diff options
Diffstat (limited to 'kernel/locking/osq_lock.c')
| -rw-r--r-- | kernel/locking/osq_lock.c | 203 |
1 files changed, 203 insertions, 0 deletions
diff --git a/kernel/locking/osq_lock.c b/kernel/locking/osq_lock.c new file mode 100644 index 000000000000..c112d00341b0 --- /dev/null +++ b/kernel/locking/osq_lock.c | |||
| @@ -0,0 +1,203 @@ | |||
| 1 | #include <linux/percpu.h> | ||
| 2 | #include <linux/sched.h> | ||
| 3 | #include <linux/osq_lock.h> | ||
| 4 | |||
| 5 | /* | ||
| 6 | * An MCS like lock especially tailored for optimistic spinning for sleeping | ||
| 7 | * lock implementations (mutex, rwsem, etc). | ||
| 8 | * | ||
| 9 | * Using a single mcs node per CPU is safe because sleeping locks should not be | ||
| 10 | * called from interrupt context and we have preemption disabled while | ||
| 11 | * spinning. | ||
| 12 | */ | ||
| 13 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct optimistic_spin_node, osq_node); | ||
| 14 | |||
| 15 | /* | ||
| 16 | * We use the value 0 to represent "no CPU", thus the encoded value | ||
| 17 | * will be the CPU number incremented by 1. | ||
| 18 | */ | ||
| 19 | static inline int encode_cpu(int cpu_nr) | ||
| 20 | { | ||
| 21 | return cpu_nr + 1; | ||
| 22 | } | ||
| 23 | |||
| 24 | static inline struct optimistic_spin_node *decode_cpu(int encoded_cpu_val) | ||
| 25 | { | ||
| 26 | int cpu_nr = encoded_cpu_val - 1; | ||
| 27 | |||
| 28 | return per_cpu_ptr(&osq_node, cpu_nr); | ||
| 29 | } | ||
| 30 | |||
| 31 | /* | ||
| 32 | * Get a stable @node->next pointer, either for unlock() or unqueue() purposes. | ||
| 33 | * Can return NULL in case we were the last queued and we updated @lock instead. | ||
| 34 | */ | ||
| 35 | static inline struct optimistic_spin_node * | ||
| 36 | osq_wait_next(struct optimistic_spin_queue *lock, | ||
| 37 | struct optimistic_spin_node *node, | ||
| 38 | struct optimistic_spin_node *prev) | ||
| 39 | { | ||
| 40 | struct optimistic_spin_node *next = NULL; | ||
| 41 | int curr = encode_cpu(smp_processor_id()); | ||
| 42 | int old; | ||
| 43 | |||
| 44 | /* | ||
| 45 | * If there is a prev node in queue, then the 'old' value will be | ||
| 46 | * the prev node's CPU #, else it's set to OSQ_UNLOCKED_VAL since if | ||
| 47 | * we're currently last in queue, then the queue will then become empty. | ||
| 48 | */ | ||
| 49 | old = prev ? prev->cpu : OSQ_UNLOCKED_VAL; | ||
| 50 | |||
| 51 | for (;;) { | ||
| 52 | if (atomic_read(&lock->tail) == curr && | ||
| 53 | atomic_cmpxchg(&lock->tail, curr, old) == curr) { | ||
| 54 | /* | ||
| 55 | * We were the last queued, we moved @lock back. @prev | ||
| 56 | * will now observe @lock and will complete its | ||
| 57 | * unlock()/unqueue(). | ||
| 58 | */ | ||
| 59 | break; | ||
| 60 | } | ||
| 61 | |||
| 62 | /* | ||
| 63 | * We must xchg() the @node->next value, because if we were to | ||
| 64 | * leave it in, a concurrent unlock()/unqueue() from | ||
| 65 | * @node->next might complete Step-A and think its @prev is | ||
| 66 | * still valid. | ||
| 67 | * | ||
| 68 | * If the concurrent unlock()/unqueue() wins the race, we'll | ||
| 69 | * wait for either @lock to point to us, through its Step-B, or | ||
| 70 | * wait for a new @node->next from its Step-C. | ||
| 71 | */ | ||
| 72 | if (node->next) { | ||
| 73 | next = xchg(&node->next, NULL); | ||
| 74 | if (next) | ||
| 75 | break; | ||
| 76 | } | ||
| 77 | |||
| 78 | cpu_relax_lowlatency(); | ||
| 79 | } | ||
| 80 | |||
| 81 | return next; | ||
| 82 | } | ||
| 83 | |||
| 84 | bool osq_lock(struct optimistic_spin_queue *lock) | ||
| 85 | { | ||
| 86 | struct optimistic_spin_node *node = this_cpu_ptr(&osq_node); | ||
| 87 | struct optimistic_spin_node *prev, *next; | ||
| 88 | int curr = encode_cpu(smp_processor_id()); | ||
