diff options
Diffstat (limited to 'kernel/exit.c')
-rw-r--r-- | kernel/exit.c | 1527 |
1 files changed, 1527 insertions, 0 deletions
diff --git a/kernel/exit.c b/kernel/exit.c new file mode 100644 index 000000000000..6dd4ebe1dd90 --- /dev/null +++ b/kernel/exit.c | |||
@@ -0,0 +1,1527 @@ | |||
1 | /* | ||
2 | * linux/kernel/exit.c | ||
3 | * | ||
4 | * Copyright (C) 1991, 1992 Linus Torvalds | ||
5 | */ | ||
6 | |||
7 | #include <linux/config.h> | ||
8 | #include <linux/mm.h> | ||
9 | #include <linux/slab.h> | ||
10 | #include <linux/interrupt.h> | ||
11 | #include <linux/smp_lock.h> | ||
12 | #include <linux/module.h> | ||
13 | #include <linux/completion.h> | ||
14 | #include <linux/personality.h> | ||
15 | #include <linux/tty.h> | ||
16 | #include <linux/namespace.h> | ||
17 | #include <linux/key.h> | ||
18 | #include <linux/security.h> | ||
19 | #include <linux/cpu.h> | ||
20 | #include <linux/acct.h> | ||
21 | #include <linux/file.h> | ||
22 | #include <linux/binfmts.h> | ||
23 | #include <linux/ptrace.h> | ||
24 | #include <linux/profile.h> | ||
25 | #include <linux/mount.h> | ||
26 | #include <linux/proc_fs.h> | ||
27 | #include <linux/mempolicy.h> | ||
28 | #include <linux/cpuset.h> | ||
29 | #include <linux/syscalls.h> | ||
30 | |||
31 | #include <asm/uaccess.h> | ||
32 | #include <asm/unistd.h> | ||
33 | #include <asm/pgtable.h> | ||
34 | #include <asm/mmu_context.h> | ||
35 | |||
36 | extern void sem_exit (void); | ||
37 | extern struct task_struct *child_reaper; | ||
38 | |||
39 | int getrusage(struct task_struct *, int, struct rusage __user *); | ||
40 | |||
41 | static void __unhash_process(struct task_struct *p) | ||
42 | { | ||
43 | nr_threads--; | ||
44 | detach_pid(p, PIDTYPE_PID); | ||
45 | detach_pid(p, PIDTYPE_TGID); | ||
46 | if (thread_group_leader(p)) { | ||
47 | detach_pid(p, PIDTYPE_PGID); | ||
48 | detach_pid(p, PIDTYPE_SID); | ||
49 | if (p->pid) | ||
50 | __get_cpu_var(process_counts)--; | ||
51 | } | ||
52 | |||
53 | REMOVE_LINKS(p); | ||
54 | } | ||
55 | |||
56 | void release_task(struct task_struct * p) | ||
57 | { | ||
58 | int zap_leader; | ||
59 | task_t *leader; | ||
60 | struct dentry *proc_dentry; | ||
61 | |||
62 | repeat: | ||
63 | atomic_dec(&p->user->processes); | ||
64 | spin_lock(&p->proc_lock); | ||
65 | proc_dentry = proc_pid_unhash(p); | ||
66 | write_lock_irq(&tasklist_lock); | ||
67 | if (unlikely(p->ptrace)) | ||
68 | __ptrace_unlink(p); | ||
69 | BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children)); | ||
70 | __exit_signal(p); | ||
71 | __exit_sighand(p); | ||
72 | __unhash_process(p); | ||
73 | |||
74 | /* | ||
75 | * If we are the last non-leader member of the thread | ||
76 | * group, and the leader is zombie, then notify the | ||
77 | * group leader's parent process. (if it wants notification.) | ||
78 | */ | ||
79 | zap_leader = 0; | ||
80 | leader = p->group_leader; | ||
81 | if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { | ||
82 | BUG_ON(leader->exit_signal == -1); | ||
83 | do_notify_parent(leader, leader->exit_signal); | ||
84 | /* | ||
85 | * If we were the last child thread and the leader has | ||
86 | * exited already, and the leader's parent ignores SIGCHLD, | ||
87 | * then we are the one who should release the leader. | ||
88 | * | ||
89 | * do_notify_parent() will have marked it self-reaping in | ||
90 | * that case. | ||
91 | */ | ||
92 | zap_leader = (leader->exit_signal == -1); | ||
93 | } | ||
94 | |||
95 | sched_exit(p); | ||
96 | write_unlock_irq(&tasklist_lock); | ||
97 | spin_unlock(&p->proc_lock); | ||
98 | proc_pid_flush(proc_dentry); | ||
99 | release_thread(p); | ||
100 | put_task_struct(p); | ||
101 | |||
102 | p = leader; | ||
103 | if (unlikely(zap_leader)) | ||
104 | goto repeat; | ||
105 | } | ||
106 | |||
107 | /* we are using it only for SMP init */ | ||
108 | |||
109 | void unhash_process(struct task_struct *p) | ||
110 | { | ||
111 | struct dentry *proc_dentry; | ||
112 | |||
113 | spin_lock(&p->proc_lock); | ||
114 | proc_dentry = proc_pid_unhash(p); | ||
115 | write_lock_irq(&tasklist_lock); | ||
116 | __unhash_process(p); | ||
117 | write_unlock_irq(&tasklist_lock); | ||
118 | spin_unlock(&p->proc_lock); | ||
119 | proc_pid_flush(proc_dentry); | ||
120 | } | ||
121 | |||
122 | /* | ||
123 | * This checks not only the pgrp, but falls back on the pid if no | ||
124 | * satisfactory pgrp is found. I dunno - gdb doesn't work correctly | ||
125 | * without this... | ||
126 | */ | ||
127 | int session_of_pgrp(int pgrp) | ||
128 | { | ||
129 | struct task_struct *p; | ||
130 | int sid = -1; | ||
131 | |||
132 | read_lock(&tasklist_lock); | ||
133 | do_each_task_pid(pgrp, PIDTYPE_PGID, p) { | ||
134 | if (p->signal->session > 0) { | ||
135 | sid = p->signal->session; | ||
136 | goto out; | ||
137 | } | ||
138 | } while_each_task_pid(pgrp, PIDTYPE_PGID, p); | ||
139 | p = find_task_by_pid(pgrp); | ||
140 | if (p) | ||
141 | sid = p->signal->session; | ||
142 | out: | ||
143 | read_unlock(&tasklist_lock); | ||
144 | |||
145 | return sid; | ||
146 | } | ||
147 | |||
148 | /* | ||
149 | * Determine if a process group is "orphaned", according to the POSIX | ||
150 | * definition in 2.2.2.52. Orphaned process groups are not to be affected | ||
151 | * by terminal-generated stop signals. Newly orphaned process groups are | ||
152 | * to receive a SIGHUP and a SIGCONT. | ||
153 | * | ||
154 | * "I ask you, have you ever known what it is to be an orphan?" | ||
155 | */ | ||
156 | static int will_become_orphaned_pgrp(int pgrp, task_t *ignored_task) | ||
157 | { | ||
158 | struct task_struct *p; | ||
159 | int ret = 1; | ||
160 | |||
161 | do_each_task_pid(pgrp, PIDTYPE_PGID, p) { | ||
162 | if (p == ignored_task | ||
163 | || p->exit_state | ||
164 | || p->real_parent->pid == 1) | ||
165 | continue; | ||
166 | if (process_group(p->real_parent) != pgrp | ||
167 | && p->real_parent->signal->session == p->signal->session) { | ||
168 | ret = 0; | ||
169 | break; | ||
170 | } | ||
171 | } while_each_task_pid(pgrp, PIDTYPE_PGID, p); | ||
172 | return ret; /* (sighing) "Often!" */ | ||
173 | } | ||
174 | |||
175 | int is_orphaned_pgrp(int pgrp) | ||
176 | { | ||
177 | int retval; | ||
178 | |||
179 | read_lock(&tasklist_lock); | ||
180 | retval = will_become_orphaned_pgrp(pgrp, NULL); | ||
181 | read_unlock(&tasklist_lock); | ||
182 | |||
183 | return retval; | ||
184 | } | ||
185 | |||
186 | static inline int has_stopped_jobs(int pgrp) | ||
187 | { | ||
188 | int retval = 0; | ||
189 | struct task_struct *p; | ||
190 | |||
191 | do_each_task_pid(pgrp, PIDTYPE_PGID, p) { | ||
192 | if (p->state != TASK_STOPPED) | ||
193 | continue; | ||
194 | |||
195 | /* If p is stopped by a debugger on a signal that won't | ||
