miss a done_head update. | ||
1888 | */ | ||
1889 | |||
1890 | cpu = atomic_xchg(&data->lock, -1); | ||
1891 | WARN_ON_ONCE(cpu != smp_processor_id()); | ||
1892 | |||
1893 | /* | ||
1894 | * Therefore we have to validate we did not indeed do so. | ||
1895 | */ | ||
1896 | if (unlikely(atomic_read(&data->done_head))) { | ||
1897 | /* | ||
1898 | * Since we had it locked, we can lock it again. | ||
1899 | */ | ||
1900 | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | ||
1901 | cpu_relax(); | ||
1902 | |||
1903 | goto again; | ||
1904 | } | ||
1905 | |||
1906 | if (atomic_xchg(&data->wakeup, 0)) | ||
1907 | perf_output_wakeup(handle); | ||
1908 | out: | ||
1909 | local_irq_restore(handle->flags); | ||
1910 | } | ||
1911 | |||
1912 | static int perf_output_begin(struct perf_output_handle *handle, | ||
1913 | struct perf_counter *counter, unsigned int size, | ||
1914 | int nmi, int overflow) | ||
1915 | { | ||
1916 | struct perf_mmap_data *data; | ||
1917 | unsigned int offset, head; | ||
1918 | |||
1919 | /* | ||
1920 | * For inherited counters we send all the output towards the parent. | ||
1921 | */ | ||
1922 | if (counter->parent) | ||
1923 | counter = counter->parent; | ||
1924 | |||
1925 | rcu_read_lock(); | ||
1926 | data = rcu_dereference(counter->data); | ||
1927 | if (!data) | ||
1928 | goto out; | ||
1929 | |||
1930 | handle->data = data; | ||
1931 | handle->counter = counter; | ||
1932 | handle->nmi = nmi; | ||
1933 | handle->overflow = overflow; | ||
1934 | |||
1935 | if (!data->nr_pages) | ||
1936 | goto fail; | ||
1937 | |||
1938 | perf_output_lock(handle); | ||
1939 | |||
1940 | do { | ||
1941 | offset = head = atomic_read(&data->head); | ||
1942 | head += size; | ||
1943 | } while (atomic_cmpxchg(&data->head, offset, head) != offset); | ||
1944 | |||
1945 | handle->offset = offset; | ||
1946 | handle->head = head; | ||
1947 | |||
1948 | if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT)) | ||
1949 | atomic_set(&data->wakeup, 1); | ||
1950 | |||
1951 | return 0; | ||
1952 | |||
1953 | fail: | ||
1954 | perf_output_wakeup(handle); | ||
1955 | out: | ||
1956 | rcu_read_unlock(); | ||
1957 | |||
1958 | return -ENOSPC; | ||
1959 | } | ||
1960 | |||
1961 | static void perf_output_copy(struct perf_output_handle *handle, | ||
1962 | void *buf, unsigned int len) | ||
1963 | { | ||
1964 | unsigned int pages_mask; | ||
1965 | unsigned int offset; | ||
1966 | unsigned int size; | ||
1967 | void **pages; | ||
1968 | |||
1969 | offset = handle->offset; | ||
1970 | pages_mask = handle->data->nr_pages - 1; | ||
1971 | pages = handle->data->data_pages; | ||
1972 | |||
1973 | do { | ||
1974 | unsigned int page_offset; | ||
1975 | int nr; | ||
1976 | |||
1977 | nr = (offset >> PAGE_SHIFT) & pages_mask; | ||
1978 | page_offset = offset & (PAGE_SIZE - 1); | ||
1979 | size = min_t(unsigned int, PAGE_SIZE - page_offset, len); | ||
1980 | |||
1981 | memcpy(pages[nr] + page_offset, buf, size); | ||
1982 | |||
1983 | len -= size; | ||
1984 | buf += size; | ||
1985 | offset += size; | ||
1986 | } while (len); | ||
1987 | |||
1988 | handle->offset = offset; | ||
1989 | |||
1990 | /* | ||
1991 | * Check we didn't copy past our reservation window, taking the | ||
1992 | * possible unsigned int wrap into account. | ||
1993 | */ | ||
1994 | WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0); | ||
1995 | } | ||
1996 | |||
1997 | #define perf_output_put(handle, x) \ | ||
1998 | perf_output_copy((handle), &(x), sizeof(x)) | ||
1999 | |||
2000 | static void perf_output_end(struct perf_output_handle *handle) | ||
2001 | { | ||
2002 | struct perf_counter *counter = handle->counter; | ||
2003 | struct perf_mmap_data *data = handle->data; | ||
2004 | |||
2005 | int wakeup_events = counter->hw_event.wakeup_events; | ||
2006 | |||
2007 | if (handle->overflow && wakeup_events) { | ||
2008 | int events = atomic_inc_return(&data->events); | ||
2009 | if (events >= wakeup_events) { | ||
2010 | atomic_sub(wakeup_events, &data->events); | ||
2011 | atomic_set(&data->wakeup, 1); | ||
2012 | } | ||
2013 | } | ||
2014 | |||
2015 | perf_output_unlock(handle); | ||
2016 | rcu_read_unlock(); | ||
2017 | } | ||
2018 | |||
2019 | static void perf_counter_output(struct perf_counter *counter, | ||
2020 | int nmi, struct pt_regs *regs, u64 addr) | ||
2021 | { | ||
2022 | int ret; | ||
2023 | u64 record_type = counter->hw_event.record_type; | ||
2024 | struct perf_output_handle handle; | ||
2025 | struct perf_event_header header; | ||
2026 | u64 ip; | ||
2027 | struct { | ||
2028 | u32 pid, tid; | ||
2029 | } tid_entry; | ||
2030 | struct { | ||
2031 | u64 event; | ||
2032 | u64 counter; | ||
2033 | } group_entry; | ||
2034 | struct perf_callchain_entry *callchain = NULL; | ||
2035 | int callchain_size = 0; | ||
2036 | u64 time; | ||
2037 | struct { | ||
2038 | u32 cpu, reserved; | ||
2039 | } cpu_entry; | ||
2040 | |||
2041 | header.type = 0; | ||
2042 | header.size = sizeof(header); | ||
2043 | |||
2044 | header.misc = PERF_EVENT_MISC_OVERFLOW; | ||
2045 | header.misc |= perf_misc_flags(regs); | ||
2046 | |||
2047 | if (record_type & PERF_RECORD_IP) { | ||
2048 | ip = perf_instruction_pointer(regs); | ||
2049 | header.type |= PERF_RECORD_IP; | ||
2050 | header.size += sizeof(ip); | ||
2051 | } | ||
2052 | |||
2053 | if (record_type & PERF_RECORD_TID) { | ||
2054 | /* namespace issues */ | ||
2055 | tid_entry.pid = current->group_leader->pid; | ||
2056 | tid_entry.tid = current->pid; | ||
2057 | |||
2058 | header.type |= PERF_RECORD_TID; | ||
2059 | header.size += sizeof(tid_entry); | ||
2060 | } | ||
2061 | |||
2062 | if (record_type & PERF_RECORD_TIME) { | ||
2063 | /* | ||
2064 | * Maybe do better on x86 and provide cpu_clock_nmi() | ||
2065 | */ | ||
2066 | time = sched_clock(); | ||
2067 | |||
2068 | header.type |= PERF_RECORD_TIME; | ||
2069 | header.size += sizeof(u64); | ||
2070 | } | ||
2071 | |||
2072 | if (record_type & PERF_RECORD_ADDR) { | ||
2073 | header.type |= PERF_RECORD_ADDR; | ||
2074 | header.size += sizeof(u64); | ||
2075 | } | ||
2076 | |||
2077 | if (record_type & PERF_RECORD_CONFIG) { | ||
2078 | header.type |= PERF_RECORD_CONFIG; | ||
2079 | header.size += sizeof(u64); | ||
2080 | } | ||
2081 | |||
2082 | if (record_type & PERF_RECORD_CPU) { | ||
2083 | header.type |= PERF_RECORD_CPU; | ||
2084 | header.size += sizeof(cpu_entry); | ||
2085 | |||
2086 | cpu_entry.cpu = raw_smp_processor_id(); | ||
2087 | } | ||
2088 | |||
2089 | if (record_type & PERF_RECORD_GROUP) { | ||
2090 | header.type |= PERF_RECORD_GROUP; | ||
2091 | header.size += sizeof(u64) + | ||
2092 | counter->nr_siblings * sizeof(group_entry); | ||
2093 | } | ||
2094 | |||
2095 | if (record_type & PERF_RECORD_CALLCHAIN) { | ||
2096 | callchain = perf_callchain(regs); | ||
2097 | |||
2098 | if (callchain) { | ||
2099 | callchain_size = (1 + callchain->nr) * sizeof(u64); | ||
2100 | |||
