aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/debug/kdb/kdb_main.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/debug/kdb/kdb_main.c')
-rw-r--r--kernel/debug/kdb/kdb_main.c2849
1 files changed, 2849 insertions, 0 deletions
diff --git a/kernel/debug/kdb/kdb_main.c b/kernel/debug/kdb/kdb_main.c
new file mode 100644
index 000000000000..b724c791b6d4
--- /dev/null
+++ b/kernel/debug/kdb/kdb_main.c
@@ -0,0 +1,2849 @@
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/kernel.h>
17#include <linux/reboot.h>
18#include <linux/sched.h>
19#include <linux/sysrq.h>
20#include <linux/smp.h>
21#include <linux/utsname.h>
22#include <linux/vmalloc.h>
23#include <linux/module.h>
24#include <linux/mm.h>
25#include <linux/init.h>
26#include <linux/kallsyms.h>
27#include <linux/kgdb.h>
28#include <linux/kdb.h>
29#include <linux/notifier.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/nmi.h>
33#include <linux/time.h>
34#include <linux/ptrace.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/kdebug.h>
38#include <linux/proc_fs.h>
39#include <linux/uaccess.h>
40#include <linux/slab.h>
41#include "kdb_private.h"
42
43#define GREP_LEN 256
44char kdb_grep_string[GREP_LEN];
45int kdb_grepping_flag;
46EXPORT_SYMBOL(kdb_grepping_flag);
47int kdb_grep_leading;
48int kdb_grep_trailing;
49
50/*
51 * Kernel debugger state flags
52 */
53int kdb_flags;
54atomic_t kdb_event;
55
56/*
57 * kdb_lock protects updates to kdb_initial_cpu. Used to
58 * single thread processors through the kernel debugger.
59 */
60int kdb_initial_cpu = -1; /* cpu number that owns kdb */
61int kdb_nextline = 1;
62int kdb_state; /* General KDB state */
63
64struct task_struct *kdb_current_task;
65EXPORT_SYMBOL(kdb_current_task);
66struct pt_regs *kdb_current_regs;
67
68const char *kdb_diemsg;
69static int kdb_go_count;
70#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
71static unsigned int kdb_continue_catastrophic =
72 CONFIG_KDB_CONTINUE_CATASTROPHIC;
73#else
74static unsigned int kdb_continue_catastrophic;
75#endif
76
77/* kdb_commands describes the available commands. */
78static kdbtab_t *kdb_commands;
79#define KDB_BASE_CMD_MAX 50
80static int kdb_max_commands = KDB_BASE_CMD_MAX;
81static kdbtab_t kdb_base_commands[50];
82#define for_each_kdbcmd(cmd, num) \
83 for ((cmd) = kdb_base_commands, (num) = 0; \
84 num < kdb_max_commands; \
85 num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++, num++)
86
87typedef struct _kdbmsg {
88 int km_diag; /* kdb diagnostic */
89 char *km_msg; /* Corresponding message text */
90} kdbmsg_t;
91
92#define KDBMSG(msgnum, text) \
93 { KDB_##msgnum, text }
94
95static kdbmsg_t kdbmsgs[] = {
96 KDBMSG(NOTFOUND, "Command Not Found"),
97 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
98 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
99 "8 is only allowed on 64 bit systems"),
100 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
101 KDBMSG(NOTENV, "Cannot find environment variable"),
102 KDBMSG(NOENVVALUE, "Environment variable should have value"),
103 KDBMSG(NOTIMP, "Command not implemented"),
104 KDBMSG(ENVFULL, "Environment full"),
105 KDBMSG(ENVBUFFULL, "Environment buffer full"),
106 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
107#ifdef CONFIG_CPU_XSCALE
108 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
109#else
110 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
111#endif
112 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
113 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
114 KDBMSG(BADMODE, "Invalid IDMODE"),
115 KDBMSG(BADINT, "Illegal numeric value"),
116 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
117 KDBMSG(BADREG, "Invalid register name"),
118 KDBMSG(BADCPUNUM, "Invalid cpu number"),
119 KDBMSG(BADLENGTH, "Invalid length field"),
120 KDBMSG(NOBP, "No Breakpoint exists"),
121 KDBMSG(BADADDR, "Invalid address"),
122};
123#undef KDBMSG
124
125static const int __nkdb_err = sizeof(kdbmsgs) / sizeof(kdbmsg_t);
126
127
128/*
129 * Initial environment. This is all kept static and local to
130 * this file. We don't want to rely on the memory allocation
131 * mechanisms in the kernel, so we use a very limited allocate-only
132 * heap for new and altered environment variables. The entire
133 * environment is limited to a fixed number of entries (add more
134 * to __env[] if required) and a fixed amount of heap (add more to
135 * KDB_ENVBUFSIZE if required).
136 */
137
138static char *__env[] = {
139#if defined(CONFIG_SMP)
140 "PROMPT=[%d]kdb> ",
141 "MOREPROMPT=[%d]more> ",
142#else
143 "PROMPT=kdb> ",
144 "MOREPROMPT=more> ",
145#endif
146 "RADIX=16",
147 "MDCOUNT=8", /* lines of md output */
148 "BTARGS=9", /* 9 possible args in bt */
149 KDB_PLATFORM_ENV,
150 "DTABCOUNT=30",
151 "NOSECT=1",
152 (char *)0,
153 (char *)0,
154 (char *)0,
155 (char *)0,
156 (char *)0,
157 (char *)0,
158 (char *)0,
159 (char *)0,
160 (char *)0,
161 (char *)0,
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175};
176
177static const int __nenv = (sizeof(__env) / sizeof(char *));
178
179struct task_struct *kdb_curr_task(int cpu)
180{
181 struct task_struct *p = curr_task(cpu);
182#ifdef _TIF_MCA_INIT
183 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
184 p = krp->p;
185#endif
186 return p;
187}
188
189/*
190 * kdbgetenv - This function will return the character string value of
191 * an environment variable.
192 * Parameters:
193 * match A character string representing an environment variable.
194 * Returns:
195 * NULL No environment variable matches 'match'
196 * char* Pointer to string value of environment variable.
197 */
198char *kdbgetenv(const char *match)
199{
200 char **ep = __env;
201 int matchlen = strlen(match);
202 int i;
203
204 for (i = 0; i < __nenv; i++) {
205 char *e = *ep++;
206
207 if (!e)
208 continue;
209
210 if ((strncmp(match, e, matchlen) == 0)
211 && ((e[matchlen] == '\0')
212 || (e[matchlen] == '='))) {
213 char *cp = strchr(e, '=');
214 return cp ? ++cp : "";
215 }
216 }
217 return NULL;
218}
219
220/*
221 * kdballocenv - This function is used to allocate bytes for
222 * environment entries.
223 * Parameters:
224 * match A character string representing a numeric value
225 * Outputs:
226 * *value the unsigned long representation of the env variable 'match'
227 * Returns:
228 * Zero on success, a kdb diagnostic on failure.
229 * Remarks:
230 * We use a static environment buffer (envbuffer) to hold the values
231 * of dynamically generated environment variables (see kdb_set). Buffer
232 * space once allocated is never free'd, so over time, the amount of space
233 * (currently 512 bytes) will be exhausted if env variables are changed
234 * frequently.
235 */
236static char *kdballocenv(size_t bytes)
237{
238#define KDB_ENVBUFSIZE 512
239 static char envbuffer[KDB_ENVBUFSIZE];
240 static int envbufsize;
241 char *ep = NULL;
242
243 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
244 ep = &envbuffer[envbufsize];
245 envbufsize += bytes;
246 }
247 return ep;
248}
249
250/*
251 * kdbgetulenv - This function will return the value of an unsigned
252 * long-valued environment variable.
253 * Parameters:
254 * match A character string representing a numeric value
255 * Outputs:
256 * *value the unsigned long represntation of the env variable 'match'
257 * Returns:
258 * Zero on success, a kdb diagnostic on failure.
259 */
260static int kdbgetulenv(const char *match, unsigned long *value)
261{
262 char *ep;
263
264 ep = kdbgetenv(match);
265 if (!ep)
266 return KDB_NOTENV;
267 if (strlen(ep) == 0)
268 return KDB_NOENVVALUE;
269
270 *value = simple_strtoul(ep, NULL, 0);
271
272 return 0;
273}
274
275/*
276 * kdbgetintenv - This function will return the value of an
277 * integer-valued environment variable.
278 * Parameters:
279 * match A character string representing an integer-valued env variable
280 * Outputs:
281 * *value the integer representation of the environment variable 'match'
282 * Returns:
283 * Zero on success, a kdb diagnostic on failure.
284 */
285int kdbgetintenv(const char *match, int *value)
286{
287 unsigned long val;
288 int diag;
289
290 diag = kdbgetulenv(match, &val);
291 if (!diag)
292 *value = (int) val;
293 return diag;
294}
295
296/*
297 * kdbgetularg - This function will convert a numeric string into an
298 * unsigned long value.
299 * Parameters:
300 * arg A character string representing a numeric value
301 * Outputs:
302 * *value the unsigned long represntation of arg.
303 * Returns:
304 * Zero on success, a kdb diagnostic on failure.
305 */
306int kdbgetularg(const char *arg, unsigned long *value)
307{
308 char *endp;
309 unsigned long val;
310
311 val = simple_strtoul(arg, &endp, 0);
312
313 if (endp == arg) {
314 /*
315 * Try base 16, for us folks too lazy to type the
316 * leading 0x...
317 */
318 val = simple_strtoul(arg, &endp, 16);
319 if (endp == arg)
320 return KDB_BADINT;
321 }
322
323 *value = val;
324
325 return 0;
326}
327
328/*
329 * kdb_set - This function implements the 'set' command. Alter an
330 * existing environment variable or create a new one.
331 */
332int kdb_set(int argc, const char **argv)
333{
334 int i;
335 char *ep;
336 size_t varlen, vallen;
337
338 /*
339 * we can be invoked two ways:
340 * set var=value argv[1]="var", argv[2]="value"
341 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
342 * - if the latter, shift 'em down.
343 */
344 if (argc == 3) {
345 argv[2] = argv[3];
346 argc--;
347 }
348
349 if (argc != 2)
350 return KDB_ARGCOUNT;
351
352 /*
353 * Check for internal variables
354 */
355 if (strcmp(argv[1], "KDBDEBUG") == 0) {
356 unsigned int debugflags;
357 char *cp;
358
359 debugflags = simple_strtoul(argv[2], &cp, 0);
360 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
361 kdb_printf("kdb: illegal debug flags '%s'\n",
362 argv[2]);
363 return 0;
364 }
365 kdb_flags = (kdb_flags &
366 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
367 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
368
369 return 0;
370 }
371
372 /*
373 * Tokenizer squashed the '=' sign. argv[1] is variable
374 * name, argv[2] = value.