196 | stop it, then don't count p as stopped. This isn't | ||
197 | perfect but it's a good approximation. */ | ||
198 | if (unlikely (p->ptrace) | ||
199 | && p->exit_code != SIGSTOP | ||
200 | && p->exit_code != SIGTSTP | ||
201 | && p->exit_code != SIGTTOU | ||
202 | && p->exit_code != SIGTTIN) | ||
203 | continue; | ||
204 | |||
205 | retval = 1; | ||
206 | break; | ||
207 | } while_each_task_pid(pgrp, PIDTYPE_PGID, p); | ||
208 | return retval; | ||
209 | } | ||
210 | |||
211 | /** | ||
212 | * reparent_to_init() - Reparent the calling kernel thread to the init task. | ||
213 | * | ||
214 | * If a kernel thread is launched as a result of a system call, or if | ||
215 | * it ever exits, it should generally reparent itself to init so that | ||
216 | * it is correctly cleaned up on exit. | ||
217 | * | ||
218 | * The various task state such as scheduling policy and priority may have | ||
219 | * been inherited from a user process, so we reset them to sane values here. | ||
220 | * | ||
221 | * NOTE that reparent_to_init() gives the caller full capabilities. | ||
222 | */ | ||
223 | void reparent_to_init(void) | ||
224 | { | ||
225 | write_lock_irq(&tasklist_lock); | ||
226 | |||
227 | ptrace_unlink(current); | ||
228 | /* Reparent to init */ | ||
229 | REMOVE_LINKS(current); | ||
230 | current->parent = child_reaper; | ||
231 | current->real_parent = child_reaper; | ||
232 | SET_LINKS(current); | ||
233 | |||
234 | /* Set the exit signal to SIGCHLD so we signal init on exit */ | ||
235 | current->exit_signal = SIGCHLD; | ||
236 | |||
237 | if ((current->policy == SCHED_NORMAL) && (task_nice(current) < 0)) | ||
238 | set_user_nice(current, 0); | ||
239 | /* cpus_allowed? */ | ||
240 | /* rt_priority? */ | ||
241 | /* signals? */ | ||
242 | security_task_reparent_to_init(current); | ||
243 | memcpy(current->signal->rlim, init_task.signal->rlim, | ||
244 | sizeof(current->signal->rlim)); | ||
245 | atomic_inc(&(INIT_USER->__count)); | ||
246 | write_unlock_irq(&tasklist_lock); | ||
247 | switch_uid(INIT_USER); | ||
248 | } | ||
249 | |||
250 | void __set_special_pids(pid_t session, pid_t pgrp) | ||
251 | { | ||
252 | struct task_struct *curr = current; | ||
253 | |||
254 | if (curr->signal->session != session) { | ||
255 | detach_pid(curr, PIDTYPE_SID); | ||
256 | curr->signal->session = session; | ||
257 | attach_pid(curr, PIDTYPE_SID, session); | ||
258 | } | ||
259 | if (process_group(curr) != pgrp) { | ||
260 | detach_pid(curr, PIDTYPE_PGID); | ||
261 | curr->signal->pgrp = pgrp; | ||
262 | attach_pid(curr, PIDTYPE_PGID, pgrp); | ||
263 | } | ||
264 | } | ||
265 | |||
266 | void set_special_pids(pid_t session, pid_t pgrp) | ||
267 | { | ||
268 | write_lock_irq(&tasklist_lock); | ||
269 | __set_special_pids(session, pgrp); | ||
270 | write_unlock_irq(&tasklist_lock); | ||
271 | } | ||
272 | |||
273 | /* | ||
274 | * Let kernel threads use this to say that they | ||
275 | * allow a certain signal (since daemonize() will | ||
276 | * have disabled all of them by default). | ||
277 | */ | ||
278 | int allow_signal(int sig) | ||
279 | { | ||
280 | if (sig < 1 || sig > _NSIG) | ||
281 | return -EINVAL; | ||
282 | |||
283 | spin_lock_irq(¤t->sighand->siglock); | ||
284 | sigdelset(¤t->blocked, sig); | ||
285 | if (!current->mm) { | ||
286 | /* Kernel threads handle their own signals. | ||
287 | Let the signal code know it'll be handled, so | ||
288 | that they don't get converted to SIGKILL or | ||
289 | just silently dropped */ | ||
290 | current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; | ||
291 | } | ||
292 | recalc_sigpending(); | ||
293 | spin_unlock_irq(¤t->sighand->siglock); | ||
294 | return 0; | ||
295 | } | ||
296 | |||
297 | EXPORT_SYMBOL(allow_signal); | ||
298 | |||
299 | int disallow_signal(int sig) | ||
300 | { | ||
301 | if (sig < 1 || sig > _NSIG) | ||
302 | return -EINVAL; | ||
303 | |||
304 | spin_lock_irq(¤t->sighand->siglock); | ||
305 | sigaddset(¤t->blocked, sig); | ||
306 | recalc_sigpending(); | ||
307 | spin_unlock_irq(¤t->sighand->siglock); | ||
308 | return 0; | ||
309 | } | ||
310 | |||
311 | EXPORT_SYMBOL(disallow_signal); | ||
312 | |||
313 | /* | ||
314 | * Put all the gunge required to become a kernel thread without | ||
315 | * attached user resources in one place where it belongs. | ||
316 | */ | ||
317 | |||
318 | void daemonize(const char *name, ...) | ||
319 | { | ||
320 | va_list args; | ||
321 | struct fs_struct *fs; | ||
322 | sigset_t blocked; | ||
323 | |||
324 | va_start(args, name); | ||
325 | vsnprintf(current->comm, sizeof(current->comm), name, args); | ||
326 | va_end(args); | ||
327 | |||
328 | /* | ||
329 | * If we were started as result of loading a module, close all of the | ||
330 | * user space pages. We don't need them, and if we didn't close them | ||
331 | * they would be locked into memory. | ||
332 | */ | ||
333 | exit_mm(current); | ||
334 | |||
335 | set_special_pids(1, 1); | ||
336 | down(&tty_sem); | ||
337 | current->signal->tty = NULL; | ||
338 | up(&tty_sem); | ||
339 | |||
340 | /* Block and flush all signals */ | ||
341 | sigfillset(&blocked); | ||
342 | sigprocmask(SIG_BLOCK, &blocked, NULL); | ||
343 | flush_signals(current); | ||
344 | |||
345 | /* Become as one with the init task */ | ||
346 | |||
347 | exit_fs(current); /* current->fs->count--; */ | ||
348 | fs = init_task.fs; | ||
349 | current->fs = fs; | ||
350 | atomic_inc(&fs->count); | ||
351 | exit_files(current); | ||
352 | current->files = init_task.files; | ||
353 | atomic_inc(¤t->files->count); | ||
354 | |||
355 | reparent_to_init(); | ||
356 | } | ||
357 | |||
358 | EXPORT_SYMBOL(daemonize); | ||
359 | |||
360 | static inline void close_files(struct files_struct * files) | ||
361 | { | ||
362 | int i, j; | ||
363 | |||
364 | j = 0; | ||
365 | for (;;) { | ||
366 | unsigned long set; | ||
367 | i = j * __NFDBITS; | ||
368 | if (i >= files->max_fdset || i >= files->max_fds) | ||
369 | break; | ||
370 | set = files->open_fds->fds_bits[j++]; | ||
371 | while (set) { | ||
372 | if (set & 1) { | ||
373 | struct file * file = xchg(&files->fd[i], NULL); | ||
374 | if (file) | ||
375 | filp_close(file, files); | ||
376 | } | ||
377 | i++; | ||
378 | set >>= 1; | ||
379 | } | ||
380 | } | ||
381 | } | ||
382 | |||
383 | struct files_struct *get_files_struct(struct task_struct *task) | ||
384 | { | ||
385 | struct files_struct *files; | ||
386 | |||
387 | task_lock(task); | ||
388 | files = task->files; | ||
389 | if (files) | ||
390 | atomic_inc(&files->count); | ||
391 | task_unlock(task); | ||
392 | |||
393 | return files; | ||
394 | } | ||
395 | |||
396 | void fastcall put_files_struct(struct files_struct *files) | ||
397 | { | ||
