aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/kexec.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/kexec.c')
-rw-r--r--kernel/kexec.c1063
1 files changed, 1063 insertions, 0 deletions
diff --git a/kernel/kexec.c b/kernel/kexec.c
new file mode 100644
index 000000000000..cdd4dcd8fb63
--- /dev/null
+++ b/kernel/kexec.c
@@ -0,0 +1,1063 @@
1/*
2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8
9#include <linux/mm.h>
10#include <linux/file.h>
11#include <linux/slab.h>
12#include <linux/fs.h>
13#include <linux/kexec.h>
14#include <linux/spinlock.h>
15#include <linux/list.h>
16#include <linux/highmem.h>
17#include <linux/syscalls.h>
18#include <linux/reboot.h>
19#include <linux/syscalls.h>
20#include <linux/ioport.h>
21#include <linux/hardirq.h>
22
23#include <asm/page.h>
24#include <asm/uaccess.h>
25#include <asm/io.h>
26#include <asm/system.h>
27#include <asm/semaphore.h>
28
29/* Location of the reserved area for the crash kernel */
30struct resource crashk_res = {
31 .name = "Crash kernel",
32 .start = 0,
33 .end = 0,
34 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
35};
36
37int kexec_should_crash(struct task_struct *p)
38{
39 if (in_interrupt() || !p->pid || p->pid == 1 || panic_on_oops)
40 return 1;
41 return 0;
42}
43
44/*
45 * When kexec transitions to the new kernel there is a one-to-one
46 * mapping between physical and virtual addresses. On processors
47 * where you can disable the MMU this is trivial, and easy. For
48 * others it is still a simple predictable page table to setup.
49 *
50 * In that environment kexec copies the new kernel to its final
51 * resting place. This means I can only support memory whose
52 * physical address can fit in an unsigned long. In particular
53 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
54 * If the assembly stub has more restrictive requirements
55 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
56 * defined more restrictively in <asm/kexec.h>.
57 *
58 * The code for the transition from the current kernel to the
59 * the new kernel is placed in the control_code_buffer, whose size
60 * is given by KEXEC_CONTROL_CODE_SIZE. In the best case only a single
61 * page of memory is necessary, but some architectures require more.
62 * Because this memory must be identity mapped in the transition from
63 * virtual to physical addresses it must live in the range
64 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
65 * modifiable.
66 *
67 * The assembly stub in the control code buffer is passed a linked list
68 * of descriptor pages detailing the source pages of the new kernel,
69 * and the destination addresses of those source pages. As this data
70 * structure is not used in the context of the current OS, it must
71 * be self-contained.
72 *
73 * The code has been made to work with highmem pages and will use a
74 * destination page in its final resting place (if it happens
75 * to allocate it). The end product of this is that most of the
76 * physical address space, and most of RAM can be used.
77 *
78 * Future directions include:
79 * - allocating a page table with the control code buffer identity
80 * mapped, to simplify machine_kexec and make kexec_on_panic more
81 * reliable.
82 */
83
84/*
85 * KIMAGE_NO_DEST is an impossible destination address..., for
86 * allocating pages whose destination address we do not care about.