375 */
376 varlen = strlen(argv[1]);
377 vallen = strlen(argv[2]);
378 ep = kdballocenv(varlen + vallen + 2);
379 if (ep == (char *)0)
380 return KDB_ENVBUFFULL;
381
382 sprintf(ep, "%s=%s", argv[1], argv[2]);
383
384 ep[varlen+vallen+1] = '\0';
385
386 for (i = 0; i < __nenv; i++) {
387 if (__env[i]
388 && ((strncmp(__env[i], argv[1], varlen) == 0)
389 && ((__env[i][varlen] == '\0')
390 || (__env[i][varlen] == '=')))) {
391 __env[i] = ep;
392 return 0;
393 }
394 }
395
396 /*
397 * Wasn't existing variable. Fit into slot.
398 */
399 for (i = 0; i < __nenv-1; i++) {
400 if (__env[i] == (char *)0) {
401 __env[i] = ep;
402 return 0;
403 }
404 }
405
406 return KDB_ENVFULL;
407}
408
409static int kdb_check_regs(void)
410{
411 if (!kdb_current_regs) {
412 kdb_printf("No current kdb registers."
413 " You may need to select another task\n");
414 return KDB_BADREG;
415 }
416 return 0;
417}
418
419/*
420 * kdbgetaddrarg - This function is responsible for parsing an
421 * address-expression and returning the value of the expression,
422 * symbol name, and offset to the caller.
423 *
424 * The argument may consist of a numeric value (decimal or
425 * hexidecimal), a symbol name, a register name (preceeded by the
426 * percent sign), an environment variable with a numeric value
427 * (preceeded by a dollar sign) or a simple arithmetic expression
428 * consisting of a symbol name, +/-, and a numeric constant value
429 * (offset).
430 * Parameters:
431 * argc - count of arguments in argv
432 * argv - argument vector
433 * *nextarg - index to next unparsed argument in argv[]
434 * regs - Register state at time of KDB entry
435 * Outputs:
436 * *value - receives the value of the address-expression
437 * *offset - receives the offset specified, if any
438 * *name - receives the symbol name, if any
439 * *nextarg - index to next unparsed argument in argv[]
440 * Returns:
441 * zero is returned on success, a kdb diagnostic code is
442 * returned on error.
443 */
444int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
445 unsigned long *value, long *offset,
446 char **name)
447{
448 unsigned long addr;
449 unsigned long off = 0;
450 int positive;
451 int diag;
452 int found = 0;
453 char *symname;
454 char symbol = '\0';
455 char *cp;
456 kdb_symtab_t symtab;
457
458 /*
459 * Process arguments which follow the following syntax:
460 *
461 * symbol | numeric-address [+/- numeric-offset]
462 * %register
463 * $environment-variable
464 */
465
466 if (*nextarg > argc)
467 return KDB_ARGCOUNT;
468
469 symname = (char *)argv[*nextarg];
470
471 /*
472 * If there is no whitespace between the symbol
473 * or address and the '+' or '-' symbols, we
474 * remember the character and replace it with a
475 * null so the symbol/value can be properly parsed
476 */
477 cp = strpbrk(symname, "+-");
478 if (cp != NULL) {
479 symbol = *cp;
480 *cp++ = '\0';
481 }
482
483 if (symname[0] == '$') {
484 diag = kdbgetulenv(&symname[1], &addr);
485 if (diag)
486 return diag;
487 } else if (symname[0] == '%') {
488 diag = kdb_check_regs();
489 if (diag)
490 return diag;
491 /* Implement register values with % at a later time as it is
492 * arch optional.
493 */
494 return KDB_NOTIMP;
495 } else {
496 found = kdbgetsymval(symname, &symtab);
497 if (found) {
498 addr = symtab.sym_start;
499 } else {
500 diag = kdbgetularg(argv[*nextarg], &addr);
501 if (diag)
502 return diag;
503 }
504 }
505
506 if (!found)
507 found = kdbnearsym(addr, &symtab);
508
509 (*nextarg)++;
510
511 if (name)
512 *name = symname;
513 if (value)
514 *value = addr;
515 if (offset && name && *name)
516 *offset = addr - symtab.sym_start;
517
518 if ((*nextarg > argc)
519 && (symbol == '\0'))
520 return 0;
521
522 /*
523 * check for +/- and offset
524 */
525
526 if (symbol == '\0') {
527 if ((argv[*nextarg][0] != '+')
528 && (argv[*nextarg][0] != '-')) {
529 /*
530 * Not our argument. Return.
531 */
532 return 0;
533 } else {
534 positive = (argv[*nextarg][0] == '+');
535 (*nextarg)++;
536 }
537 } else
538 positive = (symbol == '+');
539
540 /*
541 * Now there must be an offset!
542 */
543 if ((*nextarg > argc)
544 && (symbol == '\0')) {
545 return KDB_INVADDRFMT;
546 }
547
548 if (!symbol) {
549 cp = (char *)argv[*nextarg];
550 (*nextarg)++;
551 }
552
553 diag = kdbgetularg(cp, &off);
554 if (diag)
555 return diag;
556
557 if (!positive)
558 off = -off;
559
560 if (offset)
561 *offset += off;
562
563 if (value)
564 *value += off;
565
566 return 0;
567}
568
569static void kdb_cmderror(int diag)
570{
571 int i;
572
573 if (diag >= 0) {
574 kdb_printf("no error detected (diagnostic is %d)\n", diag);
575 return;
576 }
577
578 for (i = 0; i < __nkdb_err; i++) {
579 if (kdbmsgs[i].km_diag == diag) {
580 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
581 return;
582 }
583 }
584
585 kdb_printf("Unknown diag %d\n", -diag);
586}
587
588/*
589 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
590 * command which defines one command as a set of other commands,
591 * terminated by endefcmd. kdb_defcmd processes the initial
592 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
593 * the following commands until 'endefcmd'.
594 * Inputs:
595 * argc argument count
596 * argv argument vector
597 * Returns:
598 * zero for success, a kdb diagnostic if error
599 */
600struct defcmd_set {
601 int count;
602 int usable;
603 char *name;
604 char *usage;
605 char *help;
606 char **command;
607};
608static struct defcmd_set *defcmd_set;
609static int defcmd_set_count;
610static int defcmd_in_progress;
611
612/* Forward references */
613static int kdb_exec_defcmd(int argc, const char **argv);
614
615static int kdb_defcmd2(const char *cmdstr, const char *argv0)
616{
617 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
618 char **save_command = s->command;
619 if (strcmp(argv0, "endefcmd") == 0) {
620 defcmd_in_progress = 0;
621 if (!s->count)
622 s->usable = 0;
623 if (s->usable)
624 kdb_register(s->name, kdb_exec_defcmd,
625 s->usage, s->help, 0);
626 return 0;
627 }
628 if (!s->usable)
629 return KDB_NOTIMP;
630 s->command = kmalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
631 if (!s->command) {
632 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
633 cmdstr);
634 s->usable = 0;
635 return KDB_NOTIMP;
636 }
637 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
638 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
639 kfree(save_command);
640 return 0;
641}
642
643static int kdb_defcmd(int argc, const char **argv)
644{
645 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
646 if (defcmd_in_progress) {
647 kdb_printf("kdb: nested defcmd detected, assuming missing "
648 "endefcmd\n");
649 kdb_defcmd2("endefcmd", "endefcmd");
650 }
651 if (argc == 0) {
652 int i;
653 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
654 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
655 s->usage, s->help);
656 for (i = 0; i < s->count; ++i)
657 kdb_printf("%s", s->command[i]);
658 kdb_printf("endefcmd\n");
659 }
660 return 0;
661 }
662 if (argc != 3)
663 return KDB_ARGCOUNT;
664 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
665 GFP_KDB);
666 if (!defcmd_set) {
667 kdb_printf("Could not allocate new defcmd_set entry for %s\n",
668 argv[1]);
669 defcmd_set = save_defcmd_set;
670 return KDB_NOTIMP;
671 }
672 memcpy(defcmd_set, save_defcmd_set,
673 defcmd_set_count * sizeof(*defcmd_set));
674 kfree(save_defcmd_set);
675 s = defcmd_set + defcmd_set_count;
676 memset(s, 0, sizeof(*s));
677 s->usable = 1;
678 s->name = kdb_strdup(argv[1], GFP_KDB);
679 s->usage = kdb_strdup(argv[2], GFP_KDB);
680 s->help = kdb_strdup(argv[3], GFP_KDB);
681 if (s->usage[0] == '"') {
682 strcpy(s->usage, s->usage+1);
683 s->usage[strlen(s->usage)-1] = '\0';
684 }
685 if (s->help[0] == '"') {
686 strcpy(s->help, s->help+1);
687 s->help[strlen(s->help)-1] = '\0';
688 }
689 ++defcmd_set_count;
690 defcmd_in_progress = 1;
691 return 0;
692}
693
694/*
695 * kdb_exec_defcmd - Execute the set of commands associated with this
696 * defcmd name.
697 * Inputs:
698 * argc argument count
699 * argv argument vector
700 * Returns:
701 * zero for success, a kdb diagnostic if error
702 */
703static int kdb_exec_defcmd(int argc, const char **argv)
704{
705 int i, ret;
706 struct defcmd_set *s;
707 if (argc != 0)
708 return KDB_ARGCOUNT;
709 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
710 if (strcmp(s->name, argv[0]) == 0)
711 break;
712 }
713 if (i == defcmd_set_count) {
714 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
715 argv[0]);
716 return KDB_NOTIMP;
717 }
718 for (i = 0; i < s->count; ++i) {
719 /* Recursive use of kdb_parse, do not use argv after
720 * this point */
721 argv = NULL;
722 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
723 ret = kdb_parse(s->command[i]);
724 if (ret)
725 return ret;
726 }
727 return 0;
728}
729
730/* Command history */
731#define KDB_CMD_HISTORY_COUNT 32
732#define CMD_BUFLEN 200 /* kdb_printf: max printline
733 * size == 256 */
734static unsigned int cmd_head, cmd_tail;
735static unsigned int cmdptr;
736static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
737static char cmd_cur[CMD_BUFLEN];
738
739/*
740 * The "str" argument may point to something like | grep xyz
741 */
742static void parse_grep(const char *str)
743{
744 int len;
745 char *cp = (char *)str, *cp2;
746
747 /* sanity check: we should have been called with the \ first */
748 if (*cp != '|')
749 return;
750 cp++;
751 while (isspace(*cp))
752 cp++;
753 if (strncmp(cp, "grep ", 5)) {
754 kdb_printf("invalid 'pipe', see grephelp\n");
755 return;
756 }
757 cp += 5;
758 while (isspace(*cp))
759 cp++;
760 cp2 = strchr(cp, '\n');
761 if (cp2)
762 *cp2 = '\0'; /* remove the trailing newline */
763 len = strlen(cp);
764 if (len == 0) {
765 kdb_printf("invalid 'pipe', see grephelp\n");
766 return;
767 }
768 /* now cp points to a nonzero length search string */
769 if (*cp == '"') {
770 /* allow it be "x y z" by removing the "'s - there must
771 be two of them */
772 cp++;
773 cp2 = strchr(cp, '"');
774 if (!cp2) {
775 kdb_printf("invalid quoted string, see grephelp\n");
776 return;
777 }
778 *cp2 = '\0'; /* end the string where the 2nd " was */
779 }
780 kdb_grep_leading = 0;
781 if (*cp == '^') {
782 kdb_grep_leading = 1;
783 cp++;
784 }
785 len = strlen(cp);
786 kdb_grep_trailing = 0;
787 if (*(cp+len-1) == '$') {
788 kdb_grep_trailing = 1;
789 *(cp+len-1) = '\0';
790 }
791 len = strlen(cp);
792 if (!len)
793 return;
794 if (len >= GREP_LEN) {
795 kdb_printf("search string too long\n");
796 return;
797 }
798 strcpy(kdb_grep_string, cp);
799 kdb_grepping_flag++;
800 return;
801}
802
803/*
804 * kdb_parse - Parse the command line, search the command table for a
805 * matching command and invoke the command function. This
806 * function may be called recursively, if it is, the second call
807 * will overwrite argv and cbuf. It is the caller's
808 * responsibility to save their argv if they recursively call
809 * kdb_parse().
