diff options
Diffstat (limited to 'kernel/futex.c')
-rw-r--r-- | kernel/futex.c | 1091 |
1 files changed, 939 insertions, 152 deletions
diff --git a/kernel/futex.c b/kernel/futex.c index 5699c512057b..cf0c8e21d1ab 100644 --- a/kernel/futex.c +++ b/kernel/futex.c | |||
@@ -12,6 +12,10 @@ | |||
12 | * (C) Copyright 2006 Red Hat Inc, All Rights Reserved | 12 | * (C) Copyright 2006 Red Hat Inc, All Rights Reserved |
13 | * Thanks to Thomas Gleixner for suggestions, analysis and fixes. | 13 | * Thanks to Thomas Gleixner for suggestions, analysis and fixes. |
14 | * | 14 | * |
15 | * PI-futex support started by Ingo Molnar and Thomas Gleixner | ||
16 | * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> | ||
17 | * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com> | ||
18 | * | ||
15 | * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly | 19 | * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly |
16 | * enough at me, Linus for the original (flawed) idea, Matthew | 20 | * enough at me, Linus for the original (flawed) idea, Matthew |
17 | * Kirkwood for proof-of-concept implementation. | 21 | * Kirkwood for proof-of-concept implementation. |
@@ -46,6 +50,8 @@ | |||
46 | #include <linux/signal.h> | 50 | #include <linux/signal.h> |
47 | #include <asm/futex.h> | 51 | #include <asm/futex.h> |
48 | 52 | ||
53 | #include "rtmutex_common.h" | ||
54 | |||
49 | #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8) | 55 | #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8) |
50 | 56 | ||
51 | /* | 57 | /* |
@@ -63,7 +69,7 @@ union futex_key { | |||
63 | int offset; | 69 | int offset; |
64 | } shared; | 70 | } shared; |
65 | struct { | 71 | struct { |
66 | unsigned long uaddr; | 72 | unsigned long address; |
67 | struct mm_struct *mm; | 73 | struct mm_struct *mm; |
68 | int offset; | 74 | int offset; |
69 | } private; | 75 | } private; |
@@ -75,6 +81,27 @@ union futex_key { | |||
75 | }; | 81 | }; |
76 | 82 | ||
77 | /* | 83 | /* |
84 | * Priority Inheritance state: | ||
85 | */ | ||
86 | struct futex_pi_state { | ||
87 | /* | ||
88 | * list of 'owned' pi_state instances - these have to be | ||
89 | * cleaned up in do_exit() if the task exits prematurely: | ||
90 | */ | ||
91 | struct list_head list; | ||
92 | |||
93 | /* | ||
94 | * The PI object: | ||
95 | */ | ||
96 | struct rt_mutex pi_mutex; | ||
97 | |||
98 | struct task_struct *owner; | ||
99 | atomic_t refcount; | ||
100 | |||
101 | union futex_key key; | ||
102 | }; | ||
103 | |||
104 | /* | ||
78 | * We use this hashed waitqueue instead of a normal wait_queue_t, so | 105 | * We use this hashed waitqueue instead of a normal wait_queue_t, so |
79 | * we can wake only the relevant ones (hashed queues may be shared). | 106 | * we can wake only the relevant ones (hashed queues may be shared). |
80 | * | 107 | * |
@@ -87,15 +114,19 @@ struct futex_q { | |||
87 | struct list_head list; | 114 | struct list_head list; |
88 | wait_queue_head_t waiters; | 115 | wait_queue_head_t waiters; |
89 | 116 | ||
90 | /* Which hash list lock to use. */ | 117 | /* Which hash list lock to use: */ |
91 | spinlock_t *lock_ptr; | 118 | spinlock_t *lock_ptr; |
92 | 119 | ||
93 | /* Key which the futex is hashed on. */ | 120 | /* Key which the futex is hashed on: */ |
94 | union futex_key key; | 121 | union futex_key key; |
95 | 122 | ||
96 | /* For fd, sigio sent using these. */ | 123 | /* For fd, sigio sent using these: */ |
97 | int fd; | 124 | int fd; |
98 | struct file *filp; | 125 | struct file *filp; |
126 | |||
127 | /* Optional priority inheritance state: */ | ||
128 | struct futex_pi_state *pi_state; | ||
129 | struct task_struct *task; | ||
99 | }; | 130 | }; |
100 | 131 | ||
101 | /* | 132 | /* |
@@ -144,8 +175,9 @@ static inline int match_futex(union futex_key *key1, union futex_key *key2) | |||
144 | * | 175 | * |
145 | * Should be called with ¤t->mm->mmap_sem but NOT any spinlocks. | 176 | * Should be called with ¤t->mm->mmap_sem but NOT any spinlocks. |
146 | */ | 177 | */ |
147 | static int get_futex_key(unsigned long uaddr, union futex_key *key) | 178 | static int get_futex_key(u32 __user *uaddr, union futex_key *key) |
148 | { | 179 | { |
180 | unsigned long address = (unsigned long)uaddr; | ||
149 | struct mm_struct *mm = current->mm; | 181 | struct mm_struct *mm = current->mm; |
150 | struct vm_area_struct *vma; | 182 | struct vm_area_struct *vma; |
151 | struct page *page; | 183 | struct page *page; |
@@ -154,16 +186,16 @@ static int get_futex_key(unsigned long uaddr, union futex_key *key) | |||
154 | /* | 186 | /* |
155 | * The futex address must be "naturally" aligned. | 187 | * The futex address must be "naturally" aligned. |
156 | */ | 188 | */ |
157 | key->both.offset = uaddr % PAGE_SIZE; | 189 | key->both.offset = address % PAGE_SIZE; |
158 | if (unlikely((key->both.offset % sizeof(u32)) != 0)) | 190 | if (unlikely((key->both.offset % sizeof(u32)) != 0)) |
159 | return -EINVAL; | 191 | return -EINVAL; |
160 | uaddr -= key->both.offset; | 192 | address -= key->both.offset; |
161 | 193 | ||
162 | /* | 194 | /* |
163 | * The futex is hashed differently depending on whether | 195 | * The futex is hashed differently depending on whether |
164 | * it's in a shared or private mapping. So check vma first. | 196 | * it's in a shared or private mapping. So check vma first. |
165 | */ | 197 | */ |
166 | vma = find_extend_vma(mm, uaddr); | 198 | vma = find_extend_vma(mm, address); |
167 | if (unlikely(!vma)) | 199 | if (unlikely(!vma)) |
168 | return -EFAULT; | 200 | return -EFAULT; |
169 | 201 | ||
@@ -184,7 +216,7 @@ static int get_futex_key(unsigned long uaddr, union futex_key *key) | |||
184 | */ | 216 | */ |
185 | if (likely(!(vma->vm_flags & VM_MAYSHARE))) { | 217 | if (likely(!(vma->vm_flags & VM_MAYSHARE))) { |
186 | key->private.mm = mm; | 218 | key->private.mm = mm; |
187 | key->private.uaddr = uaddr; | 219 | key->private.address = address; |
188 | return 0; | 220 | return 0; |
189 | } | 221 | } |
190 | 222 | ||
@@ -194,7 +226,7 @@ static int get_futex_key(unsigned long uaddr, union futex_key *key) | |||
194 | key->shared.inode = vma->vm_file->f_dentry->d_inode; | 226 | key->shared.inode = vma->vm_file->f_dentry->d_inode; |
195 | key->both.offset++; /* Bit 0 of offset indicates inode-based key. */ | 227 | key->both.offset++; /* Bit 0 of offset indicates inode-based key. */ |
196 | if (likely(!(vma->vm_flags & VM_NONLINEAR))) { | 228 | if (likely(!(vma->vm_flags & VM_NONLINEAR))) { |
197 | key->shared.pgoff = (((uaddr - vma->vm_start) >> PAGE_SHIFT) | 229 | key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT) |
198 | + vma->vm_pgoff); | 230 | + vma->vm_pgoff); |
199 | return 0; | 231 | return 0; |
200 | } | 232 | } |
@@ -205,7 +237,7 @@ static int get_futex_key(unsigned long uaddr, union futex_key *key) | |||
205 | * from swap. But that's a lot of code to duplicate here | 237 | * from swap. But that's a lot of code to duplicate here |
206 | * for a rare case, so we simply fetch the page. | 238 | * for a rare case, so we simply fetch the page. |
207 | */ | 239 | */ |
208 | err = get_user_pages(current, mm, uaddr, 1, 0, 0, &page, NULL); | 240 | err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL); |
209 | if (err >= 0) { | 241 | if (err >= 0) { |
210 | key->shared.pgoff = | 242 | key->shared.pgoff = |
211 | page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | 243 | page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); |
@@ -246,18 +278,250 @@ static void drop_key_refs(union futex_key *key) | |||