2101 | header.type |= PERF_RECORD_CALLCHAIN; | ||
2102 | header.size += callchain_size; | ||
2103 | } | ||
2104 | } | ||
2105 | |||
2106 | ret = perf_output_begin(&handle, counter, header.size, nmi, 1); | ||
2107 | if (ret) | ||
2108 | return; | ||
2109 | |||
2110 | perf_output_put(&handle, header); | ||
2111 | |||
2112 | if (record_type & PERF_RECORD_IP) | ||
2113 | perf_output_put(&handle, ip); | ||
2114 | |||
2115 | if (record_type & PERF_RECORD_TID) | ||
2116 | perf_output_put(&handle, tid_entry); | ||
2117 | |||
2118 | if (record_type & PERF_RECORD_TIME) | ||
2119 | perf_output_put(&handle, time); | ||
2120 | |||
2121 | if (record_type & PERF_RECORD_ADDR) | ||
2122 | perf_output_put(&handle, addr); | ||
2123 | |||
2124 | if (record_type & PERF_RECORD_CONFIG) | ||
2125 | perf_output_put(&handle, counter->hw_event.config); | ||
2126 | |||
2127 | if (record_type & PERF_RECORD_CPU) | ||
2128 | perf_output_put(&handle, cpu_entry); | ||
2129 | |||
2130 | /* | ||
2131 | * XXX PERF_RECORD_GROUP vs inherited counters seems difficult. | ||
2132 | */ | ||
2133 | if (record_type & PERF_RECORD_GROUP) { | ||
2134 | struct perf_counter *leader, *sub; | ||
2135 | u64 nr = counter->nr_siblings; | ||
2136 | |||
2137 | perf_output_put(&handle, nr); | ||
2138 | |||
2139 | leader = counter->group_leader; | ||
2140 | list_for_each_entry(sub, &leader->sibling_list, list_entry) { | ||
2141 | if (sub != counter) | ||
2142 | sub->pmu->read(sub); | ||
2143 | |||
2144 | group_entry.event = sub->hw_event.config; | ||
2145 | group_entry.counter = atomic64_read(&sub->count); | ||
2146 | |||
2147 | perf_output_put(&handle, group_entry); | ||
2148 | } | ||
2149 | } | ||
2150 | |||
2151 | if (callchain) | ||
2152 | perf_output_copy(&handle, callchain, callchain_size); | ||
2153 | |||
2154 | perf_output_end(&handle); | ||
2155 | } | ||
2156 | |||
2157 | /* | ||
2158 | * comm tracking | ||
2159 | */ | ||
2160 | |||
2161 | struct perf_comm_event { | ||
2162 | struct task_struct *task; | ||
2163 | char *comm; | ||
2164 | int comm_size; | ||
2165 | |||
2166 | struct { | ||
2167 | struct perf_event_header header; | ||
2168 | |||
2169 | u32 pid; | ||
2170 | u32 tid; | ||
2171 | } event; | ||
2172 | }; | ||
2173 | |||
2174 | static void perf_counter_comm_output(struct perf_counter *counter, | ||
2175 | struct perf_comm_event *comm_event) | ||
2176 | { | ||
2177 | struct perf_output_handle handle; | ||
2178 | int size = comm_event->event.header.size; | ||
2179 | int ret = perf_output_begin(&handle, counter, size, 0, 0); | ||
2180 | |||
2181 | if (ret) | ||
2182 | return; | ||
2183 | |||
2184 | perf_output_put(&handle, comm_event->event); | ||
2185 | perf_output_copy(&handle, comm_event->comm, | ||
2186 | comm_event->comm_size); | ||
2187 | perf_output_end(&handle); | ||
2188 | } | ||
2189 | |||
2190 | static int perf_counter_comm_match(struct perf_counter *counter, | ||
2191 | struct perf_comm_event *comm_event) | ||
2192 | { | ||
2193 | if (counter->hw_event.comm && | ||
2194 | comm_event->event.header.type == PERF_EVENT_COMM) | ||
2195 | return 1; | ||
2196 | |||
2197 | return 0; | ||
2198 | } | ||
2199 | |||
2200 | static void perf_counter_comm_ctx(struct perf_counter_context *ctx, | ||
2201 | struct perf_comm_event *comm_event) | ||
2202 | { | ||
2203 | struct perf_counter *counter; | ||
2204 | |||
2205 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
2206 | return; | ||
2207 | |||
2208 | rcu_read_lock(); | ||
2209 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
2210 | if (perf_counter_comm_match(counter, comm_event)) | ||
2211 | perf_counter_comm_output(counter, comm_event); | ||
2212 | } | ||
2213 | rcu_read_unlock(); | ||
2214 | } | ||
2215 | |||
2216 | static void perf_counter_comm_event(struct perf_comm_event *comm_event) | ||
2217 | { | ||
2218 | struct perf_cpu_context *cpuctx; | ||
2219 | unsigned int size; | ||
2220 | char *comm = comm_event->task->comm; | ||
2221 | |||
2222 | size = ALIGN(strlen(comm)+1, sizeof(u64)); | ||
2223 | |||
2224 | comm_event->comm = comm; | ||
2225 | comm_event->comm_size = size; | ||
2226 | |||
2227 | comm_event->event.header.size = sizeof(comm_event->event) + size; | ||
2228 | |||
2229 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
2230 | perf_counter_comm_ctx(&cpuctx->ctx, comm_event); | ||
2231 | put_cpu_var(perf_cpu_context); | ||
2232 | |||
2233 | perf_counter_comm_ctx(¤t->perf_counter_ctx, comm_event); | ||
2234 | } | ||
2235 | |||
2236 | void perf_counter_comm(struct task_struct *task) | ||
2237 | { | ||
2238 | struct perf_comm_event comm_event; | ||
2239 | |||
2240 | if (!atomic_read(&nr_comm_tracking)) | ||
2241 | return; | ||
2242 | |||
2243 | comm_event = (struct perf_comm_event){ | ||
2244 | .task = task, | ||
2245 | .event = { | ||
2246 | .header = { .type = PERF_EVENT_COMM, }, | ||
2247 | .pid = task->group_leader->pid, | ||
2248 | .tid = task->pid, | ||
2249 | }, | ||
2250 | }; | ||
2251 | |||
2252 | perf_counter_comm_event(&comm_event); | ||
2253 | } | ||
2254 | |||
2255 | /* | ||
2256 | * mmap tracking | ||
2257 | */ | ||
2258 | |||
2259 | struct perf_mmap_event { | ||
2260 | struct file *file; | ||
2261 | char *file_name; | ||
2262 | int file_size; | ||
2263 | |||
2264 | struct { | ||
2265 | struct perf_event_header header; | ||
2266 | |||
2267 | u32 pid; | ||
2268 | u32 tid; | ||
2269 | u64 start; | ||
2270 | u64 len; | ||
2271 | u64 pgoff; | ||
2272 | } event; | ||
2273 | }; | ||
2274 | |||
2275 | static void perf_counter_mmap_output(struct perf_counter *counter, | ||
2276 | struct perf_mmap_event *mmap_event) | ||
2277 | { | ||
2278 | struct perf_output_handle handle; | ||
2279 | int size = mmap_event->event.header.size; | ||
2280 | int ret = perf_output_begin(&handle, counter, size, 0, 0); | ||
2281 | |||
2282 | if (ret) | ||
2283 | return; | ||
2284 | |||
2285 | perf_output_put(&handle, mmap_event->event); | ||
2286 | perf_output_copy(&handle, mmap_event->file_name, | ||
2287 | mmap_event->file_size); | ||
2288 | perf_output_end(&handle); | ||
2289 | } | ||
2290 | |||
2291 | static int perf_counter_mmap_match(struct perf_counter *counter, | ||
2292 | struct perf_mmap_event *mmap_event) | ||
2293 | { | ||
2294 | if (counter->hw_event.mmap && | ||
2295 | mmap_event->event.header.type == PERF_EVENT_MMAP) | ||
2296 | return 1; | ||
2297 | |||
2298 | if (counter->hw_event.munmap && | ||
2299 | mmap_event->event.header.type == PERF_EVENT_MUNMAP) | ||
2300 | return 1; | ||
2301 | |||
2302 | return 0; | ||
2303 | } | ||
2304 | |||
2305 | static void perf_counter_mmap_ctx(struct perf_counter_context *ctx, | ||
2306 | struct perf_mmap_event *mmap_event) | ||
2307 | { | ||
2308 | struct perf_counter *counter; | ||
2309 | |||
2310 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
2311 | return; | ||
2312 | |||
2313 | rcu_read_lock(); | ||
2314 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
2315 | if (perf_counter_mmap_match(counter, mmap_event)) | ||