398 | if (atomic_dec_and_test(&files->count)) { | ||
399 | close_files(files); | ||
400 | /* | ||
401 | * Free the fd and fdset arrays if we expanded them. | ||
402 | */ | ||
403 | if (files->fd != &files->fd_array[0]) | ||
404 | free_fd_array(files->fd, files->max_fds); | ||
405 | if (files->max_fdset > __FD_SETSIZE) { | ||
406 | free_fdset(files->open_fds, files->max_fdset); | ||
407 | free_fdset(files->close_on_exec, files->max_fdset); | ||
408 | } | ||
409 | kmem_cache_free(files_cachep, files); | ||
410 | } | ||
411 | } | ||
412 | |||
413 | EXPORT_SYMBOL(put_files_struct); | ||
414 | |||
415 | static inline void __exit_files(struct task_struct *tsk) | ||
416 | { | ||
417 | struct files_struct * files = tsk->files; | ||
418 | |||
419 | if (files) { | ||
420 | task_lock(tsk); | ||
421 | tsk->files = NULL; | ||
422 | task_unlock(tsk); | ||
423 | put_files_struct(files); | ||
424 | } | ||
425 | } | ||
426 | |||
427 | void exit_files(struct task_struct *tsk) | ||
428 | { | ||
429 | __exit_files(tsk); | ||
430 | } | ||
431 | |||
432 | static inline void __put_fs_struct(struct fs_struct *fs) | ||
433 | { | ||
434 | /* No need to hold fs->lock if we are killing it */ | ||
435 | if (atomic_dec_and_test(&fs->count)) { | ||
436 | dput(fs->root); | ||
437 | mntput(fs->rootmnt); | ||
438 | dput(fs->pwd); | ||
439 | mntput(fs->pwdmnt); | ||
440 | if (fs->altroot) { | ||
441 | dput(fs->altroot); | ||
442 | mntput(fs->altrootmnt); | ||
443 | } | ||
444 | kmem_cache_free(fs_cachep, fs); | ||
445 | } | ||
446 | } | ||
447 | |||
448 | void put_fs_struct(struct fs_struct *fs) | ||
449 | { | ||
450 | __put_fs_struct(fs); | ||
451 | } | ||
452 | |||
453 | static inline void __exit_fs(struct task_struct *tsk) | ||
454 | { | ||
455 | struct fs_struct * fs = tsk->fs; | ||
456 | |||
457 | if (fs) { | ||
458 | task_lock(tsk); | ||
459 | tsk->fs = NULL; | ||
460 | task_unlock(tsk); | ||
461 | __put_fs_struct(fs); | ||
462 | } | ||
463 | } | ||
464 | |||
465 | void exit_fs(struct task_struct *tsk) | ||
466 | { | ||
467 | __exit_fs(tsk); | ||
468 | } | ||
469 | |||
470 | EXPORT_SYMBOL_GPL(exit_fs); | ||
471 | |||
472 | /* | ||
473 | * Turn us into a lazy TLB process if we | ||
474 | * aren't already.. | ||
475 | */ | ||
476 | void exit_mm(struct task_struct * tsk) | ||
477 | { | ||
478 | struct mm_struct *mm = tsk->mm; | ||
479 | |||
480 | mm_release(tsk, mm); | ||
481 | if (!mm) | ||
482 | return; | ||
483 | /* | ||
484 | * Serialize with any possible pending coredump. | ||
485 | * We must hold mmap_sem around checking core_waiters | ||
486 | * and clearing tsk->mm. The core-inducing thread | ||
487 | * will increment core_waiters for each thread in the | ||
488 | * group with ->mm != NULL. | ||
489 | */ | ||
490 | down_read(&mm->mmap_sem); | ||
491 | if (mm->core_waiters) { | ||
492 | up_read(&mm->mmap_sem); | ||
493 | down_write(&mm->mmap_sem); | ||
494 | if (!--mm->core_waiters) | ||
495 | complete(mm->core_startup_done); | ||
496 | up_write(&mm->mmap_sem); | ||
497 | |||
498 | wait_for_completion(&mm->core_done); | ||
499 | down_read(&mm->mmap_sem); | ||
500 | } | ||
501 | atomic_inc(&mm->mm_count); | ||
502 | if (mm != tsk->active_mm) BUG(); | ||
503 | /* more a memory barrier than a real lock */ | ||
504 | task_lock(tsk); | ||
505 | tsk->mm = NULL; | ||
506 | up_read(&mm->mmap_sem); | ||
507 | enter_lazy_tlb(mm, current); | ||
508 | task_unlock(tsk); | ||
509 | mmput(mm); | ||
510 | } | ||
511 | |||
512 | static inline void choose_new_parent(task_t *p, task_t *reaper, task_t *child_reaper) | ||
513 | { | ||
514 | /* | ||
515 | * Make sure we're not reparenting to ourselves and that | ||
516 | * the parent is not a zombie. | ||
517 | */ | ||
518 | BUG_ON(p == reaper || reaper->exit_state >= EXIT_ZOMBIE); | ||
519 | p->real_parent = reaper; | ||
520 | if (p->parent == p->real_parent) | ||
521 | BUG(); | ||
522 | } | ||
523 | |||
524 | static inline void reparent_thread(task_t *p, task_t *father, int traced) | ||
525 | { | ||
526 | /* We don't want people slaying init. */ | ||
527 | if (p->exit_signal != -1) | ||
528 | p->exit_signal = SIGCHLD; | ||
529 | |||
530 | if (p->pdeath_signal) | ||
531 | /* We already hold the tasklist_lock here. */ | ||
532 | group_send_sig_info(p->pdeath_signal, (void *) 0, p); | ||
533 | |||
534 | /* Move the child from its dying parent to the new one. */ | ||
535 | if (unlikely(traced)) { | ||
536 | /* Preserve ptrace links if someone else is tracing this child. */ | ||
537 | list_del_init(&p->ptrace_list); | ||
538 | if (p->parent != p->real_parent) | ||
539 | list_add(&p->ptrace_list, &p->real_parent->ptrace_children); | ||
540 | } else { | ||
541 | /* If this child is being traced, then we're the one tracing it | ||
542 | * anyway, so let go of it. | ||
543 | */ | ||
544 | p->ptrace = 0; | ||
545 | list_del_init(&p->sibling); | ||
546 | p->parent = p->real_parent; | ||
547 | list_add_tail(&p->sibling, &p->parent->children); | ||
548 | |||
549 | /* If we'd notified the old parent about this child's death, | ||
550 | * also notify the new parent. | ||
551 | */ | ||
552 | if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 && | ||
553 | thread_group_empty(p)) | ||
554 | do_notify_parent(p, p->exit_signal); | ||
555 | else if (p->state == TASK_TRACED) { | ||
556 | /* | ||
557 | * If it was at a trace stop, turn it into | ||
558 | * a normal stop since it's no longer being | ||
559 | * traced. | ||
560 | */ | ||
561 | ptrace_untrace(p); | ||
562 | } | ||
563 | } | ||
564 | |||
565 | /* | ||
566 | * process group orphan check | ||
567 | * Case ii: Our child is in a different pgrp | ||
568 | * than we are, and it was the only connection | ||
569 | * outside, so the child pgrp is now orphaned. | ||
570 | */ | ||
571 | if ((process_group(p) != process_group(father)) && | ||
572 | (p->signal->session == father->signal->session)) { | ||
573 | int pgrp = process_group(p); | ||
574 | |||
575 | if (will_become_orphaned_pgrp(pgrp, NULL) && has_stopped_jobs(pgrp)) { | ||
576 | __kill_pg_info(SIGHUP, (void *)1, pgrp); | ||
577 | __kill_pg_info(SIGCONT, (void *)1, pgrp); | ||
578 | } | ||
579 | } | ||
580 | } | ||
581 | |||
582 | /* | ||
583 | * When we die, we re-parent all our children. | ||
584 | * Try to give them to another thread in our thread | ||
585 | * group, and if no such member exists, give it to | ||
586 | * the global child reaper process (ie "init") | ||
587 | */ | ||
588 | static inline void forget_original_parent(struct task_struct * father, | ||
589 | struct list_head *to_release) | ||
590 | { | ||
591 | struct task_struct *p, *reaper = father; | ||
592 | struct list_head *_p, *_n; | ||
593 | |||
594 | do { | ||
595 | reaper = next_thread(reaper); | ||
596 | if (reaper == father) { | ||