246 | } | 278 | } |
247 | } | 279 | } |
248 | 280 | ||
249 | static inline int get_futex_value_locked(int *dest, int __user *from) | 281 | static inline int get_futex_value_locked(u32 *dest, u32 __user *from) |
250 | { | 282 | { |
251 | int ret; | 283 | int ret; |
252 | 284 | ||
253 | inc_preempt_count(); | 285 | inc_preempt_count(); |
254 | ret = __copy_from_user_inatomic(dest, from, sizeof(int)); | 286 | ret = __copy_from_user_inatomic(dest, from, sizeof(u32)); |
255 | dec_preempt_count(); | 287 | dec_preempt_count(); |
256 | 288 | ||
257 | return ret ? -EFAULT : 0; | 289 | return ret ? -EFAULT : 0; |
258 | } | 290 | } |
259 | 291 | ||
260 | /* | 292 | /* |
293 | * Fault handling. Called with current->mm->mmap_sem held. | ||
294 | */ | ||
295 | static int futex_handle_fault(unsigned long address, int attempt) | ||
296 | { | ||
297 | struct vm_area_struct * vma; | ||
298 | struct mm_struct *mm = current->mm; | ||
299 | |||
300 | if (attempt >= 2 || !(vma = find_vma(mm, address)) || | ||
301 | vma->vm_start > address || !(vma->vm_flags & VM_WRITE)) | ||
302 | return -EFAULT; | ||
303 | |||
304 | switch (handle_mm_fault(mm, vma, address, 1)) { | ||
305 | case VM_FAULT_MINOR: | ||
306 | current->min_flt++; | ||
307 | break; | ||
308 | case VM_FAULT_MAJOR: | ||
309 | current->maj_flt++; | ||
310 | break; | ||
311 | default: | ||
312 | return -EFAULT; | ||
313 | } | ||
314 | return 0; | ||
315 | } | ||
316 | |||
317 | /* | ||
318 | * PI code: | ||
319 | */ | ||
320 | static int refill_pi_state_cache(void) | ||
321 | { | ||
322 | struct futex_pi_state *pi_state; | ||
323 | |||
324 | if (likely(current->pi_state_cache)) | ||
325 | return 0; | ||
326 | |||
327 | pi_state = kmalloc(sizeof(*pi_state), GFP_KERNEL); | ||
328 | |||
329 | if (!pi_state) | ||
330 | return -ENOMEM; | ||
331 | |||
332 | memset(pi_state, 0, sizeof(*pi_state)); | ||
333 | INIT_LIST_HEAD(&pi_state->list); | ||
334 | /* pi_mutex gets initialized later */ | ||
335 | pi_state->owner = NULL; | ||
336 | atomic_set(&pi_state->refcount, 1); | ||
337 | |||
338 | current->pi_state_cache = pi_state; | ||
339 | |||
340 | return 0; | ||
341 | } | ||
342 | |||
343 | static struct futex_pi_state * alloc_pi_state(void) | ||
344 | { | ||
345 | struct futex_pi_state *pi_state = current->pi_state_cache; | ||
346 | |||
347 | WARN_ON(!pi_state); | ||
348 | current->pi_state_cache = NULL; | ||
349 | |||
350 | return pi_state; | ||
351 | } | ||
352 | |||
353 | static void free_pi_state(struct futex_pi_state *pi_state) | ||
354 | { | ||
355 | if (!atomic_dec_and_test(&pi_state->refcount)) | ||
356 | return; | ||
357 | |||
358 | /* | ||
359 | * If pi_state->owner is NULL, the owner is most probably dying | ||
360 | * and has cleaned up the pi_state already | ||
361 | */ | ||
362 | if (pi_state->owner) { | ||
363 | spin_lock_irq(&pi_state->owner->pi_lock); | ||
364 | list_del_init(&pi_state->list); | ||
365 | spin_unlock_irq(&pi_state->owner->pi_lock); | ||
366 | |||
367 | rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner); | ||
368 | } | ||
369 | |||
370 | if (current->pi_state_cache) | ||
371 | kfree(pi_state); | ||
372 | else { | ||
373 | /* | ||
374 | * pi_state->list is already empty. | ||
375 | * clear pi_state->owner. | ||
376 | * refcount is at 0 - put it back to 1. | ||
377 | */ | ||
378 | pi_state->owner = NULL; | ||
379 | atomic_set(&pi_state->refcount, 1); | ||
380 | current->pi_state_cache = pi_state; | ||
381 | } | ||
382 | } | ||
383 | |||
384 | /* | ||
385 | * Look up the task based on what TID userspace gave us. | ||
386 | * We dont trust it. | ||
387 | */ | ||
388 | static struct task_struct * futex_find_get_task(pid_t pid) | ||
389 | { | ||
390 | struct task_struct *p; | ||
391 | |||
392 | read_lock(&tasklist_lock); | ||
393 | p = find_task_by_pid(pid); | ||
394 | if (!p) | ||
395 | goto out_unlock; | ||
396 | if ((current->euid != p->euid) && (current->euid != p->uid)) { | ||
397 | p = NULL; | ||
398 | goto out_unlock; | ||
399 | } | ||
400 | if (p->state == EXIT_ZOMBIE || p->exit_state == EXIT_ZOMBIE) { | ||
401 | p = NULL; | ||
402 | goto out_unlock; | ||
403 | } | ||
404 | get_task_struct(p); | ||
405 | out_unlock: | ||
406 | read_unlock(&tasklist_lock); | ||
407 | |||
408 | return p; | ||
409 | } | ||
410 | |||
411 | /* | ||
412 | * This task is holding PI mutexes at exit time => bad. | ||
413 | * Kernel cleans up PI-state, but userspace is likely hosed. | ||
414 | * (Robust-futex cleanup is separate and might save the day for userspace.) | ||
415 | */ | ||
416 | void exit_pi_state_list(struct task_struct *curr) | ||
417 | { | ||
418 | struct futex_hash_bucket *hb; | ||
419 | struct list_head *next, *head = &curr->pi_state_list; | ||
420 | struct futex_pi_state *pi_state; | ||
421 | union futex_key key; | ||
422 | |||
423 | /* | ||
424 | * We are a ZOMBIE and nobody can enqueue itself on | ||
425 | * pi_state_list anymore, but we have to be careful | ||
426 | * versus waiters unqueueing themselfs | ||
427 | */ | ||
428 | spin_lock_irq(&curr->pi_lock); | ||
429 | while (!list_empty(head)) { | ||
430 | |||
431 | next = head->next; | ||
432 | pi_state = list_entry(next, struct futex_pi_state, list); | ||
433 | key = pi_state->key; | ||
434 | spin_unlock_irq(&curr->pi_lock); | ||
435 | |||
436 | hb = hash_futex(&key); | ||
437 | spin_lock(&hb->lock); | ||
438 | |||
439 | spin_lock_irq(&curr->pi_lock); | ||
440 | if (head->next != next) { | ||
441 | spin_unlock(&hb->lock); | ||
442 | continue; | ||
443 | } | ||
444 | |||
445 | list_del_init(&pi_state->list); | ||
446 | |||
447 | WARN_ON(pi_state->owner != curr); | ||
448 | |||
449 | pi_state->owner = NULL; | ||
450 | spin_unlock_irq(&curr->pi_lock); | ||
451 | |||
452 | rt_mutex_unlock(&pi_state->pi_mutex); | ||
453 | |||
454 | spin_unlock(&hb->lock); | ||
455 | |||
456 | spin_lock_irq(&curr->pi_lock); | ||
457 | } | ||
458 | spin_unlock_irq(&curr->pi_lock); | ||
459 | } | ||
460 | |||
461 | static int | ||
462 | lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, struct futex_q *me) | ||
463 | { | ||
464 | struct futex_pi_state *pi_state = NULL; | ||
465 | struct futex_q *this, *next; | ||
466 | struct list_head *head; | ||
467 | struct task_struct *p; | ||
468 | pid_t pid; | ||
469 | |||
470 | head = &hb->chain; | ||
471 | |||
472 | list_for_each_entry_safe(this, next, head, list) { | ||
473 | if (match_futex (&this->key, &me->key)) { | ||
474 | /* | ||
475 | * Another waiter already exists - bump up | ||
476 | * the refcount and return its pi_state: | ||
477 | */ | ||
478 | pi_state = this->pi_state; | ||
479 | /* | ||
480 | * Userspace might have messed up non PI and PI futexes | ||
481 | */ | ||
482 | if (unlikely(!pi_state)) | ||
483 | return -EINVAL; | ||
484 | |||
485 | atomic_inc(&pi_state->refcount); | ||
486 | me->pi_state = pi_state; | ||
487 | |||
488 | return 0; | ||
489 | } | ||
490 | } | ||
491 | |||
492 | /* | ||
493 | * We are the first waiter - try to look up the real owner and | ||
494 | * attach the new pi_state to it: | ||
495 | */ | ||
496 | pid = uval & FUTEX_TID_MASK; | ||
497 | p = futex_find_get_task(pid); | ||
498 | if (!p) | ||
499 | return -ESRCH; | ||
500 | |||
501 | pi_state = alloc_pi_state(); | ||
502 | |||
503 | /* | ||
504 | * Initialize the pi_mutex in locked state and make 'p' | ||
505 | * the owner of it: | ||
506 | */ | ||
507 | rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p); | ||
508 | |||
509 | /* Store the key for possible exit cleanups: */ | ||
510 | pi_state->key = me->key; | ||
511 | |||