810 * Parameters:
811 * cmdstr The input command line to be parsed.
812 * regs The registers at the time kdb was entered.
813 * Returns:
814 * Zero for success, a kdb diagnostic if failure.
815 * Remarks:
816 * Limited to 20 tokens.
817 *
818 * Real rudimentary tokenization. Basically only whitespace
819 * is considered a token delimeter (but special consideration
820 * is taken of the '=' sign as used by the 'set' command).
821 *
822 * The algorithm used to tokenize the input string relies on
823 * there being at least one whitespace (or otherwise useless)
824 * character between tokens as the character immediately following
825 * the token is altered in-place to a null-byte to terminate the
826 * token string.
827 */
828
829#define MAXARGC 20
830
831int kdb_parse(const char *cmdstr)
832{
833 static char *argv[MAXARGC];
834 static int argc;
835 static char cbuf[CMD_BUFLEN+2];
836 char *cp;
837 char *cpp, quoted;
838 kdbtab_t *tp;
839 int i, escaped, ignore_errors = 0, check_grep;
840
841 /*
842 * First tokenize the command string.
843 */
844 cp = (char *)cmdstr;
845 kdb_grepping_flag = check_grep = 0;
846
847 if (KDB_FLAG(CMD_INTERRUPT)) {
848 /* Previous command was interrupted, newline must not
849 * repeat the command */
850 KDB_FLAG_CLEAR(CMD_INTERRUPT);
851 KDB_STATE_SET(PAGER);
852 argc = 0; /* no repeat */
853 }
854
855 if (*cp != '\n' && *cp != '\0') {
856 argc = 0;
857 cpp = cbuf;
858 while (*cp) {
859 /* skip whitespace */
860 while (isspace(*cp))
861 cp++;
862 if ((*cp == '\0') || (*cp == '\n') ||
863 (*cp == '#' && !defcmd_in_progress))
864 break;
865 /* special case: check for | grep pattern */
866 if (*cp == '|') {
867 check_grep++;
868 break;
869 }
870 if (cpp >= cbuf + CMD_BUFLEN) {
871 kdb_printf("kdb_parse: command buffer "
872 "overflow, command ignored\n%s\n",
873 cmdstr);
874 return KDB_NOTFOUND;
875 }
876 if (argc >= MAXARGC - 1) {
877 kdb_printf("kdb_parse: too many arguments, "
878 "command ignored\n%s\n", cmdstr);
879 return KDB_NOTFOUND;
880 }
881 argv[argc++] = cpp;
882 escaped = 0;
883 quoted = '\0';
884 /* Copy to next unquoted and unescaped
885 * whitespace or '=' */
886 while (*cp && *cp != '\n' &&
887 (escaped || quoted || !isspace(*cp))) {
888 if (cpp >= cbuf + CMD_BUFLEN)
889 break;
890 if (escaped) {
891 escaped = 0;
892 *cpp++ = *cp++;
893 continue;
894 }
895 if (*cp == '\\') {
896 escaped = 1;
897 ++cp;
898 continue;
899 }
900 if (*cp == quoted)
901 quoted = '\0';
902 else if (*cp == '\'' || *cp == '"')
903 quoted = *cp;
904 *cpp = *cp++;
905 if (*cpp == '=' && !quoted)
906 break;
907 ++cpp;
908 }
909 *cpp++ = '\0'; /* Squash a ws or '=' character */
910 }
911 }
912 if (!argc)
913 return 0;
914 if (check_grep)
915 parse_grep(cp);
916 if (defcmd_in_progress) {
917 int result = kdb_defcmd2(cmdstr, argv[0]);
918 if (!defcmd_in_progress) {
919 argc = 0; /* avoid repeat on endefcmd */
920 *(argv[0]) = '\0';
921 }
922 return result;
923 }
924 if (argv[0][0] == '-' && argv[0][1] &&
925 (argv[0][1] < '0' || argv[0][1] > '9')) {
926 ignore_errors = 1;
927 ++argv[0];
928 }
929
930 for_each_kdbcmd(tp, i) {
931 if (tp->cmd_name) {
932 /*
933 * If this command is allowed to be abbreviated,
934 * check to see if this is it.
935 */
936
937 if (tp->cmd_minlen
938 && (strlen(argv[0]) <= tp->cmd_minlen)) {
939 if (strncmp(argv[0],
940 tp->cmd_name,
941 tp->cmd_minlen) == 0) {
942 break;
943 }
944 }
945
946 if (strcmp(argv[0], tp->cmd_name) == 0)
947 break;
948 }
949 }
950
951 /*
952 * If we don't find a command by this name, see if the first
953 * few characters of this match any of the known commands.
954 * e.g., md1c20 should match md.
955 */
956 if (i == kdb_max_commands) {
957 for_each_kdbcmd(tp, i) {
958 if (tp->cmd_name) {
959 if (strncmp(argv[0],
960 tp->cmd_name,
961 strlen(tp->cmd_name)) == 0) {
962 break;
963 }
964 }
965 }
966 }
967
968 if (i < kdb_max_commands) {
969 int result;
970 KDB_STATE_SET(CMD);
971 result = (*tp->cmd_func)(argc-1, (const char **)argv);
972 if (result && ignore_errors && result > KDB_CMD_GO)
973 result = 0;
974 KDB_STATE_CLEAR(CMD);
975 switch (tp->cmd_repeat) {
976 case KDB_REPEAT_NONE:
977 argc = 0;
978 if (argv[0])
979 *(argv[0]) = '\0';
980 break;
981 case KDB_REPEAT_NO_ARGS:
982 argc = 1;
983 if (argv[1])
984 *(argv[1]) = '\0';
985 break;
986 case KDB_REPEAT_WITH_ARGS:
987 break;
988 }
989 return result;
990 }
991
992 /*
993 * If the input with which we were presented does not
994 * map to an existing command, attempt to parse it as an
995 * address argument and display the result. Useful for
996 * obtaining the address of a variable, or the nearest symbol
997 * to an address contained in a register.
998 */
999 {
1000 unsigned long value;
1001 char *name = NULL;
1002 long offset;
1003 int nextarg = 0;
1004
1005 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1006 &value, &offset, &name)) {
1007 return KDB_NOTFOUND;
1008 }
1009
1010 kdb_printf("%s = ", argv[0]);
1011 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1012 kdb_printf("\n");
1013 return 0;
1014 }
1015}
1016
1017
1018static int handle_ctrl_cmd(char *cmd)
1019{
1020#define CTRL_P 16
1021#define CTRL_N 14
1022
1023 /* initial situation */
1024 if (cmd_head == cmd_tail)
1025 return 0;
1026 switch (*cmd) {
1027 case CTRL_P:
1028 if (cmdptr != cmd_tail)
1029 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1030 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1031 return 1;
1032 case CTRL_N:
1033 if (cmdptr != cmd_head)
1034 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1035 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1036 return 1;
1037 }
1038 return 0;
1039}
1040
1041/*
1042 * kdb_reboot - This function implements the 'reboot' command. Reboot
1043 * the system immediately, or loop for ever on failure.
1044 */
1045static int kdb_reboot(int argc, const char **argv)
1046{
1047 emergency_restart();
1048 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1049 while (1)
1050 cpu_relax();
1051 /* NOTREACHED */
1052 return 0;
1053}
1054
1055static void kdb_dumpregs(struct pt_regs *regs)
1056{
1057 int old_lvl = console_loglevel;
1058 console_loglevel = 15;
1059 kdb_trap_printk++;
1060 show_regs(regs);
1061 kdb_trap_printk--;
1062 kdb_printf("\n");
1063 console_loglevel = old_lvl;
1064}
1065
1066void kdb_set_current_task(struct task_struct *p)
1067{
1068 kdb_current_task = p;
1069
1070 if (kdb_task_has_cpu(p)) {
1071 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1072 return;
1073 }
1074 kdb_current_regs = NULL;
1075}
1076
1077/*
1078 * kdb_local - The main code for kdb. This routine is invoked on a
1079 * specific processor, it is not global. The main kdb() routine
1080 * ensures that only one processor at a time is in this routine.
1081 * This code is called with the real reason code on the first
1082 * entry to a kdb session, thereafter it is called with reason
1083 * SWITCH, even if the user goes back to the original cpu.
1084 * Inputs:
1085 * reason The reason KDB was invoked
1086 * error The hardware-defined error code
1087 * regs The exception frame at time of fault/breakpoint.
1088 * db_result Result code from the break or debug point.
1089 * Returns:
1090 * 0 KDB was invoked for an event which it wasn't responsible
1091 * 1 KDB handled the event for which it was invoked.
1092 * KDB_CMD_GO User typed 'go'.
1093 * KDB_CMD_CPU User switched to another cpu.
1094 * KDB_CMD_SS Single step.
1095 * KDB_CMD_SSB Single step until branch.
1096 */
1097static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1098 kdb_dbtrap_t db_result)
1099{
1100 char *cmdbuf;
1101 int diag;
1102 struct task_struct *kdb_current =
1103 kdb_curr_task(raw_smp_processor_id());
1104
1105 KDB_DEBUG_STATE("kdb_local 1", reason);
1106 kdb_go_count = 0;
1107 if (reason == KDB_REASON_DEBUG) {
1108 /* special case below */
1109 } else {
1110 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1111 kdb_current, kdb_current->pid);
1112#if defined(CONFIG_SMP)
1113 kdb_printf("on processor %d ", raw_smp_processor_id());
1114#endif
1115 }
1116
1117 switch (reason) {
1118 case KDB_REASON_DEBUG:
1119 {
1120 /*
1121 * If re-entering kdb after a single step
1122 * command, don't print the message.
1123 */
1124 switch (db_result) {
1125 case KDB_DB_BPT:
1126 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1127 kdb_current, kdb_current->pid);
1128#if defined(CONFIG_SMP)
1129 kdb_printf("on processor %d ", raw_smp_processor_id());
1130#endif
1131 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1132 instruction_pointer(regs));
1133 break;
1134 case KDB_DB_SSB:
1135 /*
1136 * In the midst of ssb command. Just return.
