aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/cpuset.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/cpuset.c')
-rw-r--r--kernel/cpuset.c466
1 files changed, 302 insertions, 164 deletions
diff --git a/kernel/cpuset.c b/kernel/cpuset.c
index 28176d083f7b..5a737ed9dac7 100644
--- a/kernel/cpuset.c
+++ b/kernel/cpuset.c
@@ -32,6 +32,7 @@
32#include <linux/kernel.h> 32#include <linux/kernel.h>
33#include <linux/kmod.h> 33#include <linux/kmod.h>
34#include <linux/list.h> 34#include <linux/list.h>
35#include <linux/mempolicy.h>
35#include <linux/mm.h> 36#include <linux/mm.h>
36#include <linux/module.h> 37#include <linux/module.h>
37#include <linux/mount.h> 38#include <linux/mount.h>
@@ -60,6 +61,9 @@ struct cpuset {
60 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */ 61 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
61 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */ 62 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
62 63
64 /*
65 * Count is atomic so can incr (fork) or decr (exit) without a lock.
66 */
63 atomic_t count; /* count tasks using this cpuset */ 67 atomic_t count; /* count tasks using this cpuset */
64 68
65 /* 69 /*
@@ -142,80 +146,91 @@ static struct vfsmount *cpuset_mount;
142static struct super_block *cpuset_sb = NULL; 146static struct super_block *cpuset_sb = NULL;
143 147
144/* 148/*
145 * cpuset_sem should be held by anyone who is depending on the children 149 * We have two global cpuset semaphores below. They can nest.
146 * or sibling lists of any cpuset, or performing non-atomic operations 150 * It is ok to first take manage_sem, then nest callback_sem. We also
147 * on the flags or *_allowed values of a cpuset, such as raising the 151 * require taking task_lock() when dereferencing a tasks cpuset pointer.
148 * CS_REMOVED flag bit iff it is not already raised, or reading and 152 * See "The task_lock() exception", at the end of this comment.
149 * conditionally modifying the *_allowed values. One kernel global 153 *
150 * cpuset semaphore should be sufficient - these things don't change 154 * A task must hold both semaphores to modify cpusets. If a task
151 * that much. 155 * holds manage_sem, then it blocks others wanting that semaphore,
152 * 156 * ensuring that it is the only task able to also acquire callback_sem
153 * The code that modifies cpusets holds cpuset_sem across the entire 157 * and be able to modify cpusets. It can perform various checks on
154 * operation, from cpuset_common_file_write() down, single threading 158 * the cpuset structure first, knowing nothing will change. It can
155 * all cpuset modifications (except for counter manipulations from 159 * also allocate memory while just holding manage_sem. While it is
156 * fork and exit) across the system. This presumes that cpuset 160 * performing these checks, various callback routines can briefly
157 * modifications are rare - better kept simple and safe, even if slow. 161 * acquire callback_sem to query cpusets. Once it is ready to make
158 * 162 * the changes, it takes callback_sem, blocking everyone else.
159 * The code that reads cpusets, such as in cpuset_common_file_read() 163 *
160 * and below, only holds cpuset_sem across small pieces of code, such 164 * Calls to the kernel memory allocator can not be made while holding
161 * as when reading out possibly multi-word cpumasks and nodemasks, as 165 * callback_sem, as that would risk double tripping on callback_sem
162 * the risks are less, and the desire for performance a little greater. 166 * from one of the callbacks into the cpuset code from within
163 * The proc_cpuset_show() routine needs to hold cpuset_sem to insure 167 * __alloc_pages().
164 * that no cs->dentry is NULL, as it walks up the cpuset tree to root. 168 *
165 * 169 * If a task is only holding callback_sem, then it has read-only
166 * The hooks from fork and exit, cpuset_fork() and cpuset_exit(), don't 170 * access to cpusets.
167 * (usually) grab cpuset_sem. These are the two most performance 171 *
168 * critical pieces of code here. The exception occurs on exit(), 172 * The task_struct fields mems_allowed and mems_generation may only
169 * when a task in a notify_on_release cpuset exits. Then cpuset_sem 173 * be accessed in the context of that task, so require no locks.
174 *
175 * Any task can increment and decrement the count field without lock.
176 * So in general, code holding manage_sem or callback_sem can't rely
177 * on the count field not changing. However, if the count goes to
178 * zero, then only attach_task(), which holds both semaphores, can
179 * increment it again. Because a count of zero means that no tasks
180 * are currently attached, therefore there is no way a task attached
181 * to that cpuset can fork (the other way to increment the count).
182 * So code holding manage_sem or callback_sem can safely assume that
183 * if the count is zero, it will stay zero. Similarly, if a task
184 * holds manage_sem or callback_sem on a cpuset with zero count, it
185 * knows that the cpuset won't be removed, as cpuset_rmdir() needs
186 * both of those semaphores.
187 *
188 * A possible optimization to improve parallelism would be to make
189 * callback_sem a R/W semaphore (rwsem), allowing the callback routines
190 * to proceed in parallel, with read access, until the holder of
191 * manage_sem needed to take this rwsem for exclusive write access
192 * and modify some cpusets.
193 *
194 * The cpuset_common_file_write handler for operations that modify
195 * the cpuset hierarchy holds manage_sem across the entire operation,
196 * single threading all such cpuset modifications across the system.
197 *
198 * The cpuset_common_file_read() handlers only hold callback_sem across
199 * small pieces of code, such as when reading out possibly multi-word
200 * cpumasks and nodemasks.
201 *
202 * The fork and exit callbacks cpuset_fork() and cpuset_exit(), don't
203 * (usually) take either semaphore. These are the two most performance
204 * critical pieces of code here. The exception occurs on cpuset_exit(),
205 * when a task in a notify_on_release cpuset exits. Then manage_sem
170 * is taken, and if the cpuset count is zero, a usermode call made 206 * is taken, and if the cpuset count is zero, a usermode call made
171 * to /sbin/cpuset_release_agent with the name of the cpuset (path 207 * to /sbin/cpuset_release_agent with the name of the cpuset (path
172 * relative to the root of cpuset file system) as the argument. 208 * relative to the root of cpuset file system) as the argument.