87 */
88#define KIMAGE_NO_DEST (-1UL)
89
90static int kimage_is_destination_range(struct kimage *image,
91 unsigned long start, unsigned long end);
92static struct page *kimage_alloc_page(struct kimage *image,
93 unsigned int gfp_mask,
94 unsigned long dest);
95
96static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
97 unsigned long nr_segments,
98 struct kexec_segment __user *segments)
99{
100 size_t segment_bytes;
101 struct kimage *image;
102 unsigned long i;
103 int result;
104
105 /* Allocate a controlling structure */
106 result = -ENOMEM;
107 image = kmalloc(sizeof(*image), GFP_KERNEL);
108 if (!image)
109 goto out;
110
111 memset(image, 0, sizeof(*image));
112 image->head = 0;
113 image->entry = &image->head;
114 image->last_entry = &image->head;
115 image->control_page = ~0; /* By default this does not apply */
116 image->start = entry;
117 image->type = KEXEC_TYPE_DEFAULT;
118
119 /* Initialize the list of control pages */
120 INIT_LIST_HEAD(&image->control_pages);
121
122 /* Initialize the list of destination pages */
123 INIT_LIST_HEAD(&image->dest_pages);
124
125 /* Initialize the list of unuseable pages */
126 INIT_LIST_HEAD(&image->unuseable_pages);
127
128 /* Read in the segments */
129 image->nr_segments = nr_segments;
130 segment_bytes = nr_segments * sizeof(*segments);
131 result = copy_from_user(image->segment, segments, segment_bytes);
132 if (result)
133 goto out;
134
135 /*
136 * Verify we have good destination addresses. The caller is
137 * responsible for making certain we don't attempt to load
138 * the new image into invalid or reserved areas of RAM. This
139 * just verifies it is an address we can use.
140 *
141 * Since the kernel does everything in page size chunks ensure
142 * the destination addreses are page aligned. Too many
143 * special cases crop of when we don't do this. The most
144 * insidious is getting overlapping destination addresses
145 * simply because addresses are changed to page size
146 * granularity.
147 */
148 result = -EADDRNOTAVAIL;
149 for (i = 0; i < nr_segments; i++) {
150 unsigned long mstart, mend;
151
152 mstart = image->segment[i].mem;
153 mend = mstart + image->segment[i].memsz;
154 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
155 goto out;
156 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
157 goto out;
158 }
159
160 /* Verify our destination addresses do not overlap.
161 * If we alloed overlapping destination addresses
162 * through very weird things can happen with no
163 * easy explanation as one segment stops on another.
164 */
165 result = -EINVAL;
166 for (i = 0; i < nr_segments; i++) {
167 unsigned long mstart, mend;
168 unsigned long j;
169
170 mstart = image->segment[i].mem;
171 mend = mstart + image->segment[i].memsz;
172 for (j = 0; j < i; j++) {
173 unsigned long pstart, pend;
174 pstart = image->segment[j].mem;
175 pend = pstart + image->segment[j].memsz;
176 /* Do the segments overlap ? */
177 if ((mend > pstart) && (mstart < pend))
178 goto out;
179 }
180 }
181
182 /* Ensure our buffer sizes are strictly less than
183 * our memory sizes. This should always be the case,
184 * and it is easier to check up front than to be surprised
185 * later on.
186 */
187 result = -EINVAL;
188 for (i = 0; i < nr_segments; i++) {
189 if (image->segment[i].bufsz > image->segment[i].memsz)
190 goto out;
191 }
192
193 result = 0;
194out:
195 if (result == 0)
196 *rimage = image;
197 else
198 kfree(image);
199
200 return result;
201
202}
203
204static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
205 unsigned long nr_segments,
206 struct kexec_segment __user *segments)
207{
208 int result;
209 struct kimage *image;
210
211 /* Allocate and initialize a controlling structure */
212 image = NULL;
213 result = do_kimage_alloc(&image, entry, nr_segments, segments);
214 if (result)
215 goto out;
216
217 *rimage = image;
218
219 /*
220 * Find a location for the control code buffer, and add it
221 * the vector of segments so that it's pages will also be
222 * counted as destination pages.
223 */
224 result = -ENOMEM;
225 image->control_code_page = kimage_alloc_control_pages(image,
226 get_order(KEXEC_CONTROL_CODE_SIZE));
227 if (!image->control_code_page) {
228 printk(KERN_ERR "Could not allocate control_code_buffer\n");
229 goto out;
230 }
231
232 result = 0;
233 out:
234 if (result == 0)
235 *rimage = image;
236 else
237 kfree(image);
238
239 return result;
240}
241
242static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
243 unsigned long nr_segments,
244 struct kexec_segment __user *segments)
245{
246 int result;
247 struct kimage *image;
248 unsigned long i;
249
250 image = NULL;
251 /* Verify we have a valid entry point */
252 if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
253 result = -EADDRNOTAVAIL;
254 goto out;
255 }
256
257 /* Allocate and initialize a controlling structure */
258 result = do_kimage_alloc(&image, entry, nr_segments, segments);
259 if (result)
260 goto out;
261
262 /* Enable the special crash kernel control page
263 * allocation policy.