2316 | perf_counter_mmap_output(counter, mmap_event); | ||
2317 | } | ||
2318 | rcu_read_unlock(); | ||
2319 | } | ||
2320 | |||
2321 | static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event) | ||
2322 | { | ||
2323 | struct perf_cpu_context *cpuctx; | ||
2324 | struct file *file = mmap_event->file; | ||
2325 | unsigned int size; | ||
2326 | char tmp[16]; | ||
2327 | char *buf = NULL; | ||
2328 | char *name; | ||
2329 | |||
2330 | if (file) { | ||
2331 | buf = kzalloc(PATH_MAX, GFP_KERNEL); | ||
2332 | if (!buf) { | ||
2333 | name = strncpy(tmp, "//enomem", sizeof(tmp)); | ||
2334 | goto got_name; | ||
2335 | } | ||
2336 | name = d_path(&file->f_path, buf, PATH_MAX); | ||
2337 | if (IS_ERR(name)) { | ||
2338 | name = strncpy(tmp, "//toolong", sizeof(tmp)); | ||
2339 | goto got_name; | ||
2340 | } | ||
2341 | } else { | ||
2342 | name = strncpy(tmp, "//anon", sizeof(tmp)); | ||
2343 | goto got_name; | ||
2344 | } | ||
2345 | |||
2346 | got_name: | ||
2347 | size = ALIGN(strlen(name)+1, sizeof(u64)); | ||
2348 | |||
2349 | mmap_event->file_name = name; | ||
2350 | mmap_event->file_size = size; | ||
2351 | |||
2352 | mmap_event->event.header.size = sizeof(mmap_event->event) + size; | ||
2353 | |||
2354 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
2355 | perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event); | ||
2356 | put_cpu_var(perf_cpu_context); | ||
2357 | |||
2358 | perf_counter_mmap_ctx(¤t->perf_counter_ctx, mmap_event); | ||
2359 | |||
2360 | kfree(buf); | ||
2361 | } | ||
2362 | |||
2363 | void perf_counter_mmap(unsigned long addr, unsigned long len, | ||
2364 | unsigned long pgoff, struct file *file) | ||
2365 | { | ||
2366 | struct perf_mmap_event mmap_event; | ||
2367 | |||
2368 | if (!atomic_read(&nr_mmap_tracking)) | ||
2369 | return; | ||
2370 | |||
2371 | mmap_event = (struct perf_mmap_event){ | ||
2372 | .file = file, | ||
2373 | .event = { | ||
2374 | .header = { .type = PERF_EVENT_MMAP, }, | ||
2375 | .pid = current->group_leader->pid, | ||
2376 | .tid = current->pid, | ||
2377 | .start = addr, | ||
2378 | .len = len, | ||
2379 | .pgoff = pgoff, | ||
2380 | }, | ||
2381 | }; | ||
2382 | |||
2383 | perf_counter_mmap_event(&mmap_event); | ||
2384 | } | ||
2385 | |||
2386 | void perf_counter_munmap(unsigned long addr, unsigned long len, | ||
2387 | unsigned long pgoff, struct file *file) | ||
2388 | { | ||
2389 | struct perf_mmap_event mmap_event; | ||
2390 | |||
2391 | if (!atomic_read(&nr_munmap_tracking)) | ||
2392 | return; | ||
2393 | |||
2394 | mmap_event = (struct perf_mmap_event){ | ||
2395 | .file = file, | ||
2396 | .event = { | ||
2397 | .header = { .type = PERF_EVENT_MUNMAP, }, | ||
2398 | .pid = current->group_leader->pid, | ||
2399 | .tid = current->pid, | ||
2400 | .start = addr, | ||
2401 | .len = len, | ||
2402 | .pgoff = pgoff, | ||
2403 | }, | ||
2404 | }; | ||
2405 | |||
2406 | perf_counter_mmap_event(&mmap_event); | ||
2407 | } | ||
2408 | |||
2409 | /* | ||
2410 | * Generic counter overflow handling. | ||
2411 | */ | ||
2412 | |||
2413 | int perf_counter_overflow(struct perf_counter *counter, | ||
2414 | int nmi, struct pt_regs *regs, u64 addr) | ||
2415 | { | ||
2416 | int events = atomic_read(&counter->event_limit); | ||
2417 | int ret = 0; | ||
2418 | |||
2419 | counter->hw.interrupts++; | ||
2420 | |||
2421 | /* | ||
2422 | * XXX event_limit might not quite work as expected on inherited | ||
2423 | * counters | ||
2424 | */ | ||
2425 | |||
2426 | counter->pending_kill = POLL_IN; | ||
2427 | if (events && atomic_dec_and_test(&counter->event_limit)) { | ||
2428 | ret = 1; | ||
2429 | counter->pending_kill = POLL_HUP; | ||
2430 | if (nmi) { | ||
2431 | counter->pending_disable = 1; | ||
2432 | perf_pending_queue(&counter->pending, | ||
2433 | perf_pending_counter); | ||
2434 | } else | ||
2435 | perf_counter_disable(counter); | ||
2436 | } | ||
2437 | |||
2438 | perf_counter_output(counter, nmi, regs, addr); | ||
2439 | return ret; | ||
2440 | } | ||
2441 | |||
2442 | /* | ||
2443 | * Generic software counter infrastructure | ||
2444 | */ | ||
2445 | |||
2446 | static void perf_swcounter_update(struct perf_counter *counter) | ||
2447 | { | ||
2448 | struct hw_perf_counter *hwc = &counter->hw; | ||
2449 | u64 prev, now; | ||
2450 | s64 delta; | ||
2451 | |||
2452 | again: | ||
2453 | prev = atomic64_read(&hwc->prev_count); | ||
2454 | now = atomic64_read(&hwc->count); | ||
2455 | if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev) | ||
2456 | goto again; | ||
2457 | |||
2458 | delta = now - prev; | ||
2459 | |||
2460 | atomic64_add(delta, &counter->count); | ||
2461 | atomic64_sub(delta, &hwc->period_left); | ||
2462 | } | ||
2463 | |||
2464 | static void perf_swcounter_set_period(struct perf_counter *counter) | ||
2465 | { | ||
2466 | struct hw_perf_counter *hwc = &counter->hw; | ||
2467 | s64 left = atomic64_read(&hwc->period_left); | ||
2468 | s64 period = hwc->irq_period; | ||
2469 | |||
2470 | if (unlikely(left <= -period)) { | ||
2471 | left = period; | ||
2472 | atomic64_set(&hwc->period_left, left); | ||
2473 | } | ||
2474 | |||
2475 | if (unlikely(left <= 0)) { | ||
2476 | left += period; | ||
2477 | atomic64_add(period, &hwc->period_left); | ||
2478 | } | ||
2479 | |||
2480 | atomic64_set(&hwc->prev_count, -left); | ||
2481 | atomic64_set(&hwc->count, -left); | ||
2482 | } | ||
2483 | |||
2484 | static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer) | ||
2485 | { | ||
2486 | enum hrtimer_restart ret = HRTIMER_RESTART; | ||
2487 | struct perf_counter *counter; | ||
2488 | struct pt_regs *regs; | ||
2489 | u64 period; | ||
2490 | |||
2491 | counter = container_of(hrtimer, struct perf_counter, hw.hrtimer); | ||
2492 | counter->pmu->read(counter); | ||
2493 | |||
2494 | regs = get_irq_regs(); | ||
2495 | /* | ||
2496 | * In case we exclude kernel IPs or are somehow not in interrupt | ||
2497 | * context, provide the next best thing, the user IP. | ||
2498 | */ | ||
2499 | if ((counter->hw_event.exclude_kernel || !regs) && | ||
2500 | !counter->hw_event.exclude_user) | ||
2501 | regs = task_pt_regs(current); | ||
2502 | |||
2503 | if (regs) { | ||
2504 | if (perf_counter_overflow(counter, 0, regs, 0)) | ||
2505 | ret = HRTIMER_NORESTART; | ||
2506 | } | ||
2507 | |||
2508 | period = max_t(u64, 10000, counter->hw.irq_period); | ||
2509 | hrtimer_forward_now(hrtimer, ns_to_ktime(period)); | ||
2510 | |||
2511 | return ret; | ||
2512 | } | ||
2513 | |||
2514 | static void perf_swcounter_overflow(struct perf_counter *counter, | ||
2515 | int nmi, struct pt_regs *regs, u64 addr) | ||
2516 | { | ||
2517 | perf_swcounter_update(counter); | ||
2518 | perf_swcounter_set_period(counter); | ||
2519 | if (perf_counter_overflow(counter, nmi, regs, addr)) | ||
2520 | /* soft-disable the counter */ | ||
2521 | ; | ||
2522 | |||
2523 | } | ||
2524 | |||
