aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/futex.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/futex.c')
-rw-r--r--kernel/futex.c1229
1 files changed, 911 insertions, 318 deletions
diff --git a/kernel/futex.c b/kernel/futex.c
index d546b2d53a62..1c337112335c 100644
--- a/kernel/futex.c
+++ b/kernel/futex.c
@@ -19,6 +19,10 @@
19 * PRIVATE futexes by Eric Dumazet 19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com> 20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 * 21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly 26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew 27 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation. 28 * Kirkwood for proof-of-concept implementation.
@@ -96,8 +100,8 @@ struct futex_pi_state {
96 */ 100 */
97struct futex_q { 101struct futex_q {
98 struct plist_node list; 102 struct plist_node list;
99 /* There can only be a single waiter */ 103 /* Waiter reference */
100 wait_queue_head_t waiter; 104 struct task_struct *task;
101 105
102 /* Which hash list lock to use: */ 106 /* Which hash list lock to use: */
103 spinlock_t *lock_ptr; 107 spinlock_t *lock_ptr;
@@ -107,7 +111,9 @@ struct futex_q {
107 111
108 /* Optional priority inheritance state: */ 112 /* Optional priority inheritance state: */
109 struct futex_pi_state *pi_state; 113 struct futex_pi_state *pi_state;
110 struct task_struct *task; 114
115 /* rt_waiter storage for requeue_pi: */
116 struct rt_mutex_waiter *rt_waiter;
111 117
112 /* Bitset for the optional bitmasked wakeup */ 118 /* Bitset for the optional bitmasked wakeup */
113 u32 bitset; 119 u32 bitset;
@@ -278,6 +284,44 @@ void put_futex_key(int fshared, union futex_key *key)
278 drop_futex_key_refs(key); 284 drop_futex_key_refs(key);
279} 285}
280 286
287/*
288 * fault_in_user_writeable - fault in user address and verify RW access
289 * @uaddr: pointer to faulting user space address
290 *
291 * Slow path to fixup the fault we just took in the atomic write
292 * access to @uaddr.
293 *
294 * We have no generic implementation of a non destructive write to the
295 * user address. We know that we faulted in the atomic pagefault
296 * disabled section so we can as well avoid the #PF overhead by
297 * calling get_user_pages() right away.
298 */
299static int fault_in_user_writeable(u32 __user *uaddr)
300{
301 int ret = get_user_pages(current, current->mm, (unsigned long)uaddr,
302 sizeof(*uaddr), 1, 0, NULL, NULL);
303 return ret < 0 ? ret : 0;
304}
305
306/**
307 * futex_top_waiter() - Return the highest priority waiter on a futex
308 * @hb: the hash bucket the futex_q's reside in
309 * @key: the futex key (to distinguish it from other futex futex_q's)
310 *
311 * Must be called with the hb lock held.
312 */
313static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
314 union futex_key *key)
315{
316 struct futex_q *this;
317
318 plist_for_each_entry(this, &hb->chain, list) {
319 if (match_futex(&this->key, key))
320 return this;
321 }
322 return NULL;
323}
324
281static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval) 325static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
282{ 326{
283 u32 curval; 327 u32 curval;
@@ -539,28 +583,160 @@ lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
539 return 0; 583 return 0;
540} 584}
541 585
586/**
587 * futex_lock_pi_atomic() - atomic work required to acquire a pi aware futex
588 * @uaddr: the pi futex user address
589 * @hb: the pi futex hash bucket
590 * @key: the futex key associated with uaddr and hb
591 * @ps: the pi_state pointer where we store the result of the
592 * lookup
593 * @task: the task to perform the atomic lock work for. This will
594 * be "current" except in the case of requeue pi.
595 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
596 *
597 * Returns:
598 * 0 - ready to wait
599 * 1 - acquired the lock
600 * <0 - error
601 *
602 * The hb->lock and futex_key refs shall be held by the caller.
603 */
604static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
605 union futex_key *key,
606 struct futex_pi_state **ps,
607 struct task_struct *task, int set_waiters)
608{
609 int lock_taken, ret, ownerdied = 0;
610 u32 uval, newval, curval;
611
612retry:
613 ret = lock_taken = 0;
614
615 /*
616 * To avoid races, we attempt to take the lock here again
617 * (by doing a 0 -> TID atomic cmpxchg), while holding all
618 * the locks. It will most likely not succeed.
619 */
620 newval = task_pid_vnr(task);
621 if (set_waiters)
622 newval |= FUTEX_WAITERS;
623
624 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
625
626 if (unlikely(curval == -EFAULT))
627 return -EFAULT;
628
629 /*
630 * Detect deadlocks.
631 */
632 if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
633 return -EDEADLK;
634
635 /*
636 * Surprise - we got the lock. Just return to userspace:
637 */
638 if (unlikely(!curval))
639 return 1;
640
641 uval = curval;
642
643 /*
644 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
645 * to wake at the next unlock.
646 */
647 newval = curval | FUTEX_WAITERS;
648
649 /*
650 * There are two cases, where a futex might have no owner (the
651 * owner TID is 0): OWNER_DIED. We take over the futex in this
652 * case. We also do an unconditional take over, when the owner
653 * of the futex died.
654 *
655 * This is safe as we are protected by the hash bucket lock !
656 */
657 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
658 /* Keep the OWNER_DIED bit */
659 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
660 ownerdied = 0;
661 lock_taken = 1;
662 }
663
664 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
665
666 if (unlikely(curval == -EFAULT))
667 return -EFAULT;
668 if (unlikely(curval != uval))
669 goto retry;
670
671 /*
672 * We took the lock due to owner died take over.
673 */
674 if (unlikely(lock_taken))
675 return 1;
676
677 /*
678 * We dont have the lock. Look up the PI state (or create it if
679 * we are the first waiter):
680 */
681 ret = lookup_pi_state(uval, hb, key, ps);
682
683 if (unlikely(ret)) {
684 switch (ret) {
685 case -ESRCH:
686 /*
687 * No owner found for this futex. Check if the
688 * OWNER_DIED bit is set to figure out whether
689 * this is a robust futex or not.
690 */
691 if (get_futex_value_locked(&curval, uaddr))
692 return -EFAULT;
693
694 /*
695 * We simply start over in case of a robust
696 * futex. The code above will take the futex
697 * and return happy.
698 */
699 if (curval & FUTEX_OWNER_DIED) {
700 ownerdied = 1;
701 goto retry;
702 }
703 default:
704 break;
705 }
706 }
707
708 return ret;
709}
710
542/* 711/*
543 * The hash bucket lock must be held when this is called. 712 * The hash bucket lock must be held when this is called.
544 * Afterwards, the futex_q must not be accessed. 713 * Afterwards, the futex_q must not be accessed.
545 */ 714 */
546static void wake_futex(struct futex_q *q) 715static void wake_futex(struct futex_q *q)
547{ 716{
548 plist_del(&q->list, &q->list.plist); 717 struct task_struct *p = q->task;
718
549 /* 719 /*
550 * The lock in wake_up_all() is a crucial memory barrier after the 720 * We set q->lock_ptr = NULL _before_ we wake up the task. If
551 * plist_del() and also before assigning to q->lock_ptr. 721 * a non futex wake up happens on another CPU then the task
722 * might exit and p would dereference a non existing task
723 * struct. Prevent this by holding a reference on p across the
724 * wake up.