264 */
265 image->control_page = crashk_res.start;
266 image->type = KEXEC_TYPE_CRASH;
267
268 /*
269 * Verify we have good destination addresses. Normally
270 * the caller is responsible for making certain we don't
271 * attempt to load the new image into invalid or reserved
272 * areas of RAM. But crash kernels are preloaded into a
273 * reserved area of ram. We must ensure the addresses
274 * are in the reserved area otherwise preloading the
275 * kernel could corrupt things.
276 */
277 result = -EADDRNOTAVAIL;
278 for (i = 0; i < nr_segments; i++) {
279 unsigned long mstart, mend;
280
281 mstart = image->segment[i].mem;
282 mend = mstart + image->segment[i].memsz - 1;
283 /* Ensure we are within the crash kernel limits */
284 if ((mstart < crashk_res.start) || (mend > crashk_res.end))
285 goto out;
286 }
287
288 /*
289 * Find a location for the control code buffer, and add
290 * the vector of segments so that it's pages will also be
291 * counted as destination pages.
292 */
293 result = -ENOMEM;
294 image->control_code_page = kimage_alloc_control_pages(image,
295 get_order(KEXEC_CONTROL_CODE_SIZE));
296 if (!image->control_code_page) {
297 printk(KERN_ERR "Could not allocate control_code_buffer\n");
298 goto out;
299 }
300
301 result = 0;
302out:
303 if (result == 0)
304 *rimage = image;
305 else
306 kfree(image);
307
308 return result;
309}
310
311static int kimage_is_destination_range(struct kimage *image,
312 unsigned long start,
313 unsigned long end)
314{
315 unsigned long i;
316
317 for (i = 0; i < image->nr_segments; i++) {
318 unsigned long mstart, mend;
319
320 mstart = image->segment[i].mem;
321 mend = mstart + image->segment[i].memsz;
322 if ((end > mstart) && (start < mend))
323 return 1;
324 }
325
326 return 0;
327}
328
329static struct page *kimage_alloc_pages(unsigned int gfp_mask,
330 unsigned int order)
331{
332 struct page *pages;
333
334 pages = alloc_pages(gfp_mask, order);
335 if (pages) {
336 unsigned int count, i;
337 pages->mapping = NULL;
338 pages->private = order;
339 count = 1 << order;
340 for (i = 0; i < count; i++)
341 SetPageReserved(pages + i);
342 }
343
344 return pages;
345}
346
347static void kimage_free_pages(struct page *page)
348{
349 unsigned int order, count, i;
350
351 order = page->private;
352 count = 1 << order;
353 for (i = 0; i < count; i++)
354 ClearPageReserved(page + i);
355 __free_pages(page, order);
356}
357
358static void kimage_free_page_list(struct list_head *list)
359{
360 struct list_head *pos, *next;
361
362 list_for_each_safe(pos, next, list) {
363 struct page *page;
364
365 page = list_entry(pos, struct page, lru);
366 list_del(&page->lru);
367 kimage_free_pages(page);
368 }
369}
370
371static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
372 unsigned int order)
373{
374 /* Control pages are special, they are the intermediaries
375 * that are needed while we copy the rest of the pages
376 * to their final resting place. As such they must
377 * not conflict with either the destination addresses
378 * or memory the kernel is already using.
379 *
380 * The only case where we really need more than one of
381 * these are for architectures where we cannot disable
382 * the MMU and must instead generate an identity mapped
383 * page table for all of the memory.
384 *
385 * At worst this runs in O(N) of the image size.