512 | spin_lock_irq(&p->pi_lock); | ||
513 | list_add(&pi_state->list, &p->pi_state_list); | ||
514 | pi_state->owner = p; | ||
515 | spin_unlock_irq(&p->pi_lock); | ||
516 | |||
517 | put_task_struct(p); | ||
518 | |||
519 | me->pi_state = pi_state; | ||
520 | |||
521 | return 0; | ||
522 | } | ||
523 | |||
524 | /* | ||
261 | * The hash bucket lock must be held when this is called. | 525 | * The hash bucket lock must be held when this is called. |
262 | * Afterwards, the futex_q must not be accessed. | 526 | * Afterwards, the futex_q must not be accessed. |
263 | */ | 527 | */ |
@@ -284,16 +548,96 @@ static void wake_futex(struct futex_q *q) | |||
284 | q->lock_ptr = NULL; | 548 | q->lock_ptr = NULL; |
285 | } | 549 | } |
286 | 550 | ||
551 | static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this) | ||
552 | { | ||
553 | struct task_struct *new_owner; | ||
554 | struct futex_pi_state *pi_state = this->pi_state; | ||
555 | u32 curval, newval; | ||
556 | |||
557 | if (!pi_state) | ||
558 | return -EINVAL; | ||
559 | |||
560 | new_owner = rt_mutex_next_owner(&pi_state->pi_mutex); | ||
561 | |||
562 | /* | ||
563 | * This happens when we have stolen the lock and the original | ||
564 | * pending owner did not enqueue itself back on the rt_mutex. | ||
565 | * Thats not a tragedy. We know that way, that a lock waiter | ||
566 | * is on the fly. We make the futex_q waiter the pending owner. | ||
567 | */ | ||
568 | if (!new_owner) | ||
569 | new_owner = this->task; | ||
570 | |||
571 | /* | ||
572 | * We pass it to the next owner. (The WAITERS bit is always | ||
573 | * kept enabled while there is PI state around. We must also | ||
574 | * preserve the owner died bit.) | ||
575 | */ | ||
576 | newval = (uval & FUTEX_OWNER_DIED) | FUTEX_WAITERS | new_owner->pid; | ||
577 | |||
578 | inc_preempt_count(); | ||
579 | curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval); | ||
580 | dec_preempt_count(); | ||
581 | |||
582 | if (curval == -EFAULT) | ||
583 | return -EFAULT; | ||
584 | if (curval != uval) | ||
585 | return -EINVAL; | ||
586 | |||
587 | list_del_init(&pi_state->owner->pi_state_list); | ||
588 | list_add(&pi_state->list, &new_owner->pi_state_list); | ||
589 | pi_state->owner = new_owner; | ||
590 | rt_mutex_unlock(&pi_state->pi_mutex); | ||
591 | |||
592 | return 0; | ||
593 | } | ||
594 | |||
595 | static int unlock_futex_pi(u32 __user *uaddr, u32 uval) | ||
596 | { | ||
597 | u32 oldval; | ||
598 | |||
599 | /* | ||
600 | * There is no waiter, so we unlock the futex. The owner died | ||
601 | * bit has not to be preserved here. We are the owner: | ||
602 | */ | ||
603 | inc_preempt_count(); | ||
604 | oldval = futex_atomic_cmpxchg_inatomic(uaddr, uval, 0); | ||
605 | dec_preempt_count(); | ||
606 | |||
607 | if (oldval == -EFAULT) | ||
608 | return oldval; | ||
609 | if (oldval != uval) | ||
610 | return -EAGAIN; | ||
611 | |||
612 | return 0; | ||
613 | } | ||
614 | |||
615 | /* | ||
616 | * Express the locking dependencies for lockdep: | ||
617 | */ | ||
618 | static inline void | ||
619 | double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2) | ||
620 | { | ||
621 | if (hb1 <= hb2) { | ||
622 | spin_lock(&hb1->lock); | ||
623 | if (hb1 < hb2) | ||
624 | spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING); | ||
625 | } else { /* hb1 > hb2 */ | ||
626 | spin_lock(&hb2->lock); | ||
627 | spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING); | ||
628 | } | ||
629 | } | ||
630 | |||
287 | /* | 631 | /* |
288 | * Wake up all waiters hashed on the physical page that is mapped | 632 | * Wake up all waiters hashed on the physical page that is mapped |
289 | * to this virtual address: | 633 | * to this virtual address: |
290 | */ | 634 | */ |
291 | static int futex_wake(unsigned long uaddr, int nr_wake) | 635 | static int futex_wake(u32 __user *uaddr, int nr_wake) |
292 | { | 636 | { |
293 | union futex_key key; | 637 | struct futex_hash_bucket *hb; |
294 | struct futex_hash_bucket *bh; | ||
295 | struct list_head *head; | ||
296 | struct futex_q *this, *next; | 638 | struct futex_q *this, *next; |
639 | struct list_head *head; | ||
640 | union futex_key key; | ||
297 | int ret; | 641 | int ret; |
298 | 642 | ||
299 | down_read(¤t->mm->mmap_sem); | 643 | down_read(¤t->mm->mmap_sem); |
@@ -302,19 +646,23 @@ static int futex_wake(unsigned long uaddr, int nr_wake) | |||
302 | if (unlikely(ret != 0)) | 646 | if (unlikely(ret != 0)) |
303 | goto out; | 647 | goto out; |
304 | 648 | ||
305 | bh = hash_futex(&key); | 649 | hb = hash_futex(&key); |
306 | spin_lock(&bh->lock); | 650 | spin_lock(&hb->lock); |
307 | head = &bh->chain; | 651 | head = &hb->chain; |
308 | 652 | ||
309 | list_for_each_entry_safe(this, next, head, list) { | 653 | list_for_each_entry_safe(this, next, head, list) { |
310 | if (match_futex (&this->key, &key)) { | 654 | if (match_futex (&this->key, &key)) { |
655 | if (this->pi_state) { | ||
656 | ret = -EINVAL; | ||
657 | break; | ||
658 | } | ||
311 | wake_futex(this); | 659 | wake_futex(this); |
312 | if (++ret >= nr_wake) | 660 | if (++ret >= nr_wake) |
313 | break; | 661 | break; |
314 | } | 662 | } |
315 | } | 663 | } |
316 | 664 | ||
317 | spin_unlock(&bh->lock); | 665 | spin_unlock(&hb->lock); |
318 | out: | 666 | out: |
319 | up_read(¤t->mm->mmap_sem); | 667 | up_read(¤t->mm->mmap_sem); |
320 | return ret; | 668 | return ret; |
@@ -324,10 +672,12 @@ out: | |||
324 | * Wake up all waiters hashed on the physical page that is mapped | 672 | * Wake up all waiters hashed on the physical page that is mapped |
325 | * to this virtual address: | 673 | * to this virtual address: |
326 | */ | 674 | */ |
327 | static int futex_wake_op(unsigned long uaddr1, unsigned long uaddr2, int nr_wake, int nr_wake2, int op) | 675 | static int |
676 | futex_wake_op(u32 __user *uaddr1, u32 __user *uaddr2, | ||
677 | int nr_wake, int nr_wake2, int op) | ||
328 | { | 678 | { |
329 | union futex_key key1, key2; | 679 | union futex_key key1, key2; |
330 | struct futex_hash_bucket *bh1, *bh2; | 680 | struct futex_hash_bucket *hb1, *hb2; |
331 | struct list_head *head; | 681 | struct list_head *head; |
332 | struct futex_q *this, *next; | 682 | struct futex_q *this, *next; |
333 | int ret, op_ret, attempt = 0; | 683 | int ret, op_ret, attempt = 0; |
@@ -342,27 +692,25 @@ retryfull: | |||
342 | if (unlikely(ret != 0)) | 692 | if (unlikely(ret != 0)) |
343 | goto out; | 693 | goto out; |
344 | 694 | ||
345 | bh1 = hash_futex(&key1); | 695 | hb1 = hash_futex(&key1); |
346 | bh2 = hash_futex(&key2); | 696 | hb2 = hash_futex(&key2); |
347 | 697 | ||
348 | retry: | 698 | retry: |
349 | if (bh1 < bh2) | 699 | double_lock_hb(hb1, hb2); |
350 | spin_lock(&bh1->lock); | ||
351 | spin_lock(&bh2->lock); | ||
352 | if (bh1 > bh2) | ||
353 | spin_lock(&bh1->lock); | ||
354 | 700 | ||
355 | op_ret = futex_atomic_op_inuser(op, (int __user *)uaddr2); | 701 | op_ret = futex_atomic_op_inuser(op, uaddr2); |
356 | if (unlikely(op_ret < 0)) { | 702 | if (unlikely(op_ret < 0)) { |
357 | int dummy; | 703 | u32 dummy; |
358 | 704 | ||
359 | spin_unlock(&bh1->lock); | 705 | spin_unlock(&hb1->lock); |
360 | if (bh1 != bh2) | 706 | if (hb1 != hb2) |
361 | spin_unlock(&bh2->lock); | 707 | spin_unlock(&hb2->lock); |
362 | 708 | ||
363 | #ifndef CONFIG_MMU | 709 | #ifndef CONFIG_MMU |
364 | /* we don't get EFAULT from MMU faults if we don't have an MMU, | 710 | /* |
365 | * but we might get them from range checking */ | 711 | * we don't get EFAULT from MMU faults if we don't have an MMU, |
