aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/cpuset.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/cpuset.c')
-rw-r--r--kernel/cpuset.c1188
1 files changed, 212 insertions, 976 deletions
diff --git a/kernel/cpuset.c b/kernel/cpuset.c
index a40a2c4384b3..1133062395e2 100644
--- a/kernel/cpuset.c
+++ b/kernel/cpuset.c
@@ -5,6 +5,7 @@
5 * 5 *
6 * Copyright (C) 2003 BULL SA. 6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 7 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
8 * 9 *
9 * Portions derived from Patrick Mochel's sysfs code. 10 * Portions derived from Patrick Mochel's sysfs code.
10 * sysfs is Copyright (c) 2001-3 Patrick Mochel 11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
@@ -12,6 +13,7 @@
12 * 2003-10-10 Written by Simon Derr. 13 * 2003-10-10 Written by Simon Derr.
13 * 2003-10-22 Updates by Stephen Hemminger. 14 * 2003-10-22 Updates by Stephen Hemminger.
14 * 2004 May-July Rework by Paul Jackson. 15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
15 * 17 *
16 * This file is subject to the terms and conditions of the GNU General Public 18 * This file is subject to the terms and conditions of the GNU General Public
17 * License. See the file COPYING in the main directory of the Linux 19 * License. See the file COPYING in the main directory of the Linux
@@ -53,8 +55,6 @@
53#include <asm/atomic.h> 55#include <asm/atomic.h>
54#include <linux/mutex.h> 56#include <linux/mutex.h>
55 57
56#define CPUSET_SUPER_MAGIC 0x27e0eb
57
58/* 58/*
59 * Tracks how many cpusets are currently defined in system. 59 * Tracks how many cpusets are currently defined in system.
60 * When there is only one cpuset (the root cpuset) we can 60 * When there is only one cpuset (the root cpuset) we can
@@ -62,6 +62,10 @@
62 */ 62 */
63int number_of_cpusets __read_mostly; 63int number_of_cpusets __read_mostly;
64 64
65/* Retrieve the cpuset from a cgroup */
66struct cgroup_subsys cpuset_subsys;
67struct cpuset;
68
65/* See "Frequency meter" comments, below. */ 69/* See "Frequency meter" comments, below. */
66 70
67struct fmeter { 71struct fmeter {
@@ -72,24 +76,13 @@ struct fmeter {
72}; 76};
73 77
74struct cpuset { 78struct cpuset {
79 struct cgroup_subsys_state css;
80
75 unsigned long flags; /* "unsigned long" so bitops work */ 81 unsigned long flags; /* "unsigned long" so bitops work */
76 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */ 82 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
77 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */ 83 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
78 84
79 /*
80 * Count is atomic so can incr (fork) or decr (exit) without a lock.
81 */
82 atomic_t count; /* count tasks using this cpuset */
83
84 /*
85 * We link our 'sibling' struct into our parents 'children'.
86 * Our children link their 'sibling' into our 'children'.