386 */
387 struct list_head extra_pages;
388 struct page *pages;
389 unsigned int count;
390
391 count = 1 << order;
392 INIT_LIST_HEAD(&extra_pages);
393
394 /* Loop while I can allocate a page and the page allocated
395 * is a destination page.
396 */
397 do {
398 unsigned long pfn, epfn, addr, eaddr;
399
400 pages = kimage_alloc_pages(GFP_KERNEL, order);
401 if (!pages)
402 break;
403 pfn = page_to_pfn(pages);
404 epfn = pfn + count;
405 addr = pfn << PAGE_SHIFT;
406 eaddr = epfn << PAGE_SHIFT;
407 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
408 kimage_is_destination_range(image, addr, eaddr)) {
409 list_add(&pages->lru, &extra_pages);
410 pages = NULL;
411 }
412 } while (!pages);
413
414 if (pages) {
415 /* Remember the allocated page... */
416 list_add(&pages->lru, &image->control_pages);
417
418 /* Because the page is already in it's destination
419 * location we will never allocate another page at
420 * that address. Therefore kimage_alloc_pages
421 * will not return it (again) and we don't need
422 * to give it an entry in image->segment[].
423 */
424 }
425 /* Deal with the destination pages I have inadvertently allocated.
426 *
427 * Ideally I would convert multi-page allocations into single
428 * page allocations, and add everyting to image->dest_pages.
429 *
430 * For now it is simpler to just free the pages.
431 */
432 kimage_free_page_list(&extra_pages);
433
434 return pages;
435}
436
437static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
438 unsigned int order)
439{
440 /* Control pages are special, they are the intermediaries
441 * that are needed while we copy the rest of the pages
442 * to their final resting place. As such they must
443 * not conflict with either the destination addresses
444 * or memory the kernel is already using.
445 *
446 * Control pages are also the only pags we must allocate
447 * when loading a crash kernel. All of the other pages
448 * are specified by the segments and we just memcpy
449 * into them directly.
450 *
451 * The only case where we really need more than one of
452 * these are for architectures where we cannot disable
453 * the MMU and must instead generate an identity mapped
454 * page table for all of the memory.
455 *
456 * Given the low demand this implements a very simple
457 * allocator that finds the first hole of the appropriate
458 * size in the reserved memory region, and allocates all
459 * of the memory up to and including the hole.
460 */
461 unsigned long hole_start, hole_end, size;
462 struct page *pages;
463
464 pages = NULL;
465 size = (1 << order) << PAGE_SHIFT;
466 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
467 hole_end = hole_start + size - 1;
468 while (hole_end <= crashk_res.end) {
469 unsigned long i;
470
471 if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT)
472 break;
473 if (hole_end > crashk_res.end)
474 break;
475 /* See if I overlap any of the segments */
476 for (i = 0; i < image->nr_segments; i++) {
477 unsigned long mstart, mend;
478
479 mstart = image->segment[i].mem;
480 mend = mstart + image->segment[i].memsz - 1;
481 if ((hole_end >= mstart) && (hole_start <= mend)) {
482 /* Advance the hole to the end of the segment */
483 hole_start = (mend + (size - 1)) & ~(size - 1);
484 hole_end = hole_start + size - 1;
485 break;
486 }
487 }
488 /* If I don't overlap any segments I have found my hole! */
489 if (i == image->nr_segments) {
490 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
491 break;
492 }
493 }
494 if (pages)
495 image->control_page = hole_end;
496
497 return pages;
498}
499
500
501struct page *kimage_alloc_control_pages(struct kimage *image,
502 unsigned int order)
503{
504 struct page *pages = NULL;
505
506 switch (image->type) {
507 case KEXEC_TYPE_DEFAULT:
508 pages = kimage_alloc_normal_control_pages(image, order);