712 | * but we might get them from range checking | ||
713 | */ | ||
366 | ret = op_ret; | 714 | ret = op_ret; |
367 | goto out; | 715 | goto out; |
368 | #endif | 716 | #endif |
@@ -372,47 +720,34 @@ retry: | |||
372 | goto out; | 720 | goto out; |
373 | } | 721 | } |
374 | 722 | ||
375 | /* futex_atomic_op_inuser needs to both read and write | 723 | /* |
724 | * futex_atomic_op_inuser needs to both read and write | ||
376 | * *(int __user *)uaddr2, but we can't modify it | 725 | * *(int __user *)uaddr2, but we can't modify it |
377 | * non-atomically. Therefore, if get_user below is not | 726 | * non-atomically. Therefore, if get_user below is not |
378 | * enough, we need to handle the fault ourselves, while | 727 | * enough, we need to handle the fault ourselves, while |
379 | * still holding the mmap_sem. */ | 728 | * still holding the mmap_sem. |
729 | */ | ||
380 | if (attempt++) { | 730 | if (attempt++) { |
381 | struct vm_area_struct * vma; | 731 | if (futex_handle_fault((unsigned long)uaddr2, |
382 | struct mm_struct *mm = current->mm; | 732 | attempt)) |
383 | |||
384 | ret = -EFAULT; | ||
385 | if (attempt >= 2 || | ||
386 | !(vma = find_vma(mm, uaddr2)) || | ||
387 | vma->vm_start > uaddr2 || | ||
388 | !(vma->vm_flags & VM_WRITE)) | ||
389 | goto out; | ||
390 | |||
391 | switch (handle_mm_fault(mm, vma, uaddr2, 1)) { | ||
392 | case VM_FAULT_MINOR: | ||
393 | current->min_flt++; | ||
394 | break; | ||
395 | case VM_FAULT_MAJOR: | ||
396 | current->maj_flt++; | ||
397 | break; | ||
398 | default: | ||
399 | goto out; | 733 | goto out; |
400 | } | ||
401 | goto retry; | 734 | goto retry; |
402 | } | 735 | } |
403 | 736 | ||
404 | /* If we would have faulted, release mmap_sem, | 737 | /* |
405 | * fault it in and start all over again. */ | 738 | * If we would have faulted, release mmap_sem, |
739 | * fault it in and start all over again. | ||
740 | */ | ||
406 | up_read(¤t->mm->mmap_sem); | 741 | up_read(¤t->mm->mmap_sem); |
407 | 742 | ||
408 | ret = get_user(dummy, (int __user *)uaddr2); | 743 | ret = get_user(dummy, uaddr2); |
409 | if (ret) | 744 | if (ret) |
410 | return ret; | 745 | return ret; |
411 | 746 | ||
412 | goto retryfull; | 747 | goto retryfull; |
413 | } | 748 | } |
414 | 749 | ||
415 | head = &bh1->chain; | 750 | head = &hb1->chain; |
416 | 751 | ||
417 | list_for_each_entry_safe(this, next, head, list) { | 752 | list_for_each_entry_safe(this, next, head, list) { |
418 | if (match_futex (&this->key, &key1)) { | 753 | if (match_futex (&this->key, &key1)) { |
@@ -423,7 +758,7 @@ retry: | |||
423 | } | 758 | } |
424 | 759 | ||
425 | if (op_ret > 0) { | 760 | if (op_ret > 0) { |
426 | head = &bh2->chain; | 761 | head = &hb2->chain; |
427 | 762 | ||
428 | op_ret = 0; | 763 | op_ret = 0; |
429 | list_for_each_entry_safe(this, next, head, list) { | 764 | list_for_each_entry_safe(this, next, head, list) { |
@@ -436,9 +771,9 @@ retry: | |||
436 | ret += op_ret; | 771 | ret += op_ret; |
437 | } | 772 | } |
438 | 773 | ||
439 | spin_unlock(&bh1->lock); | 774 | spin_unlock(&hb1->lock); |
440 | if (bh1 != bh2) | 775 | if (hb1 != hb2) |
441 | spin_unlock(&bh2->lock); | 776 | spin_unlock(&hb2->lock); |
442 | out: | 777 | out: |
443 | up_read(¤t->mm->mmap_sem); | 778 | up_read(¤t->mm->mmap_sem); |
444 | return ret; | 779 | return ret; |
@@ -448,11 +783,11 @@ out: | |||
448 | * Requeue all waiters hashed on one physical page to another | 783 | * Requeue all waiters hashed on one physical page to another |
449 | * physical page. | 784 | * physical page. |
450 | */ | 785 | */ |
451 | static int futex_requeue(unsigned long uaddr1, unsigned long uaddr2, | 786 | static int futex_requeue(u32 __user *uaddr1, u32 __user *uaddr2, |
452 | int nr_wake, int nr_requeue, int *valp) | 787 | int nr_wake, int nr_requeue, u32 *cmpval) |
453 | { | 788 | { |
454 | union futex_key key1, key2; | 789 | union futex_key key1, key2; |
455 | struct futex_hash_bucket *bh1, *bh2; | 790 | struct futex_hash_bucket *hb1, *hb2; |
456 | struct list_head *head1; | 791 | struct list_head *head1; |
457 | struct futex_q *this, *next; | 792 | struct futex_q *this, *next; |
458 | int ret, drop_count = 0; | 793 | int ret, drop_count = 0; |
@@ -467,68 +802,68 @@ static int futex_requeue(unsigned long uaddr1, unsigned long uaddr2, | |||
467 | if (unlikely(ret != 0)) | 802 | if (unlikely(ret != 0)) |
468 | goto out; | 803 | goto out; |
469 | 804 | ||
470 | bh1 = hash_futex(&key1); | 805 | hb1 = hash_futex(&key1); |
471 | bh2 = hash_futex(&key2); | 806 | hb2 = hash_futex(&key2); |
472 | 807 | ||
473 | if (bh1 < bh2) | 808 | double_lock_hb(hb1, hb2); |
474 | spin_lock(&bh1->lock); | ||
475 | spin_lock(&bh2->lock); | ||
476 | if (bh1 > bh2) | ||
477 | spin_lock(&bh1->lock); | ||
478 | 809 | ||
479 | if (likely(valp != NULL)) { | 810 | if (likely(cmpval != NULL)) { |
480 | int curval; | 811 | u32 curval; |
481 | 812 | ||
482 | ret = get_futex_value_locked(&curval, (int __user *)uaddr1); | 813 | ret = get_futex_value_locked(&curval, uaddr1); |
483 | 814 | ||
484 | if (unlikely(ret)) { | 815 | if (unlikely(ret)) { |
485 | spin_unlock(&bh1->lock); | 816 | spin_unlock(&hb1->lock); |
486 | if (bh1 != bh2) | 817 | if (hb1 != hb2) |
487 | spin_unlock(&bh2->lock); | 818 | spin_unlock(&hb2->lock); |
488 | 819 | ||
489 | /* If we would have faulted, release mmap_sem, fault | 820 | /* |
821 | * If we would have faulted, release mmap_sem, fault | ||
490 | * it in and start all over again. | 822 | * it in and start all over again. |
491 | */ | 823 | */ |
492 | up_read(¤t->mm->mmap_sem); | 824 | up_read(¤t->mm->mmap_sem); |
493 | 825 | ||
494 | ret = get_user(curval, (int __user *)uaddr1); | 826 | ret = get_user(curval, uaddr1); |
495 | 827 | ||
496 | if (!ret) | 828 | if (!ret) |
497 | goto retry; | 829 | goto retry; |
498 | 830 | ||
499 | return ret; | 831 | return ret; |
500 | } | 832 | } |
501 | if (curval != *valp) { | 833 | if (curval != *cmpval) { |
502 | ret = -EAGAIN; | 834 | ret = -EAGAIN; |
503 | goto out_unlock; | 835 | goto out_unlock; |
504 | } | 836 | } |
505 | } | 837 | } |
506 | 838 | ||
507 | head1 = &bh1->chain; | 839 | head1 = &hb1->chain; |
508 | list_for_each_entry_safe(this, next, head1, list) { | 840 | list_for_each_entry_safe(this, next, head1, list) { |
509 | if (!match_futex (&this->key, &key1)) | 841 | if (!match_futex (&this->key, &key1)) |
510 | continue; | 842 | continue; |
511 | if (++ret <= nr_wake) { | 843 | if (++ret <= nr_wake) { |
512 | wake_futex(this); | 844 | wake_futex(this); |
513 | } else { | 845 | } else { |
514 | list_move_tail(&this->list, &bh2->chain); | 846 | /* |
515 | this->lock_ptr = &bh2->lock; | 847 | * If key1 and key2 hash to the same bucket, no need to |
848 | * requeue. | ||
849 | */ | ||
850 | if (likely(head1 != &hb2->chain)) { | ||
851 | list_move_tail(&this->list, &hb2->chain); | ||
852 | this->lock_ptr = &hb2->lock; | ||
853 | } | ||
516 | this->key = key2; | 854 | this->key = key2; |
517 | get_key_refs(&key2); | 855 | get_key_refs(&key2); |
518 | drop_count++; | 856 | drop_count++; |
519 | 857 | ||
520 | if (ret - nr_wake >= nr_requeue) | 858 | if (ret - nr_wake >= nr_requeue) |
521 | break; | 859 | break; |
522 | /* Make sure to stop if key1 == key2 */ | ||
523 | if (head1 == &bh2->chain && head1 != &next->list) | ||
524 | head1 = &this->list; | ||
525 | } | 860 | } |
526 | } | 861 | } |
527 | 862 | ||
528 | out_unlock: | 863 | out_unlock: |
529 | spin_unlock(&bh1->lock); | 864 | spin_unlock(&hb1->lock); |
530 | if (bh1 != bh2) | 865 | if (hb1 != hb2) |