| 89 | int old; | ||
| 90 | |||
| 91 | node->locked = 0; | ||
| 92 | node->next = NULL; | ||
| 93 | node->cpu = curr; | ||
| 94 | |||
| 95 | old = atomic_xchg(&lock->tail, curr); | ||
| 96 | if (old == OSQ_UNLOCKED_VAL) | ||
| 97 | return true; | ||
| 98 | |||
| 99 | prev = decode_cpu(old); | ||
| 100 | node->prev = prev; | ||
| 101 | ACCESS_ONCE(prev->next) = node; | ||
| 102 | |||
| 103 | /* | ||
| 104 | * Normally @prev is untouchable after the above store; because at that | ||
| 105 | * moment unlock can proceed and wipe the node element from stack. | ||
| 106 | * | ||
| 107 | * However, since our nodes are static per-cpu storage, we're | ||
| 108 | * guaranteed their existence -- this allows us to apply | ||
| 109 | * cmpxchg in an attempt to undo our queueing. | ||
| 110 | */ | ||
| 111 | |||
| 112 | while (!ACCESS_ONCE(node->locked)) { | ||
| 113 | /* | ||
| 114 | * If we need to reschedule bail... so we can block. | ||
| 115 | */ | ||
| 116 | if (need_resched()) | ||
| 117 | goto unqueue; | ||
| 118 | |||
| 119 | cpu_relax_lowlatency(); | ||
| 120 | } | ||
| 121 | return true; | ||
| 122 | |||
| 123 | unqueue: | ||
| 124 | /* | ||
| 125 | * Step - A -- stabilize @prev | ||
| 126 | * | ||
| 127 | * Undo our @prev->next assignment; this will make @prev's | ||
| 128 | * unlock()/unqueue() wait for a next pointer since @lock points to us | ||
| 129 | * (or later). | ||
| 130 | */ | ||
| 131 | |||
| 132 | for (;;) { | ||
| 133 | if (prev->next == node && | ||
| 134 | cmpxchg(&prev->next, node, NULL) == node) | ||
| 135 | break; | ||
| 136 | |||
| 137 | /* | ||
| 138 | * We can only fail the cmpxchg() racing against an unlock(), | ||
| 139 | * in which case we should observe @node->locked becomming | ||
| 140 | * true. | ||
| 141 | */ | ||
| 142 | if (smp_load_acquire(&node->locked)) | ||
| 143 | return true; | ||
| 144 | |||
| 145 | cpu_relax_lowlatency(); | ||
| 146 | |||
| 147 | /* | ||
| 148 | * Or we race against a concurrent unqueue()'s step-B, in which | ||
| 149 | * case its step-C will write us a new @node->prev pointer. | ||
| 150 | */ | ||
| 151 | prev = ACCESS_ONCE(node->prev); | ||
| 152 | } | ||
| 153 | |||
| 154 | /* | ||
| 155 | * Step - B -- stabilize @next | ||
| 156 | * | ||
| 157 | * Similar to unlock(), wait for @node->next or move @lock from @node | ||
| 158 | * back to @prev. | ||
| 159 | */ | ||
| 160 | |||
| 161 | next = osq_wait_next(lock, node, prev); | ||
| 162 | if (!next) | ||
| 163 | return false; | ||
| 164 | |||
| 165 | /* | ||
| 166 | * Step - C -- unlink | ||
| 167 | * | ||
| 168 | * @prev is stable because its still waiting for a new @prev->next | ||
| 169 | * pointer, @next is stable because our @node->next pointer is NULL and | ||
| 170 | * it will wait in Step-A. | ||
| 171 | */ | ||
| 172 | |||
| 173 | ACCESS_ONCE(next->prev) = prev; | ||
| 174 | ACCESS_ONCE(prev->next) = next; | ||
| 175 | |||
| 176 | return false; | ||
| 177 | } | ||
| 178 | |||
| 179 | void osq_unlock(struct optimistic_spin_queue *lock) | ||
| 180 | { | ||
| 181 | struct optimistic_spin_node *node, *next; | ||
| 182 | int curr = encode_cpu(smp_processor_id()); | ||
| 183 | |||
| 184 | /* | ||
| 185 | * Fast path for the uncontended case. | ||
| 186 | */ | ||
| 187 | if (likely(atomic_cmpxchg(&lock->tail, curr, OSQ_UNLOCKED_VAL) == curr)) | ||
| 188 | return; | ||
| 189 | |||
| 190 | /* | ||
| 191 | * Second most likely case. | ||
| 192 | */ | ||
| 193 | node = this_cpu_ptr(&osq_node); | ||
| 194 | next = xchg(&node->next, NULL); | ||
| 195 | if (next) { | ||
| 196 | ACCESS_ONCE(next->locked) = 1; | ||
| 197 | return; | ||
| 198 | } | ||
| 199 | |||
| 200 | next = osq_wait_next(lock, node, NULL); | ||
| 201 | if (next) | ||
| 202 | ACCESS_ONCE(next->locked) = 1; | ||
| 203 | } | ||