597 | reaper = child_reaper; | ||
598 | break; | ||
599 | } | ||
600 | } while (reaper->exit_state); | ||
601 | |||
602 | /* | ||
603 | * There are only two places where our children can be: | ||
604 | * | ||
605 | * - in our child list | ||
606 | * - in our ptraced child list | ||
607 | * | ||
608 | * Search them and reparent children. | ||
609 | */ | ||
610 | list_for_each_safe(_p, _n, &father->children) { | ||
611 | int ptrace; | ||
612 | p = list_entry(_p,struct task_struct,sibling); | ||
613 | |||
614 | ptrace = p->ptrace; | ||
615 | |||
616 | /* if father isn't the real parent, then ptrace must be enabled */ | ||
617 | BUG_ON(father != p->real_parent && !ptrace); | ||
618 | |||
619 | if (father == p->real_parent) { | ||
620 | /* reparent with a reaper, real father it's us */ | ||
621 | choose_new_parent(p, reaper, child_reaper); | ||
622 | reparent_thread(p, father, 0); | ||
623 | } else { | ||
624 | /* reparent ptraced task to its real parent */ | ||
625 | __ptrace_unlink (p); | ||
626 | if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 && | ||
627 | thread_group_empty(p)) | ||
628 | do_notify_parent(p, p->exit_signal); | ||
629 | } | ||
630 | |||
631 | /* | ||
632 | * if the ptraced child is a zombie with exit_signal == -1 | ||
633 | * we must collect it before we exit, or it will remain | ||
634 | * zombie forever since we prevented it from self-reap itself | ||
635 | * while it was being traced by us, to be able to see it in wait4. | ||
636 | */ | ||
637 | if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1)) | ||
638 | list_add(&p->ptrace_list, to_release); | ||
639 | } | ||
640 | list_for_each_safe(_p, _n, &father->ptrace_children) { | ||
641 | p = list_entry(_p,struct task_struct,ptrace_list); | ||
642 | choose_new_parent(p, reaper, child_reaper); | ||
643 | reparent_thread(p, father, 1); | ||
644 | } | ||
645 | } | ||
646 | |||
647 | /* | ||
648 | * Send signals to all our closest relatives so that they know | ||
649 | * to properly mourn us.. | ||
650 | */ | ||
651 | static void exit_notify(struct task_struct *tsk) | ||
652 | { | ||
653 | int state; | ||
654 | struct task_struct *t; | ||
655 | struct list_head ptrace_dead, *_p, *_n; | ||
656 | |||
657 | if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT) | ||
658 | && !thread_group_empty(tsk)) { | ||
659 | /* | ||
660 | * This occurs when there was a race between our exit | ||
661 | * syscall and a group signal choosing us as the one to | ||
662 | * wake up. It could be that we are the only thread | ||
663 | * alerted to check for pending signals, but another thread | ||
664 | * should be woken now to take the signal since we will not. | ||
665 | * Now we'll wake all the threads in the group just to make | ||
666 | * sure someone gets all the pending signals. | ||
667 | */ | ||
668 | read_lock(&tasklist_lock); | ||
669 | spin_lock_irq(&tsk->sighand->siglock); | ||
670 | for (t = next_thread(tsk); t != tsk; t = next_thread(t)) | ||
671 | if (!signal_pending(t) && !(t->flags & PF_EXITING)) { | ||
672 | recalc_sigpending_tsk(t); | ||
673 | if (signal_pending(t)) | ||
674 | signal_wake_up(t, 0); | ||
675 | } | ||
676 | spin_unlock_irq(&tsk->sighand->siglock); | ||
677 | read_unlock(&tasklist_lock); | ||
678 | } | ||
679 | |||
680 | write_lock_irq(&tasklist_lock); | ||
681 | |||
682 | /* | ||
683 | * This does two things: | ||
684 | * | ||
685 | * A. Make init inherit all the child processes | ||
686 | * B. Check to see if any process groups have become orphaned | ||
687 | * as a result of our exiting, and if they have any stopped | ||
688 | * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) | ||
689 | */ | ||
690 | |||
691 | INIT_LIST_HEAD(&ptrace_dead); | ||
692 | forget_original_parent(tsk, &ptrace_dead); | ||
693 | BUG_ON(!list_empty(&tsk->children)); | ||
694 | BUG_ON(!list_empty(&tsk->ptrace_children)); | ||
695 | |||
696 | /* | ||
697 | * Check to see if any process groups have become orphaned | ||
698 | * as a result of our exiting, and if they have any stopped | ||
699 | * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) | ||
700 | * | ||
701 | * Case i: Our father is in a different pgrp than we are | ||
702 | * and we were the only connection outside, so our pgrp | ||
703 | * is about to become orphaned. | ||
704 | */ | ||
705 | |||
706 | t = tsk->real_parent; | ||
707 | |||
708 | if ((process_group(t) != process_group(tsk)) && | ||
709 | (t->signal->session == tsk->signal->session) && | ||
710 | will_become_orphaned_pgrp(process_group(tsk), tsk) && | ||
711 | has_stopped_jobs(process_group(tsk))) { | ||
712 | __kill_pg_info(SIGHUP, (void *)1, process_group(tsk)); | ||
713 | __kill_pg_info(SIGCONT, (void *)1, process_group(tsk)); | ||
714 | } | ||
715 | |||
716 | /* Let father know we died | ||
717 | * | ||
718 | * Thread signals are configurable, but you aren't going to use | ||
719 | * that to send signals to arbitary processes. | ||
720 | * That stops right now. | ||
721 | * | ||
722 | * If the parent exec id doesn't match the exec id we saved | ||
723 | * when we started then we know the parent has changed security | ||
724 | * domain. | ||
725 | * | ||
726 | * If our self_exec id doesn't match our parent_exec_id then | ||
727 | * we have changed execution domain as these two values started | ||
728 | * the same after a fork. | ||
729 | * | ||
730 | */ | ||
731 | |||
732 | if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 && | ||
733 | ( tsk->parent_exec_id != t->self_exec_id || | ||
734 | tsk->self_exec_id != tsk->parent_exec_id) | ||
735 | && !capable(CAP_KILL)) | ||
736 | tsk->exit_signal = SIGCHLD; | ||
737 | |||
738 | |||
739 | /* If something other than our normal parent is ptracing us, then | ||
740 | * send it a SIGCHLD instead of honoring exit_signal. exit_signal | ||
741 | * only has special meaning to our real parent. | ||
742 | */ | ||
743 | if (tsk->exit_signal != -1 && thread_group_empty(tsk)) { | ||
744 | int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD; | ||
745 | do_notify_parent(tsk, signal); | ||
746 | } else if (tsk->ptrace) { | ||
747 | do_notify_parent(tsk, SIGCHLD); | ||
748 | } | ||
749 | |||
750 | state = EXIT_ZOMBIE; | ||
751 | if (tsk->exit_signal == -1 && | ||
752 | (likely(tsk->ptrace == 0) || | ||
753 | unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT))) | ||
754 | state = EXIT_DEAD; | ||
755 | tsk->exit_state = state; | ||
756 | |||
757 | write_unlock_irq(&tasklist_lock); | ||
758 | |||
759 | list_for_each_safe(_p, _n, &ptrace_dead) { | ||
760 | list_del_init(_p); | ||
761 | t = list_entry(_p,struct task_struct,ptrace_list); | ||
762 | release_task(t); | ||
763 | } | ||
764 | |||
765 | /* If the process is dead, release it - nobody will wait for it */ | ||
