diff options
Diffstat (limited to 'kernel/kexec.c')
-rw-r--r-- | kernel/kexec.c | 74 |
1 files changed, 31 insertions, 43 deletions
diff --git a/kernel/kexec.c b/kernel/kexec.c index c8a4370e2a34..aef265325cd3 100644 --- a/kernel/kexec.c +++ b/kernel/kexec.c | |||
@@ -12,7 +12,7 @@ | |||
12 | #include <linux/slab.h> | 12 | #include <linux/slab.h> |
13 | #include <linux/fs.h> | 13 | #include <linux/fs.h> |
14 | #include <linux/kexec.h> | 14 | #include <linux/kexec.h> |
15 | #include <linux/spinlock.h> | 15 | #include <linux/mutex.h> |
16 | #include <linux/list.h> | 16 | #include <linux/list.h> |
17 | #include <linux/highmem.h> | 17 | #include <linux/highmem.h> |
18 | #include <linux/syscalls.h> | 18 | #include <linux/syscalls.h> |
@@ -77,7 +77,7 @@ int kexec_should_crash(struct task_struct *p) | |||
77 | * | 77 | * |
78 | * The code for the transition from the current kernel to the | 78 | * The code for the transition from the current kernel to the |
79 | * the new kernel is placed in the control_code_buffer, whose size | 79 | * the new kernel is placed in the control_code_buffer, whose size |
80 | * is given by KEXEC_CONTROL_CODE_SIZE. In the best case only a single | 80 | * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single |
81 | * page of memory is necessary, but some architectures require more. | 81 | * page of memory is necessary, but some architectures require more. |
82 | * Because this memory must be identity mapped in the transition from | 82 | * Because this memory must be identity mapped in the transition from |
83 | * virtual to physical addresses it must live in the range | 83 | * virtual to physical addresses it must live in the range |
@@ -242,7 +242,7 @@ static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry, | |||
242 | */ | 242 | */ |
243 | result = -ENOMEM; | 243 | result = -ENOMEM; |
244 | image->control_code_page = kimage_alloc_control_pages(image, | 244 | image->control_code_page = kimage_alloc_control_pages(image, |
245 | get_order(KEXEC_CONTROL_CODE_SIZE)); | 245 | get_order(KEXEC_CONTROL_PAGE_SIZE)); |
246 | if (!image->control_code_page) { | 246 | if (!image->control_code_page) { |
247 | printk(KERN_ERR "Could not allocate control_code_buffer\n"); | 247 | printk(KERN_ERR "Could not allocate control_code_buffer\n"); |
248 | goto out; | 248 | goto out; |
@@ -317,7 +317,7 @@ static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry, | |||
317 | */ | 317 | */ |
318 | result = -ENOMEM; | 318 | result = -ENOMEM; |
319 | image->control_code_page = kimage_alloc_control_pages(image, | 319 | image->control_code_page = kimage_alloc_control_pages(image, |
320 | get_order(KEXEC_CONTROL_CODE_SIZE)); | 320 | get_order(KEXEC_CONTROL_PAGE_SIZE)); |
321 | if (!image->control_code_page) { | 321 | if (!image->control_code_page) { |
322 | printk(KERN_ERR "Could not allocate control_code_buffer\n"); | 322 | printk(KERN_ERR "Could not allocate control_code_buffer\n"); |
323 | goto out; | 323 | goto out; |
@@ -753,8 +753,14 @@ static struct page *kimage_alloc_page(struct kimage *image, | |||
753 | *old = addr | (*old & ~PAGE_MASK); | 753 | *old = addr | (*old & ~PAGE_MASK); |
754 | 754 | ||
755 | /* The old page I have found cannot be a | 755 | /* The old page I have found cannot be a |
756 | * destination page, so return it. | 756 | * destination page, so return it if it's |
757 | * gfp_flags honor the ones passed in. | ||
757 | */ | 758 | */ |
759 | if (!(gfp_mask & __GFP_HIGHMEM) && | ||
760 | PageHighMem(old_page)) { | ||
761 | kimage_free_pages(old_page); | ||
762 | continue; | ||
763 | } | ||
758 | addr = old_addr; | 764 | addr = old_addr; |
759 | page = old_page; | 765 | page = old_page; |
760 | break; | 766 | break; |
@@ -924,19 +930,14 @@ static int kimage_load_segment(struct kimage *image, | |||
924 | */ | 930 | */ |