552 */ 725 */
553 wake_up(&q->waiter); 726 get_task_struct(p);
727
728 plist_del(&q->list, &q->list.plist);
554 /* 729 /*
555 * The waiting task can free the futex_q as soon as this is written, 730 * The waiting task can free the futex_q as soon as
556 * without taking any locks. This must come last. 731 * q->lock_ptr = NULL is written, without taking any locks. A
557 * 732 * memory barrier is required here to prevent the following
558 * A memory barrier is required here to prevent the following store to 733 * store to lock_ptr from getting ahead of the plist_del.
559 * lock_ptr from getting ahead of the wakeup. Clearing the lock at the
560 * end of wake_up() does not prevent this store from moving.
561 */ 734 */
562 smp_wmb(); 735 smp_wmb();
563 q->lock_ptr = NULL; 736 q->lock_ptr = NULL;
737
738 wake_up_state(p, TASK_NORMAL);
739 put_task_struct(p);
564} 740}
565 741
566static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this) 742static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
@@ -689,7 +865,7 @@ static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
689 865
690 plist_for_each_entry_safe(this, next, head, list) { 866 plist_for_each_entry_safe(this, next, head, list) {
691 if (match_futex (&this->key, &key)) { 867 if (match_futex (&this->key, &key)) {
692 if (this->pi_state) { 868 if (this->pi_state || this->rt_waiter) {
693 ret = -EINVAL; 869 ret = -EINVAL;
694 break; 870 break;
695 } 871 }
@@ -739,7 +915,6 @@ retry:
739retry_private: 915retry_private:
740 op_ret = futex_atomic_op_inuser(op, uaddr2); 916 op_ret = futex_atomic_op_inuser(op, uaddr2);
741 if (unlikely(op_ret < 0)) { 917 if (unlikely(op_ret < 0)) {
742 u32 dummy;
743 918
744 double_unlock_hb(hb1, hb2); 919 double_unlock_hb(hb1, hb2);
745 920
@@ -757,7 +932,7 @@ retry_private:
757 goto out_put_keys; 932 goto out_put_keys;
758 } 933 }
759 934
760 ret = get_user(dummy, uaddr2); 935 ret = fault_in_user_writeable(uaddr2);
761 if (ret) 936 if (ret)
762 goto out_put_keys; 937 goto out_put_keys;
763 938
@@ -802,24 +977,185 @@ out:
802 return ret; 977 return ret;
803} 978}
804 979
805/* 980/**
806 * Requeue all waiters hashed on one physical page to another 981 * requeue_futex() - Requeue a futex_q from one hb to another
807 * physical page. 982 * @q: the futex_q to requeue
983 * @hb1: the source hash_bucket
984 * @hb2: the target hash_bucket
985 * @key2: the new key for the requeued futex_q
986 */
987static inline
988void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
989 struct futex_hash_bucket *hb2, union futex_key *key2)
990{
991
992 /*
993 * If key1 and key2 hash to the same bucket, no need to
994 * requeue.
995 */
996 if (likely(&hb1->chain != &hb2->chain)) {
997 plist_del(&q->list, &hb1->chain);
998 plist_add(&q->list, &hb2->chain);
999 q->lock_ptr = &hb2->lock;
1000#ifdef CONFIG_DEBUG_PI_LIST
1001 q->list.plist.lock = &hb2->lock;
1002#endif
1003 }
1004 get_futex_key_refs(key2);
1005 q->key = *key2;
1006}
1007
1008/**
1009 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1010 * q: the futex_q
1011 * key: the key of the requeue target futex
1012 *
1013 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1014 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1015 * to the requeue target futex so the waiter can detect the wakeup on the right
1016 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1017 * atomic lock acquisition. Must be called with the q->lock_ptr held.
1018 */
1019static inline
1020void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key)
1021{
1022 drop_futex_key_refs(&q->key);
1023 get_futex_key_refs(key);
1024 q->key = *key;
1025
1026 WARN_ON(plist_node_empty(&q->list));
1027 plist_del(&q->list, &q->list.plist);
1028
1029 WARN_ON(!q->rt_waiter);
1030 q->rt_waiter = NULL;
1031
1032 wake_up_state(q->task, TASK_NORMAL);
1033}
1034
1035/**
1036 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1037 * @pifutex: the user address of the to futex
1038 * @hb1: the from futex hash bucket, must be locked by the caller
1039 * @hb2: the to futex hash bucket, must be locked by the caller
1040 * @key1: the from futex key
1041 * @key2: the to futex key
1042 * @ps: address to store the pi_state pointer
1043 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1044 *
1045 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1046 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1047 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1048 * hb1 and hb2 must be held by the caller.
1049 *
1050 * Returns:
1051 * 0 - failed to acquire the lock atomicly
1052 * 1 - acquired the lock
1053 * <0 - error
1054 */
1055static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1056 struct futex_hash_bucket *hb1,
1057 struct futex_hash_bucket *hb2,
1058 union futex_key *key1, union futex_key *key2,
1059 struct futex_pi_state **ps, int set_waiters)
1060{
1061 struct futex_q *top_waiter = NULL;
1062 u32 curval;
1063 int ret;
1064
1065 if (get_futex_value_locked(&curval, pifutex))
1066 return -EFAULT;
1067
1068 /*
1069 * Find the top_waiter and determine if there are additional waiters.
1070 * If the caller intends to requeue more than 1 waiter to pifutex,
1071 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1072 * as we have means to handle the possible fault. If not, don't set
1073 * the bit unecessarily as it will force the subsequent unlock to enter
1074 * the kernel.
1075 */
1076 top_waiter = futex_top_waiter(hb1, key1);
1077
1078 /* There are no waiters, nothing for us to do. */
1079 if (!top_waiter)
1080 return 0;
1081
1082 /*
1083 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1084 * the contended case or if set_waiters is 1. The pi_state is returned
1085 * in ps in contended cases.
1086 */
1087 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1088 set_waiters);
1089 if (ret == 1)
1090 requeue_pi_wake_futex(top_waiter, key2);
1091
1092 return ret;
1093}
1094
1095/**
1096 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1097 * uaddr1: source futex user address
1098 * uaddr2: target futex user address
1099 * nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1100 * nr_requeue: number of waiters to requeue (0-INT_MAX)
1101 * requeue_pi: if we are attempting to requeue from a non-pi futex to a
1102 * pi futex (pi to pi requeue is not supported)
1103 *
1104 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1105 * uaddr2 atomically on behalf of the top waiter.
1106 *
1107 * Returns:
1108 * >=0 - on success, the number of tasks requeued or woken
1109 * <0 - on error
808 */ 1110 */
809static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2, 1111static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
810 int nr_wake, int nr_requeue, u32 *cmpval) 1112 int nr_wake, int nr_requeue, u32 *cmpval,
1113 int requeue_pi)
811{ 1114{
812 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT; 1115 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1116 int drop_count = 0, task_count = 0, ret;
1117 struct futex_pi_state *pi_state = NULL;
813 struct futex_hash_bucket *hb1, *hb2; 1118 struct futex_hash_bucket *hb1, *hb2;
814 struct plist_head *head1; 1119 struct plist_head *head1;
815 struct futex_q *this, *next; 1120 struct futex_q *this, *next;
816 int ret, drop_count = 0; 1121 u32 curval2;
1122
1123 if (requeue_pi) {
1124 /*
1125 * requeue_pi requires a pi_state, try to allocate it now
1126 * without any locks in case it fails.