2525 | static int perf_swcounter_match(struct perf_counter *counter, | ||
2526 | enum perf_event_types type, | ||
2527 | u32 event, struct pt_regs *regs) | ||
2528 | { | ||
2529 | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
2530 | return 0; | ||
2531 | |||
2532 | if (perf_event_raw(&counter->hw_event)) | ||
2533 | return 0; | ||
2534 | |||
2535 | if (perf_event_type(&counter->hw_event) != type) | ||
2536 | return 0; | ||
2537 | |||
2538 | if (perf_event_id(&counter->hw_event) != event) | ||
2539 | return 0; | ||
2540 | |||
2541 | if (counter->hw_event.exclude_user && user_mode(regs)) | ||
2542 | return 0; | ||
2543 | |||
2544 | if (counter->hw_event.exclude_kernel && !user_mode(regs)) | ||
2545 | return 0; | ||
2546 | |||
2547 | return 1; | ||
2548 | } | ||
2549 | |||
2550 | static void perf_swcounter_add(struct perf_counter *counter, u64 nr, | ||
2551 | int nmi, struct pt_regs *regs, u64 addr) | ||
2552 | { | ||
2553 | int neg = atomic64_add_negative(nr, &counter->hw.count); | ||
2554 | if (counter->hw.irq_period && !neg) | ||
2555 | perf_swcounter_overflow(counter, nmi, regs, addr); | ||
2556 | } | ||
2557 | |||
2558 | static void perf_swcounter_ctx_event(struct perf_counter_context *ctx, | ||
2559 | enum perf_event_types type, u32 event, | ||
2560 | u64 nr, int nmi, struct pt_regs *regs, | ||
2561 | u64 addr) | ||
2562 | { | ||
2563 | struct perf_counter *counter; | ||
2564 | |||
2565 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
2566 | return; | ||
2567 | |||
2568 | rcu_read_lock(); | ||
2569 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
2570 | if (perf_swcounter_match(counter, type, event, regs)) | ||
2571 | perf_swcounter_add(counter, nr, nmi, regs, addr); | ||
2572 | } | ||
2573 | rcu_read_unlock(); | ||
2574 | } | ||
2575 | |||
2576 | static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx) | ||
2577 | { | ||
2578 | if (in_nmi()) | ||
2579 | return &cpuctx->recursion[3]; | ||
2580 | |||
2581 | if (in_irq()) | ||
2582 | return &cpuctx->recursion[2]; | ||
2583 | |||
2584 | if (in_softirq()) | ||
2585 | return &cpuctx->recursion[1]; | ||
2586 | |||
2587 | return &cpuctx->recursion[0]; | ||
2588 | } | ||
2589 | |||
2590 | static void __perf_swcounter_event(enum perf_event_types type, u32 event, | ||
2591 | u64 nr, int nmi, struct pt_regs *regs, | ||
2592 | u64 addr) | ||
2593 | { | ||
2594 | struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context); | ||
2595 | int *recursion = perf_swcounter_recursion_context(cpuctx); | ||
2596 | |||
2597 | if (*recursion) | ||
2598 | goto out; | ||
2599 | |||
2600 | (*recursion)++; | ||
2601 | barrier(); | ||
2602 | |||
2603 | perf_swcounter_ctx_event(&cpuctx->ctx, type, event, | ||
2604 | nr, nmi, regs, addr); | ||
2605 | if (cpuctx->task_ctx) { | ||
2606 | perf_swcounter_ctx_event(cpuctx->task_ctx, type, event, | ||
2607 | nr, nmi, regs, addr); | ||
2608 | } | ||
2609 | |||
2610 | barrier(); | ||
2611 | (*recursion)--; | ||
2612 | |||
2613 | out: | ||
2614 | put_cpu_var(perf_cpu_context); | ||
2615 | } | ||
2616 | |||
2617 | void | ||
2618 | perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr) | ||
2619 | { | ||
2620 | __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr); | ||
2621 | } | ||
2622 | |||
2623 | static void perf_swcounter_read(struct perf_counter *counter) | ||
2624 | { | ||
2625 | perf_swcounter_update(counter); | ||
2626 | } | ||
2627 | |||
2628 | static int perf_swcounter_enable(struct perf_counter *counter) | ||
2629 | { | ||
2630 | perf_swcounter_set_period(counter); | ||
2631 | return 0; | ||
2632 | } | ||
2633 | |||
2634 | static void perf_swcounter_disable(struct perf_counter *counter) | ||
2635 | { | ||
2636 | perf_swcounter_update(counter); | ||
2637 | } | ||
2638 | |||
2639 | static const struct pmu perf_ops_generic = { | ||
2640 | .enable = perf_swcounter_enable, | ||
2641 | .disable = perf_swcounter_disable, | ||
2642 | .read = perf_swcounter_read, | ||
2643 | }; | ||
2644 | |||
2645 | /* | ||
2646 | * Software counter: cpu wall time clock | ||
2647 | */ | ||
2648 | |||
2649 | static void cpu_clock_perf_counter_update(struct perf_counter *counter) | ||
2650 | { | ||
2651 | int cpu = raw_smp_processor_id(); | ||
2652 | s64 prev; | ||
2653 | u64 now; | ||
2654 | |||
2655 | now = cpu_clock(cpu); | ||
2656 | prev = atomic64_read(&counter->hw.prev_count); | ||
2657 | atomic64_set(&counter->hw.prev_count, now); | ||
2658 | atomic64_add(now - prev, &counter->count); | ||
2659 | } | ||
2660 | |||
2661 | static int cpu_clock_perf_counter_enable(struct perf_counter *counter) | ||
2662 | { | ||
2663 | struct hw_perf_counter *hwc = &counter->hw; | ||
2664 | int cpu = raw_smp_processor_id(); | ||
2665 | |||
2666 | atomic64_set(&hwc->prev_count, cpu_clock(cpu)); | ||
2667 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
2668 | hwc->hrtimer.function = perf_swcounter_hrtimer; | ||
2669 | if (hwc->irq_period) { | ||
2670 | u64 period = max_t(u64, 10000, hwc->irq_period); | ||
2671 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
2672 | ns_to_ktime(period), 0, | ||
2673 | HRTIMER_MODE_REL, 0); | ||
2674 | } | ||
2675 | |||
2676 | return 0; | ||
2677 | } | ||
2678 | |||
2679 | static void cpu_clock_perf_counter_disable(struct perf_counter *counter) | ||
2680 | { | ||
2681 | hrtimer_cancel(&counter->hw.hrtimer); | ||
2682 | cpu_clock_perf_counter_update(counter); | ||
2683 | } | ||
2684 | |||
2685 | static void cpu_clock_perf_counter_read(struct perf_counter *counter) | ||
2686 | { | ||
2687 | cpu_clock_perf_counter_update(counter); | ||
2688 | } | ||
2689 | |||
2690 | static const struct pmu perf_ops_cpu_clock = { | ||
2691 | .enable = cpu_clock_perf_counter_enable, | ||
2692 | .disable = cpu_clock_perf_counter_disable, | ||
2693 | .read = cpu_clock_perf_counter_read, | ||
2694 | }; | ||
2695 | |||
2696 | /* | ||
2697 | * Software counter: task time clock | ||
2698 | */ | ||
2699 | |||
2700 | static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now) | ||
2701 | { | ||
2702 | u64 prev; | ||
2703 | s64 delta; | ||
2704 | |||
2705 | prev = atomic64_xchg(&counter->hw.prev_count, now); | ||
2706 | delta = now - prev; | ||
2707 | atomic64_add(delta, &counter->count); | ||
2708 | } | ||
2709 | |||
2710 | static int task_clock_perf_counter_enable(struct perf_counter *counter) | ||
2711 | { | ||
2712 | struct hw_perf_counter *hwc = &counter->hw; | ||
2713 | u64 now; | ||
2714 | |||
2715 | now = counter->ctx->time; | ||
2716 | |||
2717 | atomic64_set(&hwc->prev_count, now); | ||
2718 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
2719 | hwc->hrtimer.function = perf_swcounter_hrtimer; | ||
2720 | if (hwc->irq_period) { | ||
2721 | u64 period = max_t(u64, 10000, hwc->irq_period); | ||
2722 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
2723 | ns_to_ktime(period), 0, | ||
2724 | HRTIMER_MODE_REL, 0); | ||
2725 | } | ||
2726 | |||
2727 | return 0; | ||
2728 | } | ||
