diff options
Diffstat (limited to 'kernel/cpuset.c')
-rw-r--r-- | kernel/cpuset.c | 1564 |
1 files changed, 1564 insertions, 0 deletions
diff --git a/kernel/cpuset.c b/kernel/cpuset.c new file mode 100644 index 000000000000..69792bbe2281 --- /dev/null +++ b/kernel/cpuset.c | |||
@@ -0,0 +1,1564 @@ | |||
1 | /* | ||
2 | * kernel/cpuset.c | ||
3 | * | ||
4 | * Processor and Memory placement constraints for sets of tasks. | ||
5 | * | ||
6 | * Copyright (C) 2003 BULL SA. | ||
7 | * Copyright (C) 2004 Silicon Graphics, Inc. | ||
8 | * | ||
9 | * Portions derived from Patrick Mochel's sysfs code. | ||
10 | * sysfs is Copyright (c) 2001-3 Patrick Mochel | ||
11 | * Portions Copyright (c) 2004 Silicon Graphics, Inc. | ||
12 | * | ||
13 | * 2003-10-10 Written by Simon Derr <simon.derr@bull.net> | ||
14 | * 2003-10-22 Updates by Stephen Hemminger. | ||
15 | * 2004 May-July Rework by Paul Jackson <pj@sgi.com> | ||
16 | * | ||
17 | * This file is subject to the terms and conditions of the GNU General Public | ||
18 | * License. See the file COPYING in the main directory of the Linux | ||
19 | * distribution for more details. | ||
20 | */ | ||
21 | |||
22 | #include <linux/config.h> | ||
23 | #include <linux/cpu.h> | ||
24 | #include <linux/cpumask.h> | ||
25 | #include <linux/cpuset.h> | ||
26 | #include <linux/err.h> | ||
27 | #include <linux/errno.h> | ||
28 | #include <linux/file.h> | ||
29 | #include <linux/fs.h> | ||
30 | #include <linux/init.h> | ||
31 | #include <linux/interrupt.h> | ||
32 | #include <linux/kernel.h> | ||
33 | #include <linux/kmod.h> | ||
34 | #include <linux/list.h> | ||
35 | #include <linux/mm.h> | ||
36 | #include <linux/module.h> | ||
37 | #include <linux/mount.h> | ||
38 | #include <linux/namei.h> | ||
39 | #include <linux/pagemap.h> | ||
40 | #include <linux/proc_fs.h> | ||
41 | #include <linux/sched.h> | ||
42 | #include <linux/seq_file.h> | ||
43 | #include <linux/slab.h> | ||
44 | #include <linux/smp_lock.h> | ||
45 | #include <linux/spinlock.h> | ||
46 | #include <linux/stat.h> | ||
47 | #include <linux/string.h> | ||
48 | #include <linux/time.h> | ||
49 | #include <linux/backing-dev.h> | ||
50 | #include <linux/sort.h> | ||
51 | |||
52 | #include <asm/uaccess.h> | ||
53 | #include <asm/atomic.h> | ||
54 | #include <asm/semaphore.h> | ||
55 | |||
56 | #define CPUSET_SUPER_MAGIC 0x27e0eb | ||
57 | |||
58 | struct cpuset { | ||
59 | unsigned long flags; /* "unsigned long" so bitops work */ | ||
60 | cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */ | ||
61 | nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */ | ||
62 | |||
63 | atomic_t count; /* count tasks using this cpuset */ | ||
64 | |||
65 | /* | ||
66 | * We link our 'sibling' struct into our parents 'children'. | ||
67 | * Our children link their 'sibling' into our 'children'. | ||
68 | */ | ||
69 | struct list_head sibling; /* my parents children */ | ||
70 | struct list_head children; /* my children */ | ||
71 | |||
72 | struct cpuset *parent; /* my parent */ | ||
73 | struct dentry *dentry; /* cpuset fs entry */ | ||
74 | |||
75 | /* | ||
76 | * Copy of global cpuset_mems_generation as of the most | ||
77 | * recent time this cpuset changed its mems_allowed. | ||
78 | */ | ||
79 | int mems_generation; | ||
80 | }; | ||
81 | |||
82 | /* bits in struct cpuset flags field */ | ||
83 | typedef enum { | ||
84 | CS_CPU_EXCLUSIVE, | ||
85 | CS_MEM_EXCLUSIVE, | ||
86 | CS_REMOVED, | ||
87 | CS_NOTIFY_ON_RELEASE | ||
88 | } cpuset_flagbits_t; | ||
89 | |||
90 | /* convenient tests for these bits */ | ||
91 | static inline int is_cpu_exclusive(const struct cpuset *cs) | ||
92 | { | ||
93 | return !!test_bit(CS_CPU_EXCLUSIVE, &cs->flags); | ||
94 | } | ||
95 | |||
96 | static inline int is_mem_exclusive(const struct cpuset *cs) | ||
97 | { | ||
98 | return !!test_bit(CS_MEM_EXCLUSIVE, &cs->flags); | ||
99 | } | ||
100 | |||
101 | static inline int is_removed(const struct cpuset *cs) | ||
102 | { | ||
103 | return !!test_bit(CS_REMOVED, &cs->flags); | ||
104 | } | ||
105 | |||
106 | static inline int notify_on_release(const struct cpuset *cs) | ||
107 | { | ||
108 | return !!test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags); | ||
109 | } | ||
110 | |||
111 | /* | ||
112 | * Increment this atomic integer everytime any cpuset changes its | ||
113 | * mems_allowed value. Users of cpusets can track this generation | ||
114 | * number, and avoid having to lock and reload mems_allowed unless | ||
115 | * the cpuset they're using changes generation. | ||
116 | * | ||
117 | * A single, global generation is needed because attach_task() could | ||
118 | * reattach a task to a different cpuset, which must not have its | ||
119 | * generation numbers aliased with those of that tasks previous cpuset. | ||
120 | * | ||
121 | * Generations are needed for mems_allowed because one task cannot | ||
122 | * modify anothers memory placement. So we must enable every task, | ||
123 | * on every visit to __alloc_pages(), to efficiently check whether | ||
124 | * its current->cpuset->mems_allowed has changed, requiring an update | ||
125 | * of its current->mems_allowed. | ||
126 | */ | ||
127 | static atomic_t cpuset_mems_generation = ATOMIC_INIT(1); | ||
128 | |||
129 | static struct cpuset top_cpuset = { | ||
130 | .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)), | ||
131 | .cpus_allowed = CPU_MASK_ALL, | ||
132 | .mems_allowed = NODE_MASK_ALL, | ||
133 | .count = ATOMIC_INIT(0), | ||
134 | .sibling = LIST_HEAD_INIT(top_cpuset.sibling), | ||
135 | .children = LIST_HEAD_INIT(top_cpuset.children), | ||
136 | .parent = NULL, | ||
137 | .dentry = NULL, | ||
138 | .mems_generation = 0, | ||
139 | }; | ||
140 | |||
141 | static struct vfsmount *cpuset_mount; | ||
142 | static struct super_block *cpuset_sb = NULL; | ||
143 | |||
144 | /* | ||
145 | * cpuset_sem should be held by anyone who is depending on the children | ||
146 | * or sibling lists of any cpuset, or performing non-atomic operations | ||
147 | * on the flags or *_allowed values of a cpuset, such as raising the | ||
148 | * CS_REMOVED flag bit iff it is not already raised, or reading and | ||
149 | * conditionally modifying the *_allowed values. One kernel global | ||
150 | * cpuset semaphore should be sufficient - these things don't change | ||
151 | * that much. | ||
152 | * | ||
153 | * The code that modifies cpusets holds cpuset_sem across the entire | ||
154 | * operation, from cpuset_common_file_write() down, single threading | ||
155 | * all cpuset modifications (except for counter manipulations from | ||
156 | * fork and exit) across the system. This presumes that cpuset | ||
157 | * modifications are rare - better kept simple and safe, even if slow. | ||
158 | * | ||
159 | * The code that reads cpusets, such as in cpuset_common_file_read() | ||
160 | * and below, only holds cpuset_sem across small pieces of code, such | ||
161 | * as when reading out possibly multi-word cpumasks and nodemasks, as | ||
162 | * the risks are less, and the desire for performance a little greater. | ||