766 | if (state == EXIT_DEAD) | ||
767 | release_task(tsk); | ||
768 | |||
769 | /* PF_DEAD causes final put_task_struct after we schedule. */ | ||
770 | preempt_disable(); | ||
771 | tsk->flags |= PF_DEAD; | ||
772 | } | ||
773 | |||
774 | fastcall NORET_TYPE void do_exit(long code) | ||
775 | { | ||
776 | struct task_struct *tsk = current; | ||
777 | int group_dead; | ||
778 | |||
779 | profile_task_exit(tsk); | ||
780 | |||
781 | if (unlikely(in_interrupt())) | ||
782 | panic("Aiee, killing interrupt handler!"); | ||
783 | if (unlikely(!tsk->pid)) | ||
784 | panic("Attempted to kill the idle task!"); | ||
785 | if (unlikely(tsk->pid == 1)) | ||
786 | panic("Attempted to kill init!"); | ||
787 | if (tsk->io_context) | ||
788 | exit_io_context(); | ||
789 | |||
790 | if (unlikely(current->ptrace & PT_TRACE_EXIT)) { | ||
791 | current->ptrace_message = code; | ||
792 | ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP); | ||
793 | } | ||
794 | |||
795 | tsk->flags |= PF_EXITING; | ||
796 | |||
797 | /* | ||
798 | * Make sure we don't try to process any timer firings | ||
799 | * while we are already exiting. | ||
800 | */ | ||
801 | tsk->it_virt_expires = cputime_zero; | ||
802 | tsk->it_prof_expires = cputime_zero; | ||
803 | tsk->it_sched_expires = 0; | ||
804 | |||
805 | if (unlikely(in_atomic())) | ||
806 | printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", | ||
807 | current->comm, current->pid, | ||
808 | preempt_count()); | ||
809 | |||
810 | acct_update_integrals(tsk); | ||
811 | update_mem_hiwater(tsk); | ||
812 | group_dead = atomic_dec_and_test(&tsk->signal->live); | ||
813 | if (group_dead) { | ||
814 | del_timer_sync(&tsk->signal->real_timer); | ||
815 | acct_process(code); | ||
816 | } | ||
817 | exit_mm(tsk); | ||
818 | |||
819 | exit_sem(tsk); | ||
820 | __exit_files(tsk); | ||
821 | __exit_fs(tsk); | ||
822 | exit_namespace(tsk); | ||
823 | exit_thread(); | ||
824 | cpuset_exit(tsk); | ||
825 | exit_keys(tsk); | ||
826 | |||
827 | if (group_dead && tsk->signal->leader) | ||
828 | disassociate_ctty(1); | ||
829 | |||
830 | module_put(tsk->thread_info->exec_domain->module); | ||
831 | if (tsk->binfmt) | ||
832 | module_put(tsk->binfmt->module); | ||
833 | |||
834 | tsk->exit_code = code; | ||
835 | exit_notify(tsk); | ||
836 | #ifdef CONFIG_NUMA | ||
837 | mpol_free(tsk->mempolicy); | ||
838 | tsk->mempolicy = NULL; | ||
839 | #endif | ||
840 | |||
841 | BUG_ON(!(current->flags & PF_DEAD)); | ||
842 | schedule(); | ||
843 | BUG(); | ||
844 | /* Avoid "noreturn function does return". */ | ||
845 | for (;;) ; | ||
846 | } | ||
847 | |||
848 | NORET_TYPE void complete_and_exit(struct completion *comp, long code) | ||
849 | { | ||
850 | if (comp) | ||
851 | complete(comp); | ||
852 | |||
853 | do_exit(code); | ||
854 | } | ||
855 | |||
856 | EXPORT_SYMBOL(complete_and_exit); | ||
857 | |||
858 | asmlinkage long sys_exit(int error_code) | ||
859 | { | ||
860 | do_exit((error_code&0xff)<<8); | ||
861 | } | ||
862 | |||
863 | task_t fastcall *next_thread(const task_t *p) | ||
864 | { | ||
865 | return pid_task(p->pids[PIDTYPE_TGID].pid_list.next, PIDTYPE_TGID); | ||
866 | } | ||
867 | |||
868 | EXPORT_SYMBOL(next_thread); | ||
869 | |||
870 | /* | ||
871 | * Take down every thread in the group. This is called by fatal signals | ||
872 | * as well as by sys_exit_group (below). | ||
873 | */ | ||
874 | NORET_TYPE void | ||
875 | do_group_exit(int exit_code) | ||
876 | { | ||
877 | BUG_ON(exit_code & 0x80); /* core dumps don't get here */ | ||
878 | |||
879 | if (current->signal->flags & SIGNAL_GROUP_EXIT) | ||
880 | exit_code = current->signal->group_exit_code; | ||
881 | else if (!thread_group_empty(current)) { | ||
882 | struct signal_struct *const sig = current->signal; | ||
883 | struct sighand_struct *const sighand = current->sighand; | ||
884 | read_lock(&tasklist_lock); | ||
885 | spin_lock_irq(&sighand->siglock); | ||
886 | if (sig->flags & SIGNAL_GROUP_EXIT) | ||
887 | /* Another thread got here before we took the lock. */ | ||
888 | exit_code = sig->group_exit_code; | ||
889 | else { | ||
890 | sig->flags = SIGNAL_GROUP_EXIT; | ||
891 | sig->group_exit_code = exit_code; | ||
892 | zap_other_threads(current); | ||
893 | } | ||
894 | spin_unlock_irq(&sighand->siglock); | ||
895 | read_unlock(&tasklist_lock); | ||
896 | } | ||
897 | |||
898 | do_exit(exit_code); | ||
899 | /* NOTREACHED */ | ||
900 | } | ||
901 | |||
902 | /* | ||
903 | * this kills every thread in the thread group. Note that any externally | ||
904 | * wait4()-ing process will get the correct exit code - even if this | ||
905 | * thread is not the thread group leader. | ||
906 | */ | ||
907 | asmlinkage void sys_exit_group(int error_code) | ||
908 | { | ||
909 | do_group_exit((error_code & 0xff) << 8); | ||
910 | } | ||
911 | |||
912 | static int eligible_child(pid_t pid, int options, task_t *p) | ||
913 | { | ||
914 | if (pid > 0) { | ||
915 | if (p->pid != pid) | ||
916 | return 0; | ||
917 | } else if (!pid) { | ||
918 | if (process_group(p) != process_group(current)) | ||
919 | return 0; | ||
920 | } else if (pid != -1) { | ||
921 | if (process_group(p) != -pid) | ||
922 | return 0; | ||
923 | } | ||
924 | |||
925 | /* | ||
926 | * Do not consider detached threads that are | ||
927 | * not ptraced: | ||
928 | */ | ||
929 | if (p->exit_signal == -1 && !p->ptrace) | ||
930 | return 0; | ||
931 | |||
932 | /* Wait for all children (clone and not) if __WALL is set; | ||
933 | * otherwise, wait for clone children *only* if __WCLONE is | ||
934 | * set; otherwise, wait for non-clone children *only*. (Note: | ||
935 | * A "clone" child here is one that reports to its parent | ||
936 | * using a signal other than SIGCHLD.) */ | ||
937 | if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) | ||
938 | && !(options & __WALL)) | ||
939 | return 0; | ||
940 | /* | ||
941 | * Do not consider thread group leaders that are | ||
942 | * in a non-empty thread group: | ||
943 | */ | ||
944 | if (current->tgid != p->tgid && delay_group_leader(p)) | ||
945 | return 2; | ||
946 | |||
947 | if (security_task_wait(p)) | ||
948 | return 0; | ||
949 | |||
950 | return 1; | ||
951 | } | ||
952 | |||
953 | static int wait_noreap_copyout(task_t *p, pid_t pid, uid_t uid, | ||
954 | int why, int status, | ||
955 | struct siginfo __user *infop, | ||
956 | struct rusage __user *rusagep) | ||
957 | { | ||
958 | int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; | ||
959 | put_task_struct(p); | ||
960 | if (!retval) | ||
961 | retval = put_user(SIGCHLD, &infop->si_signo); | ||
962 | if (!retval) | ||
963 | retval = put_user(0, &infop->si_errno); | ||
964 | if (!retval) | ||
965 | retval = put_user((short)why, &infop->si_code); | ||