173 * 209 *
174 * A cpuset can only be deleted if both its 'count' of using tasks is 210 * A cpuset can only be deleted if both its 'count' of using tasks
175 * zero, and its list of 'children' cpusets is empty. Since all tasks 211 * is zero, and its list of 'children' cpusets is empty. Since all
176 * in the system use _some_ cpuset, and since there is always at least 212 * tasks in the system use _some_ cpuset, and since there is always at
177 * one task in the system (init, pid == 1), therefore, top_cpuset 213 * least one task in the system (init, pid == 1), therefore, top_cpuset
178 * always has either children cpusets and/or using tasks. So no need 214 * always has either children cpusets and/or using tasks. So we don't
179 * for any special hack to ensure that top_cpuset cannot be deleted. 215 * need a special hack to ensure that top_cpuset cannot be deleted.
216 *
217 * The above "Tale of Two Semaphores" would be complete, but for:
218 *
219 * The task_lock() exception
220 *
221 * The need for this exception arises from the action of attach_task(),
222 * which overwrites one tasks cpuset pointer with another. It does
223 * so using both semaphores, however there are several performance
224 * critical places that need to reference task->cpuset without the
225 * expense of grabbing a system global semaphore. Therefore except as
226 * noted below, when dereferencing or, as in attach_task(), modifying
227 * a tasks cpuset pointer we use task_lock(), which acts on a spinlock
228 * (task->alloc_lock) already in the task_struct routinely used for
229 * such matters.
180 */ 230 */
181 231
182static DECLARE_MUTEX(cpuset_sem); 232static DECLARE_MUTEX(manage_sem);
183static struct task_struct *cpuset_sem_owner; 233static DECLARE_MUTEX(callback_sem);
184static int cpuset_sem_depth;
185
186/*
187 * The global cpuset semaphore cpuset_sem can be needed by the
188 * memory allocator to update a tasks mems_allowed (see the calls
189 * to cpuset_update_current_mems_allowed()) or to walk up the
190 * cpuset hierarchy to find a mem_exclusive cpuset see the calls
191 * to cpuset_excl_nodes_overlap()).
192 *
193 * But if the memory allocation is being done by cpuset.c code, it
194 * usually already holds cpuset_sem. Double tripping on a kernel
195 * semaphore deadlocks the current task, and any other task that
196 * subsequently tries to obtain the lock.
197 *
198 * Run all up's and down's on cpuset_sem through the following
199 * wrappers, which will detect this nested locking, and avoid
200 * deadlocking.
201 */
202
203static inline void cpuset_down(struct semaphore *psem)
204{
205 if (cpuset_sem_owner != current) {
206 down(psem);
207 cpuset_sem_owner = current;
208 }
209 cpuset_sem_depth++;
210}
211
212static inline void cpuset_up(struct semaphore *psem)
213{
214 if (--cpuset_sem_depth == 0) {
215 cpuset_sem_owner = NULL;
216 up(psem);
217 }
218}
219 234
220/* 235/*
221 * A couple of forward declarations required, due to cyclic reference loop: 236 * A couple of forward declarations required, due to cyclic reference loop:
@@ -390,7 +405,7 @@ static inline struct cftype *__d_cft(struct dentry *dentry)
390} 405}
391 406
392/* 407/*
393 * Call with cpuset_sem held. Writes path of cpuset into buf. 408 * Call with manage_sem held. Writes path of cpuset into buf.
394 * Returns 0 on success, -errno on error. 409 * Returns 0 on success, -errno on error.
395 */ 410 */
396 411
@@ -442,10 +457,11 @@ static int cpuset_path(const struct cpuset *cs, char *buf, int buflen)
442 * status of the /sbin/cpuset_release_agent task, so no sense holding 457 * status of the /sbin/cpuset_release_agent task, so no sense holding
443 * our caller up for that. 458 * our caller up for that.
444 * 459 *
445 * The simple act of forking that task might require more memory, 460 * When we had only one cpuset semaphore, we had to call this
446 * which might need cpuset_sem. So this routine must be called while 461 * without holding it, to avoid deadlock when call_usermodehelper()
447 * cpuset_sem is not held, to avoid a possible deadlock. See also 462 * allocated memory. With two locks, we could now call this while
448 * comments for check_for_release(), below. 463 * holding manage_sem, but we still don't, so as to minimize
464 * the time manage_sem is held.
449 */ 465 */
450 466
451static void cpuset_release_agent(const char *pathbuf) 467static void cpuset_release_agent(const char *pathbuf)
@@ -477,15 +493,15 @@ static void cpuset_release_agent(const char *pathbuf)
477 * cs is notify_on_release() and now both the user count is zero and 493 * cs is notify_on_release() and now both the user count is zero and
478 * the list of children is empty, prepare cpuset path in a kmalloc'd 494 * the list of children is empty, prepare cpuset path in a kmalloc'd
479 * buffer, to be returned via ppathbuf, so that the caller can invoke 495 * buffer, to be returned via ppathbuf, so that the caller can invoke
480 * cpuset_release_agent() with it later on, once cpuset_sem is dropped. 496 * cpuset_release_agent() with it later on, once manage_sem is dropped.
481 * Call here with cpuset_sem held. 497 * Call here with manage_sem held.
482 * 498 *
483 * This check_for_release() routine is responsible for kmalloc'ing 499 * This check_for_release() routine is responsible for kmalloc'ing
484 * pathbuf. The above cpuset_release_agent() is responsible for 500 * pathbuf. The above cpuset_release_agent() is responsible for
485 * kfree'ing pathbuf. The caller of these routines is responsible 501 * kfree'ing pathbuf. The caller of these routines is responsible
486 * for providing a pathbuf pointer, initialized to NULL, then 502 * for providing a pathbuf pointer, initialized to NULL, then
487 * calling check_for_release() with cpuset_sem held and the address 503 * calling check_for_release() with manage_sem held and the address
488 * of the pathbuf pointer, then dropping cpuset_sem, then calling 504 * of the pathbuf pointer, then dropping manage_sem, then calling
489 * cpuset_release_agent() with pathbuf, as set by check_for_release(). 505 * cpuset_release_agent() with pathbuf, as set by check_for_release().