163 | * The proc_cpuset_show() routine needs to hold cpuset_sem to insure | ||
164 | * that no cs->dentry is NULL, as it walks up the cpuset tree to root. | ||
165 | * | ||
166 | * The hooks from fork and exit, cpuset_fork() and cpuset_exit(), don't | ||
167 | * (usually) grab cpuset_sem. These are the two most performance | ||
168 | * critical pieces of code here. The exception occurs on exit(), | ||
169 | * if the last task using a cpuset exits, and the cpuset was marked | ||
170 | * notify_on_release. In that case, the cpuset_sem is taken, the | ||
171 | * path to the released cpuset calculated, and a usermode call made | ||
172 | * to /sbin/cpuset_release_agent with the name of the cpuset (path | ||
173 | * relative to the root of cpuset file system) as the argument. | ||
174 | * | ||
175 | * A cpuset can only be deleted if both its 'count' of using tasks is | ||
176 | * zero, and its list of 'children' cpusets is empty. Since all tasks | ||
177 | * in the system use _some_ cpuset, and since there is always at least | ||
178 | * one task in the system (init, pid == 1), therefore, top_cpuset | ||
179 | * always has either children cpusets and/or using tasks. So no need | ||
180 | * for any special hack to ensure that top_cpuset cannot be deleted. | ||
181 | */ | ||
182 | |||
183 | static DECLARE_MUTEX(cpuset_sem); | ||
184 | |||
185 | /* | ||
186 | * A couple of forward declarations required, due to cyclic reference loop: | ||
187 | * cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file | ||
188 | * -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir. | ||
189 | */ | ||
190 | |||
191 | static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode); | ||
192 | static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry); | ||
193 | |||
194 | static struct backing_dev_info cpuset_backing_dev_info = { | ||
195 | .ra_pages = 0, /* No readahead */ | ||
196 | .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK, | ||
197 | }; | ||
198 | |||
199 | static struct inode *cpuset_new_inode(mode_t mode) | ||
200 | { | ||
201 | struct inode *inode = new_inode(cpuset_sb); | ||
202 | |||
203 | if (inode) { | ||
204 | inode->i_mode = mode; | ||
205 | inode->i_uid = current->fsuid; | ||
206 | inode->i_gid = current->fsgid; | ||
207 | inode->i_blksize = PAGE_CACHE_SIZE; | ||
208 | inode->i_blocks = 0; | ||
209 | inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; | ||
210 | inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info; | ||
211 | } | ||
212 | return inode; | ||
213 | } | ||
214 | |||
215 | static void cpuset_diput(struct dentry *dentry, struct inode *inode) | ||
216 | { | ||
217 | /* is dentry a directory ? if so, kfree() associated cpuset */ | ||
218 | if (S_ISDIR(inode->i_mode)) { | ||
219 | struct cpuset *cs = dentry->d_fsdata; | ||
220 | BUG_ON(!(is_removed(cs))); | ||
221 | kfree(cs); | ||
222 | } | ||
223 | iput(inode); | ||
224 | } | ||
225 | |||
226 | static struct dentry_operations cpuset_dops = { | ||
227 | .d_iput = cpuset_diput, | ||
228 | }; | ||
229 | |||
230 | static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name) | ||
231 | { | ||
232 | struct qstr qstr; | ||
233 | struct dentry *d; | ||
234 | |||
235 | qstr.name = name; | ||
236 | qstr.len = strlen(name); | ||
237 | qstr.hash = full_name_hash(name, qstr.len); | ||
238 | d = lookup_hash(&qstr, parent); | ||
239 | if (!IS_ERR(d)) | ||
240 | d->d_op = &cpuset_dops; | ||
241 | return d; | ||
242 | } | ||
243 | |||
244 | static void remove_dir(struct dentry *d) | ||
245 | { | ||
246 | struct dentry *parent = dget(d->d_parent); | ||
247 | |||
248 | d_delete(d); | ||
249 | simple_rmdir(parent->d_inode, d); | ||
250 | dput(parent); | ||
251 | } | ||
252 | |||
253 | /* | ||
254 | * NOTE : the dentry must have been dget()'ed | ||
255 | */ | ||
256 | static void cpuset_d_remove_dir(struct dentry *dentry) | ||
257 | { | ||
258 | struct list_head *node; | ||
259 | |||
260 | spin_lock(&dcache_lock); | ||
261 | node = dentry->d_subdirs.next; | ||
262 | while (node != &dentry->d_subdirs) { | ||
263 | struct dentry *d = list_entry(node, struct dentry, d_child); | ||
264 | list_del_init(node); | ||
265 | if (d->d_inode) { | ||
266 | d = dget_locked(d); | ||
267 | spin_unlock(&dcache_lock); | ||
268 | d_delete(d); | ||
269 | simple_unlink(dentry->d_inode, d); | ||
270 | dput(d); | ||
271 | spin_lock(&dcache_lock); | ||
272 | } | ||
273 | node = dentry->d_subdirs.next; | ||
274 | } | ||
275 | list_del_init(&dentry->d_child); | ||
276 | spin_unlock(&dcache_lock); | ||
277 | remove_dir(dentry); | ||
278 | } | ||
279 | |||
280 | static struct super_operations cpuset_ops = { | ||
281 | .statfs = simple_statfs, | ||
282 | .drop_inode = generic_delete_inode, | ||
283 | }; | ||
284 | |||
285 | static int cpuset_fill_super(struct super_block *sb, void *unused_data, | ||
286 | int unused_silent) | ||
287 | { | ||
288 | struct inode *inode; | ||
289 | struct dentry *root; | ||
290 | |||
291 | sb->s_blocksize = PAGE_CACHE_SIZE; | ||
292 | sb->s_blocksize_bits = PAGE_CACHE_SHIFT; | ||
293 | sb->s_magic = CPUSET_SUPER_MAGIC; | ||
294 | sb->s_op = &cpuset_ops; | ||
295 | cpuset_sb = sb; | ||
296 | |||
297 | inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR); | ||
298 | if (inode) { | ||
299 | inode->i_op = &simple_dir_inode_operations; | ||
300 | inode->i_fop = &simple_dir_operations; | ||
301 | /* directories start off with i_nlink == 2 (for "." entry) */ | ||
302 | inode->i_nlink++; | ||
303 | } else { | ||
304 | return -ENOMEM; | ||
305 | } | ||
306 | |||
307 | root = d_alloc_root(inode); | ||
308 | if (!root) { | ||
309 | iput(inode); | ||
310 | return -ENOMEM; | ||
311 | } | ||
312 | sb->s_root = root; | ||
313 | return 0; | ||
314 | } | ||
315 | |||
316 | static struct super_block *cpuset_get_sb(struct file_system_type *fs_type, | ||
317 | int flags, const char *unused_dev_name, | ||
318 | void *data) | ||
319 | { | ||
320 | return get_sb_single(fs_type, flags, data, cpuset_fill_super); | ||
321 | } | ||
322 | |||
323 | static struct file_system_type cpuset_fs_type = { | ||
324 | .name = "cpuset", | ||
325 | .get_sb = cpuset_get_sb, | ||
326 | .kill_sb = kill_litter_super, | ||
327 | }; | ||
328 | |||
329 | /* struct cftype: | ||
330 | * | ||
331 | * The files in the cpuset filesystem mostly have a very simple read/write | ||
332 | * handling, some common function will take care of it. Nevertheless some cases | ||
333 | * (read tasks) are special and therefore I define this structure for every | ||
334 | * kind of file. | ||
335 | * | ||
336 | * | ||
337 | * When reading/writing to a file: | ||
338 | * - the cpuset to use in file->f_dentry->d_parent->d_fsdata | ||
339 | * - the 'cftype' of the file is file->f_dentry->d_fsdata | ||
340 | */ | ||
341 | |||
342 | struct cftype { | ||
343 | char *name; | ||
344 | int private; | ||
345 | int (*open) (struct inode *inode, struct file *file); | ||
346 | ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes, | ||
347 | loff_t *ppos); | ||