509 break;
510 case KEXEC_TYPE_CRASH:
511 pages = kimage_alloc_crash_control_pages(image, order);
512 break;
513 }
514
515 return pages;
516}
517
518static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
519{
520 if (*image->entry != 0)
521 image->entry++;
522
523 if (image->entry == image->last_entry) {
524 kimage_entry_t *ind_page;
525 struct page *page;
526
527 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
528 if (!page)
529 return -ENOMEM;
530
531 ind_page = page_address(page);
532 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
533 image->entry = ind_page;
534 image->last_entry = ind_page +
535 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
536 }
537 *image->entry = entry;
538 image->entry++;
539 *image->entry = 0;
540
541 return 0;
542}
543
544static int kimage_set_destination(struct kimage *image,
545 unsigned long destination)
546{
547 int result;
548
549 destination &= PAGE_MASK;
550 result = kimage_add_entry(image, destination | IND_DESTINATION);
551 if (result == 0)
552 image->destination = destination;
553
554 return result;
555}
556
557
558static int kimage_add_page(struct kimage *image, unsigned long page)
559{
560 int result;
561
562 page &= PAGE_MASK;
563 result = kimage_add_entry(image, page | IND_SOURCE);
564 if (result == 0)
565 image->destination += PAGE_SIZE;
566
567 return result;
568}
569
570
571static void kimage_free_extra_pages(struct kimage *image)
572{
573 /* Walk through and free any extra destination pages I may have */
574 kimage_free_page_list(&image->dest_pages);
575
576 /* Walk through and free any unuseable pages I have cached */
577 kimage_free_page_list(&image->unuseable_pages);
578
579}
580static int kimage_terminate(struct kimage *image)
581{
582 if (*image->entry != 0)
583 image->entry++;
584
585 *image->entry = IND_DONE;
586
587 return 0;
588}
589
590#define for_each_kimage_entry(image, ptr, entry) \
591 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
592 ptr = (entry & IND_INDIRECTION)? \
593 phys_to_virt((entry & PAGE_MASK)): ptr +1)
594
595static void kimage_free_entry(kimage_entry_t entry)
596{
597 struct page *page;
598
599 page = pfn_to_page(entry >> PAGE_SHIFT);
600 kimage_free_pages(page);
601}
602
603static void kimage_free(struct kimage *image)
604{
605 kimage_entry_t *ptr, entry;
606 kimage_entry_t ind = 0;
607
608 if (!image)
609 return;
610
611 kimage_free_extra_pages(image);
612 for_each_kimage_entry(image, ptr, entry) {
613 if (entry & IND_INDIRECTION) {
614 /* Free the previous indirection page */
615 if (ind & IND_INDIRECTION)
616 kimage_free_entry(ind);
617 /* Save this indirection page until we are
618 * done with it.
619 */
620 ind = entry;
621 }
622 else if (entry & IND_SOURCE)
623 kimage_free_entry(entry);
624 }
625 /* Free the final indirection page */
626 if (ind & IND_INDIRECTION)
627 kimage_free_entry(ind);
628
629 /* Handle any machine specific cleanup */
630 machine_kexec_cleanup(image);
631
632 /* Free the kexec control pages... */
633 kimage_free_page_list(&image->control_pages);
634 kfree(image);
635}
636
637static kimage_entry_t *kimage_dst_used(struct kimage *image,
638 unsigned long page)
639{
640 kimage_entry_t *ptr, entry;
641 unsigned long destination = 0;
642
643 for_each_kimage_entry(image, ptr, entry) {
644 if (entry & IND_DESTINATION)
645 destination = entry & PAGE_MASK;
646 else if (entry & IND_SOURCE) {
647 if (page == destination)
648 return ptr;
649 destination += PAGE_SIZE;
650 }
651 }
652
653 return NULL;
654}
655
656static struct page *kimage_alloc_page(struct kimage *image,
657 unsigned int gfp_mask,
658 unsigned long destination)
659{
660 /*
661 * Here we implement safeguards to ensure that a source page
662 * is not copied to its destination page before the data on
663 * the destination page is no longer useful.