531 | spin_unlock(&bh2->lock); | 866 | spin_unlock(&hb2->lock); |
532 | 867 | ||
533 | /* drop_key_refs() must be called outside the spinlocks. */ | 868 | /* drop_key_refs() must be called outside the spinlocks. */ |
534 | while (--drop_count >= 0) | 869 | while (--drop_count >= 0) |
@@ -543,7 +878,7 @@ out: | |||
543 | static inline struct futex_hash_bucket * | 878 | static inline struct futex_hash_bucket * |
544 | queue_lock(struct futex_q *q, int fd, struct file *filp) | 879 | queue_lock(struct futex_q *q, int fd, struct file *filp) |
545 | { | 880 | { |
546 | struct futex_hash_bucket *bh; | 881 | struct futex_hash_bucket *hb; |
547 | 882 | ||
548 | q->fd = fd; | 883 | q->fd = fd; |
549 | q->filp = filp; | 884 | q->filp = filp; |
@@ -551,23 +886,24 @@ queue_lock(struct futex_q *q, int fd, struct file *filp) | |||
551 | init_waitqueue_head(&q->waiters); | 886 | init_waitqueue_head(&q->waiters); |
552 | 887 | ||
553 | get_key_refs(&q->key); | 888 | get_key_refs(&q->key); |
554 | bh = hash_futex(&q->key); | 889 | hb = hash_futex(&q->key); |
555 | q->lock_ptr = &bh->lock; | 890 | q->lock_ptr = &hb->lock; |
556 | 891 | ||
557 | spin_lock(&bh->lock); | 892 | spin_lock(&hb->lock); |
558 | return bh; | 893 | return hb; |
559 | } | 894 | } |
560 | 895 | ||
561 | static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *bh) | 896 | static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb) |
562 | { | 897 | { |
563 | list_add_tail(&q->list, &bh->chain); | 898 | list_add_tail(&q->list, &hb->chain); |
564 | spin_unlock(&bh->lock); | 899 | q->task = current; |
900 | spin_unlock(&hb->lock); | ||
565 | } | 901 | } |
566 | 902 | ||
567 | static inline void | 903 | static inline void |
568 | queue_unlock(struct futex_q *q, struct futex_hash_bucket *bh) | 904 | queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb) |
569 | { | 905 | { |
570 | spin_unlock(&bh->lock); | 906 | spin_unlock(&hb->lock); |
571 | drop_key_refs(&q->key); | 907 | drop_key_refs(&q->key); |
572 | } | 908 | } |
573 | 909 | ||
@@ -579,16 +915,17 @@ queue_unlock(struct futex_q *q, struct futex_hash_bucket *bh) | |||
579 | /* The key must be already stored in q->key. */ | 915 | /* The key must be already stored in q->key. */ |
580 | static void queue_me(struct futex_q *q, int fd, struct file *filp) | 916 | static void queue_me(struct futex_q *q, int fd, struct file *filp) |
581 | { | 917 | { |
582 | struct futex_hash_bucket *bh; | 918 | struct futex_hash_bucket *hb; |
583 | bh = queue_lock(q, fd, filp); | 919 | |
584 | __queue_me(q, bh); | 920 | hb = queue_lock(q, fd, filp); |
921 | __queue_me(q, hb); | ||
585 | } | 922 | } |
586 | 923 | ||
587 | /* Return 1 if we were still queued (ie. 0 means we were woken) */ | 924 | /* Return 1 if we were still queued (ie. 0 means we were woken) */ |
588 | static int unqueue_me(struct futex_q *q) | 925 | static int unqueue_me(struct futex_q *q) |
589 | { | 926 | { |
590 | int ret = 0; | ||
591 | spinlock_t *lock_ptr; | 927 | spinlock_t *lock_ptr; |
928 | int ret = 0; | ||
592 | 929 | ||
593 | /* In the common case we don't take the spinlock, which is nice. */ | 930 | /* In the common case we don't take the spinlock, which is nice. */ |
594 | retry: | 931 | retry: |
@@ -614,6 +951,9 @@ static int unqueue_me(struct futex_q *q) | |||
614 | } | 951 | } |
615 | WARN_ON(list_empty(&q->list)); | 952 | WARN_ON(list_empty(&q->list)); |
616 | list_del(&q->list); | 953 | list_del(&q->list); |
954 | |||
955 | BUG_ON(q->pi_state); | ||
956 | |||
617 | spin_unlock(lock_ptr); | 957 | spin_unlock(lock_ptr); |
618 | ret = 1; | 958 | ret = 1; |
619 | } | 959 | } |
@@ -622,21 +962,42 @@ static int unqueue_me(struct futex_q *q) | |||
622 | return ret; | 962 | return ret; |
623 | } | 963 | } |
624 | 964 | ||
625 | static int futex_wait(unsigned long uaddr, int val, unsigned long time) | 965 | /* |
966 | * PI futexes can not be requeued and must remove themself from the | ||
967 | * hash bucket. The hash bucket lock is held on entry and dropped here. | ||
968 | */ | ||
969 | static void unqueue_me_pi(struct futex_q *q, struct futex_hash_bucket *hb) | ||
626 | { | 970 | { |
627 | DECLARE_WAITQUEUE(wait, current); | 971 | WARN_ON(list_empty(&q->list)); |
628 | int ret, curval; | 972 | list_del(&q->list); |
973 | |||
974 | BUG_ON(!q->pi_state); | ||
975 | free_pi_state(q->pi_state); | ||
976 | q->pi_state = NULL; | ||
977 | |||
978 | spin_unlock(&hb->lock); | ||
979 | |||
980 | drop_key_refs(&q->key); | ||
981 | } | ||
982 | |||
983 | static int futex_wait(u32 __user *uaddr, u32 val, unsigned long time) | ||
984 | { | ||
985 | struct task_struct *curr = current; | ||
986 | DECLARE_WAITQUEUE(wait, curr); | ||
987 | struct futex_hash_bucket *hb; | ||
629 | struct futex_q q; | 988 | struct futex_q q; |
630 | struct futex_hash_bucket *bh; | 989 | u32 uval; |
990 | int ret; | ||
631 | 991 | ||
992 | q.pi_state = NULL; | ||
632 | retry: | 993 | retry: |
633 | down_read(¤t->mm->mmap_sem); | 994 | down_read(&curr->mm->mmap_sem); |
634 | 995 | ||
635 | ret = get_futex_key(uaddr, &q.key); | 996 | ret = get_futex_key(uaddr, &q.key); |
636 | if (unlikely(ret != 0)) | 997 | if (unlikely(ret != 0)) |
637 | goto out_release_sem; | 998 | goto out_release_sem; |
638 | 999 | ||
639 | bh = queue_lock(&q, -1, NULL); | 1000 | hb = queue_lock(&q, -1, NULL); |
640 | 1001 | ||
641 | /* | 1002 | /* |
642 | * Access the page AFTER the futex is queued. | 1003 | * Access the page AFTER the futex is queued. |
@@ -658,37 +1019,35 @@ static int futex_wait(unsigned long uaddr, int val, unsigned long time) | |||
658 | * We hold the mmap semaphore, so the mapping cannot have changed | 1019 | * We hold the mmap semaphore, so the mapping cannot have changed |
659 | * since we looked it up in get_futex_key. | 1020 | * since we looked it up in get_futex_key. |
660 | */ | 1021 | */ |
661 | 1022 | ret = get_futex_value_locked(&uval, uaddr); | |
662 | ret = get_futex_value_locked(&curval, (int __user *)uaddr); | ||
663 | 1023 | ||
664 | if (unlikely(ret)) { | 1024 | if (unlikely(ret)) { |
665 | queue_unlock(&q, bh); | 1025 | queue_unlock(&q, hb); |
666 | 1026 | ||
667 | /* If we would have faulted, release mmap_sem, fault it in and | 1027 | /* |
1028 | * If we would have faulted, release mmap_sem, fault it in and | ||
668 | * start all over again. | 1029 | * start all over again. |
669 | */ | 1030 | */ |
670 | up_read(¤t->mm->mmap_sem); | 1031 | up_read(&curr->mm->mmap_sem); |
671 | 1032 | ||
672 | ret = get_user(curval, (int __user *)uaddr); | 1033 | ret = get_user(uval, uaddr); |
673 | 1034 | ||
674 | if (!ret) | 1035 | if (!ret) |
675 | goto retry; | 1036 | goto retry; |
676 | return ret; | 1037 | return ret; |
677 | } | 1038 | } |
678 | if (curval != val) { | 1039 | ret = -EWOULDBLOCK; |
679 | ret = -EWOULDBLOCK; | 1040 | if (uval != val) |
680 | queue_unlock(&q, bh); | 1041 | goto out_unlock_release_sem; |
681 | goto out_release_sem; | ||
682 | } | ||
683 | 1042 | ||
684 | /* Only actually queue if *uaddr contained val. */ | 1043 | /* Only actually queue if *uaddr contained val. */ |
685 | __queue_me(&q, bh); | 1044 | __queue_me(&q, hb); |
686 | 1045 | ||
687 | /* | 1046 | /* |
688 | * Now the futex is queued and we have checked the data, we | 1047 | * Now the futex is queued and we have checked the data, we |
689 | * don't want to hold mmap_sem while we sleep. | 1048 | * don't want to hold mmap_sem while we sleep. |
690 | */ | 1049 | */ |
691 | up_read(¤t->mm->mmap_sem); | 1050 | up_read(&curr->mm->mmap_sem); |
692 | 1051 | ||
693 | /* | 1052 | /* |