490 */ 506 */
491 507
@@ -516,7 +532,7 @@ static void check_for_release(struct cpuset *cs, char **ppathbuf)
516 * One way or another, we guarantee to return some non-empty subset 532 * One way or another, we guarantee to return some non-empty subset
517 * of cpu_online_map. 533 * of cpu_online_map.
518 * 534 *
519 * Call with cpuset_sem held. 535 * Call with callback_sem held.
520 */ 536 */
521 537
522static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask) 538static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
@@ -540,7 +556,7 @@ static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
540 * One way or another, we guarantee to return some non-empty subset 556 * One way or another, we guarantee to return some non-empty subset
541 * of node_online_map. 557 * of node_online_map.
542 * 558 *
543 * Call with cpuset_sem held. 559 * Call with callback_sem held.
544 */ 560 */
545 561
546static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask) 562static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
@@ -555,22 +571,47 @@ static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
555} 571}
556 572
557/* 573/*
558 * Refresh current tasks mems_allowed and mems_generation from 574 * Refresh current tasks mems_allowed and mems_generation from current
559 * current tasks cpuset. Call with cpuset_sem held. 575 * tasks cpuset.
560 * 576 *
561 * This routine is needed to update the per-task mems_allowed 577 * Call without callback_sem or task_lock() held. May be called with
562 * data, within the tasks context, when it is trying to allocate 578 * or without manage_sem held. Will acquire task_lock() and might
563 * memory (in various mm/mempolicy.c routines) and notices 579 * acquire callback_sem during call.
564 * that some other task has been modifying its cpuset. 580 *
581 * The task_lock() is required to dereference current->cpuset safely.
582 * Without it, we could pick up the pointer value of current->cpuset
583 * in one instruction, and then attach_task could give us a different
584 * cpuset, and then the cpuset we had could be removed and freed,
585 * and then on our next instruction, we could dereference a no longer
586 * valid cpuset pointer to get its mems_generation field.
587 *
588 * This routine is needed to update the per-task mems_allowed data,
589 * within the tasks context, when it is trying to allocate memory
590 * (in various mm/mempolicy.c routines) and notices that some other
591 * task has been modifying its cpuset.
565 */ 592 */
566 593
567static void refresh_mems(void) 594static void refresh_mems(void)
568{ 595{
569 struct cpuset *cs = current->cpuset; 596 int my_cpusets_mem_gen;
597
598 task_lock(current);
599 my_cpusets_mem_gen = current->cpuset->mems_generation;
600 task_unlock(current);
570 601
571 if (current->cpuset_mems_generation != cs->mems_generation) { 602 if (current->cpuset_mems_generation != my_cpusets_mem_gen) {
603 struct cpuset *cs;
604 nodemask_t oldmem = current->mems_allowed;
605
606 down(&callback_sem);
607 task_lock(current);
608 cs = current->cpuset;
572 guarantee_online_mems(cs, &current->mems_allowed); 609 guarantee_online_mems(cs, &current->mems_allowed);
573 current->cpuset_mems_generation = cs->mems_generation; 610 current->cpuset_mems_generation = cs->mems_generation;
611 task_unlock(current);
612 up(&callback_sem);
613 if (!nodes_equal(oldmem, current->mems_allowed))
614 numa_policy_rebind(&oldmem, &current->mems_allowed);
574 } 615 }
575} 616}
576 617
@@ -579,7 +620,7 @@ static void refresh_mems(void)
579 * 620 *
580 * One cpuset is a subset of another if all its allowed CPUs and 621 * One cpuset is a subset of another if all its allowed CPUs and
581 * Memory Nodes are a subset of the other, and its exclusive flags 622 * Memory Nodes are a subset of the other, and its exclusive flags
582 * are only set if the other's are set. 623 * are only set if the other's are set. Call holding manage_sem.
583 */ 624 */
584 625
585static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) 626static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
@@ -597,7 +638,7 @@ static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
597 * If we replaced the flag and mask values of the current cpuset 638 * If we replaced the flag and mask values of the current cpuset
598 * (cur) with those values in the trial cpuset (trial), would 639 * (cur) with those values in the trial cpuset (trial), would
599 * our various subset and exclusive rules still be valid? Presumes 640 * our various subset and exclusive rules still be valid? Presumes
600 * cpuset_sem held. 641 * manage_sem held.
601 * 642 *
602 * 'cur' is the address of an actual, in-use cpuset. Operations 643 * 'cur' is the address of an actual, in-use cpuset. Operations
603 * such as list traversal that depend on the actual address of the 644 * such as list traversal that depend on the actual address of the
@@ -651,7 +692,7 @@ static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
651 * exclusive child cpusets 692 * exclusive child cpusets
652 * Build these two partitions by calling partition_sched_domains 693 * Build these two partitions by calling partition_sched_domains
653 * 694 *
654 * Call with cpuset_sem held. May nest a call to the 695 * Call with manage_sem held. May nest a call to the
655 * lock_cpu_hotplug()/unlock_cpu_hotplug() pair. 696 * lock_cpu_hotplug()/unlock_cpu_hotplug() pair.
656 */ 697 */
657 698
@@ -696,6 +737,10 @@ static void update_cpu_domains(struct cpuset *cur)
696 unlock_cpu_hotplug(); 737 unlock_cpu_hotplug();
697} 738}
698 739
740/*
741 * Call with manage_sem held. May take callback_sem during call.