87 */
88 struct list_head sibling; /* my parents children */
89 struct list_head children; /* my children */
90
91 struct cpuset *parent; /* my parent */ 85 struct cpuset *parent; /* my parent */
92 struct dentry *dentry; /* cpuset fs entry */
93 86
94 /* 87 /*
95 * Copy of global cpuset_mems_generation as of the most 88 * Copy of global cpuset_mems_generation as of the most
@@ -100,13 +93,26 @@ struct cpuset {
100 struct fmeter fmeter; /* memory_pressure filter */ 93 struct fmeter fmeter; /* memory_pressure filter */
101}; 94};
102 95
96/* Retrieve the cpuset for a cgroup */
97static inline struct cpuset *cgroup_cs(struct cgroup *cont)
98{
99 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
100 struct cpuset, css);
101}
102
103/* Retrieve the cpuset for a task */
104static inline struct cpuset *task_cs(struct task_struct *task)
105{
106 return container_of(task_subsys_state(task, cpuset_subsys_id),
107 struct cpuset, css);
108}
109
110
103/* bits in struct cpuset flags field */ 111/* bits in struct cpuset flags field */
104typedef enum { 112typedef enum {
105 CS_CPU_EXCLUSIVE, 113 CS_CPU_EXCLUSIVE,
106 CS_MEM_EXCLUSIVE, 114 CS_MEM_EXCLUSIVE,
107 CS_MEMORY_MIGRATE, 115 CS_MEMORY_MIGRATE,
108 CS_REMOVED,
109 CS_NOTIFY_ON_RELEASE,
110 CS_SPREAD_PAGE, 116 CS_SPREAD_PAGE,
111 CS_SPREAD_SLAB, 117 CS_SPREAD_SLAB,
112} cpuset_flagbits_t; 118} cpuset_flagbits_t;
@@ -122,16 +128,6 @@ static inline int is_mem_exclusive(const struct cpuset *cs)
122 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); 128 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
123} 129}
124 130
125static inline int is_removed(const struct cpuset *cs)
126{
127 return test_bit(CS_REMOVED, &cs->flags);
128}
129
130static inline int notify_on_release(const struct cpuset *cs)
131{
132 return test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
133}
134
135static inline int is_memory_migrate(const struct cpuset *cs) 131static inline int is_memory_migrate(const struct cpuset *cs)
136{ 132{
137 return test_bit(CS_MEMORY_MIGRATE, &cs->flags); 133 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
@@ -172,14 +168,8 @@ static struct cpuset top_cpuset = {
172 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)), 168 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
173 .cpus_allowed = CPU_MASK_ALL, 169 .cpus_allowed = CPU_MASK_ALL,
174 .mems_allowed = NODE_MASK_ALL, 170 .mems_allowed = NODE_MASK_ALL,
175 .count = ATOMIC_INIT(0),
176 .sibling = LIST_HEAD_INIT(top_cpuset.sibling),
177 .children = LIST_HEAD_INIT(top_cpuset.children),
178}; 171};
179 172
180static struct vfsmount *cpuset_mount;
181static struct super_block *cpuset_sb;
182
183/* 173/*
184 * We have two global cpuset mutexes below. They can nest. 174 * We have two global cpuset mutexes below. They can nest.
185 * It is ok to first take manage_mutex, then nest callback_mutex. We also 175 * It is ok to first take manage_mutex, then nest callback_mutex. We also
@@ -263,297 +253,33 @@ static struct super_block *cpuset_sb;
263 * the routine cpuset_update_task_memory_state(). 253 * the routine cpuset_update_task_memory_state().
264 */ 254 */
265 255
266static DEFINE_MUTEX(manage_mutex);
267static DEFINE_MUTEX(callback_mutex); 256static DEFINE_MUTEX(callback_mutex);
268 257
269/* 258/* This is ugly, but preserves the userspace API for existing cpuset
270 * A couple of forward declarations required, due to cyclic reference loop: 259 * users. If someone tries to mount the "cpuset" filesystem, we
271 * cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file 260 * silently switch it to mount "cgroup" instead */
272 * -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir.