1127 */
1128 if (refill_pi_state_cache())
1129 return -ENOMEM;
1130 /*
1131 * requeue_pi must wake as many tasks as it can, up to nr_wake
1132 * + nr_requeue, since it acquires the rt_mutex prior to
1133 * returning to userspace, so as to not leave the rt_mutex with
1134 * waiters and no owner. However, second and third wake-ups
1135 * cannot be predicted as they involve race conditions with the
1136 * first wake and a fault while looking up the pi_state. Both
1137 * pthread_cond_signal() and pthread_cond_broadcast() should
1138 * use nr_wake=1.
1139 */
1140 if (nr_wake != 1)
1141 return -EINVAL;
1142 }
817 1143
818retry: 1144retry:
1145 if (pi_state != NULL) {
1146 /*
1147 * We will have to lookup the pi_state again, so free this one
1148 * to keep the accounting correct.
1149 */
1150 free_pi_state(pi_state);
1151 pi_state = NULL;
1152 }
1153
819 ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ); 1154 ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
820 if (unlikely(ret != 0)) 1155 if (unlikely(ret != 0))
821 goto out; 1156 goto out;
822 ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_READ); 1157 ret = get_futex_key(uaddr2, fshared, &key2,
1158 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
823 if (unlikely(ret != 0)) 1159 if (unlikely(ret != 0))
824 goto out_put_key1; 1160 goto out_put_key1;
825 1161
@@ -854,32 +1190,99 @@ retry_private:
854 } 1190 }
855 } 1191 }
856 1192
1193 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1194 /*
1195 * Attempt to acquire uaddr2 and wake the top waiter. If we
1196 * intend to requeue waiters, force setting the FUTEX_WAITERS
1197 * bit. We force this here where we are able to easily handle
1198 * faults rather in the requeue loop below.
1199 */
1200 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1201 &key2, &pi_state, nr_requeue);
1202
1203 /*
1204 * At this point the top_waiter has either taken uaddr2 or is
1205 * waiting on it. If the former, then the pi_state will not
1206 * exist yet, look it up one more time to ensure we have a
1207 * reference to it.
1208 */
1209 if (ret == 1) {
1210 WARN_ON(pi_state);
1211 task_count++;
1212 ret = get_futex_value_locked(&curval2, uaddr2);
1213 if (!ret)
1214 ret = lookup_pi_state(curval2, hb2, &key2,
1215 &pi_state);
1216 }
1217
1218 switch (ret) {
1219 case 0:
1220 break;
1221 case -EFAULT:
1222 double_unlock_hb(hb1, hb2);
1223 put_futex_key(fshared, &key2);
1224 put_futex_key(fshared, &key1);
1225 ret = fault_in_user_writeable(uaddr2);
1226 if (!ret)
1227 goto retry;
1228 goto out;
1229 case -EAGAIN:
1230 /* The owner was exiting, try again. */
1231 double_unlock_hb(hb1, hb2);
1232 put_futex_key(fshared, &key2);
1233 put_futex_key(fshared, &key1);
1234 cond_resched();
1235 goto retry;
1236 default:
1237 goto out_unlock;
1238 }
1239 }
1240
857 head1 = &hb1->chain; 1241 head1 = &hb1->chain;
858 plist_for_each_entry_safe(this, next, head1, list) { 1242 plist_for_each_entry_safe(this, next, head1, list) {
859 if (!match_futex (&this->key, &key1)) 1243 if (task_count - nr_wake >= nr_requeue)
1244 break;
1245
1246 if (!match_futex(&this->key, &key1))
860 continue; 1247 continue;
861 if (++ret <= nr_wake) { 1248
1249 WARN_ON(!requeue_pi && this->rt_waiter);
1250 WARN_ON(requeue_pi && !this->rt_waiter);
1251
1252 /*
1253 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1254 * lock, we already woke the top_waiter. If not, it will be
1255 * woken by futex_unlock_pi().
1256 */
1257 if (++task_count <= nr_wake && !requeue_pi) {
862 wake_futex(this); 1258 wake_futex(this);
863 } else { 1259 continue;
864 /* 1260 }
865 * If key1 and key2 hash to the same bucket, no need to
866 * requeue.
867 */
868 if (likely(head1 != &hb2->chain)) {
869 plist_del(&this->list, &hb1->chain);
870 plist_add(&this->list, &hb2->chain);
871 this->lock_ptr = &hb2->lock;
872#ifdef CONFIG_DEBUG_PI_LIST
873 this->list.plist.lock = &hb2->lock;
874#endif
875 }
876 this->key = key2;
877 get_futex_key_refs(&key2);
878 drop_count++;
879 1261
880 if (ret - nr_wake >= nr_requeue) 1262 /*
881 break; 1263 * Requeue nr_requeue waiters and possibly one more in the case
1264 * of requeue_pi if we couldn't acquire the lock atomically.
1265 */
1266 if (requeue_pi) {
1267 /* Prepare the waiter to take the rt_mutex. */
1268 atomic_inc(&pi_state->refcount);
1269 this->pi_state = pi_state;
1270 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1271 this->rt_waiter,
1272 this->task, 1);
1273 if (ret == 1) {
1274 /* We got the lock. */
1275 requeue_pi_wake_futex(this, &key2);
1276 continue;
1277 } else if (ret) {
1278 /* -EDEADLK */
1279 this->pi_state = NULL;
1280 free_pi_state(pi_state);
1281 goto out_unlock;
1282 }
882 } 1283 }
1284 requeue_futex(this, hb1, hb2, &key2);
1285 drop_count++;
883 } 1286 }
884 1287
885out_unlock: 1288out_unlock:
@@ -899,7 +1302,9 @@ out_put_keys:
899out_put_key1: 1302out_put_key1:
900 put_futex_key(fshared, &key1); 1303 put_futex_key(fshared, &key1);
901out: 1304out:
902 return ret; 1305 if (pi_state != NULL)
1306 free_pi_state(pi_state);
1307 return ret ? ret : task_count;
903} 1308}
904 1309
905/* The key must be already stored in q->key. */ 1310/* The key must be already stored in q->key. */
@@ -907,8 +1312,6 @@ static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
907{ 1312{
908 struct futex_hash_bucket *hb; 1313 struct futex_hash_bucket *hb;
909 1314
910 init_waitqueue_head(&q->waiter);
911
912 get_futex_key_refs(&q->key); 1315 get_futex_key_refs(&q->key);
913 hb = hash_futex(&q->key); 1316 hb = hash_futex(&q->key);
914 q->lock_ptr = &hb->lock; 1317 q->lock_ptr = &hb->lock;
@@ -1097,7 +1500,7 @@ retry:
1097handle_fault: 1500handle_fault:
1098 spin_unlock(q->lock_ptr); 1501 spin_unlock(q->lock_ptr);
1099 1502
1100 ret = get_user(uval, uaddr); 1503 ret = fault_in_user_writeable(uaddr);
1101 1504
1102 spin_lock(q->lock_ptr); 1505 spin_lock(q->lock_ptr);
1103 1506
@@ -1119,35 +1522,149 @@ handle_fault:
1119 */ 1522 */
1120#define FLAGS_SHARED 0x01 1523#define FLAGS_SHARED 0x01
1121#define FLAGS_CLOCKRT 0x02 1524#define FLAGS_CLOCKRT 0x02
1525#define FLAGS_HAS_TIMEOUT 0x04
1122 1526
1123static long futex_wait_restart(struct restart_block *restart); 1527static long futex_wait_restart(struct restart_block *restart);
1124 1528
1125static int futex_wait(u32 __user *uaddr, int fshared, 1529/**
1126 u32 val, ktime_t *abs_time, u32 bitset, int clockrt) 1530 * fixup_owner() - Post lock pi_state and corner case management
1531 * @uaddr: user address of the futex
1532 * @fshared: whether the futex is shared (1) or not (0)
1533 * @q: futex_q (contains pi_state and access to the rt_mutex)
1534 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1535 *
1536 * After attempting to lock an rt_mutex, this function is called to cleanup
1537 * the pi_state owner as well as handle race conditions that may allow us to
1538 * acquire the lock. Must be called with the hb lock held.