1137 */
1138 KDB_DEBUG_STATE("kdb_local 3", reason);
1139 return KDB_CMD_SSB; /* Continue with SSB command */
1140
1141 break;
1142 case KDB_DB_SS:
1143 break;
1144 case KDB_DB_SSBPT:
1145 KDB_DEBUG_STATE("kdb_local 4", reason);
1146 return 1; /* kdba_db_trap did the work */
1147 default:
1148 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1149 db_result);
1150 break;
1151 }
1152
1153 }
1154 break;
1155 case KDB_REASON_ENTER:
1156 if (KDB_STATE(KEYBOARD))
1157 kdb_printf("due to Keyboard Entry\n");
1158 else
1159 kdb_printf("due to KDB_ENTER()\n");
1160 break;
1161 case KDB_REASON_KEYBOARD:
1162 KDB_STATE_SET(KEYBOARD);
1163 kdb_printf("due to Keyboard Entry\n");
1164 break;
1165 case KDB_REASON_ENTER_SLAVE:
1166 /* drop through, slaves only get released via cpu switch */
1167 case KDB_REASON_SWITCH:
1168 kdb_printf("due to cpu switch\n");
1169 break;
1170 case KDB_REASON_OOPS:
1171 kdb_printf("Oops: %s\n", kdb_diemsg);
1172 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1173 instruction_pointer(regs));
1174 kdb_dumpregs(regs);
1175 break;
1176 case KDB_REASON_NMI:
1177 kdb_printf("due to NonMaskable Interrupt @ "
1178 kdb_machreg_fmt "\n",
1179 instruction_pointer(regs));
1180 kdb_dumpregs(regs);
1181 break;
1182 case KDB_REASON_SSTEP:
1183 case KDB_REASON_BREAK:
1184 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1185 reason == KDB_REASON_BREAK ?
1186 "Breakpoint" : "SS trap", instruction_pointer(regs));
1187 /*
1188 * Determine if this breakpoint is one that we
1189 * are interested in.
1190 */
1191 if (db_result != KDB_DB_BPT) {
1192 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1193 db_result);
1194 KDB_DEBUG_STATE("kdb_local 6", reason);
1195 return 0; /* Not for us, dismiss it */
1196 }
1197 break;
1198 case KDB_REASON_RECURSE:
1199 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1200 instruction_pointer(regs));
1201 break;
1202 default:
1203 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1204 KDB_DEBUG_STATE("kdb_local 8", reason);
1205 return 0; /* Not for us, dismiss it */
1206 }
1207
1208 while (1) {
1209 /*
1210 * Initialize pager context.
1211 */
1212 kdb_nextline = 1;
1213 KDB_STATE_CLEAR(SUPPRESS);
1214
1215 cmdbuf = cmd_cur;
1216 *cmdbuf = '\0';
1217 *(cmd_hist[cmd_head]) = '\0';
1218
1219 if (KDB_FLAG(ONLY_DO_DUMP)) {
1220 /* kdb is off but a catastrophic error requires a dump.
1221 * Take the dump and reboot.
1222 * Turn on logging so the kdb output appears in the log
1223 * buffer in the dump.
1224 */
1225 const char *setargs[] = { "set", "LOGGING", "1" };
1226 kdb_set(2, setargs);
1227 kdb_reboot(0, NULL);
1228 /*NOTREACHED*/
1229 }
1230
1231do_full_getstr:
1232#if defined(CONFIG_SMP)
1233 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1234 raw_smp_processor_id());
1235#else
1236 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1237#endif
1238 if (defcmd_in_progress)
1239 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1240
1241 /*
1242 * Fetch command from keyboard
1243 */
1244 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1245 if (*cmdbuf != '\n') {
1246 if (*cmdbuf < 32) {
1247 if (cmdptr == cmd_head) {
1248 strncpy(cmd_hist[cmd_head], cmd_cur,
1249 CMD_BUFLEN);
1250 *(cmd_hist[cmd_head] +
1251 strlen(cmd_hist[cmd_head])-1) = '\0';
1252 }
1253 if (!handle_ctrl_cmd(cmdbuf))
1254 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1255 cmdbuf = cmd_cur;
1256 goto do_full_getstr;
1257 } else {
1258 strncpy(cmd_hist[cmd_head], cmd_cur,
1259 CMD_BUFLEN);
1260 }
1261
1262 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1263 if (cmd_head == cmd_tail)
1264 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1265 }
1266
1267 cmdptr = cmd_head;
1268 diag = kdb_parse(cmdbuf);
1269 if (diag == KDB_NOTFOUND) {
1270 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1271 diag = 0;
1272 }
1273 if (diag == KDB_CMD_GO
1274 || diag == KDB_CMD_CPU
1275 || diag == KDB_CMD_SS
1276 || diag == KDB_CMD_SSB
1277 || diag == KDB_CMD_KGDB)
1278 break;
1279
1280 if (diag)
1281 kdb_cmderror(diag);
1282 }
1283 KDB_DEBUG_STATE("kdb_local 9", diag);
1284 return diag;
1285}
1286
1287
1288/*
1289 * kdb_print_state - Print the state data for the current processor
1290 * for debugging.
1291 * Inputs:
1292 * text Identifies the debug point
1293 * value Any integer value to be printed, e.g. reason code.
1294 */
1295void kdb_print_state(const char *text, int value)
1296{
1297 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1298 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1299 kdb_state);
1300}
1301
1302/*
1303 * kdb_main_loop - After initial setup and assignment of the
1304 * controlling cpu, all cpus are in this loop. One cpu is in
1305 * control and will issue the kdb prompt, the others will spin
1306 * until 'go' or cpu switch.
1307 *
1308 * To get a consistent view of the kernel stacks for all
1309 * processes, this routine is invoked from the main kdb code via
1310 * an architecture specific routine. kdba_main_loop is
1311 * responsible for making the kernel stacks consistent for all
1312 * processes, there should be no difference between a blocked
1313 * process and a running process as far as kdb is concerned.
1314 * Inputs:
1315 * reason The reason KDB was invoked
1316 * error The hardware-defined error code
1317 * reason2 kdb's current reason code.
1318 * Initially error but can change
1319 * acording to kdb state.
1320 * db_result Result code from break or debug point.
1321 * regs The exception frame at time of fault/breakpoint.
1322 * should always be valid.
1323 * Returns:
1324 * 0 KDB was invoked for an event which it wasn't responsible
1325 * 1 KDB handled the event for which it was invoked.
1326 */
1327int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1328 kdb_dbtrap_t db_result, struct pt_regs *regs)
1329{
1330 int result = 1;
1331 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1332 while (1) {
1333 /*
1334 * All processors except the one that is in control
1335 * will spin here.
1336 */
1337 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1338 while (KDB_STATE(HOLD_CPU)) {
1339 /* state KDB is turned off by kdb_cpu to see if the
1340 * other cpus are still live, each cpu in this loop
1341 * turns it back on.
1342 */
1343 if (!KDB_STATE(KDB))
1344 KDB_STATE_SET(KDB);
1345 }
1346
1347 KDB_STATE_CLEAR(SUPPRESS);
1348 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1349 if (KDB_STATE(LEAVING))
1350 break; /* Another cpu said 'go' */
1351 /* Still using kdb, this processor is in control */
1352 result = kdb_local(reason2, error, regs, db_result);
1353 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1354
1355 if (result == KDB_CMD_CPU)
1356 break;
1357
1358 if (result == KDB_CMD_SS) {
1359 KDB_STATE_SET(DOING_SS);
1360 break;
1361 }
1362
1363 if (result == KDB_CMD_SSB) {
1364 KDB_STATE_SET(DOING_SS);
1365 KDB_STATE_SET(DOING_SSB);
1366 break;
1367 }
1368
1369 if (result == KDB_CMD_KGDB) {
1370 if (!(KDB_STATE(DOING_KGDB) || KDB_STATE(DOING_KGDB2)))
1371 kdb_printf("Entering please attach debugger "
1372 "or use $D#44+ or $3#33\n");
1373 break;
1374 }
1375 if (result && result != 1 && result != KDB_CMD_GO)
1376 kdb_printf("\nUnexpected kdb_local return code %d\n",
1377 result);
1378 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1379 break;
1380 }
1381 if (KDB_STATE(DOING_SS))
1382 KDB_STATE_CLEAR(SSBPT);
1383
1384 return result;
1385}
1386
1387/*
1388 * kdb_mdr - This function implements the guts of the 'mdr', memory
1389 * read command.
1390 * mdr <addr arg>,<byte count>
1391 * Inputs:
1392 * addr Start address
1393 * count Number of bytes
1394 * Returns:
1395 * Always 0. Any errors are detected and printed by kdb_getarea.
1396 */
1397static int kdb_mdr(unsigned long addr, unsigned int count)
1398{
1399 unsigned char c;
1400 while (count--) {
1401 if (kdb_getarea(c, addr))
1402 return 0;
1403 kdb_printf("%02x", c);
1404 addr++;
1405 }
1406 kdb_printf("\n");
1407 return 0;
1408}
1409
1410/*
1411 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1412 * 'md8' 'mdr' and 'mds' commands.
1413 *
1414 * md|mds [<addr arg> [<line count> [<radix>]]]
1415 * mdWcN [<addr arg> [<line count> [<radix>]]]
1416 * where W = is the width (1, 2, 4 or 8) and N is the count.
1417 * for eg., md1c20 reads 20 bytes, 1 at a time.