694 | * There might have been scheduling since the queue_me(), as we | 1053 | * There might have been scheduling since the queue_me(), as we |
@@ -720,12 +1079,421 @@ static int futex_wait(unsigned long uaddr, int val, unsigned long time) | |||
720 | return 0; | 1079 | return 0; |
721 | if (time == 0) | 1080 | if (time == 0) |
722 | return -ETIMEDOUT; | 1081 | return -ETIMEDOUT; |
723 | /* We expect signal_pending(current), but another thread may | 1082 | /* |
724 | * have handled it for us already. */ | 1083 | * We expect signal_pending(current), but another thread may |
1084 | * have handled it for us already. | ||
1085 | */ | ||
725 | return -EINTR; | 1086 | return -EINTR; |
726 | 1087 | ||
1088 | out_unlock_release_sem: | ||
1089 | queue_unlock(&q, hb); | ||
1090 | |||
727 | out_release_sem: | 1091 | out_release_sem: |
1092 | up_read(&curr->mm->mmap_sem); | ||
1093 | return ret; | ||
1094 | } | ||
1095 | |||
1096 | /* | ||
1097 | * Userspace tried a 0 -> TID atomic transition of the futex value | ||
1098 | * and failed. The kernel side here does the whole locking operation: | ||
1099 | * if there are waiters then it will block, it does PI, etc. (Due to | ||
1100 | * races the kernel might see a 0 value of the futex too.) | ||
1101 | */ | ||
1102 | static int do_futex_lock_pi(u32 __user *uaddr, int detect, int trylock, | ||
1103 | struct hrtimer_sleeper *to) | ||
1104 | { | ||
1105 | struct task_struct *curr = current; | ||
1106 | struct futex_hash_bucket *hb; | ||
1107 | u32 uval, newval, curval; | ||
1108 | struct futex_q q; | ||
1109 | int ret, attempt = 0; | ||
1110 | |||
1111 | if (refill_pi_state_cache()) | ||
1112 | return -ENOMEM; | ||
1113 | |||
1114 | q.pi_state = NULL; | ||
1115 | retry: | ||
1116 | down_read(&curr->mm->mmap_sem); | ||
1117 | |||
1118 | ret = get_futex_key(uaddr, &q.key); | ||
1119 | if (unlikely(ret != 0)) | ||
1120 | goto out_release_sem; | ||
1121 | |||
1122 | hb = queue_lock(&q, -1, NULL); | ||
1123 | |||
1124 | retry_locked: | ||
1125 | /* | ||
1126 | * To avoid races, we attempt to take the lock here again | ||
1127 | * (by doing a 0 -> TID atomic cmpxchg), while holding all | ||
1128 | * the locks. It will most likely not succeed. | ||
1129 | */ | ||
1130 | newval = current->pid; | ||
1131 | |||
1132 | inc_preempt_count(); | ||
1133 | curval = futex_atomic_cmpxchg_inatomic(uaddr, 0, newval); | ||
1134 | dec_preempt_count(); | ||
1135 | |||
1136 | if (unlikely(curval == -EFAULT)) | ||
1137 | goto uaddr_faulted; | ||
1138 | |||
1139 | /* We own the lock already */ | ||
1140 | if (unlikely((curval & FUTEX_TID_MASK) == current->pid)) { | ||
1141 | if (!detect && 0) | ||
1142 | force_sig(SIGKILL, current); | ||
1143 | ret = -EDEADLK; | ||
1144 | goto out_unlock_release_sem; | ||
1145 | } | ||
1146 | |||
1147 | /* | ||
1148 | * Surprise - we got the lock. Just return | ||
1149 | * to userspace: | ||
1150 | */ | ||
1151 | if (unlikely(!curval)) | ||
1152 | goto out_unlock_release_sem; | ||
1153 | |||
1154 | uval = curval; | ||
1155 | newval = uval | FUTEX_WAITERS; | ||
1156 | |||
1157 | inc_preempt_count(); | ||
1158 | curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval); | ||
1159 | dec_preempt_count(); | ||
1160 | |||
1161 | if (unlikely(curval == -EFAULT)) | ||
1162 | goto uaddr_faulted; | ||
1163 | if (unlikely(curval != uval)) | ||
1164 | goto retry_locked; | ||
1165 | |||
1166 | /* | ||
1167 | * We dont have the lock. Look up the PI state (or create it if | ||
1168 | * we are the first waiter): | ||
1169 | */ | ||
1170 | ret = lookup_pi_state(uval, hb, &q); | ||
1171 | |||
1172 | if (unlikely(ret)) { | ||
1173 | /* | ||
1174 | * There were no waiters and the owner task lookup | ||
1175 | * failed. When the OWNER_DIED bit is set, then we | ||
1176 | * know that this is a robust futex and we actually | ||
1177 | * take the lock. This is safe as we are protected by | ||
1178 | * the hash bucket lock. We also set the waiters bit | ||
1179 | * unconditionally here, to simplify glibc handling of | ||
1180 | * multiple tasks racing to acquire the lock and | ||
1181 | * cleanup the problems which were left by the dead | ||
1182 | * owner. | ||
1183 | */ | ||
1184 | if (curval & FUTEX_OWNER_DIED) { | ||
1185 | uval = newval; | ||
1186 | newval = current->pid | | ||
1187 | FUTEX_OWNER_DIED | FUTEX_WAITERS; | ||
1188 | |||
1189 | inc_preempt_count(); | ||
1190 | curval = futex_atomic_cmpxchg_inatomic(uaddr, | ||
1191 | uval, newval); | ||
1192 | dec_preempt_count(); | ||
1193 | |||
1194 | if (unlikely(curval == -EFAULT)) | ||
1195 | goto uaddr_faulted; | ||
1196 | if (unlikely(curval != uval)) | ||
1197 | goto retry_locked; | ||
1198 | ret = 0; | ||
1199 | } | ||
1200 | goto out_unlock_release_sem; | ||
1201 | } | ||
1202 | |||
1203 | /* | ||
1204 | * Only actually queue now that the atomic ops are done: | ||
1205 | */ | ||
1206 | __queue_me(&q, hb); | ||
1207 | |||
1208 | /* | ||
1209 | * Now the futex is queued and we have checked the data, we | ||
1210 | * don't want to hold mmap_sem while we sleep. | ||
1211 | */ | ||
1212 | up_read(&curr->mm->mmap_sem); | ||
1213 | |||
1214 | WARN_ON(!q.pi_state); | ||
1215 | /* | ||
1216 | * Block on the PI mutex: | ||
1217 | */ | ||
1218 | if (!trylock) | ||
1219 | ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1); | ||
1220 | else { | ||
1221 | ret = rt_mutex_trylock(&q.pi_state->pi_mutex); | ||
1222 | /* Fixup the trylock return value: */ | ||
1223 | ret = ret ? 0 : -EWOULDBLOCK; | ||
1224 | } | ||
1225 | |||
1226 | down_read(&curr->mm->mmap_sem); | ||
1227 | spin_lock(q.lock_ptr); | ||
1228 | |||
1229 | /* | ||
1230 | * Got the lock. We might not be the anticipated owner if we | ||
1231 | * did a lock-steal - fix up the PI-state in that case. | ||
1232 | */ | ||
1233 | if (!ret && q.pi_state->owner != curr) { | ||
1234 | u32 newtid = current->pid | FUTEX_WAITERS; | ||
1235 | |||
1236 | /* Owner died? */ | ||
1237 | if (q.pi_state->owner != NULL) { | ||
1238 | spin_lock_irq(&q.pi_state->owner->pi_lock); | ||
1239 | list_del_init(&q.pi_state->list); | ||
1240 | spin_unlock_irq(&q.pi_state->owner->pi_lock); | ||
1241 | } else | ||
1242 | newtid |= FUTEX_OWNER_DIED; | ||
1243 | |||
1244 | q.pi_state->owner = current; | ||
1245 | |||
1246 | spin_lock_irq(¤t->pi_lock); | ||
1247 | list_add(&q.pi_state->list, ¤t->pi_state_list); | ||
1248 | spin_unlock_irq(¤t->pi_lock); | ||
1249 | |||
1250 | /* Unqueue and drop the lock */ | ||
1251 | unqueue_me_pi(&q, hb); | ||
1252 | up_read(&curr->mm->mmap_sem); | ||
1253 | /* | ||
1254 | * We own it, so we have to replace the pending owner | ||
1255 | * TID. This must be atomic as we have preserve the | ||
1256 | * owner died bit here. | ||
1257 | */ | ||
1258 | ret = get_user(uval, uaddr); | ||
1259 | while (!ret) { | ||
1260 | newval = (uval & FUTEX_OWNER_DIED) | newtid; | ||
1261 | curval = futex_atomic_cmpxchg_inatomic(uaddr, | ||
1262 | uval, newval); | ||
1263 | if (curval == -EFAULT) | ||
1264 | ret = -EFAULT; | ||
1265 | if (curval == uval) | ||
1266 | break; | ||
1267 | uval = curval; | ||
1268 | } | ||
1269 | } else { | ||
1270 | /* | ||
1271 | * Catch the rare case, where the lock was released | ||
1272 | * when we were on the way back before we locked | ||
1273 | * the hash bucket. | ||
1274 | */ | ||
1275 | if (ret && q.pi_state->owner == curr) { | ||
1276 | if (rt_mutex_trylock(&q.pi_state->pi_mutex)) | ||
1277 | ret = 0; | ||
1278 | } | ||
1279 | /* Unqueue and drop the lock */ | ||
1280 | unqueue_me_pi(&q, hb); | ||
1281 | up_read(&curr->mm->mmap_sem); | ||
1282 | } | ||