1539 *
1540 * Returns:
1541 * 1 - success, lock taken
1542 * 0 - success, lock not taken
1543 * <0 - on error (-EFAULT)
1544 */
1545static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
1546 int locked)
1127{ 1547{
1128 struct task_struct *curr = current; 1548 struct task_struct *owner;
1129 struct restart_block *restart; 1549 int ret = 0;
1130 DECLARE_WAITQUEUE(wait, curr);
1131 struct futex_hash_bucket *hb;
1132 struct futex_q q;
1133 u32 uval;
1134 int ret;
1135 struct hrtimer_sleeper t;
1136 int rem = 0;
1137 1550
1138 if (!bitset) 1551 if (locked) {
1139 return -EINVAL; 1552 /*
1553 * Got the lock. We might not be the anticipated owner if we
1554 * did a lock-steal - fix up the PI-state in that case:
1555 */
1556 if (q->pi_state->owner != current)
1557 ret = fixup_pi_state_owner(uaddr, q, current, fshared);
1558 goto out;
1559 }
1140 1560
1141 q.pi_state = NULL; 1561 /*
1142 q.bitset = bitset; 1562 * Catch the rare case, where the lock was released when we were on the
1143retry: 1563 * way back before we locked the hash bucket.
1144 q.key = FUTEX_KEY_INIT; 1564 */
1145 ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_READ); 1565 if (q->pi_state->owner == current) {
1146 if (unlikely(ret != 0)) 1566 /*
1567 * Try to get the rt_mutex now. This might fail as some other
1568 * task acquired the rt_mutex after we removed ourself from the
1569 * rt_mutex waiters list.
1570 */
1571 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1572 locked = 1;
1573 goto out;
1574 }
1575
1576 /*
1577 * pi_state is incorrect, some other task did a lock steal and
1578 * we returned due to timeout or signal without taking the
1579 * rt_mutex. Too late. We can access the rt_mutex_owner without
1580 * locking, as the other task is now blocked on the hash bucket
1581 * lock. Fix the state up.
1582 */
1583 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1584 ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
1147 goto out; 1585 goto out;
1586 }
1148 1587
1149retry_private: 1588 /*
1150 hb = queue_lock(&q); 1589 * Paranoia check. If we did not take the lock, then we should not be
1590 * the owner, nor the pending owner, of the rt_mutex.
1591 */
1592 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1593 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1594 "pi-state %p\n", ret,
1595 q->pi_state->pi_mutex.owner,
1596 q->pi_state->owner);
1597
1598out:
1599 return ret ? ret : locked;
1600}
1601
1602/**
1603 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1604 * @hb: the futex hash bucket, must be locked by the caller
1605 * @q: the futex_q to queue up on
1606 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
1607 */
1608static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1609 struct hrtimer_sleeper *timeout)
1610{
1611 queue_me(q, hb);
1612
1613 /*
1614 * There might have been scheduling since the queue_me(), as we
1615 * cannot hold a spinlock across the get_user() in case it
1616 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1617 * queueing ourselves into the futex hash. This code thus has to
1618 * rely on the futex_wake() code removing us from hash when it
1619 * wakes us up.
1620 */
1621 set_current_state(TASK_INTERRUPTIBLE);
1622
1623 /* Arm the timer */
1624 if (timeout) {
1625 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1626 if (!hrtimer_active(&timeout->timer))
1627 timeout->task = NULL;
1628 }
1629
1630 /*
1631 * !plist_node_empty() is safe here without any lock.
1632 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1633 */
1634 if (likely(!plist_node_empty(&q->list))) {
1635 /*
1636 * If the timer has already expired, current will already be
1637 * flagged for rescheduling. Only call schedule if there
1638 * is no timeout, or if it has yet to expire.
1639 */
1640 if (!timeout || timeout->task)
1641 schedule();
1642 }
1643 __set_current_state(TASK_RUNNING);
1644}
1645
1646/**
1647 * futex_wait_setup() - Prepare to wait on a futex
1648 * @uaddr: the futex userspace address
1649 * @val: the expected value
1650 * @fshared: whether the futex is shared (1) or not (0)
1651 * @q: the associated futex_q
1652 * @hb: storage for hash_bucket pointer to be returned to caller
1653 *
1654 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1655 * compare it with the expected value. Handle atomic faults internally.
1656 * Return with the hb lock held and a q.key reference on success, and unlocked
1657 * with no q.key reference on failure.
1658 *
1659 * Returns:
1660 * 0 - uaddr contains val and hb has been locked
1661 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1662 */
1663static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
1664 struct futex_q *q, struct futex_hash_bucket **hb)
1665{
1666 u32 uval;
1667 int ret;
1151 1668
1152 /* 1669 /*
1153 * Access the page AFTER the hash-bucket is locked. 1670 * Access the page AFTER the hash-bucket is locked.
@@ -1165,95 +1682,83 @@ retry_private:
1165 * A consequence is that futex_wait() can return zero and absorb 1682 * A consequence is that futex_wait() can return zero and absorb
1166 * a wakeup when *uaddr != val on entry to the syscall. This is 1683 * a wakeup when *uaddr != val on entry to the syscall. This is
1167 * rare, but normal. 1684 * rare, but normal.
1168 *
1169 * For shared futexes, we hold the mmap semaphore, so the mapping
1170 * cannot have changed since we looked it up in get_futex_key.