348 | int (*write) (struct file *file, const char __user *buf, size_t nbytes, | ||
349 | loff_t *ppos); | ||
350 | int (*release) (struct inode *inode, struct file *file); | ||
351 | }; | ||
352 | |||
353 | static inline struct cpuset *__d_cs(struct dentry *dentry) | ||
354 | { | ||
355 | return dentry->d_fsdata; | ||
356 | } | ||
357 | |||
358 | static inline struct cftype *__d_cft(struct dentry *dentry) | ||
359 | { | ||
360 | return dentry->d_fsdata; | ||
361 | } | ||
362 | |||
363 | /* | ||
364 | * Call with cpuset_sem held. Writes path of cpuset into buf. | ||
365 | * Returns 0 on success, -errno on error. | ||
366 | */ | ||
367 | |||
368 | static int cpuset_path(const struct cpuset *cs, char *buf, int buflen) | ||
369 | { | ||
370 | char *start; | ||
371 | |||
372 | start = buf + buflen; | ||
373 | |||
374 | *--start = '\0'; | ||
375 | for (;;) { | ||
376 | int len = cs->dentry->d_name.len; | ||
377 | if ((start -= len) < buf) | ||
378 | return -ENAMETOOLONG; | ||
379 | memcpy(start, cs->dentry->d_name.name, len); | ||
380 | cs = cs->parent; | ||
381 | if (!cs) | ||
382 | break; | ||
383 | if (!cs->parent) | ||
384 | continue; | ||
385 | if (--start < buf) | ||
386 | return -ENAMETOOLONG; | ||
387 | *start = '/'; | ||
388 | } | ||
389 | memmove(buf, start, buf + buflen - start); | ||
390 | return 0; | ||
391 | } | ||
392 | |||
393 | /* | ||
394 | * Notify userspace when a cpuset is released, by running | ||
395 | * /sbin/cpuset_release_agent with the name of the cpuset (path | ||
396 | * relative to the root of cpuset file system) as the argument. | ||
397 | * | ||
398 | * Most likely, this user command will try to rmdir this cpuset. | ||
399 | * | ||
400 | * This races with the possibility that some other task will be | ||
401 | * attached to this cpuset before it is removed, or that some other | ||
402 | * user task will 'mkdir' a child cpuset of this cpuset. That's ok. | ||
403 | * The presumed 'rmdir' will fail quietly if this cpuset is no longer | ||
404 | * unused, and this cpuset will be reprieved from its death sentence, | ||
405 | * to continue to serve a useful existence. Next time it's released, | ||
406 | * we will get notified again, if it still has 'notify_on_release' set. | ||
407 | * | ||
408 | * Note final arg to call_usermodehelper() is 0 - that means | ||
409 | * don't wait. Since we are holding the global cpuset_sem here, | ||
410 | * and we are asking another thread (started from keventd) to rmdir a | ||
411 | * cpuset, we can't wait - or we'd deadlock with the removing thread | ||
412 | * on cpuset_sem. | ||
413 | */ | ||
414 | |||
415 | static int cpuset_release_agent(char *cpuset_str) | ||
416 | { | ||
417 | char *argv[3], *envp[3]; | ||
418 | int i; | ||
419 | |||
420 | i = 0; | ||
421 | argv[i++] = "/sbin/cpuset_release_agent"; | ||
422 | argv[i++] = cpuset_str; | ||
423 | argv[i] = NULL; | ||
424 | |||
425 | i = 0; | ||
426 | /* minimal command environment */ | ||
427 | envp[i++] = "HOME=/"; | ||
428 | envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; | ||
429 | envp[i] = NULL; | ||
430 | |||
431 | return call_usermodehelper(argv[0], argv, envp, 0); | ||
432 | } | ||
433 | |||
434 | /* | ||
435 | * Either cs->count of using tasks transitioned to zero, or the | ||
436 | * cs->children list of child cpusets just became empty. If this | ||
437 | * cs is notify_on_release() and now both the user count is zero and | ||
438 | * the list of children is empty, send notice to user land. | ||
439 | */ | ||
440 | |||
441 | static void check_for_release(struct cpuset *cs) | ||
442 | { | ||
443 | if (notify_on_release(cs) && atomic_read(&cs->count) == 0 && | ||
444 | list_empty(&cs->children)) { | ||
445 | char *buf; | ||
446 | |||
447 | buf = kmalloc(PAGE_SIZE, GFP_KERNEL); | ||
448 | if (!buf) | ||
449 | return; | ||
450 | if (cpuset_path(cs, buf, PAGE_SIZE) < 0) | ||
451 | goto out; | ||
452 | cpuset_release_agent(buf); | ||
453 | out: | ||
454 | kfree(buf); | ||
455 | } | ||
456 | } | ||
457 | |||
458 | /* | ||
459 | * Return in *pmask the portion of a cpusets's cpus_allowed that | ||
460 | * are online. If none are online, walk up the cpuset hierarchy | ||
461 | * until we find one that does have some online cpus. If we get | ||
462 | * all the way to the top and still haven't found any online cpus, | ||
463 | * return cpu_online_map. Or if passed a NULL cs from an exit'ing | ||
464 | * task, return cpu_online_map. | ||
465 | * | ||
466 | * One way or another, we guarantee to return some non-empty subset | ||
467 | * of cpu_online_map. | ||
468 | * | ||
469 | * Call with cpuset_sem held. | ||
470 | */ | ||
471 | |||
472 | static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask) | ||
473 | { | ||
474 | while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map)) | ||
475 | cs = cs->parent; | ||
476 | if (cs) | ||
477 | cpus_and(*pmask, cs->cpus_allowed, cpu_online_map); | ||
478 | else | ||
479 | *pmask = cpu_online_map; | ||
480 | BUG_ON(!cpus_intersects(*pmask, cpu_online_map)); | ||
481 | } | ||
482 | |||
483 | /* | ||
484 | * Return in *pmask the portion of a cpusets's mems_allowed that | ||
485 | * are online. If none are online, walk up the cpuset hierarchy | ||
486 | * until we find one that does have some online mems. If we get | ||
487 | * all the way to the top and still haven't found any online mems, | ||
488 | * return node_online_map. | ||
489 | * | ||
490 | * One way or another, we guarantee to return some non-empty subset | ||
491 | * of node_online_map. | ||
492 | * | ||
493 | * Call with cpuset_sem held. | ||
494 | */ | ||
495 | |||
496 | static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask) | ||
497 | { | ||
498 | while (cs && !nodes_intersects(cs->mems_allowed, node_online_map)) | ||
499 | cs = cs->parent; | ||
500 | if (cs) | ||
501 | nodes_and(*pmask, cs->mems_allowed, node_online_map); | ||
502 | else | ||
503 | *pmask = node_online_map; | ||
504 | BUG_ON(!nodes_intersects(*pmask, node_online_map)); | ||
505 | } | ||
506 | |||
507 | /* | ||
508 | * Refresh current tasks mems_allowed and mems_generation from | ||
509 | * current tasks cpuset. Call with cpuset_sem held. | ||
510 | * | ||
511 | * Be sure to call refresh_mems() on any cpuset operation which | ||
512 | * (1) holds cpuset_sem, and (2) might possibly alloc memory. | ||
513 | * Call after obtaining cpuset_sem lock, before any possible | ||
514 | * allocation. Otherwise one risks trying to allocate memory | ||
515 | * while the task cpuset_mems_generation is not the same as | ||
516 | * the mems_generation in its cpuset, which would deadlock on | ||
517 | * cpuset_sem in cpuset_update_current_mems_allowed(). | ||
518 | * | ||
519 | * Since we hold cpuset_sem, once refresh_mems() is called, the | ||
520 | * test (current->cpuset_mems_generation != cs->mems_generation) | ||
521 | * in cpuset_update_current_mems_allowed() will remain false, | ||
522 | * until we drop cpuset_sem. Anyone else who would change our | ||
523 | * cpusets mems_generation needs to lock cpuset_sem first. | ||