664 *
665 * To do this we maintain the invariant that a source page is
666 * either its own destination page, or it is not a
667 * destination page at all.
668 *
669 * That is slightly stronger than required, but the proof
670 * that no problems will not occur is trivial, and the
671 * implementation is simply to verify.
672 *
673 * When allocating all pages normally this algorithm will run
674 * in O(N) time, but in the worst case it will run in O(N^2)
675 * time. If the runtime is a problem the data structures can
676 * be fixed.
677 */
678 struct page *page;
679 unsigned long addr;
680
681 /*
682 * Walk through the list of destination pages, and see if I
683 * have a match.
684 */
685 list_for_each_entry(page, &image->dest_pages, lru) {
686 addr = page_to_pfn(page) << PAGE_SHIFT;
687 if (addr == destination) {
688 list_del(&page->lru);
689 return page;
690 }
691 }
692 page = NULL;
693 while (1) {
694 kimage_entry_t *old;
695
696 /* Allocate a page, if we run out of memory give up */
697 page = kimage_alloc_pages(gfp_mask, 0);
698 if (!page)
699 return NULL;
700 /* If the page cannot be used file it away */
701 if (page_to_pfn(page) >
702 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
703 list_add(&page->lru, &image->unuseable_pages);
704 continue;
705 }
706 addr = page_to_pfn(page) << PAGE_SHIFT;
707
708 /* If it is the destination page we want use it */
709 if (addr == destination)
710 break;
711
712 /* If the page is not a destination page use it */
713 if (!kimage_is_destination_range(image, addr,
714 addr + PAGE_SIZE))
715 break;
716
717 /*
718 * I know that the page is someones destination page.
719 * See if there is already a source page for this
720 * destination page. And if so swap the source pages.
721 */
722 old = kimage_dst_used(image, addr);
723 if (old) {
724 /* If so move it */
725 unsigned long old_addr;
726 struct page *old_page;
727
728 old_addr = *old & PAGE_MASK;
729 old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
730 copy_highpage(page, old_page);
731 *old = addr | (*old & ~PAGE_MASK);
732
733 /* The old page I have found cannot be a
734 * destination page, so return it.
735 */
736 addr = old_addr;
737 page = old_page;
738 break;
739 }
740 else {
741 /* Place the page on the destination list I
742 * will use it later.
743 */
744 list_add(&page->lru, &image->dest_pages);
745 }
746 }
747
748 return page;
749}
750
751static int kimage_load_normal_segment(struct kimage *image,
752 struct kexec_segment *segment)
753{
754 unsigned long maddr;
755 unsigned long ubytes, mbytes;
756 int result;
757 unsigned char __user *buf;
758
759 result = 0;
760 buf = segment->buf;
761 ubytes = segment->bufsz;
762 mbytes = segment->memsz;
763 maddr = segment->mem;
764
765 result = kimage_set_destination(image, maddr);
766 if (result < 0)
767 goto out;
768
769 while (mbytes) {
770 struct page *page;
771 char *ptr;
772 size_t uchunk, mchunk;
773
774 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
775 if (page == 0) {
776 result = -ENOMEM;
777 goto out;
778 }
779 result = kimage_add_page(image, page_to_pfn(page)
780 << PAGE_SHIFT);
781 if (result < 0)
782 goto out;
783
784 ptr = kmap(page);
785 /* Start with a clear page */
786 memset(ptr, 0, PAGE_SIZE);
787 ptr += maddr & ~PAGE_MASK;
788 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
789 if (mchunk > mbytes)
790 mchunk = mbytes;
791
792 uchunk = mchunk;
793 if (uchunk > ubytes)
794 uchunk = ubytes;
795
796 result = copy_from_user(ptr, buf, uchunk);
797 kunmap(page);
798 if (result) {
799 result = (result < 0) ? result : -EIO;
800 goto out;
801 }
802 ubytes -= uchunk;
803 maddr += mchunk;
804 buf += mchunk;
805 mbytes -= mchunk;
806 }
807out:
808 return result;
809}
810
811static int kimage_load_crash_segment(struct kimage *image,
812 struct kexec_segment *segment)
813{
814 /* For crash dumps kernels we simply copy the data from
815 * user space to it's destination.