742 */
743
699static int update_cpumask(struct cpuset *cs, char *buf) 744static int update_cpumask(struct cpuset *cs, char *buf)
700{ 745{
701 struct cpuset trialcs; 746 struct cpuset trialcs;
@@ -712,12 +757,18 @@ static int update_cpumask(struct cpuset *cs, char *buf)
712 if (retval < 0) 757 if (retval < 0)
713 return retval; 758 return retval;
714 cpus_unchanged = cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed); 759 cpus_unchanged = cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed);
760 down(&callback_sem);
715 cs->cpus_allowed = trialcs.cpus_allowed; 761 cs->cpus_allowed = trialcs.cpus_allowed;
762 up(&callback_sem);
716 if (is_cpu_exclusive(cs) && !cpus_unchanged) 763 if (is_cpu_exclusive(cs) && !cpus_unchanged)
717 update_cpu_domains(cs); 764 update_cpu_domains(cs);
718 return 0; 765 return 0;
719} 766}
720 767
768/*
769 * Call with manage_sem held. May take callback_sem during call.
770 */
771
721static int update_nodemask(struct cpuset *cs, char *buf) 772static int update_nodemask(struct cpuset *cs, char *buf)
722{ 773{
723 struct cpuset trialcs; 774 struct cpuset trialcs;
@@ -732,9 +783,11 @@ static int update_nodemask(struct cpuset *cs, char *buf)
732 return -ENOSPC; 783 return -ENOSPC;
733 retval = validate_change(cs, &trialcs); 784 retval = validate_change(cs, &trialcs);
734 if (retval == 0) { 785 if (retval == 0) {
786 down(&callback_sem);
735 cs->mems_allowed = trialcs.mems_allowed; 787 cs->mems_allowed = trialcs.mems_allowed;
736 atomic_inc(&cpuset_mems_generation); 788 atomic_inc(&cpuset_mems_generation);
737 cs->mems_generation = atomic_read(&cpuset_mems_generation); 789 cs->mems_generation = atomic_read(&cpuset_mems_generation);
790 up(&callback_sem);
738 } 791 }
739 return retval; 792 return retval;
740} 793}
@@ -745,6 +798,8 @@ static int update_nodemask(struct cpuset *cs, char *buf)
745 * CS_NOTIFY_ON_RELEASE) 798 * CS_NOTIFY_ON_RELEASE)
746 * cs: the cpuset to update 799 * cs: the cpuset to update
747 * buf: the buffer where we read the 0 or 1 800 * buf: the buffer where we read the 0 or 1
801 *
802 * Call with manage_sem held.
748 */ 803 */
749 804
750static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf) 805static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
@@ -766,16 +821,27 @@ static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
766 return err; 821 return err;
767 cpu_exclusive_changed = 822 cpu_exclusive_changed =
768 (is_cpu_exclusive(cs) != is_cpu_exclusive(&trialcs)); 823 (is_cpu_exclusive(cs) != is_cpu_exclusive(&trialcs));
824 down(&callback_sem);
769 if (turning_on) 825 if (turning_on)
770 set_bit(bit, &cs->flags); 826 set_bit(bit, &cs->flags);
771 else 827 else
772 clear_bit(bit, &cs->flags); 828 clear_bit(bit, &cs->flags);
829 up(&callback_sem);
773 830
774 if (cpu_exclusive_changed) 831 if (cpu_exclusive_changed)
775 update_cpu_domains(cs); 832 update_cpu_domains(cs);
776 return 0; 833 return 0;
777} 834}
778 835
836/*
837 * Attack task specified by pid in 'pidbuf' to cpuset 'cs', possibly
838 * writing the path of the old cpuset in 'ppathbuf' if it needs to be
839 * notified on release.
840 *
841 * Call holding manage_sem. May take callback_sem and task_lock of
842 * the task 'pid' during call.
843 */
844
779static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf) 845static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
780{ 846{
781 pid_t pid; 847 pid_t pid;
@@ -792,7 +858,7 @@ static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
792 read_lock(&tasklist_lock); 858 read_lock(&tasklist_lock);
793 859
794 tsk = find_task_by_pid(pid); 860 tsk = find_task_by_pid(pid);
795 if (!tsk) { 861 if (!tsk || tsk->flags & PF_EXITING) {
796 read_unlock(&tasklist_lock); 862 read_unlock(&tasklist_lock);
797 return -ESRCH; 863 return -ESRCH;
798 } 864 }
@@ -810,10 +876,13 @@ static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
810 get_task_struct(tsk); 876 get_task_struct(tsk);
811 } 877 }
812 878
879 down(&callback_sem);
880
813 task_lock(tsk); 881 task_lock(tsk);
814 oldcs = tsk->cpuset; 882 oldcs = tsk->cpuset;
815 if (!oldcs) { 883 if (!oldcs) {
816 task_unlock(tsk); 884 task_unlock(tsk);
885 up(&callback_sem);
817 put_task_struct(tsk); 886 put_task_struct(tsk);
818 return -ESRCH; 887 return -ESRCH;
819 } 888 }
@@ -824,6 +893,7 @@ static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
824 guarantee_online_cpus(cs, &cpus); 893 guarantee_online_cpus(cs, &cpus);
825 set_cpus_allowed(tsk, cpus); 894 set_cpus_allowed(tsk, cpus);
826 895
896 up(&callback_sem);
827 put_task_struct(tsk); 897 put_task_struct(tsk);
828 if (atomic_dec_and_test(&oldcs->count)) 898 if (atomic_dec_and_test(&oldcs->count))
829 check_for_release(oldcs, ppathbuf); 899 check_for_release(oldcs, ppathbuf);
@@ -867,7 +937,7 @@ static ssize_t cpuset_common_file_write(struct file *file, const char __user *us
867 } 937 }
868 buffer[nbytes] = 0; /* nul-terminate */ 938 buffer[nbytes] = 0; /* nul-terminate */
869 939
870 cpuset_down(&cpuset_sem); 940 down(&manage_sem);
871 941
872 if (is_removed(cs)) { 942 if (is_removed(cs)) {
873 retval = -ENODEV; 943 retval = -ENODEV;
@@ -901,7 +971,7 @@ static ssize_t cpuset_common_file_write(struct file *file, const char __user *us
901 if (retval == 0) 971 if (retval == 0)
902 retval = nbytes; 972 retval = nbytes;
903out2: 973out2:
904 cpuset_up(&cpuset_sem); 974 up(&manage_sem);
905 cpuset_release_agent(pathbuf); 975 cpuset_release_agent(pathbuf);
906out1: 976out1:
907 kfree(buffer); 977 kfree(buffer);
@@ -941,9 +1011,9 @@ static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
941{ 1011{
942 cpumask_t mask; 1012 cpumask_t mask;
943 1013
944 cpuset_down(&cpuset_sem); 1014 down(&callback_sem);
945 mask = cs->cpus_allowed; 1015 mask = cs->cpus_allowed;
946 cpuset_up(&cpuset_sem); 1016 up(&callback_sem);
947 1017
948 return cpulist_scnprintf(page, PAGE_SIZE, mask); 1018 return cpulist_scnprintf(page, PAGE_SIZE, mask);
949} 1019}
@@ -952,9 +1022,9 @@ static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
952{ 1022{
953 nodemask_t mask; 1023 nodemask_t mask;
954 1024
955 cpuset_down(&cpuset_sem); 1025 down(&callback_sem);
956 mask = cs->mems_allowed; 1026 mask = cs->mems_allowed;
957 cpuset_up(&cpuset_sem); 1027 up(&callback_sem);
958 1028
959 return nodelist_scnprintf(page, PAGE_SIZE, mask); 1029 return nodelist_scnprintf(page, PAGE_SIZE, mask);
960} 1030}
@@ -995,7 +1065,6 @@ static ssize_t cpuset_common_file_read(struct file *file, char __user *buf,
995 goto out; 1065 goto out;
996 } 1066 }
997 *s++ = '\n'; 1067 *s++ = '\n';
998 *s = '\0';
999 1068
1000 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page); 1069 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1001out: 1070out:
@@ -1048,6 +1117,21 @@ static int cpuset_file_release(struct inode *inode, struct file *file)
1048 return 0; 1117 return 0;
1049} 1118}
1050 1119
1120/*
1121 * cpuset_rename - Only allow simple rename of directories in place.
1122 */
1123static int cpuset_rename(struct inode *old_dir, struct dentry *old_dentry,
1124 struct inode *new_dir, struct dentry *new_dentry)
1125{
1126 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1127 return -ENOTDIR;
1128 if (new_dentry->d_inode)
1129 return -EEXIST;
1130 if (old_dir != new_dir)
1131 return -EIO;
1132 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1133}
1134
1051static struct file_operations cpuset_file_operations = { 1135static struct file_operations cpuset_file_operations = {
1052 .read = cpuset_file_read, 1136 .read = cpuset_file_read,
1053 .write = cpuset_file_write, 1137 .write = cpuset_file_write,
@@ -1060,6 +1144,7 @@ static struct inode_operations cpuset_dir_inode_operations = {
1060 .lookup = simple_lookup, 1144 .lookup = simple_lookup,
1061 .mkdir = cpuset_mkdir, 1145 .mkdir = cpuset_mkdir,
1062 .rmdir = cpuset_rmdir, 1146 .rmdir = cpuset_rmdir,
1147 .rename = cpuset_rename,
1063}; 1148};
1064 1149
1065static int cpuset_create_file(struct dentry *dentry, int mode) 1150static int cpuset_create_file(struct dentry *dentry, int mode)
@@ -1163,7 +1248,9 @@ struct ctr_struct {
1163 1248
1164/* 1249/*
1165 * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'. 1250 * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'.
1166 * Return actual number of pids loaded. 1251 * Return actual number of pids loaded. No need to task_lock(p)
1252 * when reading out p->cpuset, as we don't really care if it changes
1253 * on the next cycle, and we are not going to try to dereference it.
1167 */ 1254 */
1168static inline int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs) 1255static inline int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs)
1169{ 1256{
@@ -1205,6 +1292,12 @@ static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
1205 return cnt; 1292 return cnt;
1206} 1293}
1207 1294
1295/*
1296 * Handle an open on 'tasks' file. Prepare a buffer listing the
1297 * process id's of tasks currently attached to the cpuset being opened.
1298 *
1299 * Does not require any specific cpuset semaphores, and does not take any.
1300 */
1208static int cpuset_tasks_open(struct inode *unused, struct file *file) 1301static int cpuset_tasks_open(struct inode *unused, struct file *file)
1209{ 1302{
1210 struct cpuset *cs = __d_cs(file->f_dentry->d_parent); 1303 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
@@ -1352,7 +1445,8 @@ static long cpuset_create(struct cpuset *parent, const char *name, int mode)
1352 if (!cs) 1445 if (!cs)
1353 return -ENOMEM; 1446 return -ENOMEM;
1354 1447
1355 cpuset_down(&cpuset_sem); 1448 down(&manage_sem);
1449 refresh_mems();
1356 cs->flags = 0; 1450 cs->flags = 0;
1357 if (notify_on_release(parent)) 1451 if (notify_on_release(parent))
1358 set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags); 1452 set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
@@ -1366,25 +1460,27 @@ static long cpuset_create(struct cpuset *parent, const char *name, int mode)
1366 1460
1367 cs->parent = parent; 1461 cs->parent = parent;
1368 1462
1463 down(&callback_sem);
1369 list_add(&cs->sibling, &cs->parent->children); 1464 list_add(&cs->sibling, &cs->parent->children);
1465 up(&callback_sem);
1370 1466
1371 err = cpuset_create_dir(cs, name, mode); 1467 err = cpuset_create_dir(cs, name, mode);
1372 if (err < 0) 1468 if (err < 0)
1373 goto err; 1469 goto err;
1374 1470
1375 /* 1471 /*
1376 * Release cpuset_sem before cpuset_populate_dir() because it 1472 * Release manage_sem before cpuset_populate_dir() because it
1377 * will down() this new directory's i_sem and if we race with 1473 * will down() this new directory's i_sem and if we race with
1378 * another mkdir, we might deadlock. 1474 * another mkdir, we might deadlock.