273 */
274
275static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode);
276static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry);
277
278static struct backing_dev_info cpuset_backing_dev_info = {
279 .ra_pages = 0, /* No readahead */
280 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
281};
282
283static struct inode *cpuset_new_inode(mode_t mode)
284{
285 struct inode *inode = new_inode(cpuset_sb);
286
287 if (inode) {
288 inode->i_mode = mode;
289 inode->i_uid = current->fsuid;
290 inode->i_gid = current->fsgid;
291 inode->i_blocks = 0;
292 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
293 inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info;
294 }
295 return inode;
296}
297
298static void cpuset_diput(struct dentry *dentry, struct inode *inode)
299{
300 /* is dentry a directory ? if so, kfree() associated cpuset */
301 if (S_ISDIR(inode->i_mode)) {
302 struct cpuset *cs = dentry->d_fsdata;
303 BUG_ON(!(is_removed(cs)));
304 kfree(cs);
305 }
306 iput(inode);
307}
308
309static struct dentry_operations cpuset_dops = {
310 .d_iput = cpuset_diput,
311};
312
313static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name)
314{
315 struct dentry *d = lookup_one_len(name, parent, strlen(name));
316 if (!IS_ERR(d))
317 d->d_op = &cpuset_dops;
318 return d;
319}
320
321static void remove_dir(struct dentry *d)
322{
323 struct dentry *parent = dget(d->d_parent);
324
325 d_delete(d);
326 simple_rmdir(parent->d_inode, d);
327 dput(parent);
328}
329
330/*
331 * NOTE : the dentry must have been dget()'ed
332 */
333static void cpuset_d_remove_dir(struct dentry *dentry)
334{
335 struct list_head *node;
336
337 spin_lock(&dcache_lock);
338 node = dentry->d_subdirs.next;
339 while (node != &dentry->d_subdirs) {
340 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
341 list_del_init(node);
342 if (d->d_inode) {
343 d = dget_locked(d);
344 spin_unlock(&dcache_lock);
345 d_delete(d);
346 simple_unlink(dentry->d_inode, d);
347 dput(d);
348 spin_lock(&dcache_lock);
349 }
350 node = dentry->d_subdirs.next;
351 }
352 list_del_init(&dentry->d_u.d_child);
353 spin_unlock(&dcache_lock);
354 remove_dir(dentry);
355}
356
357static struct super_operations cpuset_ops = {
358 .statfs = simple_statfs,
359 .drop_inode = generic_delete_inode,
360};
361
362static int cpuset_fill_super(struct super_block *sb, void *unused_data,
363 int unused_silent)
364{
365 struct inode *inode;
366 struct dentry *root;
367
368 sb->s_blocksize = PAGE_CACHE_SIZE;
369 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
370 sb->s_magic = CPUSET_SUPER_MAGIC;
371 sb->s_op = &cpuset_ops;
372 cpuset_sb = sb;
373
374 inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR);
375 if (inode) {
376 inode->i_op = &simple_dir_inode_operations;
377 inode->i_fop = &simple_dir_operations;
378 /* directories start off with i_nlink == 2 (for "." entry) */
379 inc_nlink(inode);
380 } else {
381 return -ENOMEM;
382 }
383
384 root = d_alloc_root(inode);
385 if (!root) {
386 iput(inode);
387 return -ENOMEM;
388 }
389 sb->s_root = root;
390 return 0;
391}
392
393static int cpuset_get_sb(struct file_system_type *fs_type, 261static int cpuset_get_sb(struct file_system_type *fs_type,
394 int flags, const char *unused_dev_name, 262 int flags, const char *unused_dev_name,
395 void *data, struct vfsmount *mnt) 263 void *data, struct vfsmount *mnt)
396{ 264{
397 return get_sb_single(fs_type, flags, data, cpuset_fill_super, mnt); 265 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
266 int ret = -ENODEV;
267 if (cgroup_fs) {
268 char mountopts[] =
269 "cpuset,noprefix,"
270 "release_agent=/sbin/cpuset_release_agent";
271 ret = cgroup_fs->get_sb(cgroup_fs, flags,
272 unused_dev_name, mountopts, mnt);
273 put_filesystem(cgroup_fs);
274 }
275 return ret;
398} 276}
399 277
400static struct file_system_type cpuset_fs_type = { 278static struct file_system_type cpuset_fs_type = {
401 .name = "cpuset", 279 .name = "cpuset",
402 .get_sb = cpuset_get_sb, 280 .get_sb = cpuset_get_sb,
403 .kill_sb = kill_litter_super,
404}; 281};
405 282
406/* struct cftype:
407 *
408 * The files in the cpuset filesystem mostly have a very simple read/write
409 * handling, some common function will take care of it. Nevertheless some cases
410 * (read tasks) are special and therefore I define this structure for every
411 * kind of file.