524 | */ | ||
525 | |||
526 | static void refresh_mems(void) | ||
527 | { | ||
528 | struct cpuset *cs = current->cpuset; | ||
529 | |||
530 | if (current->cpuset_mems_generation != cs->mems_generation) { | ||
531 | guarantee_online_mems(cs, ¤t->mems_allowed); | ||
532 | current->cpuset_mems_generation = cs->mems_generation; | ||
533 | } | ||
534 | } | ||
535 | |||
536 | /* | ||
537 | * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? | ||
538 | * | ||
539 | * One cpuset is a subset of another if all its allowed CPUs and | ||
540 | * Memory Nodes are a subset of the other, and its exclusive flags | ||
541 | * are only set if the other's are set. | ||
542 | */ | ||
543 | |||
544 | static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) | ||
545 | { | ||
546 | return cpus_subset(p->cpus_allowed, q->cpus_allowed) && | ||
547 | nodes_subset(p->mems_allowed, q->mems_allowed) && | ||
548 | is_cpu_exclusive(p) <= is_cpu_exclusive(q) && | ||
549 | is_mem_exclusive(p) <= is_mem_exclusive(q); | ||
550 | } | ||
551 | |||
552 | /* | ||
553 | * validate_change() - Used to validate that any proposed cpuset change | ||
554 | * follows the structural rules for cpusets. | ||
555 | * | ||
556 | * If we replaced the flag and mask values of the current cpuset | ||
557 | * (cur) with those values in the trial cpuset (trial), would | ||
558 | * our various subset and exclusive rules still be valid? Presumes | ||
559 | * cpuset_sem held. | ||
560 | * | ||
561 | * 'cur' is the address of an actual, in-use cpuset. Operations | ||
562 | * such as list traversal that depend on the actual address of the | ||
563 | * cpuset in the list must use cur below, not trial. | ||
564 | * | ||
565 | * 'trial' is the address of bulk structure copy of cur, with | ||
566 | * perhaps one or more of the fields cpus_allowed, mems_allowed, | ||
567 | * or flags changed to new, trial values. | ||
568 | * | ||
569 | * Return 0 if valid, -errno if not. | ||
570 | */ | ||
571 | |||
572 | static int validate_change(const struct cpuset *cur, const struct cpuset *trial) | ||
573 | { | ||
574 | struct cpuset *c, *par; | ||
575 | |||
576 | /* Each of our child cpusets must be a subset of us */ | ||
577 | list_for_each_entry(c, &cur->children, sibling) { | ||
578 | if (!is_cpuset_subset(c, trial)) | ||
579 | return -EBUSY; | ||
580 | } | ||
581 | |||
582 | /* Remaining checks don't apply to root cpuset */ | ||
583 | if ((par = cur->parent) == NULL) | ||
584 | return 0; | ||
585 | |||
586 | /* We must be a subset of our parent cpuset */ | ||
587 | if (!is_cpuset_subset(trial, par)) | ||
588 | return -EACCES; | ||
589 | |||
590 | /* If either I or some sibling (!= me) is exclusive, we can't overlap */ | ||
591 | list_for_each_entry(c, &par->children, sibling) { | ||
592 | if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && | ||
593 | c != cur && | ||
594 | cpus_intersects(trial->cpus_allowed, c->cpus_allowed)) | ||
595 | return -EINVAL; | ||
596 | if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && | ||
597 | c != cur && | ||
598 | nodes_intersects(trial->mems_allowed, c->mems_allowed)) | ||
599 | return -EINVAL; | ||
600 | } | ||
601 | |||
602 | return 0; | ||
603 | } | ||
604 | |||
605 | static int update_cpumask(struct cpuset *cs, char *buf) | ||
606 | { | ||
607 | struct cpuset trialcs; | ||
608 | int retval; | ||
609 | |||
610 | trialcs = *cs; | ||
611 | retval = cpulist_parse(buf, trialcs.cpus_allowed); | ||
612 | if (retval < 0) | ||
613 | return retval; | ||
614 | cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map); | ||
615 | if (cpus_empty(trialcs.cpus_allowed)) | ||
616 | return -ENOSPC; | ||
617 | retval = validate_change(cs, &trialcs); | ||
618 | if (retval == 0) | ||
619 | cs->cpus_allowed = trialcs.cpus_allowed; | ||
620 | return retval; | ||
621 | } | ||
622 | |||
623 | static int update_nodemask(struct cpuset *cs, char *buf) | ||
624 | { | ||
625 | struct cpuset trialcs; | ||
626 | int retval; | ||
627 | |||
628 | trialcs = *cs; | ||
629 | retval = nodelist_parse(buf, trialcs.mems_allowed); | ||
630 | if (retval < 0) | ||
631 | return retval; | ||
632 | nodes_and(trialcs.mems_allowed, trialcs.mems_allowed, node_online_map); | ||
633 | if (nodes_empty(trialcs.mems_allowed)) | ||
634 | return -ENOSPC; | ||
635 | retval = validate_change(cs, &trialcs); | ||
636 | if (retval == 0) { | ||
637 | cs->mems_allowed = trialcs.mems_allowed; | ||
638 | atomic_inc(&cpuset_mems_generation); | ||
639 | cs->mems_generation = atomic_read(&cpuset_mems_generation); | ||
640 | } | ||
641 | return retval; | ||
642 | } | ||
643 | |||
644 | /* | ||
645 | * update_flag - read a 0 or a 1 in a file and update associated flag | ||
646 | * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE, | ||
647 | * CS_NOTIFY_ON_RELEASE) | ||
648 | * cs: the cpuset to update | ||
649 | * buf: the buffer where we read the 0 or 1 | ||
650 | */ | ||
651 | |||
652 | static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf) | ||
653 | { | ||
654 | int turning_on; | ||
655 | struct cpuset trialcs; | ||
656 | int err; | ||
657 | |||
658 | turning_on = (simple_strtoul(buf, NULL, 10) != 0); | ||
659 | |||
660 | trialcs = *cs; | ||
661 | if (turning_on) | ||
662 | set_bit(bit, &trialcs.flags); | ||
663 | else | ||
664 | clear_bit(bit, &trialcs.flags); | ||
665 | |||
666 | err = validate_change(cs, &trialcs); | ||
667 | if (err == 0) { | ||
668 | if (turning_on) | ||
669 | set_bit(bit, &cs->flags); | ||
670 | else | ||
671 | clear_bit(bit, &cs->flags); | ||
672 | } | ||
673 | return err; | ||
674 | } | ||
675 | |||
676 | static int attach_task(struct cpuset *cs, char *buf) | ||
677 | { | ||
678 | pid_t pid; | ||
679 | struct task_struct *tsk; | ||
680 | struct cpuset *oldcs; | ||
681 | cpumask_t cpus; | ||
682 | |||
683 | if (sscanf(buf, "%d", &pid) != 1) | ||
684 | return -EIO; | ||
685 | if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) | ||
686 | return -ENOSPC; | ||
687 | |||
688 | if (pid) { | ||
689 | read_lock(&tasklist_lock); | ||
690 | |||
691 | tsk = find_task_by_pid(pid); | ||
692 | if (!tsk) { | ||
693 | read_unlock(&tasklist_lock); | ||
694 | return -ESRCH; | ||
695 | } | ||
696 | |||
697 | get_task_struct(tsk); | ||
698 | read_unlock(&tasklist_lock); | ||
699 | |||
700 | if ((current->euid) && (current->euid != tsk->uid) | ||
701 | && (current->euid != tsk->suid)) { | ||
702 | put_task_struct(tsk); | ||
703 | return -EACCES; | ||
704 | } | ||
705 | } else { | ||
706 | tsk = current; | ||
707 | get_task_struct(tsk); | ||
708 | } | ||
709 | |||
710 | task_lock(tsk); | ||
711 | oldcs = tsk->cpuset; | ||
712 | if (!oldcs) { | ||
713 | task_unlock(tsk); | ||
714 | put_task_struct(tsk); | ||
715 | return -ESRCH; | ||
716 | } | ||
717 | atomic_inc(&cs->count); | ||
718 | tsk->cpuset = cs; | ||
719 | task_unlock(tsk); | ||
720 | |||
721 | guarantee_online_cpus(cs, &cpus); | ||
722 | set_cpus_allowed(tsk, cpus); | ||
723 | |||
724 | put_task_struct(tsk); | ||
725 | if (atomic_dec_and_test(&oldcs->count)) | ||
726 | check_for_release(oldcs); | ||