925 | struct kimage *kexec_image; | 931 | struct kimage *kexec_image; |
926 | struct kimage *kexec_crash_image; | 932 | struct kimage *kexec_crash_image; |
927 | /* | 933 | |
928 | * A home grown binary mutex. | 934 | static DEFINE_MUTEX(kexec_mutex); |
929 | * Nothing can wait so this mutex is safe to use | ||
930 | * in interrupt context :) | ||
931 | */ | ||
932 | static int kexec_lock; | ||
933 | 935 | ||
934 | asmlinkage long sys_kexec_load(unsigned long entry, unsigned long nr_segments, | 936 | asmlinkage long sys_kexec_load(unsigned long entry, unsigned long nr_segments, |
935 | struct kexec_segment __user *segments, | 937 | struct kexec_segment __user *segments, |
936 | unsigned long flags) | 938 | unsigned long flags) |
937 | { | 939 | { |
938 | struct kimage **dest_image, *image; | 940 | struct kimage **dest_image, *image; |
939 | int locked; | ||
940 | int result; | 941 | int result; |
941 | 942 | ||
942 | /* We only trust the superuser with rebooting the system. */ | 943 | /* We only trust the superuser with rebooting the system. */ |
@@ -972,8 +973,7 @@ asmlinkage long sys_kexec_load(unsigned long entry, unsigned long nr_segments, | |||
972 | * | 973 | * |
973 | * KISS: always take the mutex. | 974 | * KISS: always take the mutex. |
974 | */ | 975 | */ |
975 | locked = xchg(&kexec_lock, 1); | 976 | if (!mutex_trylock(&kexec_mutex)) |
976 | if (locked) | ||
977 | return -EBUSY; | 977 | return -EBUSY; |
978 | 978 | ||
979 | dest_image = &kexec_image; | 979 | dest_image = &kexec_image; |
@@ -1015,8 +1015,7 @@ asmlinkage long sys_kexec_load(unsigned long entry, unsigned long nr_segments, | |||
1015 | image = xchg(dest_image, image); | 1015 | image = xchg(dest_image, image); |
1016 | 1016 | ||
1017 | out: | 1017 | out: |
1018 | locked = xchg(&kexec_lock, 0); /* Release the mutex */ | 1018 | mutex_unlock(&kexec_mutex); |
1019 | BUG_ON(!locked); | ||
1020 | kimage_free(image); | 1019 | kimage_free(image); |
1021 | 1020 | ||
1022 | return result; | 1021 | return result; |
@@ -1063,10 +1062,7 @@ asmlinkage long compat_sys_kexec_load(unsigned long entry, | |||
1063 | 1062 | ||
1064 | void crash_kexec(struct pt_regs *regs) | 1063 | void crash_kexec(struct pt_regs *regs) |
1065 | { | 1064 | { |
1066 | int locked; | 1065 | /* Take the kexec_mutex here to prevent sys_kexec_load |
1067 | |||
1068 | |||
1069 | /* Take the kexec_lock here to prevent sys_kexec_load | ||
1070 | * running on one cpu from replacing the crash kernel | 1066 | * running on one cpu from replacing the crash kernel |
1071 | * we are using after a panic on a different cpu. | 1067 | * we are using after a panic on a different cpu. |
1072 | * | 1068 | * |
@@ -1074,8 +1070,7 @@ void crash_kexec(struct pt_regs *regs) | |||
1074 | * of memory the xchg(&kexec_crash_image) would be | 1070 | * of memory the xchg(&kexec_crash_image) would be |
1075 | * sufficient. But since I reuse the memory... | 1071 | * sufficient. But since I reuse the memory... |
1076 | */ | 1072 | */ |
1077 | locked = xchg(&kexec_lock, 1); | 1073 | if (mutex_trylock(&kexec_mutex)) { |
1078 | if (!locked) { | ||
1079 | if (kexec_crash_image) { | 1074 | if (kexec_crash_image) { |
1080 | struct pt_regs fixed_regs; | 1075 | struct pt_regs fixed_regs; |
1081 | crash_setup_regs(&fixed_regs, regs); | 1076 | crash_setup_regs(&fixed_regs, regs); |
@@ -1083,8 +1078,7 @@ void crash_kexec(struct pt_regs *regs) | |||
1083 | machine_crash_shutdown(&fixed_regs); | 1078 | machine_crash_shutdown(&fixed_regs); |
1084 | machine_kexec(kexec_crash_image); | 1079 | machine_kexec(kexec_crash_image); |
1085 | } | 1080 | } |
1086 | locked = xchg(&kexec_lock, 0); | 1081 | mutex_unlock(&kexec_mutex); |
1087 | BUG_ON(!locked); | ||
1088 | } | 1082 | } |
1089 | } | 1083 | } |
1090 | 1084 | ||
@@ -1426,25 +1420,23 @@ static int __init crash_save_vmcoreinfo_init(void) | |||
1426 | 1420 | ||