412 *
413 *
414 * When reading/writing to a file:
415 * - the cpuset to use in file->f_path.dentry->d_parent->d_fsdata
416 * - the 'cftype' of the file is file->f_path.dentry->d_fsdata
417 */
418
419struct cftype {
420 char *name;
421 int private;
422 int (*open) (struct inode *inode, struct file *file);
423 ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes,
424 loff_t *ppos);
425 int (*write) (struct file *file, const char __user *buf, size_t nbytes,
426 loff_t *ppos);
427 int (*release) (struct inode *inode, struct file *file);
428};
429
430static inline struct cpuset *__d_cs(struct dentry *dentry)
431{
432 return dentry->d_fsdata;
433}
434
435static inline struct cftype *__d_cft(struct dentry *dentry)
436{
437 return dentry->d_fsdata;
438}
439
440/*
441 * Call with manage_mutex held. Writes path of cpuset into buf.
442 * Returns 0 on success, -errno on error.
443 */
444
445static int cpuset_path(const struct cpuset *cs, char *buf, int buflen)
446{
447 char *start;
448
449 start = buf + buflen;
450
451 *--start = '\0';
452 for (;;) {
453 int len = cs->dentry->d_name.len;
454 if ((start -= len) < buf)
455 return -ENAMETOOLONG;
456 memcpy(start, cs->dentry->d_name.name, len);
457 cs = cs->parent;
458 if (!cs)
459 break;
460 if (!cs->parent)
461 continue;
462 if (--start < buf)
463 return -ENAMETOOLONG;
464 *start = '/';
465 }
466 memmove(buf, start, buf + buflen - start);
467 return 0;
468}
469
470/*
471 * Notify userspace when a cpuset is released, by running
472 * /sbin/cpuset_release_agent with the name of the cpuset (path
473 * relative to the root of cpuset file system) as the argument.
474 *
475 * Most likely, this user command will try to rmdir this cpuset.
476 *
477 * This races with the possibility that some other task will be
478 * attached to this cpuset before it is removed, or that some other
479 * user task will 'mkdir' a child cpuset of this cpuset. That's ok.
480 * The presumed 'rmdir' will fail quietly if this cpuset is no longer
481 * unused, and this cpuset will be reprieved from its death sentence,
482 * to continue to serve a useful existence. Next time it's released,
483 * we will get notified again, if it still has 'notify_on_release' set.
484 *
485 * The final arg to call_usermodehelper() is 0, which means don't
486 * wait. The separate /sbin/cpuset_release_agent task is forked by
487 * call_usermodehelper(), then control in this thread returns here,
488 * without waiting for the release agent task. We don't bother to
489 * wait because the caller of this routine has no use for the exit
490 * status of the /sbin/cpuset_release_agent task, so no sense holding
491 * our caller up for that.
492 *
493 * When we had only one cpuset mutex, we had to call this
494 * without holding it, to avoid deadlock when call_usermodehelper()
495 * allocated memory. With two locks, we could now call this while
496 * holding manage_mutex, but we still don't, so as to minimize
497 * the time manage_mutex is held.
498 */
499
500static void cpuset_release_agent(const char *pathbuf)
501{
502 char *argv[3], *envp[3];
503 int i;
504
505 if (!pathbuf)
506 return;
507
508 i = 0;
509 argv[i++] = "/sbin/cpuset_release_agent";
510 argv[i++] = (char *)pathbuf;
511 argv[i] = NULL;
512
513 i = 0;
514 /* minimal command environment */
515 envp[i++] = "HOME=/";
516 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
517 envp[i] = NULL;
518
519 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
520 kfree(pathbuf);
521}
522
523/*
524 * Either cs->count of using tasks transitioned to zero, or the
525 * cs->children list of child cpusets just became empty. If this
526 * cs is notify_on_release() and now both the user count is zero and
527 * the list of children is empty, prepare cpuset path in a kmalloc'd
528 * buffer, to be returned via ppathbuf, so that the caller can invoke
529 * cpuset_release_agent() with it later on, once manage_mutex is dropped.