1418 * mdr <addr arg>,<byte count>
1419 */
1420static void kdb_md_line(const char *fmtstr, unsigned long addr,
1421 int symbolic, int nosect, int bytesperword,
1422 int num, int repeat, int phys)
1423{
1424 /* print just one line of data */
1425 kdb_symtab_t symtab;
1426 char cbuf[32];
1427 char *c = cbuf;
1428 int i;
1429 unsigned long word;
1430
1431 memset(cbuf, '\0', sizeof(cbuf));
1432 if (phys)
1433 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1434 else
1435 kdb_printf(kdb_machreg_fmt0 " ", addr);
1436
1437 for (i = 0; i < num && repeat--; i++) {
1438 if (phys) {
1439 if (kdb_getphysword(&word, addr, bytesperword))
1440 break;
1441 } else if (kdb_getword(&word, addr, bytesperword))
1442 break;
1443 kdb_printf(fmtstr, word);
1444 if (symbolic)
1445 kdbnearsym(word, &symtab);
1446 else
1447 memset(&symtab, 0, sizeof(symtab));
1448 if (symtab.sym_name) {
1449 kdb_symbol_print(word, &symtab, 0);
1450 if (!nosect) {
1451 kdb_printf("\n");
1452 kdb_printf(" %s %s "
1453 kdb_machreg_fmt " "
1454 kdb_machreg_fmt " "
1455 kdb_machreg_fmt, symtab.mod_name,
1456 symtab.sec_name, symtab.sec_start,
1457 symtab.sym_start, symtab.sym_end);
1458 }
1459 addr += bytesperword;
1460 } else {
1461 union {
1462 u64 word;
1463 unsigned char c[8];
1464 } wc;
1465 unsigned char *cp;
1466#ifdef __BIG_ENDIAN
1467 cp = wc.c + 8 - bytesperword;
1468#else
1469 cp = wc.c;
1470#endif
1471 wc.word = word;
1472#define printable_char(c) \
1473 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1474 switch (bytesperword) {
1475 case 8:
1476 *c++ = printable_char(*cp++);
1477 *c++ = printable_char(*cp++);
1478 *c++ = printable_char(*cp++);
1479 *c++ = printable_char(*cp++);
1480 addr += 4;
1481 case 4:
1482 *c++ = printable_char(*cp++);
1483 *c++ = printable_char(*cp++);
1484 addr += 2;
1485 case 2:
1486 *c++ = printable_char(*cp++);
1487 addr++;
1488 case 1:
1489 *c++ = printable_char(*cp++);
1490 addr++;
1491 break;
1492 }
1493#undef printable_char
1494 }
1495 }
1496 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1497 " ", cbuf);
1498}
1499
1500static int kdb_md(int argc, const char **argv)
1501{
1502 static unsigned long last_addr;
1503 static int last_radix, last_bytesperword, last_repeat;
1504 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1505 int nosect = 0;
1506 char fmtchar, fmtstr[64];
1507 unsigned long addr;
1508 unsigned long word;
1509 long offset = 0;
1510 int symbolic = 0;
1511 int valid = 0;
1512 int phys = 0;
1513
1514 kdbgetintenv("MDCOUNT", &mdcount);
1515 kdbgetintenv("RADIX", &radix);
1516 kdbgetintenv("BYTESPERWORD", &bytesperword);
1517
1518 /* Assume 'md <addr>' and start with environment values */
1519 repeat = mdcount * 16 / bytesperword;
1520
1521 if (strcmp(argv[0], "mdr") == 0) {
1522 if (argc != 2)
1523 return KDB_ARGCOUNT;
1524 valid = 1;
1525 } else if (isdigit(argv[0][2])) {
1526 bytesperword = (int)(argv[0][2] - '0');
1527 if (bytesperword == 0) {
1528 bytesperword = last_bytesperword;
1529 if (bytesperword == 0)
1530 bytesperword = 4;
1531 }
1532 last_bytesperword = bytesperword;
1533 repeat = mdcount * 16 / bytesperword;
1534 if (!argv[0][3])
1535 valid = 1;
1536 else if (argv[0][3] == 'c' && argv[0][4]) {
1537 char *p;
1538 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1539 mdcount = ((repeat * bytesperword) + 15) / 16;
1540 valid = !*p;
1541 }
1542 last_repeat = repeat;
1543 } else if (strcmp(argv[0], "md") == 0)
1544 valid = 1;
1545 else if (strcmp(argv[0], "mds") == 0)
1546 valid = 1;
1547 else if (strcmp(argv[0], "mdp") == 0) {
1548 phys = valid = 1;
1549 }
1550 if (!valid)
1551 return KDB_NOTFOUND;
1552
1553 if (argc == 0) {
1554 if (last_addr == 0)
1555 return KDB_ARGCOUNT;
1556 addr = last_addr;
1557 radix = last_radix;
1558 bytesperword = last_bytesperword;
1559 repeat = last_repeat;
1560 mdcount = ((repeat * bytesperword) + 15) / 16;
1561 }
1562
1563 if (argc) {
1564 unsigned long val;
1565 int diag, nextarg = 1;
1566 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1567 &offset, NULL);
1568 if (diag)
1569 return diag;
1570 if (argc > nextarg+2)
1571 return KDB_ARGCOUNT;
1572
1573 if (argc >= nextarg) {
1574 diag = kdbgetularg(argv[nextarg], &val);
1575 if (!diag) {
1576 mdcount = (int) val;
1577 repeat = mdcount * 16 / bytesperword;
1578 }
1579 }
1580 if (argc >= nextarg+1) {
1581 diag = kdbgetularg(argv[nextarg+1], &val);
1582 if (!diag)
1583 radix = (int) val;
1584 }
1585 }
1586
1587 if (strcmp(argv[0], "mdr") == 0)
1588 return kdb_mdr(addr, mdcount);
1589
1590 switch (radix) {
1591 case 10:
1592 fmtchar = 'd';
1593 break;
1594 case 16:
1595 fmtchar = 'x';
1596 break;
1597 case 8:
1598 fmtchar = 'o';
1599 break;
1600 default:
1601 return KDB_BADRADIX;
1602 }
1603
1604 last_radix = radix;
1605
1606 if (bytesperword > KDB_WORD_SIZE)
1607 return KDB_BADWIDTH;
1608
1609 switch (bytesperword) {
1610 case 8:
1611 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1612 break;
1613 case 4:
1614 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1615 break;
1616 case 2:
1617 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1618 break;
1619 case 1:
1620 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1621 break;
1622 default:
1623 return KDB_BADWIDTH;
1624 }
1625
1626 last_repeat = repeat;
1627 last_bytesperword = bytesperword;
1628
1629 if (strcmp(argv[0], "mds") == 0) {
1630 symbolic = 1;
1631 /* Do not save these changes as last_*, they are temporary mds
1632 * overrides.
1633 */
1634 bytesperword = KDB_WORD_SIZE;
1635 repeat = mdcount;
1636 kdbgetintenv("NOSECT", &nosect);
1637 }
1638
1639 /* Round address down modulo BYTESPERWORD */
1640
1641 addr &= ~(bytesperword-1);
1642
1643 while (repeat > 0) {
1644 unsigned long a;
1645 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1646
1647 if (KDB_FLAG(CMD_INTERRUPT))
1648 return 0;
1649 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1650 if (phys) {
1651 if (kdb_getphysword(&word, a, bytesperword)
1652 || word)
1653 break;
1654 } else if (kdb_getword(&word, a, bytesperword) || word)
1655 break;
1656 }
1657 n = min(num, repeat);
1658 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1659 num, repeat, phys);
1660 addr += bytesperword * n;
1661 repeat -= n;
1662 z = (z + num - 1) / num;
1663 if (z > 2) {
1664 int s = num * (z-2);
1665 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1666 " zero suppressed\n",
1667 addr, addr + bytesperword * s - 1);
1668 addr += bytesperword * s;
1669 repeat -= s;
1670 }
1671 }
1672 last_addr = addr;
1673
1674 return 0;
1675}
1676
1677/*
1678 * kdb_mm - This function implements the 'mm' command.
1679 * mm address-expression new-value
1680 * Remarks:
1681 * mm works on machine words, mmW works on bytes.
1682 */
1683static int kdb_mm(int argc, const char **argv)
1684{
1685 int diag;
1686 unsigned long addr;
1687 long offset = 0;
1688 unsigned long contents;
1689 int nextarg;
1690 int width;
1691
1692 if (argv[0][2] && !isdigit(argv[0][2]))
1693 return KDB_NOTFOUND;
1694
1695 if (argc < 2)
1696 return KDB_ARGCOUNT;
1697
1698 nextarg = 1;
1699 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1700 if (diag)
1701 return diag;
1702
1703 if (nextarg > argc)
1704 return KDB_ARGCOUNT;
1705 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1706 if (diag)
1707 return diag;
1708
1709 if (nextarg != argc + 1)
1710 return KDB_ARGCOUNT;
1711
1712 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1713 diag = kdb_putword(addr, contents, width);
1714 if (diag)
1715 return diag;
1716
1717 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1718
1719 return 0;
1720}
1721
1722/*
1723 * kdb_go - This function implements the 'go' command.
1724 * go [address-expression]
1725 */
1726static int kdb_go(int argc, const char **argv)
1727{
1728 unsigned long addr;
1729 int diag;
1730 int nextarg;
1731 long offset;
1732
1733 if (argc == 1) {
1734 if (raw_smp_processor_id() != kdb_initial_cpu) {
1735 kdb_printf("go <address> must be issued from the "
1736 "initial cpu, do cpu %d first\n",
1737 kdb_initial_cpu);
1738 return KDB_ARGCOUNT;
1739 }
1740 nextarg = 1;
1741 diag = kdbgetaddrarg(argc, argv, &nextarg,
1742 &addr, &offset, NULL);
1743 if (diag)
1744 return diag;
1745 } else if (argc) {
1746 return KDB_ARGCOUNT;
1747 }
1748
1749 diag = KDB_CMD_GO;
1750 if (KDB_FLAG(CATASTROPHIC)) {
1751 kdb_printf("Catastrophic error detected\n");
1752 kdb_printf("kdb_continue_catastrophic=%d, ",
1753 kdb_continue_catastrophic);
1754 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1755 kdb_printf("type go a second time if you really want "
1756 "to continue\n");
1757 return 0;
1758 }
1759 if (kdb_continue_catastrophic == 2) {
1760 kdb_printf("forcing reboot\n");
1761 kdb_reboot(0, NULL);
1762 }
1763 kdb_printf("attempting to continue\n");
1764 }
1765 return diag;
1766}
1767
1768/*
1769 * kdb_rd - This function implements the 'rd' command.
1770 */
1771static int kdb_rd(int argc, const char **argv)
1772{
1773 int diag = kdb_check_regs();
1774 if (diag)
1775 return diag;
1776
1777 kdb_dumpregs(kdb_current_regs);
1778 return 0;
1779}
1780
1781/*
1782 * kdb_rm - This function implements the 'rm' (register modify) command.
1783 * rm register-name new-contents
1784 * Remarks:
1785 * Currently doesn't allow modification of control or
1786 * debug registers.
1787 */
1788static int kdb_rm(int argc, const char **argv)
1789{
1790 int diag;
1791 int ind = 0;
1792 unsigned long contents;
1793
1794 if (argc != 2)
1795 return KDB_ARGCOUNT;
1796 /*
1797 * Allow presence or absence of leading '%' symbol.
1798 */
1799 if (argv[1][0] == '%')
1800 ind = 1;
1801
1802 diag = kdbgetularg(argv[2], &contents);
1803 if (diag)
1804 return diag;
1805
1806 diag = kdb_check_regs();
1807 if (diag)
1808 return diag;
1809 kdb_printf("ERROR: Register set currently not implemented\n");
1810 return 0;
1811}
1812
1813#if defined(CONFIG_MAGIC_SYSRQ)
1814/*
1815 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1816 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1817 * sr <magic-sysrq-code>
1818 */
1819static int kdb_sr(int argc, const char **argv)
1820{
1821 if (argc != 1)
1822 return KDB_ARGCOUNT;
1823 sysrq_toggle_support(1);
1824 kdb_trap_printk++;
1825 handle_sysrq(*argv[1], NULL);
1826 kdb_trap_printk--;
1827
1828 return 0;
1829}
1830#endif /* CONFIG_MAGIC_SYSRQ */
1831
1832/*
1833 * kdb_ef - This function implements the 'regs' (display exception
1834 * frame) command. This command takes an address and expects to
1835 * find an exception frame at that address, formats and prints
1836 * it.
1837 * regs address-expression
1838 * Remarks:
1839 * Not done yet.