1171 */ 1685 */
1686retry:
1687 q->key = FUTEX_KEY_INIT;
1688 ret = get_futex_key(uaddr, fshared, &q->key, VERIFY_READ);
1689 if (unlikely(ret != 0))
1690 return ret;
1691
1692retry_private:
1693 *hb = queue_lock(q);
1694
1172 ret = get_futex_value_locked(&uval, uaddr); 1695 ret = get_futex_value_locked(&uval, uaddr);
1173 1696
1174 if (unlikely(ret)) { 1697 if (ret) {
1175 queue_unlock(&q, hb); 1698 queue_unlock(q, *hb);
1176 1699
1177 ret = get_user(uval, uaddr); 1700 ret = get_user(uval, uaddr);
1178 if (ret) 1701 if (ret)
1179 goto out_put_key; 1702 goto out;
1180 1703
1181 if (!fshared) 1704 if (!fshared)
1182 goto retry_private; 1705 goto retry_private;
1183 1706
1184 put_futex_key(fshared, &q.key); 1707 put_futex_key(fshared, &q->key);
1185 goto retry; 1708 goto retry;
1186 } 1709 }
1187 ret = -EWOULDBLOCK;
1188 if (unlikely(uval != val)) {
1189 queue_unlock(&q, hb);
1190 goto out_put_key;
1191 }
1192 1710
1193 /* Only actually queue if *uaddr contained val. */ 1711 if (uval != val) {
1194 queue_me(&q, hb); 1712 queue_unlock(q, *hb);
1713 ret = -EWOULDBLOCK;
1714 }
1195 1715
1196 /* 1716out:
1197 * There might have been scheduling since the queue_me(), as we 1717 if (ret)
1198 * cannot hold a spinlock across the get_user() in case it 1718 put_futex_key(fshared, &q->key);
1199 * faults, and we cannot just set TASK_INTERRUPTIBLE state when 1719 return ret;
1200 * queueing ourselves into the futex hash. This code thus has to 1720}
1201 * rely on the futex_wake() code removing us from hash when it
1202 * wakes us up.
1203 */
1204 1721
1205 /* add_wait_queue is the barrier after __set_current_state. */ 1722static int futex_wait(u32 __user *uaddr, int fshared,
1206 __set_current_state(TASK_INTERRUPTIBLE); 1723 u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1207 add_wait_queue(&q.waiter, &wait); 1724{
1208 /* 1725 struct hrtimer_sleeper timeout, *to = NULL;
1209 * !plist_node_empty() is safe here without any lock. 1726 struct restart_block *restart;
1210 * q.lock_ptr != 0 is not safe, because of ordering against wakeup. 1727 struct futex_hash_bucket *hb;
1211 */ 1728 struct futex_q q;
1212 if (likely(!plist_node_empty(&q.list))) { 1729 int ret;
1213 if (!abs_time)
1214 schedule();
1215 else {
1216 hrtimer_init_on_stack(&t.timer,
1217 clockrt ? CLOCK_REALTIME :
1218 CLOCK_MONOTONIC,
1219 HRTIMER_MODE_ABS);
1220 hrtimer_init_sleeper(&t, current);
1221 hrtimer_set_expires_range_ns(&t.timer, *abs_time,
1222 current->timer_slack_ns);
1223
1224 hrtimer_start_expires(&t.timer, HRTIMER_MODE_ABS);
1225 if (!hrtimer_active(&t.timer))
1226 t.task = NULL;
1227 1730
1228 /* 1731 if (!bitset)
1229 * the timer could have already expired, in which 1732 return -EINVAL;
1230 * case current would be flagged for rescheduling.
1231 * Don't bother calling schedule.
1232 */
1233 if (likely(t.task))
1234 schedule();
1235 1733
1236 hrtimer_cancel(&t.timer); 1734 q.pi_state = NULL;
1735 q.bitset = bitset;
1736 q.rt_waiter = NULL;
1237 1737
1238 /* Flag if a timeout occured */ 1738 if (abs_time) {
1239 rem = (t.task == NULL); 1739 to = &timeout;
1240 1740
1241 destroy_hrtimer_on_stack(&t.timer); 1741 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
1242 } 1742 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1743 hrtimer_init_sleeper(to, current);
1744 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1745 current->timer_slack_ns);
1243 } 1746 }
1244 __set_current_state(TASK_RUNNING);
1245 1747
1246 /* 1748 /* Prepare to wait on uaddr. */
1247 * NOTE: we don't remove ourselves from the waitqueue because 1749 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
1248 * we are the only user of it. 1750 if (ret)
1249 */ 1751 goto out;
1752
1753 /* queue_me and wait for wakeup, timeout, or a signal. */
1754 futex_wait_queue_me(hb, &q, to);
1250 1755
1251 /* If we were woken (and unqueued), we succeeded, whatever. */ 1756 /* If we were woken (and unqueued), we succeeded, whatever. */
1252 ret = 0; 1757 ret = 0;
1253 if (!unqueue_me(&q)) 1758 if (!unqueue_me(&q))
1254 goto out_put_key; 1759 goto out_put_key;
1255 ret = -ETIMEDOUT; 1760 ret = -ETIMEDOUT;
1256 if (rem) 1761 if (to && !to->task)
1257 goto out_put_key; 1762 goto out_put_key;
1258 1763
1259 /* 1764 /*
@@ -1270,7 +1775,7 @@ retry_private:
1270 restart->futex.val = val; 1775 restart->futex.val = val;
1271 restart->futex.time = abs_time->tv64; 1776 restart->futex.time = abs_time->tv64;
1272 restart->futex.bitset = bitset; 1777 restart->futex.bitset = bitset;
1273 restart->futex.flags = 0; 1778 restart->futex.flags = FLAGS_HAS_TIMEOUT;
1274 1779
1275 if (fshared) 1780 if (fshared)
1276 restart->futex.flags |= FLAGS_SHARED; 1781 restart->futex.flags |= FLAGS_SHARED;
@@ -1282,6 +1787,10 @@ retry_private:
1282out_put_key: 1787out_put_key:
1283 put_futex_key(fshared, &q.key); 1788 put_futex_key(fshared, &q.key);
1284out: 1789out:
1790 if (to) {
1791 hrtimer_cancel(&to->timer);
1792 destroy_hrtimer_on_stack(&to->timer);
1793 }
1285 return ret; 1794 return ret;
1286} 1795}
1287 1796
@@ -1290,13 +1799,16 @@ static long futex_wait_restart(struct restart_block *restart)
1290{ 1799{
1291 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr; 1800 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1292 int fshared = 0; 1801 int fshared = 0;
1293 ktime_t t; 1802 ktime_t t, *tp = NULL;
1294 1803
1295 t.tv64 = restart->futex.time; 1804 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1805 t.tv64 = restart->futex.time;
1806 tp = &t;
1807 }
1296 restart->fn = do_no_restart_syscall; 1808 restart->fn = do_no_restart_syscall;
1297 if (restart->futex.flags & FLAGS_SHARED) 1809 if (restart->futex.flags & FLAGS_SHARED)
1298 fshared = 1; 1810 fshared = 1;
1299 return (long)futex_wait(uaddr, fshared, restart->futex.val, &t, 1811 return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
1300 restart->futex.bitset, 1812 restart->futex.bitset,
1301 restart->futex.flags & FLAGS_CLOCKRT); 1813 restart->futex.flags & FLAGS_CLOCKRT);
1302} 1814}
@@ -1312,11 +1824,9 @@ static int futex_lock_pi(u32 __user *uaddr, int fshared,
1312 int detect, ktime_t *time, int trylock) 1824 int detect, ktime_t *time, int trylock)
1313{ 1825{
1314 struct hrtimer_sleeper timeout, *to = NULL; 1826 struct hrtimer_sleeper timeout, *to = NULL;
1315 struct task_struct *curr = current;
1316 struct futex_hash_bucket *hb; 1827 struct futex_hash_bucket *hb;
1317 u32 uval, newval, curval;
1318 struct futex_q q; 1828 struct futex_q q;
1319 int ret, lock_taken, ownerdied = 0; 1829 int res, ret;
1320 1830
1321 if (refill_pi_state_cache()) 1831 if (refill_pi_state_cache())
1322 return -ENOMEM; 1832 return -ENOMEM;
@@ -1330,6 +1840,7 @@ static int futex_lock_pi(u32 __user *uaddr, int fshared,
1330 } 1840 }
1331 1841
1332 q.pi_state = NULL; 1842 q.pi_state = NULL;
1843 q.rt_waiter = NULL;
1333retry: 1844retry:
1334 q.key = FUTEX_KEY_INIT; 1845 q.key = FUTEX_KEY_INIT;
1335 ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_WRITE); 1846 ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_WRITE);
@@ -1339,81 +1850,15 @@ retry:
1339retry_private: 1850retry_private:
1340 hb = queue_lock(&q); 1851 hb = queue_lock(&q);
1341 1852
1342retry_locked: 1853 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1343 ret = lock_taken = 0;
1344
1345 /*
1346 * To avoid races, we attempt to take the lock here again
1347 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1348 * the locks. It will most likely not succeed.