1427 | module_init(crash_save_vmcoreinfo_init) | 1421 | module_init(crash_save_vmcoreinfo_init) |
1428 | 1422 | ||
1429 | /** | 1423 | /* |
1430 | * kernel_kexec - reboot the system | 1424 | * Move into place and start executing a preloaded standalone |
1431 | * | 1425 | * executable. If nothing was preloaded return an error. |
1432 | * Move into place and start executing a preloaded standalone | ||
1433 | * executable. If nothing was preloaded return an error. | ||
1434 | */ | 1426 | */ |
1435 | int kernel_kexec(void) | 1427 | int kernel_kexec(void) |
1436 | { | 1428 | { |
1437 | int error = 0; | 1429 | int error = 0; |
1438 | 1430 | ||
1439 | if (xchg(&kexec_lock, 1)) | 1431 | if (!mutex_trylock(&kexec_mutex)) |
1440 | return -EBUSY; | 1432 | return -EBUSY; |
1441 | if (!kexec_image) { | 1433 | if (!kexec_image) { |
1442 | error = -EINVAL; | 1434 | error = -EINVAL; |
1443 | goto Unlock; | 1435 | goto Unlock; |
1444 | } | 1436 | } |
1445 | 1437 | ||
1446 | if (kexec_image->preserve_context) { | ||
1447 | #ifdef CONFIG_KEXEC_JUMP | 1438 | #ifdef CONFIG_KEXEC_JUMP |
1439 | if (kexec_image->preserve_context) { | ||
1448 | mutex_lock(&pm_mutex); | 1440 | mutex_lock(&pm_mutex); |
1449 | pm_prepare_console(); | 1441 | pm_prepare_console(); |
1450 | error = freeze_processes(); | 1442 | error = freeze_processes(); |
@@ -1459,6 +1451,7 @@ int kernel_kexec(void) | |||
1459 | error = disable_nonboot_cpus(); | 1451 | error = disable_nonboot_cpus(); |
1460 | if (error) | 1452 | if (error) |
1461 | goto Resume_devices; | 1453 | goto Resume_devices; |
1454 | device_pm_lock(); | ||
1462 | local_irq_disable(); | 1455 | local_irq_disable(); |
1463 | /* At this point, device_suspend() has been called, | 1456 | /* At this point, device_suspend() has been called, |
1464 | * but *not* device_power_down(). We *must* | 1457 | * but *not* device_power_down(). We *must* |
@@ -1470,26 +1463,22 @@ int kernel_kexec(void) | |||
1470 | error = device_power_down(PMSG_FREEZE); | 1463 | error = device_power_down(PMSG_FREEZE); |
1471 | if (error) | 1464 | if (error) |
1472 | goto Enable_irqs; | 1465 | goto Enable_irqs; |
1473 | save_processor_state(); | 1466 | } else |
1474 | #endif | 1467 | #endif |
1475 | } else { | 1468 | { |
1476 | blocking_notifier_call_chain(&reboot_notifier_list, | 1469 | kernel_restart_prepare(NULL); |
1477 | SYS_RESTART, NULL); | ||
1478 | system_state = SYSTEM_RESTART; | ||
1479 | device_shutdown(); | ||
1480 | sysdev_shutdown(); | ||
1481 | printk(KERN_EMERG "Starting new kernel\n"); | 1470 | printk(KERN_EMERG "Starting new kernel\n"); |
1482 | machine_shutdown(); | 1471 | machine_shutdown(); |
1483 | } | 1472 | } |
1484 | 1473 | ||
1485 | machine_kexec(kexec_image); | 1474 | machine_kexec(kexec_image); |
1486 | 1475 | ||
1487 | if (kexec_image->preserve_context) { | ||
1488 | #ifdef CONFIG_KEXEC_JUMP | 1476 | #ifdef CONFIG_KEXEC_JUMP |
1489 | restore_processor_state(); | 1477 | if (kexec_image->preserve_context) { |
1490 | device_power_up(PMSG_RESTORE); | 1478 | device_power_up(PMSG_RESTORE); |
1491 | Enable_irqs: | 1479 | Enable_irqs: |
1492 | local_irq_enable(); | 1480 | local_irq_enable(); |
1481 | device_pm_unlock(); | ||
1493 | enable_nonboot_cpus(); | 1482 | enable_nonboot_cpus(); |
1494 | Resume_devices: | 1483 | Resume_devices: |
1495 | device_resume(PMSG_RESTORE); | 1484 | device_resume(PMSG_RESTORE); |
@@ -1499,11 +1488,10 @@ int kernel_kexec(void) | |||
1499 | Restore_console: | 1488 | Restore_console: |
1500 | pm_restore_console(); | 1489 | pm_restore_console(); |
1501 | mutex_unlock(&pm_mutex); | 1490 | mutex_unlock(&pm_mutex); |
1502 | #endif | ||
1503 | } | 1491 | } |
1492 | #endif | ||
1504 | 1493 | ||
1505 | Unlock: | 1494 | Unlock: |
1506 | xchg(&kexec_lock, 0); | 1495 | mutex_unlock(&kexec_mutex); |
1507 | |||
1508 | return error; | 1496 | return error; |
1509 | } | 1497 | } |