1840 */
1841static int kdb_ef(int argc, const char **argv)
1842{
1843 int diag;
1844 unsigned long addr;
1845 long offset;
1846 int nextarg;
1847
1848 if (argc != 1)
1849 return KDB_ARGCOUNT;
1850
1851 nextarg = 1;
1852 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1853 if (diag)
1854 return diag;
1855 show_regs((struct pt_regs *)addr);
1856 return 0;
1857}
1858
1859#if defined(CONFIG_MODULES)
1860/* modules using other modules */
1861struct module_use {
1862 struct list_head list;
1863 struct module *module_which_uses;
1864};
1865
1866/*
1867 * kdb_lsmod - This function implements the 'lsmod' command. Lists
1868 * currently loaded kernel modules.
1869 * Mostly taken from userland lsmod.
1870 */
1871static int kdb_lsmod(int argc, const char **argv)
1872{
1873 struct module *mod;
1874
1875 if (argc != 0)
1876 return KDB_ARGCOUNT;
1877
1878 kdb_printf("Module Size modstruct Used by\n");
1879 list_for_each_entry(mod, kdb_modules, list) {
1880
1881 kdb_printf("%-20s%8u 0x%p ", mod->name,
1882 mod->core_size, (void *)mod);
1883#ifdef CONFIG_MODULE_UNLOAD
1884 kdb_printf("%4d ", module_refcount(mod));
1885#endif
1886 if (mod->state == MODULE_STATE_GOING)
1887 kdb_printf(" (Unloading)");
1888 else if (mod->state == MODULE_STATE_COMING)
1889 kdb_printf(" (Loading)");
1890 else
1891 kdb_printf(" (Live)");
1892
1893#ifdef CONFIG_MODULE_UNLOAD
1894 {
1895 struct module_use *use;
1896 kdb_printf(" [ ");
1897 list_for_each_entry(use, &mod->modules_which_use_me,
1898 list)
1899 kdb_printf("%s ", use->module_which_uses->name);
1900 kdb_printf("]\n");
1901 }
1902#endif
1903 }
1904
1905 return 0;
1906}
1907
1908#endif /* CONFIG_MODULES */
1909
1910/*
1911 * kdb_env - This function implements the 'env' command. Display the
1912 * current environment variables.
1913 */
1914
1915static int kdb_env(int argc, const char **argv)
1916{
1917 int i;
1918
1919 for (i = 0; i < __nenv; i++) {
1920 if (__env[i])
1921 kdb_printf("%s\n", __env[i]);
1922 }
1923
1924 if (KDB_DEBUG(MASK))
1925 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
1926
1927 return 0;
1928}
1929
1930#ifdef CONFIG_PRINTK
1931/*
1932 * kdb_dmesg - This function implements the 'dmesg' command to display
1933 * the contents of the syslog buffer.
1934 * dmesg [lines] [adjust]
1935 */
1936static int kdb_dmesg(int argc, const char **argv)
1937{
1938 char *syslog_data[4], *start, *end, c = '\0', *p;
1939 int diag, logging, logsize, lines = 0, adjust = 0, n;
1940
1941 if (argc > 2)
1942 return KDB_ARGCOUNT;
1943 if (argc) {
1944 char *cp;
1945 lines = simple_strtol(argv[1], &cp, 0);
1946 if (*cp)
1947 lines = 0;
1948 if (argc > 1) {
1949 adjust = simple_strtoul(argv[2], &cp, 0);
1950 if (*cp || adjust < 0)
1951 adjust = 0;
1952 }
1953 }
1954
1955 /* disable LOGGING if set */
1956 diag = kdbgetintenv("LOGGING", &logging);
1957 if (!diag && logging) {
1958 const char *setargs[] = { "set", "LOGGING", "0" };
1959 kdb_set(2, setargs);
1960 }
1961
1962 /* syslog_data[0,1] physical start, end+1. syslog_data[2,3]
1963 * logical start, end+1. */
1964 kdb_syslog_data(syslog_data);
1965 if (syslog_data[2] == syslog_data[3])
1966 return 0;
1967 logsize = syslog_data[1] - syslog_data[0];
1968 start = syslog_data[2];
1969 end = syslog_data[3];
1970#define KDB_WRAP(p) (((p - syslog_data[0]) % logsize) + syslog_data[0])
1971 for (n = 0, p = start; p < end; ++p) {
1972 c = *KDB_WRAP(p);
1973 if (c == '\n')
1974 ++n;
1975 }
1976 if (c != '\n')
1977 ++n;
1978 if (lines < 0) {
1979 if (adjust >= n)
1980 kdb_printf("buffer only contains %d lines, nothing "
1981 "printed\n", n);
1982 else if (adjust - lines >= n)
1983 kdb_printf("buffer only contains %d lines, last %d "
1984 "lines printed\n", n, n - adjust);
1985 if (adjust) {
1986 for (; start < end && adjust; ++start) {
1987 if (*KDB_WRAP(start) == '\n')
1988 --adjust;
1989 }
1990 if (start < end)
1991 ++start;
1992 }
1993 for (p = start; p < end && lines; ++p) {
1994 if (*KDB_WRAP(p) == '\n')
1995 ++lines;
1996 }
1997 end = p;
1998 } else if (lines > 0) {
1999 int skip = n - (adjust + lines);
2000 if (adjust >= n) {
2001 kdb_printf("buffer only contains %d lines, "
2002 "nothing printed\n", n);
2003 skip = n;
2004 } else if (skip < 0) {
2005 lines += skip;
2006 skip = 0;
2007 kdb_printf("buffer only contains %d lines, first "
2008 "%d lines printed\n", n, lines);
2009 }
2010 for (; start < end && skip; ++start) {
2011 if (*KDB_WRAP(start) == '\n')
2012 --skip;
2013 }
2014 for (p = start; p < end && lines; ++p) {
2015 if (*KDB_WRAP(p) == '\n')
2016 --lines;
2017 }
2018 end = p;
2019 }
2020 /* Do a line at a time (max 200 chars) to reduce protocol overhead */
2021 c = '\n';
2022 while (start != end) {
2023 char buf[201];
2024 p = buf;
2025 if (KDB_FLAG(CMD_INTERRUPT))
2026 return 0;
2027 while (start < end && (c = *KDB_WRAP(start)) &&
2028 (p - buf) < sizeof(buf)-1) {
2029 ++start;
2030 *p++ = c;
2031 if (c == '\n')
2032 break;
2033 }
2034 *p = '\0';
2035 kdb_printf("%s", buf);
2036 }
2037 if (c != '\n')
2038 kdb_printf("\n");
2039
2040 return 0;
2041}
2042#endif /* CONFIG_PRINTK */
2043/*
2044 * kdb_cpu - This function implements the 'cpu' command.
2045 * cpu [<cpunum>]
2046 * Returns:
2047 * KDB_CMD_CPU for success, a kdb diagnostic if error
2048 */
2049static void kdb_cpu_status(void)
2050{
2051 int i, start_cpu, first_print = 1;
2052 char state, prev_state = '?';
2053
2054 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2055 kdb_printf("Available cpus: ");
2056 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2057 if (!cpu_online(i)) {
2058 state = 'F'; /* cpu is offline */
2059 } else {
2060 state = ' '; /* cpu is responding to kdb */
2061 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2062 state = 'I'; /* idle task */
2063 }
2064 if (state != prev_state) {
2065 if (prev_state != '?') {
2066 if (!first_print)
2067 kdb_printf(", ");
2068 first_print = 0;
2069 kdb_printf("%d", start_cpu);
2070 if (start_cpu < i-1)
2071 kdb_printf("-%d", i-1);
2072 if (prev_state != ' ')
2073 kdb_printf("(%c)", prev_state);
2074 }
2075 prev_state = state;
2076 start_cpu = i;
2077 }
2078 }
2079 /* print the trailing cpus, ignoring them if they are all offline */
2080 if (prev_state != 'F') {
2081 if (!first_print)
2082 kdb_printf(", ");
2083 kdb_printf("%d", start_cpu);
2084 if (start_cpu < i-1)
2085 kdb_printf("-%d", i-1);
2086 if (prev_state != ' ')
2087 kdb_printf("(%c)", prev_state);
2088 }
2089 kdb_printf("\n");
2090}
2091
2092static int kdb_cpu(int argc, const char **argv)
2093{
2094 unsigned long cpunum;
2095 int diag;
2096
2097 if (argc == 0) {
2098 kdb_cpu_status();
2099 return 0;
2100 }
2101
2102 if (argc != 1)
2103 return KDB_ARGCOUNT;
2104
2105 diag = kdbgetularg(argv[1], &cpunum);
2106 if (diag)
2107 return diag;
2108
2109 /*
2110 * Validate cpunum
2111 */
2112 if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2113 return KDB_BADCPUNUM;
2114
2115 dbg_switch_cpu = cpunum;
2116
2117 /*
2118 * Switch to other cpu
2119 */
2120 return KDB_CMD_CPU;
2121}
2122
2123/* The user may not realize that ps/bta with no parameters does not print idle
2124 * or sleeping system daemon processes, so tell them how many were suppressed.
2125 */
2126void kdb_ps_suppressed(void)
2127{
2128 int idle = 0, daemon = 0;
2129 unsigned long mask_I = kdb_task_state_string("I"),
2130 mask_M = kdb_task_state_string("M");
2131 unsigned long cpu;
2132 const struct task_struct *p, *g;
2133 for_each_online_cpu(cpu) {
2134 p = kdb_curr_task(cpu);
2135 if (kdb_task_state(p, mask_I))
2136 ++idle;
2137 }
2138 kdb_do_each_thread(g, p) {
2139 if (kdb_task_state(p, mask_M))
2140 ++daemon;
2141 } kdb_while_each_thread(g, p);
2142 if (idle || daemon) {
2143 if (idle)
2144 kdb_printf("%d idle process%s (state I)%s\n",
2145 idle, idle == 1 ? "" : "es",
2146 daemon ? " and " : "");
2147 if (daemon)
2148 kdb_printf("%d sleeping system daemon (state M) "
2149 "process%s", daemon,
2150 daemon == 1 ? "" : "es");
2151 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2152 }
2153}
2154
2155/*
2156 * kdb_ps - This function implements the 'ps' command which shows a
2157 * list of the active processes.