1349 */
1350 newval = task_pid_vnr(current);
1351
1352 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
1353
1354 if (unlikely(curval == -EFAULT))
1355 goto uaddr_faulted;
1356
1357 /*
1358 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1359 * situation and we return success to user space.
1360 */
1361 if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
1362 ret = -EDEADLK;
1363 goto out_unlock_put_key;
1364 }
1365
1366 /*
1367 * Surprise - we got the lock. Just return to userspace:
1368 */
1369 if (unlikely(!curval))
1370 goto out_unlock_put_key;
1371
1372 uval = curval;
1373
1374 /*
1375 * Set the WAITERS flag, so the owner will know it has someone
1376 * to wake at next unlock
1377 */
1378 newval = curval | FUTEX_WAITERS;
1379
1380 /*
1381 * There are two cases, where a futex might have no owner (the
1382 * owner TID is 0): OWNER_DIED. We take over the futex in this
1383 * case. We also do an unconditional take over, when the owner
1384 * of the futex died.
1385 *
1386 * This is safe as we are protected by the hash bucket lock !
1387 */
1388 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
1389 /* Keep the OWNER_DIED bit */
1390 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
1391 ownerdied = 0;
1392 lock_taken = 1;
1393 }
1394
1395 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1396
1397 if (unlikely(curval == -EFAULT))
1398 goto uaddr_faulted;
1399 if (unlikely(curval != uval))
1400 goto retry_locked;
1401
1402 /*
1403 * We took the lock due to owner died take over.
1404 */
1405 if (unlikely(lock_taken))
1406 goto out_unlock_put_key;
1407
1408 /*
1409 * We dont have the lock. Look up the PI state (or create it if
1410 * we are the first waiter):
1411 */
1412 ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
1413
1414 if (unlikely(ret)) { 1854 if (unlikely(ret)) {
1415 switch (ret) { 1855 switch (ret) {
1416 1856 case 1:
1857 /* We got the lock. */
1858 ret = 0;
1859 goto out_unlock_put_key;
1860 case -EFAULT:
1861 goto uaddr_faulted;
1417 case -EAGAIN: 1862 case -EAGAIN:
1418 /* 1863 /*
1419 * Task is exiting and we just wait for the 1864 * Task is exiting and we just wait for the
@@ -1423,25 +1868,6 @@ retry_locked:
1423 put_futex_key(fshared, &q.key); 1868 put_futex_key(fshared, &q.key);
1424 cond_resched(); 1869 cond_resched();
1425 goto retry; 1870 goto retry;
1426
1427 case -ESRCH:
1428 /*
1429 * No owner found for this futex. Check if the
1430 * OWNER_DIED bit is set to figure out whether
1431 * this is a robust futex or not.
1432 */
1433 if (get_futex_value_locked(&curval, uaddr))
1434 goto uaddr_faulted;
1435
1436 /*
1437 * We simply start over in case of a robust
1438 * futex. The code above will take the futex
1439 * and return happy.
1440 */
1441 if (curval & FUTEX_OWNER_DIED) {
1442 ownerdied = 1;
1443 goto retry_locked;
1444 }
1445 default: 1871 default:
1446 goto out_unlock_put_key; 1872 goto out_unlock_put_key;
1447 } 1873 }
@@ -1465,71 +1891,21 @@ retry_locked:
1465 } 1891 }
1466 1892
1467 spin_lock(q.lock_ptr); 1893 spin_lock(q.lock_ptr);
1468 1894 /*
1469 if (!ret) { 1895 * Fixup the pi_state owner and possibly acquire the lock if we
1470 /* 1896 * haven't already.
1471 * Got the lock. We might not be the anticipated owner 1897 */
1472 * if we did a lock-steal - fix up the PI-state in 1898 res = fixup_owner(uaddr, fshared, &q, !ret);
1473 * that case: 1899 /*
1474 */ 1900 * If fixup_owner() returned an error, proprogate that. If it acquired
1475 if (q.pi_state->owner != curr) 1901 * the lock, clear our -ETIMEDOUT or -EINTR.
1476 ret = fixup_pi_state_owner(uaddr, &q, curr, fshared); 1902 */
1477 } else { 1903 if (res)
1478 /* 1904 ret = (res < 0) ? res : 0;
1479 * Catch the rare case, where the lock was released
1480 * when we were on the way back before we locked the
1481 * hash bucket.
1482 */
1483 if (q.pi_state->owner == curr) {
1484 /*
1485 * Try to get the rt_mutex now. This might
1486 * fail as some other task acquired the
1487 * rt_mutex after we removed ourself from the
1488 * rt_mutex waiters list.
1489 */
1490 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1491 ret = 0;
1492 else {
1493 /*
1494 * pi_state is incorrect, some other
1495 * task did a lock steal and we
1496 * returned due to timeout or signal
1497 * without taking the rt_mutex. Too
1498 * late. We can access the
1499 * rt_mutex_owner without locking, as
1500 * the other task is now blocked on
1501 * the hash bucket lock. Fix the state
1502 * up.
1503 */
1504 struct task_struct *owner;
1505 int res;
1506
1507 owner = rt_mutex_owner(&q.pi_state->pi_mutex);
1508 res = fixup_pi_state_owner(uaddr, &q, owner,
1509 fshared);
1510
1511 /* propagate -EFAULT, if the fixup failed */
1512 if (res)
1513 ret = res;
1514 }
1515 } else {
1516 /*
1517 * Paranoia check. If we did not take the lock
1518 * in the trylock above, then we should not be
1519 * the owner of the rtmutex, neither the real
1520 * nor the pending one:
1521 */
1522 if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1523 printk(KERN_ERR "futex_lock_pi: ret = %d "
1524 "pi-mutex: %p pi-state %p\n", ret,
1525 q.pi_state->pi_mutex.owner,
1526 q.pi_state->owner);
1527 }
1528 }
1529 1905
1530 /* 1906 /*
1531 * If fixup_pi_state_owner() faulted and was unable to handle the 1907 * If fixup_owner() faulted and was unable to handle the fault, unlock
1532 * fault, unlock it and return the fault to userspace. 1908 * it and return the fault to userspace.