816 * We do things a page at a time for the sake of kmap.
817 */
818 unsigned long maddr;
819 unsigned long ubytes, mbytes;
820 int result;
821 unsigned char __user *buf;
822
823 result = 0;
824 buf = segment->buf;
825 ubytes = segment->bufsz;
826 mbytes = segment->memsz;
827 maddr = segment->mem;
828 while (mbytes) {
829 struct page *page;
830 char *ptr;
831 size_t uchunk, mchunk;
832
833 page = pfn_to_page(maddr >> PAGE_SHIFT);
834 if (page == 0) {
835 result = -ENOMEM;
836 goto out;
837 }
838 ptr = kmap(page);
839 ptr += maddr & ~PAGE_MASK;
840 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
841 if (mchunk > mbytes)
842 mchunk = mbytes;
843
844 uchunk = mchunk;
845 if (uchunk > ubytes) {
846 uchunk = ubytes;
847 /* Zero the trailing part of the page */
848 memset(ptr + uchunk, 0, mchunk - uchunk);
849 }
850 result = copy_from_user(ptr, buf, uchunk);
851 kunmap(page);
852 if (result) {
853 result = (result < 0) ? result : -EIO;
854 goto out;
855 }
856 ubytes -= uchunk;
857 maddr += mchunk;
858 buf += mchunk;
859 mbytes -= mchunk;
860 }
861out:
862 return result;
863}
864
865static int kimage_load_segment(struct kimage *image,
866 struct kexec_segment *segment)
867{
868 int result = -ENOMEM;
869
870 switch (image->type) {
871 case KEXEC_TYPE_DEFAULT:
872 result = kimage_load_normal_segment(image, segment);
873 break;
874 case KEXEC_TYPE_CRASH:
875 result = kimage_load_crash_segment(image, segment);
876 break;
877 }
878
879 return result;
880}
881
882/*
883 * Exec Kernel system call: for obvious reasons only root may call it.
884 *
885 * This call breaks up into three pieces.
886 * - A generic part which loads the new kernel from the current
887 * address space, and very carefully places the data in the
888 * allocated pages.
889 *
890 * - A generic part that interacts with the kernel and tells all of
891 * the devices to shut down. Preventing on-going dmas, and placing
892 * the devices in a consistent state so a later kernel can
893 * reinitialize them.
894 *
895 * - A machine specific part that includes the syscall number
896 * and the copies the image to it's final destination. And
897 * jumps into the image at entry.
898 *
899 * kexec does not sync, or unmount filesystems so if you need
900 * that to happen you need to do that yourself.
901 */
902struct kimage *kexec_image = NULL;
903static struct kimage *kexec_crash_image = NULL;
904/*
905 * A home grown binary mutex.
906 * Nothing can wait so this mutex is safe to use
907 * in interrupt context :)
908 */
909static int kexec_lock = 0;
910
911asmlinkage long sys_kexec_load(unsigned long entry, unsigned long nr_segments,
912 struct kexec_segment __user *segments,
913 unsigned long flags)
914{
915 struct kimage **dest_image, *image;
916 int locked;
917 int result;
918
919 /* We only trust the superuser with rebooting the system. */
920 if (!capable(CAP_SYS_BOOT))
921 return -EPERM;
922
923 /*
924 * Verify we have a legal set of flags
925 * This leaves us room for future extensions.
926 */
927 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
928 return -EINVAL;
929
930 /* Verify we are on the appropriate architecture */
931 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
932 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
933 return -EINVAL;
934
935 /* Put an artificial cap on the number
936 * of segments passed to kexec_load.