1283 | |||
1284 | if (!detect && ret == -EDEADLK && 0) | ||
1285 | force_sig(SIGKILL, current); | ||
1286 | |||
1287 | return ret; | ||
1288 | |||
1289 | out_unlock_release_sem: | ||
1290 | queue_unlock(&q, hb); | ||
1291 | |||
1292 | out_release_sem: | ||
1293 | up_read(&curr->mm->mmap_sem); | ||
1294 | return ret; | ||
1295 | |||
1296 | uaddr_faulted: | ||
1297 | /* | ||
1298 | * We have to r/w *(int __user *)uaddr, but we can't modify it | ||
1299 | * non-atomically. Therefore, if get_user below is not | ||
1300 | * enough, we need to handle the fault ourselves, while | ||
1301 | * still holding the mmap_sem. | ||
1302 | */ | ||
1303 | if (attempt++) { | ||
1304 | if (futex_handle_fault((unsigned long)uaddr, attempt)) | ||
1305 | goto out_unlock_release_sem; | ||
1306 | |||
1307 | goto retry_locked; | ||
1308 | } | ||
1309 | |||
1310 | queue_unlock(&q, hb); | ||
1311 | up_read(&curr->mm->mmap_sem); | ||
1312 | |||
1313 | ret = get_user(uval, uaddr); | ||
1314 | if (!ret && (uval != -EFAULT)) | ||
1315 | goto retry; | ||
1316 | |||
1317 | return ret; | ||
1318 | } | ||
1319 | |||
1320 | /* | ||
1321 | * Restart handler | ||
1322 | */ | ||
1323 | static long futex_lock_pi_restart(struct restart_block *restart) | ||
1324 | { | ||
1325 | struct hrtimer_sleeper timeout, *to = NULL; | ||
1326 | int ret; | ||
1327 | |||
1328 | restart->fn = do_no_restart_syscall; | ||
1329 | |||
1330 | if (restart->arg2 || restart->arg3) { | ||
1331 | to = &timeout; | ||
1332 | hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_ABS); | ||
1333 | hrtimer_init_sleeper(to, current); | ||
1334 | to->timer.expires.tv64 = ((u64)restart->arg1 << 32) | | ||
1335 | (u64) restart->arg0; | ||
1336 | } | ||
1337 | |||
1338 | pr_debug("lock_pi restart: %p, %d (%d)\n", | ||
1339 | (u32 __user *)restart->arg0, current->pid); | ||
1340 | |||
1341 | ret = do_futex_lock_pi((u32 __user *)restart->arg0, restart->arg1, | ||
1342 | 0, to); | ||
1343 | |||
1344 | if (ret != -EINTR) | ||
1345 | return ret; | ||
1346 | |||
1347 | restart->fn = futex_lock_pi_restart; | ||
1348 | |||
1349 | /* The other values are filled in */ | ||
1350 | return -ERESTART_RESTARTBLOCK; | ||
1351 | } | ||
1352 | |||
1353 | /* | ||
1354 | * Called from the syscall entry below. | ||
1355 | */ | ||
1356 | static int futex_lock_pi(u32 __user *uaddr, int detect, unsigned long sec, | ||
1357 | long nsec, int trylock) | ||
1358 | { | ||
1359 | struct hrtimer_sleeper timeout, *to = NULL; | ||
1360 | struct restart_block *restart; | ||
1361 | int ret; | ||
1362 | |||
1363 | if (sec != MAX_SCHEDULE_TIMEOUT) { | ||
1364 | to = &timeout; | ||
1365 | hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_ABS); | ||
1366 | hrtimer_init_sleeper(to, current); | ||
1367 | to->timer.expires = ktime_set(sec, nsec); | ||
1368 | } | ||
1369 | |||
1370 | ret = do_futex_lock_pi(uaddr, detect, trylock, to); | ||
1371 | |||
1372 | if (ret != -EINTR) | ||
1373 | return ret; | ||
1374 | |||
1375 | pr_debug("lock_pi interrupted: %p, %d (%d)\n", uaddr, current->pid); | ||
1376 | |||
1377 | restart = ¤t_thread_info()->restart_block; | ||
1378 | restart->fn = futex_lock_pi_restart; | ||
1379 | restart->arg0 = (unsigned long) uaddr; | ||
1380 | restart->arg1 = detect; | ||
1381 | if (to) { | ||
1382 | restart->arg2 = to->timer.expires.tv64 & 0xFFFFFFFF; | ||
1383 | restart->arg3 = to->timer.expires.tv64 >> 32; | ||
1384 | } else | ||
1385 | restart->arg2 = restart->arg3 = 0; | ||
1386 | |||
1387 | return -ERESTART_RESTARTBLOCK; | ||
1388 | } | ||
1389 | |||
1390 | /* | ||
1391 | * Userspace attempted a TID -> 0 atomic transition, and failed. | ||
1392 | * This is the in-kernel slowpath: we look up the PI state (if any), | ||
1393 | * and do the rt-mutex unlock. | ||
1394 | */ | ||
1395 | static int futex_unlock_pi(u32 __user *uaddr) | ||
1396 | { | ||
1397 | struct futex_hash_bucket *hb; | ||
1398 | struct futex_q *this, *next; | ||
1399 | u32 uval; | ||
1400 | struct list_head *head; | ||
1401 | union futex_key key; | ||
1402 | int ret, attempt = 0; | ||
1403 | |||
1404 | retry: | ||
1405 | if (get_user(uval, uaddr)) | ||
1406 | return -EFAULT; | ||
1407 | /* | ||
1408 | * We release only a lock we actually own: | ||
1409 | */ | ||
1410 | if ((uval & FUTEX_TID_MASK) != current->pid) | ||
1411 | return -EPERM; | ||
1412 | /* | ||
1413 | * First take all the futex related locks: | ||
1414 | */ | ||
1415 | down_read(¤t->mm->mmap_sem); | ||
1416 | |||
1417 | ret = get_futex_key(uaddr, &key); | ||
1418 | if (unlikely(ret != 0)) | ||
1419 | goto out; | ||
1420 | |||
1421 | hb = hash_futex(&key); | ||
1422 | spin_lock(&hb->lock); | ||
1423 | |||
1424 | retry_locked: | ||
1425 | /* | ||
1426 | * To avoid races, try to do the TID -> 0 atomic transition | ||
1427 | * again. If it succeeds then we can return without waking | ||
1428 | * anyone else up: | ||
1429 | */ | ||
1430 | inc_preempt_count(); | ||
1431 | uval = futex_atomic_cmpxchg_inatomic(uaddr, current->pid, 0); | ||
1432 | dec_preempt_count(); | ||
1433 | |||
1434 | if (unlikely(uval == -EFAULT)) | ||
1435 | goto pi_faulted; | ||
1436 | /* | ||
1437 | * Rare case: we managed to release the lock atomically, | ||
1438 | * no need to wake anyone else up: | ||
1439 | */ | ||
1440 | if (unlikely(uval == current->pid)) | ||
1441 | goto out_unlock; | ||
1442 | |||
1443 | /* | ||
1444 | * Ok, other tasks may need to be woken up - check waiters | ||
1445 | * and do the wakeup if necessary: | ||
1446 | */ | ||
1447 | head = &hb->chain; | ||
1448 | |||
1449 | list_for_each_entry_safe(this, next, head, list) { | ||
1450 | if (!match_futex (&this->key, &key)) | ||
1451 | continue; | ||
1452 | ret = wake_futex_pi(uaddr, uval, this); | ||
1453 | /* | ||
1454 | * The atomic access to the futex value | ||
1455 | * generated a pagefault, so retry the | ||
1456 | * user-access and the wakeup: | ||
1457 | */ | ||
1458 | if (ret == -EFAULT) | ||
1459 | goto pi_faulted; | ||
1460 | goto out_unlock; | ||
1461 | } | ||
1462 | /* | ||
1463 | * No waiters - kernel unlocks the futex: | ||
1464 | */ | ||
1465 | ret = unlock_futex_pi(uaddr, uval); | ||
1466 | if (ret == -EFAULT) | ||
1467 | goto pi_faulted; | ||
1468 | |||
1469 | out_unlock: | ||
1470 | spin_unlock(&hb->lock); | ||
1471 | out: | ||
728 | up_read(¤t->mm->mmap_sem); | 1472 | up_read(¤t->mm->mmap_sem); |
1473 | |||
1474 | return ret; | ||
1475 | |||
1476 | pi_faulted: | ||
1477 | /* | ||
1478 | * We have to r/w *(int __user *)uaddr, but we can't modify it | ||
1479 | * non-atomically. Therefore, if get_user below is not | ||
1480 | * enough, we need to handle the fault ourselves, while | ||
1481 | * still holding the mmap_sem. | ||
1482 | */ | ||
1483 | if (attempt++) { | ||
1484 | if (futex_handle_fault((unsigned long)uaddr, attempt)) | ||
1485 | goto out_unlock; | ||
1486 | |||
1487 | goto retry_locked; | ||
1488 | } | ||
1489 | |||
1490 | spin_unlock(&hb->lock); | ||
1491 | up_read(¤t->mm->mmap_sem); | ||
1492 | |||
1493 | ret = get_user(uval, uaddr); | ||
1494 | if (!ret && (uval != -EFAULT)) | ||
1495 | goto retry; | ||
1496 | |||
729 | return ret; | 1497 | return ret; |
730 | } | 1498 | } |
731 | 1499 | ||
@@ -735,6 +1503,7 @@ static int futex_close(struct inode *inode, struct file *filp) | |||
735 | 1503 | ||
736 | unqueue_me(q); | 1504 | unqueue_me(q); |
737 | kfree(q); | 1505 | kfree(q); |
1506 | |||
738 | return 0; | 1507 | return 0; |
739 | } | 1508 | } |
740 | 1509 | ||
@@ -766,7 +1535,7 @@ static struct file_operations futex_fops = { | |||