1533 */ 1909 */
1534 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) 1910 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
1535 rt_mutex_unlock(&q.pi_state->pi_mutex); 1911 rt_mutex_unlock(&q.pi_state->pi_mutex);
@@ -1537,9 +1913,7 @@ retry_locked:
1537 /* Unqueue and drop the lock */ 1913 /* Unqueue and drop the lock */
1538 unqueue_me_pi(&q); 1914 unqueue_me_pi(&q);
1539 1915
1540 if (to) 1916 goto out;
1541 destroy_hrtimer_on_stack(&to->timer);
1542 return ret != -EINTR ? ret : -ERESTARTNOINTR;
1543 1917
1544out_unlock_put_key: 1918out_unlock_put_key:
1545 queue_unlock(&q, hb); 1919 queue_unlock(&q, hb);
@@ -1549,19 +1923,12 @@ out_put_key:
1549out: 1923out:
1550 if (to) 1924 if (to)
1551 destroy_hrtimer_on_stack(&to->timer); 1925 destroy_hrtimer_on_stack(&to->timer);
1552 return ret; 1926 return ret != -EINTR ? ret : -ERESTARTNOINTR;
1553 1927
1554uaddr_faulted: 1928uaddr_faulted:
1555 /*
1556 * We have to r/w *(int __user *)uaddr, and we have to modify it
1557 * atomically. Therefore, if we continue to fault after get_user()
1558 * below, we need to handle the fault ourselves, while still holding
1559 * the mmap_sem. This can occur if the uaddr is under contention as
1560 * we have to drop the mmap_sem in order to call get_user().
1561 */
1562 queue_unlock(&q, hb); 1929 queue_unlock(&q, hb);
1563 1930
1564 ret = get_user(uval, uaddr); 1931 ret = fault_in_user_writeable(uaddr);
1565 if (ret) 1932 if (ret)
1566 goto out_put_key; 1933 goto out_put_key;
1567 1934
@@ -1572,7 +1939,6 @@ uaddr_faulted:
1572 goto retry; 1939 goto retry;
1573} 1940}
1574 1941
1575
1576/* 1942/*
1577 * Userspace attempted a TID -> 0 atomic transition, and failed. 1943 * Userspace attempted a TID -> 0 atomic transition, and failed.
1578 * This is the in-kernel slowpath: we look up the PI state (if any), 1944 * This is the in-kernel slowpath: we look up the PI state (if any),
@@ -1657,23 +2023,239 @@ out:
1657 return ret; 2023 return ret;
1658 2024
1659pi_faulted: 2025pi_faulted:
1660 /*
1661 * We have to r/w *(int __user *)uaddr, and we have to modify it
1662 * atomically. Therefore, if we continue to fault after get_user()
1663 * below, we need to handle the fault ourselves, while still holding
1664 * the mmap_sem. This can occur if the uaddr is under contention as
1665 * we have to drop the mmap_sem in order to call get_user().
1666 */
1667 spin_unlock(&hb->lock); 2026 spin_unlock(&hb->lock);
1668 put_futex_key(fshared, &key); 2027 put_futex_key(fshared, &key);
1669 2028
1670 ret = get_user(uval, uaddr); 2029 ret = fault_in_user_writeable(uaddr);
1671 if (!ret) 2030 if (!ret)
1672 goto retry; 2031 goto retry;
1673 2032
1674 return ret; 2033 return ret;
1675} 2034}
1676 2035
2036/**
2037 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2038 * @hb: the hash_bucket futex_q was original enqueued on
2039 * @q: the futex_q woken while waiting to be requeued
2040 * @key2: the futex_key of the requeue target futex
2041 * @timeout: the timeout associated with the wait (NULL if none)
2042 *
2043 * Detect if the task was woken on the initial futex as opposed to the requeue
2044 * target futex. If so, determine if it was a timeout or a signal that caused
2045 * the wakeup and return the appropriate error code to the caller. Must be
2046 * called with the hb lock held.
2047 *
2048 * Returns
2049 * 0 - no early wakeup detected
2050 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2051 */
2052static inline
2053int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2054 struct futex_q *q, union futex_key *key2,
2055 struct hrtimer_sleeper *timeout)
2056{
2057 int ret = 0;
2058
2059 /*
2060 * With the hb lock held, we avoid races while we process the wakeup.
2061 * We only need to hold hb (and not hb2) to ensure atomicity as the
2062 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2063 * It can't be requeued from uaddr2 to something else since we don't
2064 * support a PI aware source futex for requeue.
2065 */
2066 if (!match_futex(&q->key, key2)) {
2067 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2068 /*
2069 * We were woken prior to requeue by a timeout or a signal.
2070 * Unqueue the futex_q and determine which it was.
2071 */
2072 plist_del(&q->list, &q->list.plist);
2073 drop_futex_key_refs(&q->key);
2074
2075 if (timeout && !timeout->task)
2076 ret = -ETIMEDOUT;
2077 else
2078 ret = -ERESTARTNOINTR;
2079 }
2080 return ret;
2081}
2082
2083/**
2084 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2085 * @uaddr: the futex we initialyl wait on (non-pi)
2086 * @fshared: whether the futexes are shared (1) or not (0). They must be
2087 * the same type, no requeueing from private to shared, etc.
2088 * @val: the expected value of uaddr
2089 * @abs_time: absolute timeout
2090 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all.
2091 * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2092 * @uaddr2: the pi futex we will take prior to returning to user-space
2093 *
2094 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2095 * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and
2096 * complete the acquisition of the rt_mutex prior to returning to userspace.
2097 * This ensures the rt_mutex maintains an owner when it has waiters; without
2098 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2099 * need to.
2100 *
2101 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2102 * via the following:
2103 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2104 * 2) wakeup on uaddr2 after a requeue and subsequent unlock
2105 * 3) signal (before or after requeue)
2106 * 4) timeout (before or after requeue)
2107 *
2108 * If 3, we setup a restart_block with futex_wait_requeue_pi() as the function.
2109 *
2110 * If 2, we may then block on trying to take the rt_mutex and return via:
2111 * 5) successful lock
2112 * 6) signal
2113 * 7) timeout
2114 * 8) other lock acquisition failure
2115 *
2116 * If 6, we setup a restart_block with futex_lock_pi() as the function.
2117 *
2118 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2119 *
2120 * Returns:
2121 * 0 - On success
2122 * <0 - On error
2123 */
2124static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
2125 u32 val, ktime_t *abs_time, u32 bitset,
2126 int clockrt, u32 __user *uaddr2)
2127{
2128 struct hrtimer_sleeper timeout, *to = NULL;
2129 struct rt_mutex_waiter rt_waiter;
2130 struct rt_mutex *pi_mutex = NULL;
2131 struct futex_hash_bucket *hb;
2132 union futex_key key2;
2133 struct futex_q q;
2134 int res, ret;
2135
2136 if (!bitset)
2137 return -EINVAL;
2138
2139 if (abs_time) {
2140 to = &timeout;
2141 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
2142 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2143 hrtimer_init_sleeper(to, current);
2144 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2145 current->timer_slack_ns);
2146 }
2147
2148 /*
2149 * The waiter is allocated on our stack, manipulated by the requeue
2150 * code while we sleep on uaddr.