727 | return 0; | ||
728 | } | ||
729 | |||
730 | /* The various types of files and directories in a cpuset file system */ | ||
731 | |||
732 | typedef enum { | ||
733 | FILE_ROOT, | ||
734 | FILE_DIR, | ||
735 | FILE_CPULIST, | ||
736 | FILE_MEMLIST, | ||
737 | FILE_CPU_EXCLUSIVE, | ||
738 | FILE_MEM_EXCLUSIVE, | ||
739 | FILE_NOTIFY_ON_RELEASE, | ||
740 | FILE_TASKLIST, | ||
741 | } cpuset_filetype_t; | ||
742 | |||
743 | static ssize_t cpuset_common_file_write(struct file *file, const char __user *userbuf, | ||
744 | size_t nbytes, loff_t *unused_ppos) | ||
745 | { | ||
746 | struct cpuset *cs = __d_cs(file->f_dentry->d_parent); | ||
747 | struct cftype *cft = __d_cft(file->f_dentry); | ||
748 | cpuset_filetype_t type = cft->private; | ||
749 | char *buffer; | ||
750 | int retval = 0; | ||
751 | |||
752 | /* Crude upper limit on largest legitimate cpulist user might write. */ | ||
753 | if (nbytes > 100 + 6 * NR_CPUS) | ||
754 | return -E2BIG; | ||
755 | |||
756 | /* +1 for nul-terminator */ | ||
757 | if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0) | ||
758 | return -ENOMEM; | ||
759 | |||
760 | if (copy_from_user(buffer, userbuf, nbytes)) { | ||
761 | retval = -EFAULT; | ||
762 | goto out1; | ||
763 | } | ||
764 | buffer[nbytes] = 0; /* nul-terminate */ | ||
765 | |||
766 | down(&cpuset_sem); | ||
767 | |||
768 | if (is_removed(cs)) { | ||
769 | retval = -ENODEV; | ||
770 | goto out2; | ||
771 | } | ||
772 | |||
773 | switch (type) { | ||
774 | case FILE_CPULIST: | ||
775 | retval = update_cpumask(cs, buffer); | ||
776 | break; | ||
777 | case FILE_MEMLIST: | ||
778 | retval = update_nodemask(cs, buffer); | ||
779 | break; | ||
780 | case FILE_CPU_EXCLUSIVE: | ||
781 | retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer); | ||
782 | break; | ||
783 | case FILE_MEM_EXCLUSIVE: | ||
784 | retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer); | ||
785 | break; | ||
786 | case FILE_NOTIFY_ON_RELEASE: | ||
787 | retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer); | ||
788 | break; | ||
789 | case FILE_TASKLIST: | ||
790 | retval = attach_task(cs, buffer); | ||
791 | break; | ||
792 | default: | ||
793 | retval = -EINVAL; | ||
794 | goto out2; | ||
795 | } | ||
796 | |||
797 | if (retval == 0) | ||
798 | retval = nbytes; | ||
799 | out2: | ||
800 | up(&cpuset_sem); | ||
801 | out1: | ||
802 | kfree(buffer); | ||
803 | return retval; | ||
804 | } | ||
805 | |||
806 | static ssize_t cpuset_file_write(struct file *file, const char __user *buf, | ||
807 | size_t nbytes, loff_t *ppos) | ||
808 | { | ||
809 | ssize_t retval = 0; | ||
810 | struct cftype *cft = __d_cft(file->f_dentry); | ||
811 | if (!cft) | ||
812 | return -ENODEV; | ||
813 | |||
814 | /* special function ? */ | ||
815 | if (cft->write) | ||
816 | retval = cft->write(file, buf, nbytes, ppos); | ||
817 | else | ||
818 | retval = cpuset_common_file_write(file, buf, nbytes, ppos); | ||
819 | |||
820 | return retval; | ||
821 | } | ||
822 | |||
823 | /* | ||
824 | * These ascii lists should be read in a single call, by using a user | ||
825 | * buffer large enough to hold the entire map. If read in smaller | ||
826 | * chunks, there is no guarantee of atomicity. Since the display format | ||
827 | * used, list of ranges of sequential numbers, is variable length, | ||
828 | * and since these maps can change value dynamically, one could read | ||
829 | * gibberish by doing partial reads while a list was changing. | ||
830 | * A single large read to a buffer that crosses a page boundary is | ||
831 | * ok, because the result being copied to user land is not recomputed | ||
832 | * across a page fault. | ||
833 | */ | ||
834 | |||
835 | static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs) | ||
836 | { | ||
837 | cpumask_t mask; | ||
838 | |||
839 | down(&cpuset_sem); | ||
840 | mask = cs->cpus_allowed; | ||
841 | up(&cpuset_sem); | ||
842 | |||
843 | return cpulist_scnprintf(page, PAGE_SIZE, mask); | ||
844 | } | ||
845 | |||
846 | static int cpuset_sprintf_memlist(char *page, struct cpuset *cs) | ||
847 | { | ||
848 | nodemask_t mask; | ||
849 | |||
850 | down(&cpuset_sem); | ||
851 | mask = cs->mems_allowed; | ||
852 | up(&cpuset_sem); | ||
853 | |||
854 | return nodelist_scnprintf(page, PAGE_SIZE, mask); | ||
855 | } | ||
856 | |||
857 | static ssize_t cpuset_common_file_read(struct file *file, char __user *buf, | ||
858 | size_t nbytes, loff_t *ppos) | ||
859 | { | ||
860 | struct cftype *cft = __d_cft(file->f_dentry); | ||
861 | struct cpuset *cs = __d_cs(file->f_dentry->d_parent); | ||
862 | cpuset_filetype_t type = cft->private; | ||
863 | char *page; | ||
864 | ssize_t retval = 0; | ||
865 | char *s; | ||
866 | char *start; | ||
867 | size_t n; | ||
868 | |||
869 | if (!(page = (char *)__get_free_page(GFP_KERNEL))) | ||
870 | return -ENOMEM; | ||
871 | |||
872 | s = page; | ||
873 | |||
874 | switch (type) { | ||
875 | case FILE_CPULIST: | ||
876 | s += cpuset_sprintf_cpulist(s, cs); | ||
877 | break; | ||
878 | case FILE_MEMLIST: | ||
879 | s += cpuset_sprintf_memlist(s, cs); | ||
880 | break; | ||
881 | case FILE_CPU_EXCLUSIVE: | ||
882 | *s++ = is_cpu_exclusive(cs) ? '1' : '0'; | ||
883 | break; | ||
884 | case FILE_MEM_EXCLUSIVE: | ||
885 | *s++ = is_mem_exclusive(cs) ? '1' : '0'; | ||
886 | break; | ||
887 | case FILE_NOTIFY_ON_RELEASE: | ||
888 | *s++ = notify_on_release(cs) ? '1' : '0'; | ||
889 | break; | ||
890 | default: | ||
891 | retval = -EINVAL; | ||
892 | goto out; | ||
893 | } | ||
894 | *s++ = '\n'; | ||
895 | *s = '\0'; | ||
896 | |||
897 | start = page + *ppos; | ||
898 | n = s - start; | ||
899 | retval = n - copy_to_user(buf, start, min(n, nbytes)); | ||
900 | *ppos += retval; | ||
901 | out: | ||
902 | free_page((unsigned long)page); | ||
903 | return retval; | ||
904 | } | ||
905 | |||
906 | static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes, | ||
907 | loff_t *ppos) | ||
908 | { | ||
909 | ssize_t retval = 0; | ||
910 | struct cftype *cft = __d_cft(file->f_dentry); | ||
911 | if (!cft) | ||
912 | return -ENODEV; | ||
913 | |||
914 | /* special function ? */ | ||
915 | if (cft->read) | ||
916 | retval = cft->read(file, buf, nbytes, ppos); | ||
917 | else | ||
918 | retval = cpuset_common_file_read(file, buf, nbytes, ppos); | ||
919 | |||
920 | return retval; | ||
921 | } | ||
922 | |||
923 | static int cpuset_file_open(struct inode *inode, struct file *file) | ||
924 | { | ||
925 | int err; | ||
926 | struct cftype *cft; | ||
927 | |||
928 | err = generic_file_open(inode, file); | ||
929 | if (err) | ||
930 | return err; | ||
931 | |||
932 | cft = __d_cft(file->f_dentry); | ||
933 | if (!cft) | ||
934 | return -ENODEV; | ||
935 | if (cft->open) | ||
936 | err = cft->open(inode, file); | ||
937 | else | ||
938 | err = 0; | ||
939 | |||
940 | return err; | ||
941 | } | ||
942 | |||
943 | static int cpuset_file_release(struct inode *inode, struct file *file) | ||
944 | { | ||
945 | struct cftype *cft = __d_cft(file->f_dentry); | ||
946 | if (cft->release) | ||