937 */
938 if (nr_segments > KEXEC_SEGMENT_MAX)
939 return -EINVAL;
940
941 image = NULL;
942 result = 0;
943
944 /* Because we write directly to the reserved memory
945 * region when loading crash kernels we need a mutex here to
946 * prevent multiple crash kernels from attempting to load
947 * simultaneously, and to prevent a crash kernel from loading
948 * over the top of a in use crash kernel.
949 *
950 * KISS: always take the mutex.
951 */
952 locked = xchg(&kexec_lock, 1);
953 if (locked)
954 return -EBUSY;
955
956 dest_image = &kexec_image;
957 if (flags & KEXEC_ON_CRASH)
958 dest_image = &kexec_crash_image;
959 if (nr_segments > 0) {
960 unsigned long i;
961
962 /* Loading another kernel to reboot into */
963 if ((flags & KEXEC_ON_CRASH) == 0)
964 result = kimage_normal_alloc(&image, entry,
965 nr_segments, segments);
966 /* Loading another kernel to switch to if this one crashes */
967 else if (flags & KEXEC_ON_CRASH) {
968 /* Free any current crash dump kernel before
969 * we corrupt it.
970 */
971 kimage_free(xchg(&kexec_crash_image, NULL));
972 result = kimage_crash_alloc(&image, entry,
973 nr_segments, segments);
974 }
975 if (result)
976 goto out;
977
978 result = machine_kexec_prepare(image);
979 if (result)
980 goto out;
981
982 for (i = 0; i < nr_segments; i++) {
983 result = kimage_load_segment(image, &image->segment[i]);
984 if (result)
985 goto out;
986 }
987 result = kimage_terminate(image);
988 if (result)
989 goto out;
990 }
991 /* Install the new kernel, and Uninstall the old */
992 image = xchg(dest_image, image);
993
994out:
995 xchg(&kexec_lock, 0); /* Release the mutex */
996 kimage_free(image);
997
998 return result;
999}
1000
1001#ifdef CONFIG_COMPAT
1002asmlinkage long compat_sys_kexec_load(unsigned long entry,
1003 unsigned long nr_segments,
1004 struct compat_kexec_segment __user *segments,
1005 unsigned long flags)
1006{
1007 struct compat_kexec_segment in;
1008 struct kexec_segment out, __user *ksegments;
1009 unsigned long i, result;
1010
1011 /* Don't allow clients that don't understand the native
1012 * architecture to do anything.
1013 */
1014 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1015 return -EINVAL;
1016
1017 if (nr_segments > KEXEC_SEGMENT_MAX)
1018 return -EINVAL;
1019
1020 ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1021 for (i=0; i < nr_segments; i++) {
1022 result = copy_from_user(&in, &segments[i], sizeof(in));
1023 if (result)
1024 return -EFAULT;
1025
1026 out.buf = compat_ptr(in.buf);
1027 out.bufsz = in.bufsz;
1028 out.mem = in.mem;
1029 out.memsz = in.memsz;
1030
1031 result = copy_to_user(&ksegments[i], &out, sizeof(out));
1032 if (result)
1033 return -EFAULT;
1034 }
1035
1036 return sys_kexec_load(entry, nr_segments, ksegments, flags);
1037}
1038#endif
1039
1040void crash_kexec(struct pt_regs *regs)
1041{
1042 struct kimage *image;
1043 int locked;
1044
1045
1046 /* Take the kexec_lock here to prevent sys_kexec_load
1047 * running on one cpu from replacing the crash kernel
1048 * we are using after a panic on a different cpu.
1049 *
1050 * If the crash kernel was not located in a fixed area
1051 * of memory the xchg(&kexec_crash_image) would be
1052 * sufficient. But since I reuse the memory...
1053 */
1054 locked = xchg(&kexec_lock, 1);
1055 if (!locked) {
1056 image = xchg(&kexec_crash_image, NULL);
1057 if (image) {
1058 machine_crash_shutdown(regs);
1059 machine_kexec(image);
1060 }
1061 xchg(&kexec_lock, 0);
1062 }
1063}