766 | * Signal allows caller to avoid the race which would occur if they | 1535 | * Signal allows caller to avoid the race which would occur if they |
767 | * set the sigio stuff up afterwards. | 1536 | * set the sigio stuff up afterwards. |
768 | */ | 1537 | */ |
769 | static int futex_fd(unsigned long uaddr, int signal) | 1538 | static int futex_fd(u32 __user *uaddr, int signal) |
770 | { | 1539 | { |
771 | struct futex_q *q; | 1540 | struct futex_q *q; |
772 | struct file *filp; | 1541 | struct file *filp; |
@@ -803,6 +1572,7 @@ static int futex_fd(unsigned long uaddr, int signal) | |||
803 | err = -ENOMEM; | 1572 | err = -ENOMEM; |
804 | goto error; | 1573 | goto error; |
805 | } | 1574 | } |
1575 | q->pi_state = NULL; | ||
806 | 1576 | ||
807 | down_read(¤t->mm->mmap_sem); | 1577 | down_read(¤t->mm->mmap_sem); |
808 | err = get_futex_key(uaddr, &q->key); | 1578 | err = get_futex_key(uaddr, &q->key); |
@@ -840,7 +1610,7 @@ error: | |||
840 | * Implementation: user-space maintains a per-thread list of locks it | 1610 | * Implementation: user-space maintains a per-thread list of locks it |
841 | * is holding. Upon do_exit(), the kernel carefully walks this list, | 1611 | * is holding. Upon do_exit(), the kernel carefully walks this list, |
842 | * and marks all locks that are owned by this thread with the | 1612 | * and marks all locks that are owned by this thread with the |
843 | * FUTEX_OWNER_DEAD bit, and wakes up a waiter (if any). The list is | 1613 | * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is |
844 | * always manipulated with the lock held, so the list is private and | 1614 | * always manipulated with the lock held, so the list is private and |
845 | * per-thread. Userspace also maintains a per-thread 'list_op_pending' | 1615 | * per-thread. Userspace also maintains a per-thread 'list_op_pending' |
846 | * field, to allow the kernel to clean up if the thread dies after | 1616 | * field, to allow the kernel to clean up if the thread dies after |
@@ -915,7 +1685,7 @@ err_unlock: | |||
915 | */ | 1685 | */ |
916 | int handle_futex_death(u32 __user *uaddr, struct task_struct *curr) | 1686 | int handle_futex_death(u32 __user *uaddr, struct task_struct *curr) |
917 | { | 1687 | { |
918 | u32 uval; | 1688 | u32 uval, nval; |
919 | 1689 | ||
920 | retry: | 1690 | retry: |
921 | if (get_user(uval, uaddr)) | 1691 | if (get_user(uval, uaddr)) |
@@ -932,12 +1702,16 @@ retry: | |||
932 | * thread-death.) The rest of the cleanup is done in | 1702 | * thread-death.) The rest of the cleanup is done in |
933 | * userspace. | 1703 | * userspace. |
934 | */ | 1704 | */ |
935 | if (futex_atomic_cmpxchg_inatomic(uaddr, uval, | 1705 | nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, |
936 | uval | FUTEX_OWNER_DIED) != uval) | 1706 | uval | FUTEX_OWNER_DIED); |
1707 | if (nval == -EFAULT) | ||
1708 | return -1; | ||
1709 | |||
1710 | if (nval != uval) | ||
937 | goto retry; | 1711 | goto retry; |
938 | 1712 | ||
939 | if (uval & FUTEX_WAITERS) | 1713 | if (uval & FUTEX_WAITERS) |
940 | futex_wake((unsigned long)uaddr, 1); | 1714 | futex_wake(uaddr, 1); |
941 | } | 1715 | } |
942 | return 0; | 1716 | return 0; |
943 | } | 1717 | } |
@@ -978,7 +1752,7 @@ void exit_robust_list(struct task_struct *curr) | |||
978 | while (entry != &head->list) { | 1752 | while (entry != &head->list) { |
979 | /* | 1753 | /* |
980 | * A pending lock might already be on the list, so | 1754 | * A pending lock might already be on the list, so |
981 | * dont process it twice: | 1755 | * don't process it twice: |
982 | */ | 1756 | */ |
983 | if (entry != pending) | 1757 | if (entry != pending) |
984 | if (handle_futex_death((void *)entry + futex_offset, | 1758 | if (handle_futex_death((void *)entry + futex_offset, |
@@ -999,8 +1773,8 @@ void exit_robust_list(struct task_struct *curr) | |||
999 | } | 1773 | } |
1000 | } | 1774 | } |
1001 | 1775 | ||
1002 | long do_futex(unsigned long uaddr, int op, int val, unsigned long timeout, | 1776 | long do_futex(u32 __user *uaddr, int op, u32 val, unsigned long timeout, |
1003 | unsigned long uaddr2, int val2, int val3) | 1777 | u32 __user *uaddr2, u32 val2, u32 val3) |
1004 | { | 1778 | { |
1005 | int ret; | 1779 | int ret; |
1006 | 1780 | ||
@@ -1024,6 +1798,15 @@ long do_futex(unsigned long uaddr, int op, int val, unsigned long timeout, | |||
1024 | case FUTEX_WAKE_OP: | 1798 | case FUTEX_WAKE_OP: |
1025 | ret = futex_wake_op(uaddr, uaddr2, val, val2, val3); | 1799 | ret = futex_wake_op(uaddr, uaddr2, val, val2, val3); |
1026 | break; | 1800 | break; |
1801 | case FUTEX_LOCK_PI: | ||
1802 | ret = futex_lock_pi(uaddr, val, timeout, val2, 0); | ||
1803 | break; | ||
1804 | case FUTEX_UNLOCK_PI: | ||
1805 | ret = futex_unlock_pi(uaddr); | ||
1806 | break; | ||
1807 | case FUTEX_TRYLOCK_PI: | ||
1808 | ret = futex_lock_pi(uaddr, 0, timeout, val2, 1); | ||
1809 | break; | ||
1027 | default: | 1810 | default: |
1028 | ret = -ENOSYS; | 1811 | ret = -ENOSYS; |
1029 | } | 1812 | } |
@@ -1031,36 +1814,40 @@ long do_futex(unsigned long uaddr, int op, int val, unsigned long timeout, | |||
1031 | } | 1814 | } |
1032 | 1815 | ||
1033 | 1816 | ||
1034 | asmlinkage long sys_futex(u32 __user *uaddr, int op, int val, | 1817 | asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val, |
1035 | struct timespec __user *utime, u32 __user *uaddr2, | 1818 | struct timespec __user *utime, u32 __user *uaddr2, |
1036 | int val3) | 1819 | u32 val3) |
1037 | { | 1820 | { |
1038 | struct timespec t; | 1821 | struct timespec t; |
1039 | unsigned long timeout = MAX_SCHEDULE_TIMEOUT; | 1822 | unsigned long timeout = MAX_SCHEDULE_TIMEOUT; |
1040 | int val2 = 0; | 1823 | u32 val2 = 0; |
1041 | 1824 | ||
1042 | if (utime && (op == FUTEX_WAIT)) { | 1825 | if (utime && (op == FUTEX_WAIT || op == FUTEX_LOCK_PI)) { |
1043 | if (copy_from_user(&t, utime, sizeof(t)) != 0) | 1826 | if (copy_from_user(&t, utime, sizeof(t)) != 0) |
1044 | return -EFAULT; | 1827 | return -EFAULT; |
1045 | if (!timespec_valid(&t)) | 1828 | if (!timespec_valid(&t)) |
1046 | return -EINVAL; | 1829 | return -EINVAL; |
1047 | timeout = timespec_to_jiffies(&t) + 1; | 1830 | if (op == FUTEX_WAIT) |
1831 | timeout = timespec_to_jiffies(&t) + 1; | ||
1832 | else { | ||
1833 | timeout = t.tv_sec; | ||
1834 | val2 = t.tv_nsec; | ||
1835 | } | ||
1048 | } | 1836 | } |
1049 | /* | 1837 | /* |
1050 | * requeue parameter in 'utime' if op == FUTEX_REQUEUE. | 1838 | * requeue parameter in 'utime' if op == FUTEX_REQUEUE. |
1051 | */ | 1839 | */ |
1052 | if (op >= FUTEX_REQUEUE) | 1840 | if (op == FUTEX_REQUEUE || op == FUTEX_CMP_REQUEUE) |
1053 | val2 = (int) (unsigned long) utime; | 1841 | val2 = (u32) (unsigned long) utime; |
1054 | 1842 | ||
1055 | return do_futex((unsigned long)uaddr, op, val, timeout, | 1843 | return do_futex(uaddr, op, val, timeout, uaddr2, val2, val3); |
1056 | (unsigned long)uaddr2, val2, val3); | ||
1057 | } | 1844 | } |
1058 | 1845 | ||
1059 | static struct super_block * | 1846 | static int futexfs_get_sb(struct file_system_type *fs_type, |
1060 | futexfs_get_sb(struct file_system_type *fs_type, | 1847 | int flags, const char *dev_name, void *data, |
1061 | int flags, const char *dev_name, void *data) | 1848 | struct vfsmount *mnt) |
1062 | { | 1849 | { |
1063 | return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA); | 1850 | return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA, mnt); |
1064 | } | 1851 | } |
1065 | 1852 | ||
1066 | static struct file_system_type futex_fs_type = { | 1853 | static struct file_system_type futex_fs_type = { |