1379 */ 1475 */
1380 cpuset_up(&cpuset_sem); 1476 up(&manage_sem);
1381 1477
1382 err = cpuset_populate_dir(cs->dentry); 1478 err = cpuset_populate_dir(cs->dentry);
1383 /* If err < 0, we have a half-filled directory - oh well ;) */ 1479 /* If err < 0, we have a half-filled directory - oh well ;) */
1384 return 0; 1480 return 0;
1385err: 1481err:
1386 list_del(&cs->sibling); 1482 list_del(&cs->sibling);
1387 cpuset_up(&cpuset_sem); 1483 up(&manage_sem);
1388 kfree(cs); 1484 kfree(cs);
1389 return err; 1485 return err;
1390} 1486}
@@ -1406,29 +1502,32 @@ static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry)
1406 1502
1407 /* the vfs holds both inode->i_sem already */ 1503 /* the vfs holds both inode->i_sem already */
1408 1504
1409 cpuset_down(&cpuset_sem); 1505 down(&manage_sem);
1506 refresh_mems();
1410 if (atomic_read(&cs->count) > 0) { 1507 if (atomic_read(&cs->count) > 0) {
1411 cpuset_up(&cpuset_sem); 1508 up(&manage_sem);
1412 return -EBUSY; 1509 return -EBUSY;
1413 } 1510 }
1414 if (!list_empty(&cs->children)) { 1511 if (!list_empty(&cs->children)) {
1415 cpuset_up(&cpuset_sem); 1512 up(&manage_sem);
1416 return -EBUSY; 1513 return -EBUSY;
1417 } 1514 }
1418 parent = cs->parent; 1515 parent = cs->parent;
1516 down(&callback_sem);
1419 set_bit(CS_REMOVED, &cs->flags); 1517 set_bit(CS_REMOVED, &cs->flags);
1420 if (is_cpu_exclusive(cs)) 1518 if (is_cpu_exclusive(cs))
1421 update_cpu_domains(cs); 1519 update_cpu_domains(cs);
1422 list_del(&cs->sibling); /* delete my sibling from parent->children */ 1520 list_del(&cs->sibling); /* delete my sibling from parent->children */
1423 if (list_empty(&parent->children))
1424 check_for_release(parent, &pathbuf);
1425 spin_lock(&cs->dentry->d_lock); 1521 spin_lock(&cs->dentry->d_lock);
1426 d = dget(cs->dentry); 1522 d = dget(cs->dentry);
1427 cs->dentry = NULL; 1523 cs->dentry = NULL;
1428 spin_unlock(&d->d_lock); 1524 spin_unlock(&d->d_lock);
1429 cpuset_d_remove_dir(d); 1525 cpuset_d_remove_dir(d);
1430 dput(d); 1526 dput(d);
1431 cpuset_up(&cpuset_sem); 1527 up(&callback_sem);
1528 if (list_empty(&parent->children))
1529 check_for_release(parent, &pathbuf);
1530 up(&manage_sem);
1432 cpuset_release_agent(pathbuf); 1531 cpuset_release_agent(pathbuf);
1433 return 0; 1532 return 0;
1434} 1533}
@@ -1488,16 +1587,26 @@ void __init cpuset_init_smp(void)
1488 * cpuset_fork - attach newly forked task to its parents cpuset. 1587 * cpuset_fork - attach newly forked task to its parents cpuset.
1489 * @tsk: pointer to task_struct of forking parent process. 1588 * @tsk: pointer to task_struct of forking parent process.
1490 * 1589 *
1491 * Description: By default, on fork, a task inherits its 1590 * Description: A task inherits its parent's cpuset at fork().
1492 * parent's cpuset. The pointer to the shared cpuset is 1591 *
1493 * automatically copied in fork.c by dup_task_struct(). 1592 * A pointer to the shared cpuset was automatically copied in fork.c
1494 * This cpuset_fork() routine need only increment the usage 1593 * by dup_task_struct(). However, we ignore that copy, since it was
1495 * counter in that cpuset. 1594 * not made under the protection of task_lock(), so might no longer be
1595 * a valid cpuset pointer. attach_task() might have already changed
1596 * current->cpuset, allowing the previously referenced cpuset to
1597 * be removed and freed. Instead, we task_lock(current) and copy
1598 * its present value of current->cpuset for our freshly forked child.
1599 *
1600 * At the point that cpuset_fork() is called, 'current' is the parent
1601 * task, and the passed argument 'child' points to the child task.
1496 **/ 1602 **/
1497 1603
1498void cpuset_fork(struct task_struct *tsk) 1604void cpuset_fork(struct task_struct *child)
1499{ 1605{
1500 atomic_inc(&tsk->cpuset->count); 1606 task_lock(current);
1607 child->cpuset = current->cpuset;
1608 atomic_inc(&child->cpuset->count);
1609 task_unlock(current);
1501} 1610}
1502 1611
1503/** 1612/**
@@ -1506,35 +1615,42 @@ void cpuset_fork(struct task_struct *tsk)
1506 * 1615 *
1507 * Description: Detach cpuset from @tsk and release it. 1616 * Description: Detach cpuset from @tsk and release it.
1508 * 1617 *
1509 * Note that cpusets marked notify_on_release force every task 1618 * Note that cpusets marked notify_on_release force every task in
1510 * in them to take the global cpuset_sem semaphore when exiting. 1619 * them to take the global manage_sem semaphore when exiting.
1511 * This could impact scaling on very large systems. Be reluctant 1620 * This could impact scaling on very large systems. Be reluctant to
1512 * to use notify_on_release cpusets where very high task exit 1621 * use notify_on_release cpusets where very high task exit scaling
1513 * scaling is required on large systems. 1622 * is required on large systems.
1514 * 1623 *
1515 * Don't even think about derefencing 'cs' after the cpuset use 1624 * Don't even think about derefencing 'cs' after the cpuset use count
1516 * count goes to zero, except inside a critical section guarded 1625 * goes to zero, except inside a critical section guarded by manage_sem
1517 * by the cpuset_sem semaphore. If you don't hold cpuset_sem, 1626 * or callback_sem. Otherwise a zero cpuset use count is a license to
1518 * then a zero cpuset use count is a license to any other task to 1627 * any other task to nuke the cpuset immediately, via cpuset_rmdir().