947 | return cft->release(inode, file); | ||
948 | return 0; | ||
949 | } | ||
950 | |||
951 | static struct file_operations cpuset_file_operations = { | ||
952 | .read = cpuset_file_read, | ||
953 | .write = cpuset_file_write, | ||
954 | .llseek = generic_file_llseek, | ||
955 | .open = cpuset_file_open, | ||
956 | .release = cpuset_file_release, | ||
957 | }; | ||
958 | |||
959 | static struct inode_operations cpuset_dir_inode_operations = { | ||
960 | .lookup = simple_lookup, | ||
961 | .mkdir = cpuset_mkdir, | ||
962 | .rmdir = cpuset_rmdir, | ||
963 | }; | ||
964 | |||
965 | static int cpuset_create_file(struct dentry *dentry, int mode) | ||
966 | { | ||
967 | struct inode *inode; | ||
968 | |||
969 | if (!dentry) | ||
970 | return -ENOENT; | ||
971 | if (dentry->d_inode) | ||
972 | return -EEXIST; | ||
973 | |||
974 | inode = cpuset_new_inode(mode); | ||
975 | if (!inode) | ||
976 | return -ENOMEM; | ||
977 | |||
978 | if (S_ISDIR(mode)) { | ||
979 | inode->i_op = &cpuset_dir_inode_operations; | ||
980 | inode->i_fop = &simple_dir_operations; | ||
981 | |||
982 | /* start off with i_nlink == 2 (for "." entry) */ | ||
983 | inode->i_nlink++; | ||
984 | } else if (S_ISREG(mode)) { | ||
985 | inode->i_size = 0; | ||
986 | inode->i_fop = &cpuset_file_operations; | ||
987 | } | ||
988 | |||
989 | d_instantiate(dentry, inode); | ||
990 | dget(dentry); /* Extra count - pin the dentry in core */ | ||
991 | return 0; | ||
992 | } | ||
993 | |||
994 | /* | ||
995 | * cpuset_create_dir - create a directory for an object. | ||
996 | * cs: the cpuset we create the directory for. | ||
997 | * It must have a valid ->parent field | ||
998 | * And we are going to fill its ->dentry field. | ||
999 | * name: The name to give to the cpuset directory. Will be copied. | ||
1000 | * mode: mode to set on new directory. | ||
1001 | */ | ||
1002 | |||
1003 | static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode) | ||
1004 | { | ||
1005 | struct dentry *dentry = NULL; | ||
1006 | struct dentry *parent; | ||
1007 | int error = 0; | ||
1008 | |||
1009 | parent = cs->parent->dentry; | ||
1010 | dentry = cpuset_get_dentry(parent, name); | ||
1011 | if (IS_ERR(dentry)) | ||
1012 | return PTR_ERR(dentry); | ||
1013 | error = cpuset_create_file(dentry, S_IFDIR | mode); | ||
1014 | if (!error) { | ||
1015 | dentry->d_fsdata = cs; | ||
1016 | parent->d_inode->i_nlink++; | ||
1017 | cs->dentry = dentry; | ||
1018 | } | ||
1019 | dput(dentry); | ||
1020 | |||
1021 | return error; | ||
1022 | } | ||
1023 | |||
1024 | static int cpuset_add_file(struct dentry *dir, const struct cftype *cft) | ||
1025 | { | ||
1026 | struct dentry *dentry; | ||
1027 | int error; | ||
1028 | |||
1029 | down(&dir->d_inode->i_sem); | ||
1030 | dentry = cpuset_get_dentry(dir, cft->name); | ||
1031 | if (!IS_ERR(dentry)) { | ||
1032 | error = cpuset_create_file(dentry, 0644 | S_IFREG); | ||
1033 | if (!error) | ||
1034 | dentry->d_fsdata = (void *)cft; | ||
1035 | dput(dentry); | ||
1036 | } else | ||
1037 | error = PTR_ERR(dentry); | ||
1038 | up(&dir->d_inode->i_sem); | ||
1039 | return error; | ||
1040 | } | ||
1041 | |||
1042 | /* | ||
1043 | * Stuff for reading the 'tasks' file. | ||
1044 | * | ||
1045 | * Reading this file can return large amounts of data if a cpuset has | ||
1046 | * *lots* of attached tasks. So it may need several calls to read(), | ||
1047 | * but we cannot guarantee that the information we produce is correct | ||
1048 | * unless we produce it entirely atomically. | ||
1049 | * | ||
1050 | * Upon tasks file open(), a struct ctr_struct is allocated, that | ||
1051 | * will have a pointer to an array (also allocated here). The struct | ||
1052 | * ctr_struct * is stored in file->private_data. Its resources will | ||
1053 | * be freed by release() when the file is closed. The array is used | ||
1054 | * to sprintf the PIDs and then used by read(). | ||
1055 | */ | ||
1056 | |||
1057 | /* cpusets_tasks_read array */ | ||
1058 | |||
1059 | struct ctr_struct { | ||
1060 | char *buf; | ||
1061 | int bufsz; | ||
1062 | }; | ||
1063 | |||
1064 | /* | ||
1065 | * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'. | ||
1066 | * Return actual number of pids loaded. | ||
1067 | */ | ||
1068 | static inline int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs) | ||
1069 | { | ||
1070 | int n = 0; | ||
1071 | struct task_struct *g, *p; | ||
1072 | |||
1073 | read_lock(&tasklist_lock); | ||
1074 | |||
1075 | do_each_thread(g, p) { | ||
1076 | if (p->cpuset == cs) { | ||
1077 | pidarray[n++] = p->pid; | ||
1078 | if (unlikely(n == npids)) | ||
1079 | goto array_full; | ||
1080 | } | ||
1081 | } while_each_thread(g, p); | ||
1082 | |||
1083 | array_full: | ||
1084 | read_unlock(&tasklist_lock); | ||
1085 | return n; | ||
1086 | } | ||
1087 | |||
1088 | static int cmppid(const void *a, const void *b) | ||
1089 | { | ||
1090 | return *(pid_t *)a - *(pid_t *)b; | ||
1091 | } | ||
1092 | |||
1093 | /* | ||
1094 | * Convert array 'a' of 'npids' pid_t's to a string of newline separated | ||
1095 | * decimal pids in 'buf'. Don't write more than 'sz' chars, but return | ||
1096 | * count 'cnt' of how many chars would be written if buf were large enough. | ||
1097 | */ | ||
1098 | static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids) | ||
1099 | { | ||
1100 | int cnt = 0; | ||
1101 | int i; | ||
1102 | |||
1103 | for (i = 0; i < npids; i++) | ||
1104 | cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]); | ||
1105 | return cnt; | ||
1106 | } | ||
1107 | |||
1108 | static int cpuset_tasks_open(struct inode *unused, struct file *file) | ||
1109 | { | ||
1110 | struct cpuset *cs = __d_cs(file->f_dentry->d_parent); | ||
1111 | struct ctr_struct *ctr; | ||
1112 | pid_t *pidarray; | ||
1113 | int npids; | ||
1114 | char c; | ||
1115 | |||
1116 | if (!(file->f_mode & FMODE_READ)) | ||
1117 | return 0; | ||
1118 | |||
1119 | ctr = kmalloc(sizeof(*ctr), GFP_KERNEL); | ||
1120 | if (!ctr) | ||
1121 | goto err0; | ||
1122 | |||
1123 | /* | ||
1124 | * If cpuset gets more users after we read count, we won't have | ||
1125 | * enough space - tough. This race is indistinguishable to the | ||
1126 | * caller from the case that the additional cpuset users didn't | ||
1127 | * show up until sometime later on. | ||
1128 | */ | ||
1129 | npids = atomic_read(&cs->count); | ||
1130 | pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL); | ||
1131 | if (!pidarray) | ||
1132 | goto err1; | ||
1133 | |||
1134 | npids = pid_array_load(pidarray, npids, cs); | ||
1135 | sort(pidarray, npids, sizeof(pid_t), cmppid, NULL); | ||
1136 | |||
1137 | /* Call pid_array_to_buf() twice, first just to get bufsz */ | ||
1138 | ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1; | ||
1139 | ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL); | ||
1140 | if (!ctr->buf) | ||
1141 | goto err2; | ||
1142 | ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids); | ||
1143 | |||
1144 | kfree(pidarray); | ||
1145 | file->private_data = ctr; | ||
1146 | return 0; | ||