2729 | |||
2730 | static void task_clock_perf_counter_disable(struct perf_counter *counter) | ||
2731 | { | ||
2732 | hrtimer_cancel(&counter->hw.hrtimer); | ||
2733 | task_clock_perf_counter_update(counter, counter->ctx->time); | ||
2734 | |||
2735 | } | ||
2736 | |||
2737 | static void task_clock_perf_counter_read(struct perf_counter *counter) | ||
2738 | { | ||
2739 | u64 time; | ||
2740 | |||
2741 | if (!in_nmi()) { | ||
2742 | update_context_time(counter->ctx); | ||
2743 | time = counter->ctx->time; | ||
2744 | } else { | ||
2745 | u64 now = perf_clock(); | ||
2746 | u64 delta = now - counter->ctx->timestamp; | ||
2747 | time = counter->ctx->time + delta; | ||
2748 | } | ||
2749 | |||
2750 | task_clock_perf_counter_update(counter, time); | ||
2751 | } | ||
2752 | |||
2753 | static const struct pmu perf_ops_task_clock = { | ||
2754 | .enable = task_clock_perf_counter_enable, | ||
2755 | .disable = task_clock_perf_counter_disable, | ||
2756 | .read = task_clock_perf_counter_read, | ||
2757 | }; | ||
2758 | |||
2759 | /* | ||
2760 | * Software counter: cpu migrations | ||
2761 | */ | ||
2762 | |||
2763 | static inline u64 get_cpu_migrations(struct perf_counter *counter) | ||
2764 | { | ||
2765 | struct task_struct *curr = counter->ctx->task; | ||
2766 | |||
2767 | if (curr) | ||
2768 | return curr->se.nr_migrations; | ||
2769 | return cpu_nr_migrations(smp_processor_id()); | ||
2770 | } | ||
2771 | |||
2772 | static void cpu_migrations_perf_counter_update(struct perf_counter *counter) | ||
2773 | { | ||
2774 | u64 prev, now; | ||
2775 | s64 delta; | ||
2776 | |||
2777 | prev = atomic64_read(&counter->hw.prev_count); | ||
2778 | now = get_cpu_migrations(counter); | ||
2779 | |||
2780 | atomic64_set(&counter->hw.prev_count, now); | ||
2781 | |||
2782 | delta = now - prev; | ||
2783 | |||
2784 | atomic64_add(delta, &counter->count); | ||
2785 | } | ||
2786 | |||
2787 | static void cpu_migrations_perf_counter_read(struct perf_counter *counter) | ||
2788 | { | ||
2789 | cpu_migrations_perf_counter_update(counter); | ||
2790 | } | ||
2791 | |||
2792 | static int cpu_migrations_perf_counter_enable(struct perf_counter *counter) | ||
2793 | { | ||
2794 | if (counter->prev_state <= PERF_COUNTER_STATE_OFF) | ||
2795 | atomic64_set(&counter->hw.prev_count, | ||
2796 | get_cpu_migrations(counter)); | ||
2797 | return 0; | ||
2798 | } | ||
2799 | |||
2800 | static void cpu_migrations_perf_counter_disable(struct perf_counter *counter) | ||
2801 | { | ||
2802 | cpu_migrations_perf_counter_update(counter); | ||
2803 | } | ||
2804 | |||
2805 | static const struct pmu perf_ops_cpu_migrations = { | ||
2806 | .enable = cpu_migrations_perf_counter_enable, | ||
2807 | .disable = cpu_migrations_perf_counter_disable, | ||
2808 | .read = cpu_migrations_perf_counter_read, | ||
2809 | }; | ||
2810 | |||
2811 | #ifdef CONFIG_EVENT_PROFILE | ||
2812 | void perf_tpcounter_event(int event_id) | ||
2813 | { | ||
2814 | struct pt_regs *regs = get_irq_regs(); | ||
2815 | |||
2816 | if (!regs) | ||
2817 | regs = task_pt_regs(current); | ||
2818 | |||
2819 | __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0); | ||
2820 | } | ||
2821 | EXPORT_SYMBOL_GPL(perf_tpcounter_event); | ||
2822 | |||
2823 | extern int ftrace_profile_enable(int); | ||
2824 | extern void ftrace_profile_disable(int); | ||
2825 | |||
2826 | static void tp_perf_counter_destroy(struct perf_counter *counter) | ||
2827 | { | ||
2828 | ftrace_profile_disable(perf_event_id(&counter->hw_event)); | ||
2829 | } | ||
2830 | |||
2831 | static const struct pmu *tp_perf_counter_init(struct perf_counter *counter) | ||
2832 | { | ||
2833 | int event_id = perf_event_id(&counter->hw_event); | ||
2834 | int ret; | ||
2835 | |||
2836 | ret = ftrace_profile_enable(event_id); | ||
2837 | if (ret) | ||
2838 | return NULL; | ||
2839 | |||
2840 | counter->destroy = tp_perf_counter_destroy; | ||
2841 | counter->hw.irq_period = counter->hw_event.irq_period; | ||
2842 | |||
2843 | return &perf_ops_generic; | ||
2844 | } | ||
2845 | #else | ||
2846 | static const struct pmu *tp_perf_counter_init(struct perf_counter *counter) | ||
2847 | { | ||
2848 | return NULL; | ||
2849 | } | ||
2850 | #endif | ||
2851 | |||
2852 | static const struct pmu *sw_perf_counter_init(struct perf_counter *counter) | ||
2853 | { | ||
2854 | const struct pmu *pmu = NULL; | ||
2855 | |||
2856 | /* | ||
2857 | * Software counters (currently) can't in general distinguish | ||
2858 | * between user, kernel and hypervisor events. | ||
2859 | * However, context switches and cpu migrations are considered | ||
2860 | * to be kernel events, and page faults are never hypervisor | ||
2861 | * events. | ||
2862 | */ | ||
2863 | switch (perf_event_id(&counter->hw_event)) { | ||
2864 | case PERF_COUNT_CPU_CLOCK: | ||
2865 | pmu = &perf_ops_cpu_clock; | ||
2866 | |||
2867 | break; | ||
2868 | case PERF_COUNT_TASK_CLOCK: | ||
2869 | /* | ||
2870 | * If the user instantiates this as a per-cpu counter, | ||
2871 | * use the cpu_clock counter instead. | ||
2872 | */ | ||
2873 | if (counter->ctx->task) | ||
2874 | pmu = &perf_ops_task_clock; | ||
2875 | else | ||
2876 | pmu = &perf_ops_cpu_clock; | ||
2877 | |||
2878 | break; | ||
2879 | case PERF_COUNT_PAGE_FAULTS: | ||
2880 | case PERF_COUNT_PAGE_FAULTS_MIN: | ||
2881 | case PERF_COUNT_PAGE_FAULTS_MAJ: | ||
2882 | case PERF_COUNT_CONTEXT_SWITCHES: | ||
2883 | pmu = &perf_ops_generic; | ||
2884 | break; | ||
2885 | case PERF_COUNT_CPU_MIGRATIONS: | ||
2886 | if (!counter->hw_event.exclude_kernel) | ||
2887 | pmu = &perf_ops_cpu_migrations; | ||
2888 | break; | ||
2889 | } | ||
2890 | |||
2891 | return pmu; | ||
2892 | } | ||
2893 | |||
2894 | /* | ||
2895 | * Allocate and initialize a counter structure | ||
2896 | */ | ||
2897 | static struct perf_counter * | ||
2898 | perf_counter_alloc(struct perf_counter_hw_event *hw_event, | ||
2899 | int cpu, | ||
2900 | struct perf_counter_context *ctx, | ||
2901 | struct perf_counter *group_leader, | ||
2902 | gfp_t gfpflags) | ||
2903 | { | ||
2904 | const struct pmu *pmu; | ||
2905 | struct perf_counter *counter; | ||
2906 | struct hw_perf_counter *hwc; | ||
2907 | long err; | ||
2908 | |||
2909 | counter = kzalloc(sizeof(*counter), gfpflags); | ||
2910 | if (!counter) | ||
2911 | return ERR_PTR(-ENOMEM); | ||
2912 | |||
2913 | /* | ||
2914 | * Single counters are their own group leaders, with an | ||
2915 | * empty sibling list: | ||
2916 | */ | ||
2917 | if (!group_leader) | ||
2918 | group_leader = counter; | ||
2919 | |||
2920 | mutex_init(&counter->mutex); | ||
2921 | INIT_LIST_HEAD(&counter->list_entry); | ||
2922 | INIT_LIST_HEAD(&counter->event_entry); | ||
2923 | INIT_LIST_HEAD(&counter->sibling_list); | ||
2924 | init_waitqueue_head(&counter->waitq); | ||
2925 | |||
2926 | mutex_init(&counter->mmap_mutex); | ||
2927 | |||
2928 | INIT_LIST_HEAD(&counter->child_list); | ||
2929 | |||