1519 * nuke the cpuset immediately. 1628 *
1629 * This routine has to take manage_sem, not callback_sem, because
1630 * it is holding that semaphore while calling check_for_release(),
1631 * which calls kmalloc(), so can't be called holding callback__sem().
1632 *
1633 * We don't need to task_lock() this reference to tsk->cpuset,
1634 * because tsk is already marked PF_EXITING, so attach_task() won't
1635 * mess with it.
1520 **/ 1636 **/
1521 1637
1522void cpuset_exit(struct task_struct *tsk) 1638void cpuset_exit(struct task_struct *tsk)
1523{ 1639{
1524 struct cpuset *cs; 1640 struct cpuset *cs;
1525 1641
1526 task_lock(tsk); 1642 BUG_ON(!(tsk->flags & PF_EXITING));
1643
1527 cs = tsk->cpuset; 1644 cs = tsk->cpuset;
1528 tsk->cpuset = NULL; 1645 tsk->cpuset = NULL;
1529 task_unlock(tsk);
1530 1646
1531 if (notify_on_release(cs)) { 1647 if (notify_on_release(cs)) {
1532 char *pathbuf = NULL; 1648 char *pathbuf = NULL;
1533 1649
1534 cpuset_down(&cpuset_sem); 1650 down(&manage_sem);
1535 if (atomic_dec_and_test(&cs->count)) 1651 if (atomic_dec_and_test(&cs->count))
1536 check_for_release(cs, &pathbuf); 1652 check_for_release(cs, &pathbuf);
1537 cpuset_up(&cpuset_sem); 1653 up(&manage_sem);
1538 cpuset_release_agent(pathbuf); 1654 cpuset_release_agent(pathbuf);
1539 } else { 1655 } else {
1540 atomic_dec(&cs->count); 1656 atomic_dec(&cs->count);
@@ -1555,11 +1671,11 @@ cpumask_t cpuset_cpus_allowed(const struct task_struct *tsk)
1555{ 1671{
1556 cpumask_t mask; 1672 cpumask_t mask;
1557 1673
1558 cpuset_down(&cpuset_sem); 1674 down(&callback_sem);
1559 task_lock((struct task_struct *)tsk); 1675 task_lock((struct task_struct *)tsk);
1560 guarantee_online_cpus(tsk->cpuset, &mask); 1676 guarantee_online_cpus(tsk->cpuset, &mask);
1561 task_unlock((struct task_struct *)tsk); 1677 task_unlock((struct task_struct *)tsk);
1562 cpuset_up(&cpuset_sem); 1678 up(&callback_sem);
1563 1679
1564 return mask; 1680 return mask;
1565} 1681}
@@ -1575,19 +1691,28 @@ void cpuset_init_current_mems_allowed(void)
1575 * If the current tasks cpusets mems_allowed changed behind our backs, 1691 * If the current tasks cpusets mems_allowed changed behind our backs,
1576 * update current->mems_allowed and mems_generation to the new value. 1692 * update current->mems_allowed and mems_generation to the new value.
1577 * Do not call this routine if in_interrupt(). 1693 * Do not call this routine if in_interrupt().
1694 *
1695 * Call without callback_sem or task_lock() held. May be called
1696 * with or without manage_sem held. Unless exiting, it will acquire
1697 * task_lock(). Also might acquire callback_sem during call to
1698 * refresh_mems().
1578 */ 1699 */
1579 1700
1580void cpuset_update_current_mems_allowed(void) 1701void cpuset_update_current_mems_allowed(void)
1581{ 1702{
1582 struct cpuset *cs = current->cpuset; 1703 struct cpuset *cs;
1704 int need_to_refresh = 0;
1583 1705
1706 task_lock(current);
1707 cs = current->cpuset;
1584 if (!cs) 1708 if (!cs)
1585 return; /* task is exiting */ 1709 goto done;
1586 if (current->cpuset_mems_generation != cs->mems_generation) { 1710 if (current->cpuset_mems_generation != cs->mems_generation)
1587 cpuset_down(&cpuset_sem); 1711 need_to_refresh = 1;
1712done:
1713 task_unlock(current);
1714 if (need_to_refresh)
1588 refresh_mems(); 1715 refresh_mems();
1589 cpuset_up(&cpuset_sem);
1590 }
1591} 1716}
1592 1717
1593/** 1718/**
@@ -1621,7 +1746,7 @@ int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl)
1621 1746
1622/* 1747/*
1623 * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive 1748 * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
1624 * ancestor to the specified cpuset. Call while holding cpuset_sem. 1749 * ancestor to the specified cpuset. Call holding callback_sem.
1625 * If no ancestor is mem_exclusive (an unusual configuration), then 1750 * If no ancestor is mem_exclusive (an unusual configuration), then
1626 * returns the root cpuset. 1751 * returns the root cpuset.
1627 */ 1752 */
@@ -1648,12 +1773,12 @@ static const struct cpuset *nearest_exclusive_ancestor(const struct cpuset *cs)
1648 * GFP_KERNEL allocations are not so marked, so can escape to the 1773 * GFP_KERNEL allocations are not so marked, so can escape to the
1649 * nearest mem_exclusive ancestor cpuset. 1774 * nearest mem_exclusive ancestor cpuset.
1650 * 1775 *
1651 * Scanning up parent cpusets requires cpuset_sem. The __alloc_pages() 1776 * Scanning up parent cpusets requires callback_sem. The __alloc_pages()
1652 * routine only calls here with __GFP_HARDWALL bit _not_ set if 1777 * routine only calls here with __GFP_HARDWALL bit _not_ set if
1653 * it's a GFP_KERNEL allocation, and all nodes in the current tasks 1778 * it's a GFP_KERNEL allocation, and all nodes in the current tasks
1654 * mems_allowed came up empty on the first pass over the zonelist. 1779 * mems_allowed came up empty on the first pass over the zonelist.