1147 | |||
1148 | err2: | ||
1149 | kfree(pidarray); | ||
1150 | err1: | ||
1151 | kfree(ctr); | ||
1152 | err0: | ||
1153 | return -ENOMEM; | ||
1154 | } | ||
1155 | |||
1156 | static ssize_t cpuset_tasks_read(struct file *file, char __user *buf, | ||
1157 | size_t nbytes, loff_t *ppos) | ||
1158 | { | ||
1159 | struct ctr_struct *ctr = file->private_data; | ||
1160 | |||
1161 | if (*ppos + nbytes > ctr->bufsz) | ||
1162 | nbytes = ctr->bufsz - *ppos; | ||
1163 | if (copy_to_user(buf, ctr->buf + *ppos, nbytes)) | ||
1164 | return -EFAULT; | ||
1165 | *ppos += nbytes; | ||
1166 | return nbytes; | ||
1167 | } | ||
1168 | |||
1169 | static int cpuset_tasks_release(struct inode *unused_inode, struct file *file) | ||
1170 | { | ||
1171 | struct ctr_struct *ctr; | ||
1172 | |||
1173 | if (file->f_mode & FMODE_READ) { | ||
1174 | ctr = file->private_data; | ||
1175 | kfree(ctr->buf); | ||
1176 | kfree(ctr); | ||
1177 | } | ||
1178 | return 0; | ||
1179 | } | ||
1180 | |||
1181 | /* | ||
1182 | * for the common functions, 'private' gives the type of file | ||
1183 | */ | ||
1184 | |||
1185 | static struct cftype cft_tasks = { | ||
1186 | .name = "tasks", | ||
1187 | .open = cpuset_tasks_open, | ||
1188 | .read = cpuset_tasks_read, | ||
1189 | .release = cpuset_tasks_release, | ||
1190 | .private = FILE_TASKLIST, | ||
1191 | }; | ||
1192 | |||
1193 | static struct cftype cft_cpus = { | ||
1194 | .name = "cpus", | ||
1195 | .private = FILE_CPULIST, | ||
1196 | }; | ||
1197 | |||
1198 | static struct cftype cft_mems = { | ||
1199 | .name = "mems", | ||
1200 | .private = FILE_MEMLIST, | ||
1201 | }; | ||
1202 | |||
1203 | static struct cftype cft_cpu_exclusive = { | ||
1204 | .name = "cpu_exclusive", | ||
1205 | .private = FILE_CPU_EXCLUSIVE, | ||
1206 | }; | ||
1207 | |||
1208 | static struct cftype cft_mem_exclusive = { | ||
1209 | .name = "mem_exclusive", | ||
1210 | .private = FILE_MEM_EXCLUSIVE, | ||
1211 | }; | ||
1212 | |||
1213 | static struct cftype cft_notify_on_release = { | ||
1214 | .name = "notify_on_release", | ||
1215 | .private = FILE_NOTIFY_ON_RELEASE, | ||
1216 | }; | ||
1217 | |||
1218 | static int cpuset_populate_dir(struct dentry *cs_dentry) | ||
1219 | { | ||
1220 | int err; | ||
1221 | |||
1222 | if ((err = cpuset_add_file(cs_dentry, &cft_cpus)) < 0) | ||
1223 | return err; | ||
1224 | if ((err = cpuset_add_file(cs_dentry, &cft_mems)) < 0) | ||
1225 | return err; | ||
1226 | if ((err = cpuset_add_file(cs_dentry, &cft_cpu_exclusive)) < 0) | ||
1227 | return err; | ||
1228 | if ((err = cpuset_add_file(cs_dentry, &cft_mem_exclusive)) < 0) | ||
1229 | return err; | ||
1230 | if ((err = cpuset_add_file(cs_dentry, &cft_notify_on_release)) < 0) | ||
1231 | return err; | ||
1232 | if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0) | ||
1233 | return err; | ||
1234 | return 0; | ||
1235 | } | ||
1236 | |||
1237 | /* | ||
1238 | * cpuset_create - create a cpuset | ||
1239 | * parent: cpuset that will be parent of the new cpuset. | ||
1240 | * name: name of the new cpuset. Will be strcpy'ed. | ||
1241 | * mode: mode to set on new inode | ||
1242 | * | ||
1243 | * Must be called with the semaphore on the parent inode held | ||
1244 | */ | ||
1245 | |||
1246 | static long cpuset_create(struct cpuset *parent, const char *name, int mode) | ||
1247 | { | ||
1248 | struct cpuset *cs; | ||
1249 | int err; | ||
1250 | |||
1251 | cs = kmalloc(sizeof(*cs), GFP_KERNEL); | ||
1252 | if (!cs) | ||
1253 | return -ENOMEM; | ||
1254 | |||
1255 | down(&cpuset_sem); | ||
1256 | refresh_mems(); | ||
1257 | cs->flags = 0; | ||
1258 | if (notify_on_release(parent)) | ||
1259 | set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags); | ||
1260 | cs->cpus_allowed = CPU_MASK_NONE; | ||
1261 | cs->mems_allowed = NODE_MASK_NONE; | ||
1262 | atomic_set(&cs->count, 0); | ||
1263 | INIT_LIST_HEAD(&cs->sibling); | ||
1264 | INIT_LIST_HEAD(&cs->children); | ||
1265 | atomic_inc(&cpuset_mems_generation); | ||
1266 | cs->mems_generation = atomic_read(&cpuset_mems_generation); | ||
1267 | |||
1268 | cs->parent = parent; | ||
1269 | |||
1270 | list_add(&cs->sibling, &cs->parent->children); | ||
1271 | |||
1272 | err = cpuset_create_dir(cs, name, mode); | ||
1273 | if (err < 0) | ||
1274 | goto err; | ||
1275 | |||
1276 | /* | ||
1277 | * Release cpuset_sem before cpuset_populate_dir() because it | ||
1278 | * will down() this new directory's i_sem and if we race with | ||
1279 | * another mkdir, we might deadlock. | ||
1280 | */ | ||
1281 | up(&cpuset_sem); | ||
1282 | |||
1283 | err = cpuset_populate_dir(cs->dentry); | ||
1284 | /* If err < 0, we have a half-filled directory - oh well ;) */ | ||
1285 | return 0; | ||
1286 | err: | ||
1287 | list_del(&cs->sibling); | ||
1288 | up(&cpuset_sem); | ||
1289 | kfree(cs); | ||
1290 | return err; | ||
1291 | } | ||
1292 | |||
1293 | static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode) | ||
1294 | { | ||
1295 | struct cpuset *c_parent = dentry->d_parent->d_fsdata; | ||
1296 | |||
1297 | /* the vfs holds inode->i_sem already */ | ||
1298 | return cpuset_create(c_parent, dentry->d_name.name, mode | S_IFDIR); | ||
1299 | } | ||
1300 | |||
1301 | static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry) | ||
1302 | { | ||
1303 | struct cpuset *cs = dentry->d_fsdata; | ||
1304 | struct dentry *d; | ||
1305 | struct cpuset *parent; | ||
1306 | |||
1307 | /* the vfs holds both inode->i_sem already */ | ||
1308 | |||
1309 | down(&cpuset_sem); | ||
1310 | refresh_mems(); | ||
1311 | if (atomic_read(&cs->count) > 0) { | ||
1312 | up(&cpuset_sem); | ||
1313 | return -EBUSY; | ||
1314 | } | ||
1315 | if (!list_empty(&cs->children)) { | ||
1316 | up(&cpuset_sem); | ||
1317 | return -EBUSY; | ||
1318 | } | ||
1319 | spin_lock(&cs->dentry->d_lock); | ||
1320 | parent = cs->parent; | ||
1321 | set_bit(CS_REMOVED, &cs->flags); | ||
1322 | list_del(&cs->sibling); /* delete my sibling from parent->children */ | ||
1323 | if (list_empty(&parent->children)) | ||
1324 | check_for_release(parent); | ||
1325 | d = dget(cs->dentry); | ||
1326 | cs->dentry = NULL; | ||
1327 | spin_unlock(&d->d_lock); | ||
1328 | cpuset_d_remove_dir(d); | ||
1329 | dput(d); | ||
1330 | up(&cpuset_sem); | ||
1331 | return 0; | ||
1332 | } | ||
1333 | |||
1334 | /** | ||
1335 | * cpuset_init - initialize cpusets at system boot | ||
1336 | * | ||
1337 | * Description: Initialize top_cpuset and the cpuset internal file system, | ||
1338 | **/ | ||
1339 | |||
1340 | int __init cpuset_init(void) | ||
1341 | { | ||
1342 | struct dentry *root; | ||
1343 | int err; | ||
1344 | |||
1345 | top_cpuset.cpus_allowed = CPU_MASK_ALL; | ||
1346 | top_cpuset.mems_allowed = NODE_MASK_ALL; | ||
1347 | |||
1348 | atomic_inc(&cpuset_mems_generation); | ||
1349 | top_cpuset.mems_generation = atomic_read(&cpuset_mems_generation); | ||
1350 | |||
1351 | init_task.cpuset = &top_cpuset; | ||
1352 | |||
1353 | err = register_filesystem(&cpuset_fs_type); | ||
1354 | if (err < 0) | ||
1355 | goto out; | ||