2930 | counter->cpu = cpu; | ||
2931 | counter->hw_event = *hw_event; | ||
2932 | counter->group_leader = group_leader; | ||
2933 | counter->pmu = NULL; | ||
2934 | counter->ctx = ctx; | ||
2935 | |||
2936 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
2937 | if (hw_event->disabled) | ||
2938 | counter->state = PERF_COUNTER_STATE_OFF; | ||
2939 | |||
2940 | pmu = NULL; | ||
2941 | |||
2942 | hwc = &counter->hw; | ||
2943 | if (hw_event->freq && hw_event->irq_freq) | ||
2944 | hwc->irq_period = div64_u64(TICK_NSEC, hw_event->irq_freq); | ||
2945 | else | ||
2946 | hwc->irq_period = hw_event->irq_period; | ||
2947 | |||
2948 | /* | ||
2949 | * we currently do not support PERF_RECORD_GROUP on inherited counters | ||
2950 | */ | ||
2951 | if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP)) | ||
2952 | goto done; | ||
2953 | |||
2954 | if (perf_event_raw(hw_event)) { | ||
2955 | pmu = hw_perf_counter_init(counter); | ||
2956 | goto done; | ||
2957 | } | ||
2958 | |||
2959 | switch (perf_event_type(hw_event)) { | ||
2960 | case PERF_TYPE_HARDWARE: | ||
2961 | pmu = hw_perf_counter_init(counter); | ||
2962 | break; | ||
2963 | |||
2964 | case PERF_TYPE_SOFTWARE: | ||
2965 | pmu = sw_perf_counter_init(counter); | ||
2966 | break; | ||
2967 | |||
2968 | case PERF_TYPE_TRACEPOINT: | ||
2969 | pmu = tp_perf_counter_init(counter); | ||
2970 | break; | ||
2971 | } | ||
2972 | done: | ||
2973 | err = 0; | ||
2974 | if (!pmu) | ||
2975 | err = -EINVAL; | ||
2976 | else if (IS_ERR(pmu)) | ||
2977 | err = PTR_ERR(pmu); | ||
2978 | |||
2979 | if (err) { | ||
2980 | kfree(counter); | ||
2981 | return ERR_PTR(err); | ||
2982 | } | ||
2983 | |||
2984 | counter->pmu = pmu; | ||
2985 | |||
2986 | atomic_inc(&nr_counters); | ||
2987 | if (counter->hw_event.mmap) | ||
2988 | atomic_inc(&nr_mmap_tracking); | ||
2989 | if (counter->hw_event.munmap) | ||
2990 | atomic_inc(&nr_munmap_tracking); | ||
2991 | if (counter->hw_event.comm) | ||
2992 | atomic_inc(&nr_comm_tracking); | ||
2993 | |||
2994 | return counter; | ||
2995 | } | ||
2996 | |||
2997 | /** | ||
2998 | * sys_perf_counter_open - open a performance counter, associate it to a task/cpu | ||
2999 | * | ||
3000 | * @hw_event_uptr: event type attributes for monitoring/sampling | ||
3001 | * @pid: target pid | ||
3002 | * @cpu: target cpu | ||
3003 | * @group_fd: group leader counter fd | ||
3004 | */ | ||
3005 | SYSCALL_DEFINE5(perf_counter_open, | ||
3006 | const struct perf_counter_hw_event __user *, hw_event_uptr, | ||
3007 | pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) | ||
3008 | { | ||
3009 | struct perf_counter *counter, *group_leader; | ||
3010 | struct perf_counter_hw_event hw_event; | ||
3011 | struct perf_counter_context *ctx; | ||
3012 | struct file *counter_file = NULL; | ||
3013 | struct file *group_file = NULL; | ||
3014 | int fput_needed = 0; | ||
3015 | int fput_needed2 = 0; | ||
3016 | int ret; | ||
3017 | |||
3018 | /* for future expandability... */ | ||
3019 | if (flags) | ||
3020 | return -EINVAL; | ||
3021 | |||
3022 | if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0) | ||
3023 | return -EFAULT; | ||
3024 | |||
3025 | /* | ||
3026 | * Get the target context (task or percpu): | ||
3027 | */ | ||
3028 | ctx = find_get_context(pid, cpu); | ||
3029 | if (IS_ERR(ctx)) | ||
3030 | return PTR_ERR(ctx); | ||
3031 | |||
3032 | /* | ||
3033 | * Look up the group leader (we will attach this counter to it): | ||
3034 | */ | ||
3035 | group_leader = NULL; | ||
3036 | if (group_fd != -1) { | ||
3037 | ret = -EINVAL; | ||
3038 | group_file = fget_light(group_fd, &fput_needed); | ||
3039 | if (!group_file) | ||
3040 | goto err_put_context; | ||
3041 | if (group_file->f_op != &perf_fops) | ||
3042 | goto err_put_context; | ||
3043 | |||
3044 | group_leader = group_file->private_data; | ||
3045 | /* | ||
3046 | * Do not allow a recursive hierarchy (this new sibling | ||
3047 | * becoming part of another group-sibling): | ||
3048 | */ | ||
3049 | if (group_leader->group_leader != group_leader) | ||
3050 | goto err_put_context; | ||
3051 | /* | ||
3052 | * Do not allow to attach to a group in a different | ||
3053 | * task or CPU context: | ||
3054 | */ | ||
3055 | if (group_leader->ctx != ctx) | ||
3056 | goto err_put_context; | ||
3057 | /* | ||
3058 | * Only a group leader can be exclusive or pinned | ||
3059 | */ | ||
3060 | if (hw_event.exclusive || hw_event.pinned) | ||
3061 | goto err_put_context; | ||
3062 | } | ||
3063 | |||
3064 | counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader, | ||
3065 | GFP_KERNEL); | ||
3066 | ret = PTR_ERR(counter); | ||
3067 | if (IS_ERR(counter)) | ||
3068 | goto err_put_context; | ||
3069 | |||
3070 | ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0); | ||
3071 | if (ret < 0) | ||
3072 | goto err_free_put_context; | ||
3073 | |||
3074 | counter_file = fget_light(ret, &fput_needed2); | ||
3075 | if (!counter_file) | ||
3076 | goto err_free_put_context; | ||
3077 | |||
3078 | counter->filp = counter_file; | ||
3079 | mutex_lock(&ctx->mutex); | ||
3080 | perf_install_in_context(ctx, counter, cpu); | ||
3081 | mutex_unlock(&ctx->mutex); | ||
3082 | |||
3083 | fput_light(counter_file, fput_needed2); | ||
3084 | |||
3085 | out_fput: | ||
3086 | fput_light(group_file, fput_needed); | ||
3087 | |||
3088 | return ret; | ||
3089 | |||
3090 | err_free_put_context: | ||
3091 | kfree(counter); | ||
3092 | |||
3093 | err_put_context: | ||
3094 | put_context(ctx); | ||
3095 | |||
3096 | goto out_fput; | ||
3097 | } | ||
3098 | |||
3099 | /* | ||
3100 | * Initialize the perf_counter context in a task_struct: | ||
3101 | */ | ||
3102 | static void | ||
3103 | __perf_counter_init_context(struct perf_counter_context *ctx, | ||
3104 | struct task_struct *task) | ||
3105 | { | ||
3106 | memset(ctx, 0, sizeof(*ctx)); | ||
3107 | spin_lock_init(&ctx->lock); | ||
3108 | mutex_init(&ctx->mutex); | ||
3109 | INIT_LIST_HEAD(&ctx->counter_list); | ||
3110 | INIT_LIST_HEAD(&ctx->event_list); | ||
3111 | ctx->task = task; | ||
3112 | } | ||
3113 | |||
3114 | /* | ||
3115 | * inherit a counter from parent task to child task: | ||
3116 | */ | ||
3117 | static struct perf_counter * | ||
3118 | inherit_counter(struct perf_counter *parent_counter, | ||
3119 | struct task_struct *parent, | ||
3120 | struct perf_counter_context *parent_ctx, | ||
3121 | struct task_struct *child, | ||
3122 | struct perf_counter *group_leader, | ||
3123 | struct perf_counter_context *child_ctx) | ||
3124 | { | ||
3125 | struct perf_counter *child_counter; | ||
3126 | |||
3127 | /* | ||
3128 | * Instead of creating recursive hierarchies of counters, | ||
3129 | * we link inherited counters back to the original parent, | ||
3130 | * which has a filp for sure, which we use as the reference | ||
3131 | * count: | ||
3132 | */ | ||
3133 | if (parent_counter->parent) | ||
3134 | parent_counter = parent_counter->parent; | ||