1655 * So only GFP_KERNEL allocations, if all nodes in the cpuset are 1780 * So only GFP_KERNEL allocations, if all nodes in the cpuset are
1656 * short of memory, might require taking the cpuset_sem semaphore. 1781 * short of memory, might require taking the callback_sem semaphore.
1657 * 1782 *
1658 * The first loop over the zonelist in mm/page_alloc.c:__alloc_pages() 1783 * The first loop over the zonelist in mm/page_alloc.c:__alloc_pages()
1659 * calls here with __GFP_HARDWALL always set in gfp_mask, enforcing 1784 * calls here with __GFP_HARDWALL always set in gfp_mask, enforcing
@@ -1685,14 +1810,16 @@ int cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
1685 return 0; 1810 return 0;
1686 1811
1687 /* Not hardwall and node outside mems_allowed: scan up cpusets */ 1812 /* Not hardwall and node outside mems_allowed: scan up cpusets */
1688 cpuset_down(&cpuset_sem); 1813 down(&callback_sem);
1689 cs = current->cpuset; 1814
1690 if (!cs) 1815 if (current->flags & PF_EXITING) /* Let dying task have memory */
1691 goto done; /* current task exiting */ 1816 return 1;
1692 cs = nearest_exclusive_ancestor(cs); 1817 task_lock(current);
1818 cs = nearest_exclusive_ancestor(current->cpuset);
1819 task_unlock(current);
1820
1693 allowed = node_isset(node, cs->mems_allowed); 1821 allowed = node_isset(node, cs->mems_allowed);
1694done: 1822 up(&callback_sem);
1695 cpuset_up(&cpuset_sem);
1696 return allowed; 1823 return allowed;
1697} 1824}
1698 1825
@@ -1705,7 +1832,7 @@ done:
1705 * determine if task @p's memory usage might impact the memory 1832 * determine if task @p's memory usage might impact the memory
1706 * available to the current task. 1833 * available to the current task.
1707 * 1834 *
1708 * Acquires cpuset_sem - not suitable for calling from a fast path. 1835 * Acquires callback_sem - not suitable for calling from a fast path.
1709 **/ 1836 **/
1710 1837
1711int cpuset_excl_nodes_overlap(const struct task_struct *p) 1838int cpuset_excl_nodes_overlap(const struct task_struct *p)
@@ -1713,18 +1840,27 @@ int cpuset_excl_nodes_overlap(const struct task_struct *p)
1713 const struct cpuset *cs1, *cs2; /* my and p's cpuset ancestors */ 1840 const struct cpuset *cs1, *cs2; /* my and p's cpuset ancestors */
1714 int overlap = 0; /* do cpusets overlap? */ 1841 int overlap = 0; /* do cpusets overlap? */
1715 1842
1716 cpuset_down(&cpuset_sem); 1843 down(&callback_sem);
1717 cs1 = current->cpuset; 1844
1718 if (!cs1) 1845 task_lock(current);
1719 goto done; /* current task exiting */ 1846 if (current->flags & PF_EXITING) {
1720 cs2 = p->cpuset; 1847 task_unlock(current);
1721 if (!cs2) 1848 goto done;
1722 goto done; /* task p is exiting */ 1849 }
1723 cs1 = nearest_exclusive_ancestor(cs1); 1850 cs1 = nearest_exclusive_ancestor(current->cpuset);
1724 cs2 = nearest_exclusive_ancestor(cs2); 1851 task_unlock(current);
1852
1853 task_lock((struct task_struct *)p);
1854 if (p->flags & PF_EXITING) {
1855 task_unlock((struct task_struct *)p);
1856 goto done;
1857 }
1858 cs2 = nearest_exclusive_ancestor(p->cpuset);
1859 task_unlock((struct task_struct *)p);
1860
1725 overlap = nodes_intersects(cs1->mems_allowed, cs2->mems_allowed); 1861 overlap = nodes_intersects(cs1->mems_allowed, cs2->mems_allowed);
1726done: 1862done:
1727 cpuset_up(&cpuset_sem); 1863 up(&callback_sem);
1728 1864
1729 return overlap; 1865 return overlap;
1730} 1866}
@@ -1733,6 +1869,10 @@ done:
1733 * proc_cpuset_show() 1869 * proc_cpuset_show()
1734 * - Print tasks cpuset path into seq_file. 1870 * - Print tasks cpuset path into seq_file.
1735 * - Used for /proc/<pid>/cpuset. 1871 * - Used for /proc/<pid>/cpuset.
1872 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
1873 * doesn't really matter if tsk->cpuset changes after we read it,
1874 * and we take manage_sem, keeping attach_task() from changing it
1875 * anyway.
1736 */ 1876 */
1737 1877
1738static int proc_cpuset_show(struct seq_file *m, void *v) 1878static int proc_cpuset_show(struct seq_file *m, void *v)
@@ -1747,10 +1887,8 @@ static int proc_cpuset_show(struct seq_file *m, void *v)
1747 return -ENOMEM; 1887 return -ENOMEM;
1748 1888
1749 tsk = m->private; 1889 tsk = m->private;
1750 cpuset_down(&cpuset_sem); 1890 down(&manage_sem);
1751 task_lock(tsk);
1752 cs = tsk->cpuset; 1891 cs = tsk->cpuset;
1753 task_unlock(tsk);
1754 if (!cs) { 1892 if (!cs) {
1755 retval = -EINVAL; 1893 retval = -EINVAL;
1756 goto out; 1894 goto out;
@@ -1762,7 +1900,7 @@ static int proc_cpuset_show(struct seq_file *m, void *v)
1762 seq_puts(m, buf); 1900 seq_puts(m, buf);
1763 seq_putc(m, '\n'); 1901 seq_putc(m, '\n');
1764out: 1902out:
1765 cpuset_up(&cpuset_sem); 1903 up(&manage_sem);
1766 kfree(buf); 1904 kfree(buf);
1767 return retval; 1905 return retval;
1768} 1906}