530 * Call here with manage_mutex held.
531 *
532 * This check_for_release() routine is responsible for kmalloc'ing
533 * pathbuf. The above cpuset_release_agent() is responsible for
534 * kfree'ing pathbuf. The caller of these routines is responsible
535 * for providing a pathbuf pointer, initialized to NULL, then
536 * calling check_for_release() with manage_mutex held and the address
537 * of the pathbuf pointer, then dropping manage_mutex, then calling
538 * cpuset_release_agent() with pathbuf, as set by check_for_release().
539 */
540
541static void check_for_release(struct cpuset *cs, char **ppathbuf)
542{
543 if (notify_on_release(cs) && atomic_read(&cs->count) == 0 &&
544 list_empty(&cs->children)) {
545 char *buf;
546
547 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
548 if (!buf)
549 return;
550 if (cpuset_path(cs, buf, PAGE_SIZE) < 0)
551 kfree(buf);
552 else
553 *ppathbuf = buf;
554 }
555}
556
557/* 283/*
558 * Return in *pmask the portion of a cpusets's cpus_allowed that 284 * Return in *pmask the portion of a cpusets's cpus_allowed that
559 * are online. If none are online, walk up the cpuset hierarchy 285 * are online. If none are online, walk up the cpuset hierarchy
@@ -653,20 +379,19 @@ void cpuset_update_task_memory_state(void)
653 struct task_struct *tsk = current; 379 struct task_struct *tsk = current;
654 struct cpuset *cs; 380 struct cpuset *cs;
655 381
656 if (tsk->cpuset == &top_cpuset) { 382 if (task_cs(tsk) == &top_cpuset) {
657 /* Don't need rcu for top_cpuset. It's never freed. */ 383 /* Don't need rcu for top_cpuset. It's never freed. */
658 my_cpusets_mem_gen = top_cpuset.mems_generation; 384 my_cpusets_mem_gen = top_cpuset.mems_generation;
659 } else { 385 } else {
660 rcu_read_lock(); 386 rcu_read_lock();
661 cs = rcu_dereference(tsk->cpuset); 387 my_cpusets_mem_gen = task_cs(current)->mems_generation;
662 my_cpusets_mem_gen = cs->mems_generation;
663 rcu_read_unlock(); 388 rcu_read_unlock();
664 } 389 }
665 390
666 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) { 391 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
667 mutex_lock(&callback_mutex); 392 mutex_lock(&callback_mutex);
668 task_lock(tsk); 393 task_lock(tsk);
669 cs = tsk->cpuset; /* Maybe changed when task not locked */ 394 cs = task_cs(tsk); /* Maybe changed when task not locked */
670 guarantee_online_mems(cs, &tsk->mems_allowed); 395 guarantee_online_mems(cs, &tsk->mems_allowed);
671 tsk->cpuset_mems_generation = cs->mems_generation; 396 tsk->cpuset_mems_generation = cs->mems_generation;
672 if (is_spread_page(cs)) 397 if (is_spread_page(cs))
@@ -721,11 +446,12 @@ static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
721 446
722static int validate_change(const struct cpuset *cur, const struct cpuset *trial) 447static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
723{ 448{
449 struct cgroup *cont;
724 struct cpuset *c, *par; 450 struct cpuset *c, *par;
725 451
726 /* Each of our child cpusets must be a subset of us */ 452 /* Each of our child cpusets must be a subset of us */
727 list_for_each_entry(c, &cur->children, sibling) { 453 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
728 if (!is_cpuset_subset(c, trial)) 454 if (!is_cpuset_subset(cgroup_cs(cont), trial))
729 return -EBUSY; 455 return -EBUSY;
730 } 456 }
731 457
@@ -740,7 +466,8 @@ static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
740 return -EACCES; 466 return -EACCES;
741 467
742 /* If either I or some sibling (!= me) is exclusive, we can't overlap */ 468 /* If either I or some sibling (!= me) is exclusive, we can't overlap */
743 list_for_each_entry(c, &par->children, sibling) { 469 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