966 | if (!retval) | ||
967 | retval = put_user(pid, &infop->si_pid); | ||
968 | if (!retval) | ||
969 | retval = put_user(uid, &infop->si_uid); | ||
970 | if (!retval) | ||
971 | retval = put_user(status, &infop->si_status); | ||
972 | if (!retval) | ||
973 | retval = pid; | ||
974 | return retval; | ||
975 | } | ||
976 | |||
977 | /* | ||
978 | * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold | ||
979 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold | ||
980 | * the lock and this task is uninteresting. If we return nonzero, we have | ||
981 | * released the lock and the system call should return. | ||
982 | */ | ||
983 | static int wait_task_zombie(task_t *p, int noreap, | ||
984 | struct siginfo __user *infop, | ||
985 | int __user *stat_addr, struct rusage __user *ru) | ||
986 | { | ||
987 | unsigned long state; | ||
988 | int retval; | ||
989 | int status; | ||
990 | |||
991 | if (unlikely(noreap)) { | ||
992 | pid_t pid = p->pid; | ||
993 | uid_t uid = p->uid; | ||
994 | int exit_code = p->exit_code; | ||
995 | int why, status; | ||
996 | |||
997 | if (unlikely(p->exit_state != EXIT_ZOMBIE)) | ||
998 | return 0; | ||
999 | if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) | ||
1000 | return 0; | ||
1001 | get_task_struct(p); | ||
1002 | read_unlock(&tasklist_lock); | ||
1003 | if ((exit_code & 0x7f) == 0) { | ||
1004 | why = CLD_EXITED; | ||
1005 | status = exit_code >> 8; | ||
1006 | } else { | ||
1007 | why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; | ||
1008 | status = exit_code & 0x7f; | ||
1009 | } | ||
1010 | return wait_noreap_copyout(p, pid, uid, why, | ||
1011 | status, infop, ru); | ||
1012 | } | ||
1013 | |||
1014 | /* | ||
1015 | * Try to move the task's state to DEAD | ||
1016 | * only one thread is allowed to do this: | ||
1017 | */ | ||
1018 | state = xchg(&p->exit_state, EXIT_DEAD); | ||
1019 | if (state != EXIT_ZOMBIE) { | ||
1020 | BUG_ON(state != EXIT_DEAD); | ||
1021 | return 0; | ||
1022 | } | ||
1023 | if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) { | ||
1024 | /* | ||
1025 | * This can only happen in a race with a ptraced thread | ||
1026 | * dying on another processor. | ||
1027 | */ | ||
1028 | return 0; | ||
1029 | } | ||
1030 | |||
1031 | if (likely(p->real_parent == p->parent) && likely(p->signal)) { | ||
1032 | /* | ||
1033 | * The resource counters for the group leader are in its | ||
1034 | * own task_struct. Those for dead threads in the group | ||
1035 | * are in its signal_struct, as are those for the child | ||
1036 | * processes it has previously reaped. All these | ||
1037 | * accumulate in the parent's signal_struct c* fields. | ||
1038 | * | ||
1039 | * We don't bother to take a lock here to protect these | ||
1040 | * p->signal fields, because they are only touched by | ||
1041 | * __exit_signal, which runs with tasklist_lock | ||
1042 | * write-locked anyway, and so is excluded here. We do | ||
1043 | * need to protect the access to p->parent->signal fields, | ||
1044 | * as other threads in the parent group can be right | ||
1045 | * here reaping other children at the same time. | ||
1046 | */ | ||
1047 | spin_lock_irq(&p->parent->sighand->siglock); | ||
1048 | p->parent->signal->cutime = | ||
1049 | cputime_add(p->parent->signal->cutime, | ||
1050 | cputime_add(p->utime, | ||
1051 | cputime_add(p->signal->utime, | ||
1052 | p->signal->cutime))); | ||
1053 | p->parent->signal->cstime = | ||
1054 | cputime_add(p->parent->signal->cstime, | ||
1055 | cputime_add(p->stime, | ||
1056 | cputime_add(p->signal->stime, | ||
1057 | p->signal->cstime))); | ||
1058 | p->parent->signal->cmin_flt += | ||
1059 | p->min_flt + p->signal->min_flt + p->signal->cmin_flt; | ||
1060 | p->parent->signal->cmaj_flt += | ||
1061 | p->maj_flt + p->signal->maj_flt + p->signal->cmaj_flt; | ||
1062 | p->parent->signal->cnvcsw += | ||
1063 | p->nvcsw + p->signal->nvcsw + p->signal->cnvcsw; | ||
1064 | p->parent->signal->cnivcsw += | ||
1065 | p->nivcsw + p->signal->nivcsw + p->signal->cnivcsw; | ||
1066 | spin_unlock_irq(&p->parent->sighand->siglock); | ||
1067 | } | ||
1068 | |||
1069 | /* | ||
1070 | * Now we are sure this task is interesting, and no other | ||
1071 | * thread can reap it because we set its state to EXIT_DEAD. | ||
1072 | */ | ||
1073 | read_unlock(&tasklist_lock); | ||
1074 | |||
1075 | retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; | ||
1076 | status = (p->signal->flags & SIGNAL_GROUP_EXIT) | ||
1077 | ? p->signal->group_exit_code : p->exit_code; | ||
1078 | if (!retval && stat_addr) | ||
1079 | retval = put_user(status, stat_addr); | ||
1080 | if (!retval && infop) | ||
1081 | retval = put_user(SIGCHLD, &infop->si_signo); | ||
1082 | if (!retval && infop) | ||
1083 | retval = put_user(0, &infop->si_errno); | ||
1084 | if (!retval && infop) { | ||
1085 | int why; | ||
1086 | |||
1087 | if ((status & 0x7f) == 0) { | ||
1088 | why = CLD_EXITED; | ||
1089 | status >>= 8; | ||
1090 | } else { | ||
1091 | why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; | ||
1092 | status &= 0x7f; | ||
1093 | } | ||
1094 | retval = put_user((short)why, &infop->si_code); | ||
1095 | if (!retval) | ||
1096 | retval = put_user(status, &infop->si_status); | ||
1097 | } | ||
1098 | if (!retval && infop) | ||
1099 | retval = put_user(p->pid, &infop->si_pid); | ||
1100 | if (!retval && infop) | ||
1101 | retval = put_user(p->uid, &infop->si_uid); | ||
1102 | if (retval) { | ||
1103 | // TODO: is this safe? | ||
1104 | p->exit_state = EXIT_ZOMBIE; | ||
1105 | return retval; | ||
1106 | } | ||
1107 | retval = p->pid; | ||
1108 | if (p->real_parent != p->parent) { | ||
1109 | write_lock_irq(&tasklist_lock); | ||
1110 | /* Double-check with lock held. */ | ||
1111 | if (p->real_parent != p->parent) { | ||
1112 | __ptrace_unlink(p); | ||
1113 | // TODO: is this safe? | ||
1114 | p->exit_state = EXIT_ZOMBIE; | ||
1115 | /* | ||
1116 | * If this is not a detached task, notify the parent. | ||
1117 | * If it's still not detached after that, don't release | ||
1118 | * it now. | ||
1119 | */ | ||
1120 | if (p->exit_signal != -1) { | ||
1121 | do_notify_parent(p, p->exit_signal); | ||
1122 | if (p->exit_signal != -1) | ||
1123 | p = NULL; | ||
1124 | } | ||
1125 | } | ||
1126 | write_unlock_irq(&tasklist_lock); | ||
1127 | } | ||
1128 | if (p != NULL) | ||
1129 | release_task(p); | ||
1130 | BUG_ON(!retval); | ||
1131 | return retval; | ||
1132 | } | ||
1133 | |||
1134 | /* | ||
1135 | * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold | ||
1136 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold | ||
1137 | * the lock and this task is uninteresting. If we return nonzero, we have | ||