3135 | |||
3136 | child_counter = perf_counter_alloc(&parent_counter->hw_event, | ||
3137 | parent_counter->cpu, child_ctx, | ||
3138 | group_leader, GFP_KERNEL); | ||
3139 | if (IS_ERR(child_counter)) | ||
3140 | return child_counter; | ||
3141 | |||
3142 | /* | ||
3143 | * Link it up in the child's context: | ||
3144 | */ | ||
3145 | child_counter->task = child; | ||
3146 | add_counter_to_ctx(child_counter, child_ctx); | ||
3147 | |||
3148 | child_counter->parent = parent_counter; | ||
3149 | /* | ||
3150 | * inherit into child's child as well: | ||
3151 | */ | ||
3152 | child_counter->hw_event.inherit = 1; | ||
3153 | |||
3154 | /* | ||
3155 | * Get a reference to the parent filp - we will fput it | ||
3156 | * when the child counter exits. This is safe to do because | ||
3157 | * we are in the parent and we know that the filp still | ||
3158 | * exists and has a nonzero count: | ||
3159 | */ | ||
3160 | atomic_long_inc(&parent_counter->filp->f_count); | ||
3161 | |||
3162 | /* | ||
3163 | * Link this into the parent counter's child list | ||
3164 | */ | ||
3165 | mutex_lock(&parent_counter->mutex); | ||
3166 | list_add_tail(&child_counter->child_list, &parent_counter->child_list); | ||
3167 | |||
3168 | /* | ||
3169 | * Make the child state follow the state of the parent counter, | ||
3170 | * not its hw_event.disabled bit. We hold the parent's mutex, | ||
3171 | * so we won't race with perf_counter_{en,dis}able_family. | ||
3172 | */ | ||
3173 | if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
3174 | child_counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
3175 | else | ||
3176 | child_counter->state = PERF_COUNTER_STATE_OFF; | ||
3177 | |||
3178 | mutex_unlock(&parent_counter->mutex); | ||
3179 | |||
3180 | return child_counter; | ||
3181 | } | ||
3182 | |||
3183 | static int inherit_group(struct perf_counter *parent_counter, | ||
3184 | struct task_struct *parent, | ||
3185 | struct perf_counter_context *parent_ctx, | ||
3186 | struct task_struct *child, | ||
3187 | struct perf_counter_context *child_ctx) | ||
3188 | { | ||
3189 | struct perf_counter *leader; | ||
3190 | struct perf_counter *sub; | ||
3191 | struct perf_counter *child_ctr; | ||
3192 | |||
3193 | leader = inherit_counter(parent_counter, parent, parent_ctx, | ||
3194 | child, NULL, child_ctx); | ||
3195 | if (IS_ERR(leader)) | ||
3196 | return PTR_ERR(leader); | ||
3197 | list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) { | ||
3198 | child_ctr = inherit_counter(sub, parent, parent_ctx, | ||
3199 | child, leader, child_ctx); | ||
3200 | if (IS_ERR(child_ctr)) | ||
3201 | return PTR_ERR(child_ctr); | ||
3202 | } | ||
3203 | return 0; | ||
3204 | } | ||
3205 | |||
3206 | static void sync_child_counter(struct perf_counter *child_counter, | ||
3207 | struct perf_counter *parent_counter) | ||
3208 | { | ||
3209 | u64 child_val; | ||
3210 | |||
3211 | child_val = atomic64_read(&child_counter->count); | ||
3212 | |||
3213 | /* | ||
3214 | * Add back the child's count to the parent's count: | ||
3215 | */ | ||
3216 | atomic64_add(child_val, &parent_counter->count); | ||
3217 | atomic64_add(child_counter->total_time_enabled, | ||
3218 | &parent_counter->child_total_time_enabled); | ||
3219 | atomic64_add(child_counter->total_time_running, | ||
3220 | &parent_counter->child_total_time_running); | ||
3221 | |||
3222 | /* | ||
3223 | * Remove this counter from the parent's list | ||
3224 | */ | ||
3225 | mutex_lock(&parent_counter->mutex); | ||
3226 | list_del_init(&child_counter->child_list); | ||
3227 | mutex_unlock(&parent_counter->mutex); | ||
3228 | |||
3229 | /* | ||
3230 | * Release the parent counter, if this was the last | ||
3231 | * reference to it. | ||
3232 | */ | ||
3233 | fput(parent_counter->filp); | ||
3234 | } | ||
3235 | |||
3236 | static void | ||
3237 | __perf_counter_exit_task(struct task_struct *child, | ||
3238 | struct perf_counter *child_counter, | ||
3239 | struct perf_counter_context *child_ctx) | ||
3240 | { | ||
3241 | struct perf_counter *parent_counter; | ||
3242 | |||
3243 | /* | ||
3244 | * If we do not self-reap then we have to wait for the | ||
3245 | * child task to unschedule (it will happen for sure), | ||
3246 | * so that its counter is at its final count. (This | ||
3247 | * condition triggers rarely - child tasks usually get | ||
3248 | * off their CPU before the parent has a chance to | ||
3249 | * get this far into the reaping action) | ||
3250 | */ | ||
3251 | if (child != current) { | ||
3252 | wait_task_inactive(child, 0); | ||
3253 | update_counter_times(child_counter); | ||
3254 | list_del_counter(child_counter, child_ctx); | ||
3255 | } else { | ||
3256 | struct perf_cpu_context *cpuctx; | ||
3257 | unsigned long flags; | ||
3258 | |||
3259 | /* | ||
3260 | * Disable and unlink this counter. | ||
3261 | * | ||
3262 | * Be careful about zapping the list - IRQ/NMI context | ||
3263 | * could still be processing it: | ||
3264 | */ | ||
3265 | local_irq_save(flags); | ||
3266 | perf_disable(); | ||
3267 | |||
3268 | cpuctx = &__get_cpu_var(perf_cpu_context); | ||
3269 | |||
3270 | group_sched_out(child_counter, cpuctx, child_ctx); | ||
3271 | update_counter_times(child_counter); | ||
3272 | |||
3273 | list_del_counter(child_counter, child_ctx); | ||
3274 | |||
3275 | perf_enable(); | ||
3276 | local_irq_restore(flags); | ||
3277 | } | ||
3278 | |||
3279 | parent_counter = child_counter->parent; | ||
3280 | /* | ||
3281 | * It can happen that parent exits first, and has counters | ||
3282 | * that are still around due to the child reference. These | ||
3283 | * counters need to be zapped - but otherwise linger. | ||
3284 | */ | ||
3285 | if (parent_counter) { | ||
3286 | sync_child_counter(child_counter, parent_counter); | ||
3287 | free_counter(child_counter); | ||
3288 | } | ||
3289 | } | ||
3290 | |||
3291 | /* | ||
3292 | * When a child task exits, feed back counter values to parent counters. | ||
3293 | * | ||
3294 | * Note: we may be running in child context, but the PID is not hashed | ||
3295 | * anymore so new counters will not be added. | ||
3296 | */ | ||
3297 | void perf_counter_exit_task(struct task_struct *child) | ||
3298 | { | ||
3299 | struct perf_counter *child_counter, *tmp; | ||
3300 | struct perf_counter_context *child_ctx; | ||
3301 | |||
3302 | child_ctx = &child->perf_counter_ctx; | ||
3303 | |||
3304 | if (likely(!child_ctx->nr_counters)) | ||
3305 | return; | ||
3306 | |||
3307 | again: | ||
3308 | list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list, | ||
3309 | list_entry) | ||
3310 | __perf_counter_exit_task(child, child_counter, child_ctx); | ||
3311 | |||
3312 | /* | ||
3313 | * If the last counter was a group counter, it will have appended all | ||
3314 | * its siblings to the list, but we obtained 'tmp' before that which | ||
3315 | * will still point to the list head terminating the iteration. | ||