2158 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2159 */
2160void kdb_ps1(const struct task_struct *p)
2161{
2162 int cpu;
2163 unsigned long tmp;
2164
2165 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2166 return;
2167
2168 cpu = kdb_process_cpu(p);
2169 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2170 (void *)p, p->pid, p->parent->pid,
2171 kdb_task_has_cpu(p), kdb_process_cpu(p),
2172 kdb_task_state_char(p),
2173 (void *)(&p->thread),
2174 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2175 p->comm);
2176 if (kdb_task_has_cpu(p)) {
2177 if (!KDB_TSK(cpu)) {
2178 kdb_printf(" Error: no saved data for this cpu\n");
2179 } else {
2180 if (KDB_TSK(cpu) != p)
2181 kdb_printf(" Error: does not match running "
2182 "process table (0x%p)\n", KDB_TSK(cpu));
2183 }
2184 }
2185}
2186
2187static int kdb_ps(int argc, const char **argv)
2188{
2189 struct task_struct *g, *p;
2190 unsigned long mask, cpu;
2191
2192 if (argc == 0)
2193 kdb_ps_suppressed();
2194 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2195 (int)(2*sizeof(void *))+2, "Task Addr",
2196 (int)(2*sizeof(void *))+2, "Thread");
2197 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2198 /* Run the active tasks first */
2199 for_each_online_cpu(cpu) {
2200 if (KDB_FLAG(CMD_INTERRUPT))
2201 return 0;
2202 p = kdb_curr_task(cpu);
2203 if (kdb_task_state(p, mask))
2204 kdb_ps1(p);
2205 }
2206 kdb_printf("\n");
2207 /* Now the real tasks */
2208 kdb_do_each_thread(g, p) {
2209 if (KDB_FLAG(CMD_INTERRUPT))
2210 return 0;
2211 if (kdb_task_state(p, mask))
2212 kdb_ps1(p);
2213 } kdb_while_each_thread(g, p);
2214
2215 return 0;
2216}
2217
2218/*
2219 * kdb_pid - This function implements the 'pid' command which switches
2220 * the currently active process.
2221 * pid [<pid> | R]
2222 */
2223static int kdb_pid(int argc, const char **argv)
2224{
2225 struct task_struct *p;
2226 unsigned long val;
2227 int diag;
2228
2229 if (argc > 1)
2230 return KDB_ARGCOUNT;
2231
2232 if (argc) {
2233 if (strcmp(argv[1], "R") == 0) {
2234 p = KDB_TSK(kdb_initial_cpu);
2235 } else {
2236 diag = kdbgetularg(argv[1], &val);
2237 if (diag)
2238 return KDB_BADINT;
2239
2240 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2241 if (!p) {
2242 kdb_printf("No task with pid=%d\n", (pid_t)val);
2243 return 0;
2244 }
2245 }
2246 kdb_set_current_task(p);
2247 }
2248 kdb_printf("KDB current process is %s(pid=%d)\n",
2249 kdb_current_task->comm,
2250 kdb_current_task->pid);
2251
2252 return 0;
2253}
2254
2255/*
2256 * kdb_ll - This function implements the 'll' command which follows a
2257 * linked list and executes an arbitrary command for each
2258 * element.
2259 */
2260static int kdb_ll(int argc, const char **argv)
2261{
2262 int diag;
2263 unsigned long addr;
2264 long offset = 0;
2265 unsigned long va;
2266 unsigned long linkoffset;
2267 int nextarg;
2268 const char *command;
2269
2270 if (argc != 3)
2271 return KDB_ARGCOUNT;
2272
2273 nextarg = 1;
2274 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2275 if (diag)
2276 return diag;
2277
2278 diag = kdbgetularg(argv[2], &linkoffset);
2279 if (diag)
2280 return diag;
2281
2282 /*
2283 * Using the starting address as
2284 * the first element in the list, and assuming that
2285 * the list ends with a null pointer.
2286 */
2287
2288 va = addr;
2289 command = kdb_strdup(argv[3], GFP_KDB);
2290 if (!command) {
2291 kdb_printf("%s: cannot duplicate command\n", __func__);
2292 return 0;
2293 }
2294 /* Recursive use of kdb_parse, do not use argv after this point */
2295 argv = NULL;
2296
2297 while (va) {
2298 char buf[80];
2299
2300 sprintf(buf, "%s " kdb_machreg_fmt "\n", command, va);
2301 diag = kdb_parse(buf);
2302 if (diag)
2303 return diag;
2304
2305 addr = va + linkoffset;
2306 if (kdb_getword(&va, addr, sizeof(va)))
2307 return 0;
2308 }
2309 kfree(command);
2310
2311 return 0;
2312}
2313
2314static int kdb_kgdb(int argc, const char **argv)
2315{
2316 return KDB_CMD_KGDB;
2317}
2318
2319/*
2320 * kdb_help - This function implements the 'help' and '?' commands.
2321 */
2322static int kdb_help(int argc, const char **argv)
2323{
2324 kdbtab_t *kt;
2325 int i;
2326
2327 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2328 kdb_printf("-----------------------------"
2329 "-----------------------------\n");
2330 for_each_kdbcmd(kt, i) {
2331 if (kt->cmd_name)
2332 kdb_printf("%-15.15s %-20.20s %s\n", kt->cmd_name,
2333 kt->cmd_usage, kt->cmd_help);
2334 if (KDB_FLAG(CMD_INTERRUPT))
2335 return 0;
2336 }
2337 return 0;
2338}
2339
2340/*
2341 * kdb_kill - This function implements the 'kill' commands.
2342 */
2343static int kdb_kill(int argc, const char **argv)
2344{
2345 long sig, pid;
2346 char *endp;
2347 struct task_struct *p;
2348 struct siginfo info;
2349
2350 if (argc != 2)
2351 return KDB_ARGCOUNT;
2352
2353 sig = simple_strtol(argv[1], &endp, 0);
2354 if (*endp)
2355 return KDB_BADINT;
2356 if (sig >= 0) {
2357 kdb_printf("Invalid signal parameter.<-signal>\n");
2358 return 0;
2359 }
2360 sig = -sig;
2361
2362 pid = simple_strtol(argv[2], &endp, 0);
2363 if (*endp)
2364 return KDB_BADINT;
2365 if (pid <= 0) {
2366 kdb_printf("Process ID must be large than 0.\n");
2367 return 0;
2368 }
2369
2370 /* Find the process. */
2371 p = find_task_by_pid_ns(pid, &init_pid_ns);
2372 if (!p) {
2373 kdb_printf("The specified process isn't found.\n");
2374 return 0;
2375 }
2376 p = p->group_leader;
2377 info.si_signo = sig;
2378 info.si_errno = 0;
2379 info.si_code = SI_USER;
2380 info.si_pid = pid; /* same capabilities as process being signalled */
2381 info.si_uid = 0; /* kdb has root authority */
2382 kdb_send_sig_info(p, &info);
2383 return 0;
2384}
2385
2386struct kdb_tm {
2387 int tm_sec; /* seconds */
2388 int tm_min; /* minutes */
2389 int tm_hour; /* hours */
2390 int tm_mday; /* day of the month */
2391 int tm_mon; /* month */
2392 int tm_year; /* year */
2393};
2394
2395static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2396{
2397 /* This will work from 1970-2099, 2100 is not a leap year */
2398 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2399 31, 30, 31, 30, 31 };
2400 memset(tm, 0, sizeof(*tm));
2401 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2402 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2403 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2404 tm->tm_min = tm->tm_sec / 60 % 60;
2405 tm->tm_hour = tm->tm_sec / 60 / 60;
2406 tm->tm_sec = tm->tm_sec % 60;
2407 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2408 tm->tm_mday %= (4*365+1);
2409 mon_day[1] = 29;
2410 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2411 tm->tm_mday -= mon_day[tm->tm_mon];
2412 if (++tm->tm_mon == 12) {
2413 tm->tm_mon = 0;
2414 ++tm->tm_year;
2415 mon_day[1] = 28;
2416 }
2417 }
2418 ++tm->tm_mday;
2419}
2420
2421/*
2422 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2423 * I cannot call that code directly from kdb, it has an unconditional
2424 * cli()/sti() and calls routines that take locks which can stop the debugger.
2425 */
2426static void kdb_sysinfo(struct sysinfo *val)
2427{
2428 struct timespec uptime;
2429 do_posix_clock_monotonic_gettime(&uptime);
2430 memset(val, 0, sizeof(*val));
2431 val->uptime = uptime.tv_sec;
2432 val->loads[0] = avenrun[0];
2433 val->loads[1] = avenrun[1];
2434 val->loads[2] = avenrun[2];
2435 val->procs = nr_threads-1;
2436 si_meminfo(val);
2437
2438 return;
2439}
2440
2441/*
2442 * kdb_summary - This function implements the 'summary' command.
2443 */
2444static int kdb_summary(int argc, const char **argv)
2445{
2446 struct kdb_tm tm;
2447 struct sysinfo val;
2448
2449 if (argc)
2450 return KDB_ARGCOUNT;
2451
2452 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2453 kdb_printf("release %s\n", init_uts_ns.name.release);
2454 kdb_printf("version %s\n", init_uts_ns.name.version);
2455 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2456 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2457 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2458 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2459
2460 kdb_gmtime(&xtime, &tm);
2461 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2462 "tz_minuteswest %d\n",
2463 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2464 tm.tm_hour, tm.tm_min, tm.tm_sec,
2465 sys_tz.tz_minuteswest);
2466
2467 kdb_sysinfo(&val);
2468 kdb_printf("uptime ");
2469 if (val.uptime > (24*60*60)) {
2470 int days = val.uptime / (24*60*60);
2471 val.uptime %= (24*60*60);
2472 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2473 }
2474 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2475
2476 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2477
2478#define LOAD_INT(x) ((x) >> FSHIFT)
2479#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2480 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2481 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2482 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2483 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2484#undef LOAD_INT
2485#undef LOAD_FRAC
2486 /* Display in kilobytes */
2487#define K(x) ((x) << (PAGE_SHIFT - 10))
2488 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2489 "Buffers: %8lu kB\n",
2490 val.totalram, val.freeram, val.bufferram);
2491 return 0;
2492}
2493
2494/*
2495 * kdb_per_cpu - This function implements the 'per_cpu' command.