470 c = cgroup_cs(cont);
744 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && 471 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
745 c != cur && 472 c != cur &&
746 cpus_intersects(trial->cpus_allowed, c->cpus_allowed)) 473 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
@@ -783,7 +510,8 @@ static int update_cpumask(struct cpuset *cs, char *buf)
783 } 510 }
784 cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map); 511 cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
785 /* cpus_allowed cannot be empty for a cpuset with attached tasks. */ 512 /* cpus_allowed cannot be empty for a cpuset with attached tasks. */
786 if (atomic_read(&cs->count) && cpus_empty(trialcs.cpus_allowed)) 513 if (cgroup_task_count(cs->css.cgroup) &&
514 cpus_empty(trialcs.cpus_allowed))
787 return -ENOSPC; 515 return -ENOSPC;
788 retval = validate_change(cs, &trialcs); 516 retval = validate_change(cs, &trialcs);
789 if (retval < 0) 517 if (retval < 0)
@@ -839,7 +567,7 @@ static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
839 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL); 567 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
840 568
841 mutex_lock(&callback_mutex); 569 mutex_lock(&callback_mutex);
842 guarantee_online_mems(tsk->cpuset, &tsk->mems_allowed); 570 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
843 mutex_unlock(&callback_mutex); 571 mutex_unlock(&callback_mutex);
844} 572}
845 573
@@ -857,16 +585,19 @@ static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
857 * their mempolicies to the cpusets new mems_allowed. 585 * their mempolicies to the cpusets new mems_allowed.
858 */ 586 */
859 587
588static void *cpuset_being_rebound;
589
860static int update_nodemask(struct cpuset *cs, char *buf) 590static int update_nodemask(struct cpuset *cs, char *buf)
861{ 591{
862 struct cpuset trialcs; 592 struct cpuset trialcs;
863 nodemask_t oldmem; 593 nodemask_t oldmem;
864 struct task_struct *g, *p; 594 struct task_struct *p;
865 struct mm_struct **mmarray; 595 struct mm_struct **mmarray;
866 int i, n, ntasks; 596 int i, n, ntasks;
867 int migrate; 597 int migrate;
868 int fudge; 598 int fudge;
869 int retval; 599 int retval;
600 struct cgroup_iter it;
870 601
871 /* 602 /*
872 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY]; 603 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
@@ -909,7 +640,8 @@ static int update_nodemask(struct cpuset *cs, char *buf)
909 goto done; 640 goto done;
910 } 641 }
911 /* mems_allowed cannot be empty for a cpuset with attached tasks. */ 642 /* mems_allowed cannot be empty for a cpuset with attached tasks. */
912 if (atomic_read(&cs->count) && nodes_empty(trialcs.mems_allowed)) { 643 if (cgroup_task_count(cs->css.cgroup) &&
644 nodes_empty(trialcs.mems_allowed)) {
913 retval = -ENOSPC; 645 retval = -ENOSPC;
914 goto done; 646 goto done;
915 } 647 }
@@ -922,7 +654,7 @@ static int update_nodemask(struct cpuset *cs, char *buf)
922 cs->mems_generation = cpuset_mems_generation++; 654 cs->mems_generation = cpuset_mems_generation++;
923 mutex_unlock(&callback_mutex); 655 mutex_unlock(&callback_mutex);
924 656
925 set_cpuset_being_rebound(cs); /* causes mpol_copy() rebind */ 657 cpuset_being_rebound = cs; /* causes mpol_copy() rebind */
926 658
927 fudge = 10; /* spare mmarray[] slots */ 659 fudge = 10; /* spare mmarray[] slots */
928 fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */ 660 fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
@@ -936,13 +668,13 @@ static int update_nodemask(struct cpuset *cs, char *buf)
936 * enough mmarray[] w/o using GFP_ATOMIC. 668 * enough mmarray[] w/o using GFP_ATOMIC.