1138 | * released the lock and the system call should return. | ||
1139 | */ | ||
1140 | static int wait_task_stopped(task_t *p, int delayed_group_leader, int noreap, | ||
1141 | struct siginfo __user *infop, | ||
1142 | int __user *stat_addr, struct rusage __user *ru) | ||
1143 | { | ||
1144 | int retval, exit_code; | ||
1145 | |||
1146 | if (!p->exit_code) | ||
1147 | return 0; | ||
1148 | if (delayed_group_leader && !(p->ptrace & PT_PTRACED) && | ||
1149 | p->signal && p->signal->group_stop_count > 0) | ||
1150 | /* | ||
1151 | * A group stop is in progress and this is the group leader. | ||
1152 | * We won't report until all threads have stopped. | ||
1153 | */ | ||
1154 | return 0; | ||
1155 | |||
1156 | /* | ||
1157 | * Now we are pretty sure this task is interesting. | ||
1158 | * Make sure it doesn't get reaped out from under us while we | ||
1159 | * give up the lock and then examine it below. We don't want to | ||
1160 | * keep holding onto the tasklist_lock while we call getrusage and | ||
1161 | * possibly take page faults for user memory. | ||
1162 | */ | ||
1163 | get_task_struct(p); | ||
1164 | read_unlock(&tasklist_lock); | ||
1165 | |||
1166 | if (unlikely(noreap)) { | ||
1167 | pid_t pid = p->pid; | ||
1168 | uid_t uid = p->uid; | ||
1169 | int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED; | ||
1170 | |||
1171 | exit_code = p->exit_code; | ||
1172 | if (unlikely(!exit_code) || | ||
1173 | unlikely(p->state > TASK_STOPPED)) | ||
1174 | goto bail_ref; | ||
1175 | return wait_noreap_copyout(p, pid, uid, | ||
1176 | why, (exit_code << 8) | 0x7f, | ||
1177 | infop, ru); | ||
1178 | } | ||
1179 | |||
1180 | write_lock_irq(&tasklist_lock); | ||
1181 | |||
1182 | /* | ||
1183 | * This uses xchg to be atomic with the thread resuming and setting | ||
1184 | * it. It must also be done with the write lock held to prevent a | ||
1185 | * race with the EXIT_ZOMBIE case. | ||
1186 | */ | ||
1187 | exit_code = xchg(&p->exit_code, 0); | ||
1188 | if (unlikely(p->exit_state)) { | ||
1189 | /* | ||
1190 | * The task resumed and then died. Let the next iteration | ||
1191 | * catch it in EXIT_ZOMBIE. Note that exit_code might | ||
1192 | * already be zero here if it resumed and did _exit(0). | ||
1193 | * The task itself is dead and won't touch exit_code again; | ||
1194 | * other processors in this function are locked out. | ||
1195 | */ | ||
1196 | p->exit_code = exit_code; | ||
1197 | exit_code = 0; | ||
1198 | } | ||
1199 | if (unlikely(exit_code == 0)) { | ||
1200 | /* | ||
1201 | * Another thread in this function got to it first, or it | ||
1202 | * resumed, or it resumed and then died. | ||
1203 | */ | ||
1204 | write_unlock_irq(&tasklist_lock); | ||
1205 | bail_ref: | ||
1206 | put_task_struct(p); | ||
1207 | /* | ||
1208 | * We are returning to the wait loop without having successfully | ||
1209 | * removed the process and having released the lock. We cannot | ||
1210 | * continue, since the "p" task pointer is potentially stale. | ||
1211 | * | ||
1212 | * Return -EAGAIN, and do_wait() will restart the loop from the | ||
1213 | * beginning. Do _not_ re-acquire the lock. | ||
1214 | */ | ||
1215 | return -EAGAIN; | ||
1216 | } | ||
1217 | |||
1218 | /* move to end of parent's list to avoid starvation */ | ||
1219 | remove_parent(p); | ||
1220 | add_parent(p, p->parent); | ||
1221 | |||
1222 | write_unlock_irq(&tasklist_lock); | ||
1223 | |||
1224 | retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; | ||
1225 | if (!retval && stat_addr) | ||
1226 | retval = put_user((exit_code << 8) | 0x7f, stat_addr); | ||
1227 | if (!retval && infop) | ||
1228 | retval = put_user(SIGCHLD, &infop->si_signo); | ||
1229 | if (!retval && infop) | ||
1230 | retval = put_user(0, &infop->si_errno); | ||
1231 | if (!retval && infop) | ||
1232 | retval = put_user((short)((p->ptrace & PT_PTRACED) | ||
1233 | ? CLD_TRAPPED : CLD_STOPPED), | ||
1234 | &infop->si_code); | ||
1235 | if (!retval && infop) | ||
1236 | retval = put_user(exit_code, &infop->si_status); | ||
1237 | if (!retval && infop) | ||
1238 | retval = put_user(p->pid, &infop->si_pid); | ||
1239 | if (!retval && infop) | ||
1240 | retval = put_user(p->uid, &infop->si_uid); | ||
1241 | if (!retval) | ||
1242 | retval = p->pid; | ||
1243 | put_task_struct(p); | ||
1244 | |||
1245 | BUG_ON(!retval); | ||
1246 | return retval; | ||
1247 | } | ||
1248 | |||
1249 | /* | ||
1250 | * Handle do_wait work for one task in a live, non-stopped state. | ||
1251 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold | ||
1252 | * the lock and this task is uninteresting. If we return nonzero, we have | ||
1253 | * released the lock and the system call should return. | ||
1254 | */ | ||
1255 | static int wait_task_continued(task_t *p, int noreap, | ||
1256 | struct siginfo __user *infop, | ||
1257 | int __user *stat_addr, struct rusage __user *ru) | ||
1258 | { | ||
1259 | int retval; | ||
1260 | pid_t pid; | ||
1261 | uid_t uid; | ||
1262 | |||
1263 | if (unlikely(!p->signal)) | ||
1264 | return 0; | ||
1265 | |||
1266 | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) | ||
1267 | return 0; | ||
1268 | |||
1269 | spin_lock_irq(&p->sighand->siglock); | ||
1270 | /* Re-check with the lock held. */ | ||
1271 | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { | ||
1272 | spin_unlock_irq(&p->sighand->siglock); | ||
1273 | return 0; | ||
1274 | } | ||
1275 | if (!noreap) | ||
1276 | p->signal->flags &= ~SIGNAL_STOP_CONTINUED; | ||
1277 | spin_unlock_irq(&p->sighand->siglock); | ||
1278 | |||
1279 | pid = p->pid; | ||
1280 | uid = p->uid; | ||
1281 | get_task_struct(p); | ||
1282 | read_unlock(&tasklist_lock); | ||
1283 | |||
1284 | if (!infop) { | ||
1285 | retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; | ||
1286 | put_task_struct(p); | ||
1287 | if (!retval && stat_addr) | ||
1288 | retval = put_user(0xffff, stat_addr); | ||
1289 | if (!retval) | ||
1290 | retval = p->pid; | ||
1291 | } else { | ||
1292 | retval = wait_noreap_copyout(p, pid, uid, | ||
1293 | CLD_CONTINUED, SIGCONT, | ||
1294 | infop, ru); | ||
1295 | BUG_ON(retval == 0); | ||
1296 | } | ||
1297 | |||
1298 | return retval; | ||
1299 | } | ||
1300 | |||
1301 | |||
1302 | static inline int my_ptrace_child(struct task_struct *p) | ||
1303 | { | ||
1304 | if (!(p->ptrace & PT_PTRACED)) | ||
1305 | return 0; | ||
1306 | if (!(p->ptrace & PT_ATTACHED)) | ||
1307 | return 1; | ||
1308 | /* | ||
1309 | * This child was PTRACE_ATTACH'd. We should be seeing it only if | ||
1310 | * we are the attacher. If we are the real parent, this is a race | ||
1311 | * inside ptrace_attach. It is waiting for the tasklist_lock, | ||
1312 | * which we have to switch the parent links, but has already set | ||