2496 */
2497static int kdb_per_cpu(int argc, const char **argv)
2498{
2499 char buf[256], fmtstr[64];
2500 kdb_symtab_t symtab;
2501 cpumask_t suppress = CPU_MASK_NONE;
2502 int cpu, diag;
2503 unsigned long addr, val, bytesperword = 0, whichcpu = ~0UL;
2504
2505 if (argc < 1 || argc > 3)
2506 return KDB_ARGCOUNT;
2507
2508 snprintf(buf, sizeof(buf), "per_cpu__%s", argv[1]);
2509 if (!kdbgetsymval(buf, &symtab)) {
2510 kdb_printf("%s is not a per_cpu variable\n", argv[1]);
2511 return KDB_BADADDR;
2512 }
2513 if (argc >= 2) {
2514 diag = kdbgetularg(argv[2], &bytesperword);
2515 if (diag)
2516 return diag;
2517 }
2518 if (!bytesperword)
2519 bytesperword = KDB_WORD_SIZE;
2520 else if (bytesperword > KDB_WORD_SIZE)
2521 return KDB_BADWIDTH;
2522 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2523 if (argc >= 3) {
2524 diag = kdbgetularg(argv[3], &whichcpu);
2525 if (diag)
2526 return diag;
2527 if (!cpu_online(whichcpu)) {
2528 kdb_printf("cpu %ld is not online\n", whichcpu);
2529 return KDB_BADCPUNUM;
2530 }
2531 }
2532
2533 /* Most architectures use __per_cpu_offset[cpu], some use
2534 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2535 */
2536#ifdef __per_cpu_offset
2537#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2538#else
2539#ifdef CONFIG_SMP
2540#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2541#else
2542#define KDB_PCU(cpu) 0
2543#endif
2544#endif
2545
2546 for_each_online_cpu(cpu) {
2547 if (whichcpu != ~0UL && whichcpu != cpu)
2548 continue;
2549 addr = symtab.sym_start + KDB_PCU(cpu);
2550 diag = kdb_getword(&val, addr, bytesperword);
2551 if (diag) {
2552 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2553 "read, diag=%d\n", cpu, addr, diag);
2554 continue;
2555 }
2556#ifdef CONFIG_SMP
2557 if (!val) {
2558 cpu_set(cpu, suppress);
2559 continue;
2560 }
2561#endif /* CONFIG_SMP */
2562 kdb_printf("%5d ", cpu);
2563 kdb_md_line(fmtstr, addr,
2564 bytesperword == KDB_WORD_SIZE,
2565 1, bytesperword, 1, 1, 0);
2566 }
2567 if (cpus_weight(suppress) == 0)
2568 return 0;
2569 kdb_printf("Zero suppressed cpu(s):");
2570 for (cpu = first_cpu(suppress); cpu < num_possible_cpus();
2571 cpu = next_cpu(cpu, suppress)) {
2572 kdb_printf(" %d", cpu);
2573 if (cpu == num_possible_cpus() - 1 ||
2574 next_cpu(cpu, suppress) != cpu + 1)
2575 continue;
2576 while (cpu < num_possible_cpus() &&
2577 next_cpu(cpu, suppress) == cpu + 1)
2578 ++cpu;
2579 kdb_printf("-%d", cpu);
2580 }
2581 kdb_printf("\n");
2582
2583#undef KDB_PCU
2584
2585 return 0;
2586}
2587
2588/*
2589 * display help for the use of cmd | grep pattern
2590 */
2591static int kdb_grep_help(int argc, const char **argv)
2592{
2593 kdb_printf("Usage of cmd args | grep pattern:\n");
2594 kdb_printf(" Any command's output may be filtered through an ");
2595 kdb_printf("emulated 'pipe'.\n");
2596 kdb_printf(" 'grep' is just a key word.\n");
2597 kdb_printf(" The pattern may include a very limited set of "
2598 "metacharacters:\n");
2599 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2600 kdb_printf(" And if there are spaces in the pattern, you may "
2601 "quote it:\n");
2602 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2603 " or \"^pat tern$\"\n");
2604 return 0;
2605}
2606
2607/*
2608 * kdb_register_repeat - This function is used to register a kernel
2609 * debugger command.
2610 * Inputs:
2611 * cmd Command name
2612 * func Function to execute the command
2613 * usage A simple usage string showing arguments
2614 * help A simple help string describing command
2615 * repeat Does the command auto repeat on enter?
2616 * Returns:
2617 * zero for success, one if a duplicate command.
2618 */
2619#define kdb_command_extend 50 /* arbitrary */
2620int kdb_register_repeat(char *cmd,
2621 kdb_func_t func,
2622 char *usage,
2623 char *help,
2624 short minlen,
2625 kdb_repeat_t repeat)
2626{
2627 int i;
2628 kdbtab_t *kp;
2629
2630 /*
2631 * Brute force method to determine duplicates
2632 */
2633 for_each_kdbcmd(kp, i) {
2634 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2635 kdb_printf("Duplicate kdb command registered: "
2636 "%s, func %p help %s\n", cmd, func, help);
2637 return 1;
2638 }
2639 }
2640
2641 /*
2642 * Insert command into first available location in table
2643 */
2644 for_each_kdbcmd(kp, i) {
2645 if (kp->cmd_name == NULL)
2646 break;
2647 }
2648
2649 if (i >= kdb_max_commands) {
2650 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2651 kdb_command_extend) * sizeof(*new), GFP_KDB);
2652 if (!new) {
2653 kdb_printf("Could not allocate new kdb_command "
2654 "table\n");
2655 return 1;
2656 }
2657 if (kdb_commands) {
2658 memcpy(new, kdb_commands,
2659 kdb_max_commands * sizeof(*new));
2660 kfree(kdb_commands);
2661 }
2662 memset(new + kdb_max_commands, 0,
2663 kdb_command_extend * sizeof(*new));
2664 kdb_commands = new;
2665 kp = kdb_commands + kdb_max_commands;
2666 kdb_max_commands += kdb_command_extend;
2667 }
2668
2669 kp->cmd_name = cmd;
2670 kp->cmd_func = func;
2671 kp->cmd_usage = usage;
2672 kp->cmd_help = help;
2673 kp->cmd_flags = 0;
2674 kp->cmd_minlen = minlen;
2675 kp->cmd_repeat = repeat;
2676
2677 return 0;
2678}
2679
2680/*
2681 * kdb_register - Compatibility register function for commands that do
2682 * not need to specify a repeat state. Equivalent to
2683 * kdb_register_repeat with KDB_REPEAT_NONE.
2684 * Inputs:
2685 * cmd Command name
2686 * func Function to execute the command
2687 * usage A simple usage string showing arguments
2688 * help A simple help string describing command
2689 * Returns:
2690 * zero for success, one if a duplicate command.
2691 */
2692int kdb_register(char *cmd,
2693 kdb_func_t func,
2694 char *usage,
2695 char *help,
2696 short minlen)
2697{
2698 return kdb_register_repeat(cmd, func, usage, help, minlen,
2699 KDB_REPEAT_NONE);
2700}
2701
2702/*
2703 * kdb_unregister - This function is used to unregister a kernel
2704 * debugger command. It is generally called when a module which
2705 * implements kdb commands is unloaded.
2706 * Inputs:
2707 * cmd Command name
2708 * Returns:
2709 * zero for success, one command not registered.
2710 */
2711int kdb_unregister(char *cmd)
2712{
2713 int i;
2714 kdbtab_t *kp;
2715
2716 /*
2717 * find the command.
2718 */
2719 for (i = 0, kp = kdb_commands; i < kdb_max_commands; i++, kp++) {
2720 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2721 kp->cmd_name = NULL;
2722 return 0;
2723 }
2724 }
2725
2726 /* Couldn't find it. */
2727 return 1;
2728}
2729
2730/* Initialize the kdb command table. */
2731static void __init kdb_inittab(void)
2732{
2733 int i;
2734 kdbtab_t *kp;
2735
2736 for_each_kdbcmd(kp, i)
2737 kp->cmd_name = NULL;
2738
2739 kdb_register_repeat("md", kdb_md, "<vaddr>",
2740 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2741 KDB_REPEAT_NO_ARGS);
2742 kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2743 "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2744 kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2745 "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2746 kdb_register_repeat("mds", kdb_md, "<vaddr>",
2747 "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2748 kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2749 "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2750 kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2751 "Continue Execution", 1, KDB_REPEAT_NONE);
2752 kdb_register_repeat("rd", kdb_rd, "",
2753 "Display Registers", 0, KDB_REPEAT_NONE);
2754 kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2755 "Modify Registers", 0, KDB_REPEAT_NONE);
2756 kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2757 "Display exception frame", 0, KDB_REPEAT_NONE);
2758 kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2759 "Stack traceback", 1, KDB_REPEAT_NONE);
2760 kdb_register_repeat("btp", kdb_bt, "<pid>",
2761 "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2762 kdb_register_repeat("bta", kdb_bt, "[DRSTCZEUIMA]",
2763 "Display stack all processes", 0, KDB_REPEAT_NONE);
2764 kdb_register_repeat("btc", kdb_bt, "",
2765 "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2766 kdb_register_repeat("btt", kdb_bt, "<vaddr>",
2767 "Backtrace process given its struct task address", 0,
2768 KDB_REPEAT_NONE);
2769 kdb_register_repeat("ll", kdb_ll, "<first-element> <linkoffset> <cmd>",
2770 "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE);
2771 kdb_register_repeat("env", kdb_env, "",
2772 "Show environment variables", 0, KDB_REPEAT_NONE);
2773 kdb_register_repeat("set", kdb_set, "",
2774 "Set environment variables", 0, KDB_REPEAT_NONE);
2775 kdb_register_repeat("help", kdb_help, "",
2776 "Display Help Message", 1, KDB_REPEAT_NONE);
2777 kdb_register_repeat("?", kdb_help, "",
2778 "Display Help Message", 0, KDB_REPEAT_NONE);
2779 kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2780 "Switch to new cpu", 0, KDB_REPEAT_NONE);
2781 kdb_register_repeat("kgdb", kdb_kgdb, "",
2782 "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2783 kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2784 "Display active task list", 0, KDB_REPEAT_NONE);
2785 kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2786 "Switch to another task", 0, KDB_REPEAT_NONE);
2787 kdb_register_repeat("reboot", kdb_reboot, "",
2788 "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
2789#if defined(CONFIG_MODULES)
2790 kdb_register_repeat("lsmod", kdb_lsmod, "",
2791 "List loaded kernel modules", 0, KDB_REPEAT_NONE);
2792#endif
2793#if defined(CONFIG_MAGIC_SYSRQ)
2794 kdb_register_repeat("sr", kdb_sr, "<key>",
2795 "Magic SysRq key", 0, KDB_REPEAT_NONE);
2796#endif
2797#if defined(CONFIG_PRINTK)
2798 kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2799 "Display syslog buffer", 0, KDB_REPEAT_NONE);
2800#endif
2801 kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2802 "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2803 kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2804 "Send a signal to a process", 0, KDB_REPEAT_NONE);
2805 kdb_register_repeat("summary", kdb_summary, "",
2806 "Summarize the system", 4, KDB_REPEAT_NONE);
2807 kdb_register_repeat("per_cpu", kdb_per_cpu, "",
2808 "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2809 kdb_register_repeat("grephelp", kdb_grep_help, "",
2810 "Display help on | grep", 0, KDB_REPEAT_NONE);
2811}
2812
2813/* Execute any commands defined in kdb_cmds. */
2814static void __init kdb_cmd_init(void)
2815{
2816 int i, diag;
2817 for (i = 0; kdb_cmds[i]; ++i) {
2818 diag = kdb_parse(kdb_cmds[i]);
2819 if (diag)
2820 kdb_printf("kdb command %s failed, kdb diag %d\n",
2821 kdb_cmds[i], diag);
2822 }
2823 if (defcmd_in_progress) {
2824 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2825 kdb_parse("endefcmd");
2826 }
2827}
2828
2829/* Intialize kdb_printf, breakpoint tables and kdb state */
2830void __init kdb_init(int lvl)
2831{
2832 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2833 int i;
2834
2835 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2836 return;
2837 for (i = kdb_init_lvl; i < lvl; i++) {
2838 switch (i) {
2839 case KDB_NOT_INITIALIZED:
2840 kdb_inittab(); /* Initialize Command Table */
2841 kdb_initbptab(); /* Initialize Breakpoints */
2842 break;
2843 case KDB_INIT_EARLY:
2844 kdb_cmd_init(); /* Build kdb_cmds tables */
2845 break;
2846 }
2847 }
2848 kdb_init_lvl = lvl;
2849}