1356 | cpuset_mount = kern_mount(&cpuset_fs_type); | ||
1357 | if (IS_ERR(cpuset_mount)) { | ||
1358 | printk(KERN_ERR "cpuset: could not mount!\n"); | ||
1359 | err = PTR_ERR(cpuset_mount); | ||
1360 | cpuset_mount = NULL; | ||
1361 | goto out; | ||
1362 | } | ||
1363 | root = cpuset_mount->mnt_sb->s_root; | ||
1364 | root->d_fsdata = &top_cpuset; | ||
1365 | root->d_inode->i_nlink++; | ||
1366 | top_cpuset.dentry = root; | ||
1367 | root->d_inode->i_op = &cpuset_dir_inode_operations; | ||
1368 | err = cpuset_populate_dir(root); | ||
1369 | out: | ||
1370 | return err; | ||
1371 | } | ||
1372 | |||
1373 | /** | ||
1374 | * cpuset_init_smp - initialize cpus_allowed | ||
1375 | * | ||
1376 | * Description: Finish top cpuset after cpu, node maps are initialized | ||
1377 | **/ | ||
1378 | |||
1379 | void __init cpuset_init_smp(void) | ||
1380 | { | ||
1381 | top_cpuset.cpus_allowed = cpu_online_map; | ||
1382 | top_cpuset.mems_allowed = node_online_map; | ||
1383 | } | ||
1384 | |||
1385 | /** | ||
1386 | * cpuset_fork - attach newly forked task to its parents cpuset. | ||
1387 | * @p: pointer to task_struct of forking parent process. | ||
1388 | * | ||
1389 | * Description: By default, on fork, a task inherits its | ||
1390 | * parents cpuset. The pointer to the shared cpuset is | ||
1391 | * automatically copied in fork.c by dup_task_struct(). | ||
1392 | * This cpuset_fork() routine need only increment the usage | ||
1393 | * counter in that cpuset. | ||
1394 | **/ | ||
1395 | |||
1396 | void cpuset_fork(struct task_struct *tsk) | ||
1397 | { | ||
1398 | atomic_inc(&tsk->cpuset->count); | ||
1399 | } | ||
1400 | |||
1401 | /** | ||
1402 | * cpuset_exit - detach cpuset from exiting task | ||
1403 | * @tsk: pointer to task_struct of exiting process | ||
1404 | * | ||
1405 | * Description: Detach cpuset from @tsk and release it. | ||
1406 | * | ||
1407 | **/ | ||
1408 | |||
1409 | void cpuset_exit(struct task_struct *tsk) | ||
1410 | { | ||
1411 | struct cpuset *cs; | ||
1412 | |||
1413 | task_lock(tsk); | ||
1414 | cs = tsk->cpuset; | ||
1415 | tsk->cpuset = NULL; | ||
1416 | task_unlock(tsk); | ||
1417 | |||
1418 | if (atomic_dec_and_test(&cs->count)) { | ||
1419 | down(&cpuset_sem); | ||
1420 | check_for_release(cs); | ||
1421 | up(&cpuset_sem); | ||
1422 | } | ||
1423 | } | ||
1424 | |||
1425 | /** | ||
1426 | * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. | ||
1427 | * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. | ||
1428 | * | ||
1429 | * Description: Returns the cpumask_t cpus_allowed of the cpuset | ||
1430 | * attached to the specified @tsk. Guaranteed to return some non-empty | ||
1431 | * subset of cpu_online_map, even if this means going outside the | ||
1432 | * tasks cpuset. | ||
1433 | **/ | ||
1434 | |||
1435 | const cpumask_t cpuset_cpus_allowed(const struct task_struct *tsk) | ||
1436 | { | ||
1437 | cpumask_t mask; | ||
1438 | |||
1439 | down(&cpuset_sem); | ||
1440 | task_lock((struct task_struct *)tsk); | ||
1441 | guarantee_online_cpus(tsk->cpuset, &mask); | ||
1442 | task_unlock((struct task_struct *)tsk); | ||
1443 | up(&cpuset_sem); | ||
1444 | |||
1445 | return mask; | ||
1446 | } | ||
1447 | |||
1448 | void cpuset_init_current_mems_allowed(void) | ||
1449 | { | ||
1450 | current->mems_allowed = NODE_MASK_ALL; | ||
1451 | } | ||
1452 | |||
1453 | /* | ||
1454 | * If the current tasks cpusets mems_allowed changed behind our backs, | ||
1455 | * update current->mems_allowed and mems_generation to the new value. | ||
1456 | * Do not call this routine if in_interrupt(). | ||
1457 | */ | ||
1458 | |||
1459 | void cpuset_update_current_mems_allowed(void) | ||
1460 | { | ||
1461 | struct cpuset *cs = current->cpuset; | ||
1462 | |||
1463 | if (!cs) | ||
1464 | return; /* task is exiting */ | ||
1465 | if (current->cpuset_mems_generation != cs->mems_generation) { | ||
1466 | down(&cpuset_sem); | ||
1467 | refresh_mems(); | ||
1468 | up(&cpuset_sem); | ||
1469 | } | ||
1470 | } | ||
1471 | |||
1472 | void cpuset_restrict_to_mems_allowed(unsigned long *nodes) | ||
1473 | { | ||
1474 | bitmap_and(nodes, nodes, nodes_addr(current->mems_allowed), | ||
1475 | MAX_NUMNODES); | ||
1476 | } | ||
1477 | |||
1478 | /* | ||
1479 | * Are any of the nodes on zonelist zl allowed in current->mems_allowed? | ||
1480 | */ | ||
1481 | int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl) | ||
1482 | { | ||
1483 | int i; | ||
1484 | |||
1485 | for (i = 0; zl->zones[i]; i++) { | ||
1486 | int nid = zl->zones[i]->zone_pgdat->node_id; | ||
1487 | |||
1488 | if (node_isset(nid, current->mems_allowed)) | ||
1489 | return 1; | ||
1490 | } | ||
1491 | return 0; | ||
1492 | } | ||
1493 | |||
1494 | /* | ||
1495 | * Is 'current' valid, and is zone z allowed in current->mems_allowed? | ||
1496 | */ | ||
1497 | int cpuset_zone_allowed(struct zone *z) | ||
1498 | { | ||
1499 | return in_interrupt() || | ||
1500 | node_isset(z->zone_pgdat->node_id, current->mems_allowed); | ||
1501 | } | ||
1502 | |||
1503 | /* | ||
1504 | * proc_cpuset_show() | ||
1505 | * - Print tasks cpuset path into seq_file. | ||
1506 | * - Used for /proc/<pid>/cpuset. | ||
1507 | */ | ||
1508 | |||
1509 | static int proc_cpuset_show(struct seq_file *m, void *v) | ||
1510 | { | ||
1511 | struct cpuset *cs; | ||
1512 | struct task_struct *tsk; | ||
1513 | char *buf; | ||
1514 | int retval = 0; | ||
1515 | |||
1516 | buf = kmalloc(PAGE_SIZE, GFP_KERNEL); | ||
1517 | if (!buf) | ||
1518 | return -ENOMEM; | ||
1519 | |||
1520 | tsk = m->private; | ||
1521 | down(&cpuset_sem); | ||
1522 | task_lock(tsk); | ||
1523 | cs = tsk->cpuset; | ||
1524 | task_unlock(tsk); | ||
1525 | if (!cs) { | ||
1526 | retval = -EINVAL; | ||
1527 | goto out; | ||
1528 | } | ||
1529 | |||
1530 | retval = cpuset_path(cs, buf, PAGE_SIZE); | ||
1531 | if (retval < 0) | ||
1532 | goto out; | ||
1533 | seq_puts(m, buf); | ||
1534 | seq_putc(m, '\n'); | ||
1535 | out: | ||
1536 | up(&cpuset_sem); | ||
1537 | kfree(buf); | ||
1538 | return retval; | ||
1539 | } | ||
1540 | |||
1541 | static int cpuset_open(struct inode *inode, struct file *file) | ||
1542 | { | ||
1543 | struct task_struct *tsk = PROC_I(inode)->task; | ||
1544 | return single_open(file, proc_cpuset_show, tsk); | ||
1545 | } | ||
1546 | |||
1547 | struct file_operations proc_cpuset_operations = { | ||
1548 | .open = cpuset_open, | ||
1549 | .read = seq_read, | ||
1550 | .llseek = seq_lseek, | ||
1551 | .release = single_release, | ||
1552 | }; | ||
1553 | |||
1554 | /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */ | ||
1555 | char *cpuset_task_status_allowed(struct task_struct *task, char *buffer) | ||
1556 | { | ||
1557 | buffer += sprintf(buffer, "Cpus_allowed:\t"); | ||
1558 | buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed); | ||
1559 | buffer += sprintf(buffer, "\n"); | ||
1560 | buffer += sprintf(buffer, "Mems_allowed:\t"); | ||
1561 | buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed); | ||
1562 | buffer += sprintf(buffer, "\n"); | ||
1563 | return buffer; | ||
1564 | } | ||