1313 | * the flags in p->ptrace. | ||
1314 | */ | ||
1315 | return (p->parent != p->real_parent); | ||
1316 | } | ||
1317 | |||
1318 | static long do_wait(pid_t pid, int options, struct siginfo __user *infop, | ||
1319 | int __user *stat_addr, struct rusage __user *ru) | ||
1320 | { | ||
1321 | DECLARE_WAITQUEUE(wait, current); | ||
1322 | struct task_struct *tsk; | ||
1323 | int flag, retval; | ||
1324 | |||
1325 | add_wait_queue(¤t->signal->wait_chldexit,&wait); | ||
1326 | repeat: | ||
1327 | /* | ||
1328 | * We will set this flag if we see any child that might later | ||
1329 | * match our criteria, even if we are not able to reap it yet. | ||
1330 | */ | ||
1331 | flag = 0; | ||
1332 | current->state = TASK_INTERRUPTIBLE; | ||
1333 | read_lock(&tasklist_lock); | ||
1334 | tsk = current; | ||
1335 | do { | ||
1336 | struct task_struct *p; | ||
1337 | struct list_head *_p; | ||
1338 | int ret; | ||
1339 | |||
1340 | list_for_each(_p,&tsk->children) { | ||
1341 | p = list_entry(_p,struct task_struct,sibling); | ||
1342 | |||
1343 | ret = eligible_child(pid, options, p); | ||
1344 | if (!ret) | ||
1345 | continue; | ||
1346 | |||
1347 | switch (p->state) { | ||
1348 | case TASK_TRACED: | ||
1349 | if (!my_ptrace_child(p)) | ||
1350 | continue; | ||
1351 | /*FALLTHROUGH*/ | ||
1352 | case TASK_STOPPED: | ||
1353 | /* | ||
1354 | * It's stopped now, so it might later | ||
1355 | * continue, exit, or stop again. | ||
1356 | */ | ||
1357 | flag = 1; | ||
1358 | if (!(options & WUNTRACED) && | ||
1359 | !my_ptrace_child(p)) | ||
1360 | continue; | ||
1361 | retval = wait_task_stopped(p, ret == 2, | ||
1362 | (options & WNOWAIT), | ||
1363 | infop, | ||
1364 | stat_addr, ru); | ||
1365 | if (retval == -EAGAIN) | ||
1366 | goto repeat; | ||
1367 | if (retval != 0) /* He released the lock. */ | ||
1368 | goto end; | ||
1369 | break; | ||
1370 | default: | ||
1371 | // case EXIT_DEAD: | ||
1372 | if (p->exit_state == EXIT_DEAD) | ||
1373 | continue; | ||
1374 | // case EXIT_ZOMBIE: | ||
1375 | if (p->exit_state == EXIT_ZOMBIE) { | ||
1376 | /* | ||
1377 | * Eligible but we cannot release | ||
1378 | * it yet: | ||
1379 | */ | ||
1380 | if (ret == 2) | ||
1381 | goto check_continued; | ||
1382 | if (!likely(options & WEXITED)) | ||
1383 | continue; | ||
1384 | retval = wait_task_zombie( | ||
1385 | p, (options & WNOWAIT), | ||
1386 | infop, stat_addr, ru); | ||
1387 | /* He released the lock. */ | ||
1388 | if (retval != 0) | ||
1389 | goto end; | ||
1390 | break; | ||
1391 | } | ||
1392 | check_continued: | ||
1393 | /* | ||
1394 | * It's running now, so it might later | ||
1395 | * exit, stop, or stop and then continue. | ||
1396 | */ | ||
1397 | flag = 1; | ||
1398 | if (!unlikely(options & WCONTINUED)) | ||
1399 | continue; | ||
1400 | retval = wait_task_continued( | ||
1401 | p, (options & WNOWAIT), | ||
1402 | infop, stat_addr, ru); | ||
1403 | if (retval != 0) /* He released the lock. */ | ||
1404 | goto end; | ||
1405 | break; | ||
1406 | } | ||
1407 | } | ||
1408 | if (!flag) { | ||
1409 | list_for_each(_p, &tsk->ptrace_children) { | ||
1410 | p = list_entry(_p, struct task_struct, | ||
1411 | ptrace_list); | ||
1412 | if (!eligible_child(pid, options, p)) | ||
1413 | continue; | ||
1414 | flag = 1; | ||
1415 | break; | ||
1416 | } | ||
1417 | } | ||
1418 | if (options & __WNOTHREAD) | ||
1419 | break; | ||
1420 | tsk = next_thread(tsk); | ||
1421 | if (tsk->signal != current->signal) | ||
1422 | BUG(); | ||
1423 | } while (tsk != current); | ||
1424 | |||
1425 | read_unlock(&tasklist_lock); | ||
1426 | if (flag) { | ||
1427 | retval = 0; | ||
1428 | if (options & WNOHANG) | ||
1429 | goto end; | ||
1430 | retval = -ERESTARTSYS; | ||
1431 | if (signal_pending(current)) | ||
1432 | goto end; | ||
1433 | schedule(); | ||
1434 | goto repeat; | ||
1435 | } | ||
1436 | retval = -ECHILD; | ||
1437 | end: | ||
1438 | current->state = TASK_RUNNING; | ||
1439 | remove_wait_queue(¤t->signal->wait_chldexit,&wait); | ||
1440 | if (infop) { | ||
1441 | if (retval > 0) | ||
1442 | retval = 0; | ||
1443 | else { | ||
1444 | /* | ||
1445 | * For a WNOHANG return, clear out all the fields | ||
1446 | * we would set so the user can easily tell the | ||
1447 | * difference. | ||
1448 | */ | ||
1449 | if (!retval) | ||
1450 | retval = put_user(0, &infop->si_signo); | ||
1451 | if (!retval) | ||
1452 | retval = put_user(0, &infop->si_errno); | ||
1453 | if (!retval) | ||
1454 | retval = put_user(0, &infop->si_code); | ||
1455 | if (!retval) | ||
1456 | retval = put_user(0, &infop->si_pid); | ||
1457 | if (!retval) | ||
1458 | retval = put_user(0, &infop->si_uid); | ||
1459 | if (!retval) | ||
1460 | retval = put_user(0, &infop->si_status); | ||
1461 | } | ||
1462 | } | ||
1463 | return retval; | ||
1464 | } | ||
1465 | |||
1466 | asmlinkage long sys_waitid(int which, pid_t pid, | ||
1467 | struct siginfo __user *infop, int options, | ||
1468 | struct rusage __user *ru) | ||
1469 | { | ||
1470 | long ret; | ||
1471 | |||
1472 | if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) | ||
1473 | return -EINVAL; | ||
1474 | if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) | ||
1475 | return -EINVAL; | ||
1476 | |||
1477 | switch (which) { | ||
1478 | case P_ALL: | ||
1479 | pid = -1; | ||
1480 | break; | ||
1481 | case P_PID: | ||
1482 | if (pid <= 0) | ||
1483 | return -EINVAL; | ||
1484 | break; | ||
1485 | case P_PGID: | ||
1486 | if (pid <= 0) | ||
1487 | return -EINVAL; | ||
1488 | pid = -pid; | ||
1489 | break; | ||
1490 | default: | ||
1491 | return -EINVAL; | ||
1492 | } | ||
1493 | |||
1494 | ret = do_wait(pid, options, infop, NULL, ru); | ||
1495 | |||
1496 | /* avoid REGPARM breakage on x86: */ | ||
1497 | prevent_tail_call(ret); | ||
1498 | return ret; | ||
1499 | } | ||
1500 | |||
1501 | asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr, | ||
1502 | int options, struct rusage __user *ru) | ||
1503 | { | ||
1504 | long ret; | ||
1505 | |||
1506 | if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| | ||
1507 | __WNOTHREAD|__WCLONE|__WALL)) | ||
1508 | return -EINVAL; | ||
1509 | ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru); | ||
1510 | |||
1511 | /* avoid REGPARM breakage on x86: */ | ||
1512 | prevent_tail_call(ret); | ||
1513 | return ret; | ||
1514 | } | ||
1515 | |||
1516 | #ifdef __ARCH_WANT_SYS_WAITPID | ||
1517 | |||
1518 | /* | ||
1519 | * sys_waitpid() remains for compatibility. waitpid() should be | ||
1520 | * implemented by calling sys_wait4() from libc.a. | ||
1521 | */ | ||
1522 | asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options) | ||
1523 | { | ||
1524 | return sys_wait4(pid, stat_addr, options, NULL); | ||
1525 | } | ||
1526 | |||
1527 | #endif | ||