937 */ 669 */
938 while (1) { 670 while (1) {
939 ntasks = atomic_read(&cs->count); /* guess */ 671 ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
940 ntasks += fudge; 672 ntasks += fudge;
941 mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL); 673 mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
942 if (!mmarray) 674 if (!mmarray)
943 goto done; 675 goto done;
944 read_lock(&tasklist_lock); /* block fork */ 676 read_lock(&tasklist_lock); /* block fork */
945 if (atomic_read(&cs->count) <= ntasks) 677 if (cgroup_task_count(cs->css.cgroup) <= ntasks)
946 break; /* got enough */ 678 break; /* got enough */
947 read_unlock(&tasklist_lock); /* try again */ 679 read_unlock(&tasklist_lock); /* try again */
948 kfree(mmarray); 680 kfree(mmarray);
@@ -951,21 +683,21 @@ static int update_nodemask(struct cpuset *cs, char *buf)
951 n = 0; 683 n = 0;
952 684
953 /* Load up mmarray[] with mm reference for each task in cpuset. */ 685 /* Load up mmarray[] with mm reference for each task in cpuset. */
954 do_each_thread(g, p) { 686 cgroup_iter_start(cs->css.cgroup, &it);
687 while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
955 struct mm_struct *mm; 688 struct mm_struct *mm;
956 689
957 if (n >= ntasks) { 690 if (n >= ntasks) {
958 printk(KERN_WARNING 691 printk(KERN_WARNING
959 "Cpuset mempolicy rebind incomplete.\n"); 692 "Cpuset mempolicy rebind incomplete.\n");
960 continue; 693 break;
961 } 694 }
962 if (p->cpuset != cs)
963 continue;
964 mm = get_task_mm(p); 695 mm = get_task_mm(p);
965 if (!mm) 696 if (!mm)
966 continue; 697 continue;
967 mmarray[n++] = mm; 698 mmarray[n++] = mm;
968 } while_each_thread(g, p); 699 }
700 cgroup_iter_end(cs->css.cgroup, &it);
969 read_unlock(&tasklist_lock); 701 read_unlock(&tasklist_lock);
970 702
971 /* 703 /*
@@ -993,12 +725,17 @@ static int update_nodemask(struct cpuset *cs, char *buf)
993 725
994 /* We're done rebinding vma's to this cpusets new mems_allowed. */ 726 /* We're done rebinding vma's to this cpusets new mems_allowed. */
995 kfree(mmarray); 727 kfree(mmarray);
996 set_cpuset_being_rebound(NULL); 728 cpuset_being_rebound = NULL;
997 retval = 0; 729 retval = 0;
998done: 730done:
999 return retval; 731 return retval;
1000} 732}
1001 733
734int current_cpuset_is_being_rebound(void)
735{
736 return task_cs(current) == cpuset_being_rebound;
737}
738
1002/* 739/*
1003 * Call with manage_mutex held. 740 * Call with manage_mutex held.
1004 */ 741 */
@@ -1145,85 +882,34 @@ static int fmeter_getrate(struct fmeter *fmp)
1145 return val; 882 return val;
1146} 883}
1147 884
1148/* 885static int cpuset_can_attach(struct cgroup_subsys *ss,
1149 * Attack task specified by pid in 'pidbuf' to cpuset 'cs', possibly 886 struct cgroup *cont, struct task_struct *tsk)
1150 * writing the path of the old cpuset in 'ppathbuf' if it needs to be
1151 * notified on release.