3316 | */ | ||
3317 | if (!list_empty(&child_ctx->counter_list)) | ||
3318 | goto again; | ||
3319 | } | ||
3320 | |||
3321 | /* | ||
3322 | * Initialize the perf_counter context in task_struct | ||
3323 | */ | ||
3324 | void perf_counter_init_task(struct task_struct *child) | ||
3325 | { | ||
3326 | struct perf_counter_context *child_ctx, *parent_ctx; | ||
3327 | struct perf_counter *counter; | ||
3328 | struct task_struct *parent = current; | ||
3329 | |||
3330 | child_ctx = &child->perf_counter_ctx; | ||
3331 | parent_ctx = &parent->perf_counter_ctx; | ||
3332 | |||
3333 | __perf_counter_init_context(child_ctx, child); | ||
3334 | |||
3335 | /* | ||
3336 | * This is executed from the parent task context, so inherit | ||
3337 | * counters that have been marked for cloning: | ||
3338 | */ | ||
3339 | |||
3340 | if (likely(!parent_ctx->nr_counters)) | ||
3341 | return; | ||
3342 | |||
3343 | /* | ||
3344 | * Lock the parent list. No need to lock the child - not PID | ||
3345 | * hashed yet and not running, so nobody can access it. | ||
3346 | */ | ||
3347 | mutex_lock(&parent_ctx->mutex); | ||
3348 | |||
3349 | /* | ||
3350 | * We dont have to disable NMIs - we are only looking at | ||
3351 | * the list, not manipulating it: | ||
3352 | */ | ||
3353 | list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) { | ||
3354 | if (!counter->hw_event.inherit) | ||
3355 | continue; | ||
3356 | |||
3357 | if (inherit_group(counter, parent, | ||
3358 | parent_ctx, child, child_ctx)) | ||
3359 | break; | ||
3360 | } | ||
3361 | |||
3362 | mutex_unlock(&parent_ctx->mutex); | ||
3363 | } | ||
3364 | |||
3365 | static void __cpuinit perf_counter_init_cpu(int cpu) | ||
3366 | { | ||
3367 | struct perf_cpu_context *cpuctx; | ||
3368 | |||
3369 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
3370 | __perf_counter_init_context(&cpuctx->ctx, NULL); | ||
3371 | |||
3372 | spin_lock(&perf_resource_lock); | ||
3373 | cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu; | ||
3374 | spin_unlock(&perf_resource_lock); | ||
3375 | |||
3376 | hw_perf_counter_setup(cpu); | ||
3377 | } | ||
3378 | |||
3379 | #ifdef CONFIG_HOTPLUG_CPU | ||
3380 | static void __perf_counter_exit_cpu(void *info) | ||
3381 | { | ||
3382 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
3383 | struct perf_counter_context *ctx = &cpuctx->ctx; | ||
3384 | struct perf_counter *counter, *tmp; | ||
3385 | |||
3386 | list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) | ||
3387 | __perf_counter_remove_from_context(counter); | ||
3388 | } | ||
3389 | static void perf_counter_exit_cpu(int cpu) | ||
3390 | { | ||
3391 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
3392 | struct perf_counter_context *ctx = &cpuctx->ctx; | ||
3393 | |||
3394 | mutex_lock(&ctx->mutex); | ||
3395 | smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1); | ||
3396 | mutex_unlock(&ctx->mutex); | ||
3397 | } | ||
3398 | #else | ||
3399 | static inline void perf_counter_exit_cpu(int cpu) { } | ||
3400 | #endif | ||
3401 | |||
3402 | static int __cpuinit | ||
3403 | perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) | ||
3404 | { | ||
3405 | unsigned int cpu = (long)hcpu; | ||
3406 | |||
3407 | switch (action) { | ||
3408 | |||
3409 | case CPU_UP_PREPARE: | ||
3410 | case CPU_UP_PREPARE_FROZEN: | ||
3411 | perf_counter_init_cpu(cpu); | ||
3412 | break; | ||
3413 | |||
3414 | case CPU_DOWN_PREPARE: | ||
3415 | case CPU_DOWN_PREPARE_FROZEN: | ||
3416 | perf_counter_exit_cpu(cpu); | ||
3417 | break; | ||
3418 | |||
3419 | default: | ||
3420 | break; | ||
3421 | } | ||
3422 | |||
3423 | return NOTIFY_OK; | ||
3424 | } | ||
3425 | |||
3426 | static struct notifier_block __cpuinitdata perf_cpu_nb = { | ||
3427 | .notifier_call = perf_cpu_notify, | ||
3428 | }; | ||
3429 | |||
3430 | void __init perf_counter_init(void) | ||
3431 | { | ||
3432 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE, | ||
3433 | (void *)(long)smp_processor_id()); | ||
3434 | register_cpu_notifier(&perf_cpu_nb); | ||
3435 | } | ||
3436 | |||
3437 | static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf) | ||
3438 | { | ||
3439 | return sprintf(buf, "%d\n", perf_reserved_percpu); | ||
3440 | } | ||
3441 | |||
3442 | static ssize_t | ||
3443 | perf_set_reserve_percpu(struct sysdev_class *class, | ||
3444 | const char *buf, | ||
3445 | size_t count) | ||
3446 | { | ||
3447 | struct perf_cpu_context *cpuctx; | ||
3448 | unsigned long val; | ||
3449 | int err, cpu, mpt; | ||
3450 | |||
3451 | err = strict_strtoul(buf, 10, &val); | ||
3452 | if (err) | ||
3453 | return err; | ||
3454 | if (val > perf_max_counters) | ||
3455 | return -EINVAL; | ||
3456 | |||
3457 | spin_lock(&perf_resource_lock); | ||
3458 | perf_reserved_percpu = val; | ||
3459 | for_each_online_cpu(cpu) { | ||
3460 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
3461 | spin_lock_irq(&cpuctx->ctx.lock); | ||
3462 | mpt = min(perf_max_counters - cpuctx->ctx.nr_counters, | ||
3463 | perf_max_counters - perf_reserved_percpu); | ||
3464 | cpuctx->max_pertask = mpt; | ||
3465 | spin_unlock_irq(&cpuctx->ctx.lock); | ||
3466 | } | ||
3467 | spin_unlock(&perf_resource_lock); | ||
3468 | |||
3469 | return count; | ||
3470 | } | ||
3471 | |||
3472 | static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf) | ||
3473 | { | ||
3474 | return sprintf(buf, "%d\n", perf_overcommit); | ||
3475 | } | ||
3476 | |||
3477 | static ssize_t | ||
3478 | perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count) | ||
3479 | { | ||
3480 | unsigned long val; | ||
3481 | int err; | ||
3482 | |||
3483 | err = strict_strtoul(buf, 10, &val); | ||
3484 | if (err) | ||
3485 | return err; | ||
3486 | if (val > 1) | ||
3487 | return -EINVAL; | ||
3488 | |||
3489 | spin_lock(&perf_resource_lock); | ||
3490 | perf_overcommit = val; | ||
3491 | spin_unlock(&perf_resource_lock); | ||
3492 | |||
3493 | return count; | ||
3494 | } | ||
3495 | |||
3496 | static SYSDEV_CLASS_ATTR( | ||
3497 | reserve_percpu, | ||
3498 | 0644, | ||
3499 | perf_show_reserve_percpu, | ||
3500 | perf_set_reserve_percpu | ||
3501 | ); | ||
3502 | |||
3503 | static SYSDEV_CLASS_ATTR( | ||
3504 | overcommit, | ||
3505 | 0644, | ||
3506 | perf_show_overcommit, | ||
3507 | perf_set_overcommit | ||
3508 | ); | ||
3509 | |||
3510 | static struct attribute *perfclass_attrs[] = { | ||
3511 | &attr_reserve_percpu.attr, | ||
3512 | &attr_overcommit.attr, | ||
3513 | NULL | ||
3514 | }; | ||
3515 | |||
3516 | static struct attribute_group perfclass_attr_group = { | ||
3517 | .attrs = perfclass_attrs, | ||
3518 | .name = "perf_counters", | ||
3519 | }; | ||
3520 | |||
3521 | static int __init perf_counter_sysfs_init(void) | ||
3522 | { | ||
3523 | return sysfs_create_group(&cpu_sysdev_class.kset.kobj, | ||
3524 | &perfclass_attr_group); | ||
3525 | } | ||
3526 | device_initcall(perf_counter_sysfs_init); | ||