2151 */
2152 debug_rt_mutex_init_waiter(&rt_waiter);
2153 rt_waiter.task = NULL;
2154
2155 q.pi_state = NULL;
2156 q.bitset = bitset;
2157 q.rt_waiter = &rt_waiter;
2158
2159 key2 = FUTEX_KEY_INIT;
2160 ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
2161 if (unlikely(ret != 0))
2162 goto out;
2163
2164 /* Prepare to wait on uaddr. */
2165 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
2166 if (ret)
2167 goto out_key2;
2168
2169 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2170 futex_wait_queue_me(hb, &q, to);
2171
2172 spin_lock(&hb->lock);
2173 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2174 spin_unlock(&hb->lock);
2175 if (ret)
2176 goto out_put_keys;
2177
2178 /*
2179 * In order for us to be here, we know our q.key == key2, and since
2180 * we took the hb->lock above, we also know that futex_requeue() has
2181 * completed and we no longer have to concern ourselves with a wakeup
2182 * race with the atomic proxy lock acquition by the requeue code.
2183 */
2184
2185 /* Check if the requeue code acquired the second futex for us. */
2186 if (!q.rt_waiter) {
2187 /*
2188 * Got the lock. We might not be the anticipated owner if we
2189 * did a lock-steal - fix up the PI-state in that case.
2190 */
2191 if (q.pi_state && (q.pi_state->owner != current)) {
2192 spin_lock(q.lock_ptr);
2193 ret = fixup_pi_state_owner(uaddr2, &q, current,
2194 fshared);
2195 spin_unlock(q.lock_ptr);
2196 }
2197 } else {
2198 /*
2199 * We have been woken up by futex_unlock_pi(), a timeout, or a
2200 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2201 * the pi_state.
2202 */
2203 WARN_ON(!&q.pi_state);
2204 pi_mutex = &q.pi_state->pi_mutex;
2205 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2206 debug_rt_mutex_free_waiter(&rt_waiter);
2207
2208 spin_lock(q.lock_ptr);
2209 /*
2210 * Fixup the pi_state owner and possibly acquire the lock if we
2211 * haven't already.
2212 */
2213 res = fixup_owner(uaddr2, fshared, &q, !ret);
2214 /*
2215 * If fixup_owner() returned an error, proprogate that. If it
2216 * acquired the lock, clear our -ETIMEDOUT or -EINTR.
2217 */
2218 if (res)
2219 ret = (res < 0) ? res : 0;
2220
2221 /* Unqueue and drop the lock. */
2222 unqueue_me_pi(&q);
2223 }
2224
2225 /*
2226 * If fixup_pi_state_owner() faulted and was unable to handle the
2227 * fault, unlock the rt_mutex and return the fault to userspace.
2228 */
2229 if (ret == -EFAULT) {
2230 if (rt_mutex_owner(pi_mutex) == current)
2231 rt_mutex_unlock(pi_mutex);
2232 } else if (ret == -EINTR) {
2233 /*
2234 * We've already been requeued, but we have no way to
2235 * restart by calling futex_lock_pi() directly. We
2236 * could restart the syscall, but that will look at
2237 * the user space value and return right away. So we
2238 * drop back with EWOULDBLOCK to tell user space that
2239 * "val" has been changed. That's the same what the
2240 * restart of the syscall would do in
2241 * futex_wait_setup().
2242 */
2243 ret = -EWOULDBLOCK;
2244 }
2245
2246out_put_keys:
2247 put_futex_key(fshared, &q.key);
2248out_key2:
2249 put_futex_key(fshared, &key2);
2250
2251out:
2252 if (to) {
2253 hrtimer_cancel(&to->timer);
2254 destroy_hrtimer_on_stack(&to->timer);
2255 }
2256 return ret;
2257}
2258
1677/* 2259/*
1678 * Support for robust futexes: the kernel cleans up held futexes at 2260 * Support for robust futexes: the kernel cleans up held futexes at
1679 * thread exit time. 2261 * thread exit time.
@@ -1896,7 +2478,7 @@ long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
1896 fshared = 1; 2478 fshared = 1;
1897 2479
1898 clockrt = op & FUTEX_CLOCK_REALTIME; 2480 clockrt = op & FUTEX_CLOCK_REALTIME;
1899 if (clockrt && cmd != FUTEX_WAIT_BITSET) 2481 if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
1900 return -ENOSYS; 2482 return -ENOSYS;
1901 2483
1902 switch (cmd) { 2484 switch (cmd) {
@@ -1911,10 +2493,11 @@ long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
1911 ret = futex_wake(uaddr, fshared, val, val3); 2493 ret = futex_wake(uaddr, fshared, val, val3);
1912 break; 2494 break;
1913 case FUTEX_REQUEUE: 2495 case FUTEX_REQUEUE:
1914 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL); 2496 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
1915 break; 2497 break;
1916 case FUTEX_CMP_REQUEUE: 2498 case FUTEX_CMP_REQUEUE:
1917 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3); 2499 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2500 0);
1918 break; 2501 break;
1919 case FUTEX_WAKE_OP: 2502 case FUTEX_WAKE_OP:
1920 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3); 2503 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
@@ -1931,6 +2514,15 @@ long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
1931 if (futex_cmpxchg_enabled) 2514 if (futex_cmpxchg_enabled)
1932 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1); 2515 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
1933 break; 2516 break;
2517 case FUTEX_WAIT_REQUEUE_PI:
2518 val3 = FUTEX_BITSET_MATCH_ANY;
2519 ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
2520 clockrt, uaddr2);
2521 break;
2522 case FUTEX_CMP_REQUEUE_PI:
2523 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2524 1);
2525 break;
1934 default: 2526 default:
1935 ret = -ENOSYS; 2527 ret = -ENOSYS;
1936 } 2528 }
@@ -1948,7 +2540,8 @@ SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
1948 int cmd = op & FUTEX_CMD_MASK; 2540 int cmd = op & FUTEX_CMD_MASK;
1949 2541
1950 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI || 2542 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
1951 cmd == FUTEX_WAIT_BITSET)) { 2543 cmd == FUTEX_WAIT_BITSET ||
2544 cmd == FUTEX_WAIT_REQUEUE_PI)) {
1952 if (copy_from_user(&ts, utime, sizeof(ts)) != 0) 2545 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1953 return -EFAULT; 2546 return -EFAULT;
1954 if (!timespec_valid(&ts)) 2547 if (!timespec_valid(&ts))
@@ -1960,11 +2553,11 @@ SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
1960 tp = &t; 2553 tp = &t;
1961 } 2554 }
1962 /* 2555 /*
1963 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE. 2556 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
1964 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP. 2557 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1965 */ 2558 */
1966 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE || 2559 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
1967 cmd == FUTEX_WAKE_OP) 2560 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
1968 val2 = (u32) (unsigned long) utime; 2561 val2 = (u32) (unsigned long) utime;
1969 2562
1970 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3); 2563 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);