1152 *
1153 * Call holding manage_mutex. May take callback_mutex and task_lock of
1154 * the task 'pid' during call.
1155 */
1156
1157static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
1158{ 887{
1159 pid_t pid; 888 struct cpuset *cs = cgroup_cs(cont);
1160 struct task_struct *tsk;
1161 struct cpuset *oldcs;
1162 cpumask_t cpus;
1163 nodemask_t from, to;
1164 struct mm_struct *mm;
1165 int retval;
1166 889
1167 if (sscanf(pidbuf, "%d", &pid) != 1)
1168 return -EIO;
1169 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) 890 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1170 return -ENOSPC; 891 return -ENOSPC;
1171 892
1172 if (pid) { 893 return security_task_setscheduler(tsk, 0, NULL);
1173 read_lock(&tasklist_lock); 894}
1174
1175 tsk = find_task_by_pid(pid);
1176 if (!tsk || tsk->flags & PF_EXITING) {
1177 read_unlock(&tasklist_lock);
1178 return -ESRCH;
1179 }
1180
1181 get_task_struct(tsk);
1182 read_unlock(&tasklist_lock);
1183
1184 if ((current->euid) && (current->euid != tsk->uid)
1185 && (current->euid != tsk->suid)) {
1186 put_task_struct(tsk);
1187 return -EACCES;
1188 }
1189 } else {
1190 tsk = current;
1191 get_task_struct(tsk);
1192 }
1193 895
1194 retval = security_task_setscheduler(tsk, 0, NULL); 896static void cpuset_attach(struct cgroup_subsys *ss,
1195 if (retval) { 897 struct cgroup *cont, struct cgroup *oldcont,
1196 put_task_struct(tsk); 898 struct task_struct *tsk)
1197 return retval; 899{
1198 } 900 cpumask_t cpus;
901 nodemask_t from, to;
902 struct mm_struct *mm;
903 struct cpuset *cs = cgroup_cs(cont);
904 struct cpuset *oldcs = cgroup_cs(oldcont);
1199 905
1200 mutex_lock(&callback_mutex); 906 mutex_lock(&callback_mutex);
1201
1202 task_lock(tsk);
1203 oldcs = tsk->cpuset;
1204 /*
1205 * After getting 'oldcs' cpuset ptr, be sure still not exiting.
1206 * If 'oldcs' might be the top_cpuset due to the_top_cpuset_hack
1207 * then fail this attach_task(), to avoid breaking top_cpuset.count.
1208 */
1209 if (tsk->flags & PF_EXITING) {
1210 task_unlock(tsk);
1211 mutex_unlock(&callback_mutex);
1212 put_task_struct(tsk);
1213 return -ESRCH;
1214 }
1215 atomic_inc(&cs->count);
1216 rcu_assign_pointer(tsk->cpuset, cs);
1217 task_unlock(tsk);
1218
1219 guarantee_online_cpus(cs, &cpus); 907 guarantee_online_cpus(cs, &cpus);
1220 set_cpus_allowed(tsk, cpus); 908 set_cpus_allowed(tsk, cpus);
909 mutex_unlock(&callback_mutex);
1221 910
1222 from = oldcs->mems_allowed; 911 from = oldcs->mems_allowed;
1223 to = cs->mems_allowed; 912 to = cs->mems_allowed;
1224
1225 mutex_unlock(&callback_mutex);
1226
1227 mm = get_task_mm(tsk); 913 mm = get_task_mm(tsk);
1228 if (mm) { 914 if (mm) {
1229 mpol_rebind_mm(mm, &to); 915 mpol_rebind_mm(mm, &to);
@@ -1232,40 +918,31 @@ static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
1232 mmput(mm); 918 mmput(mm);
1233 } 919 }
1234 920
1235 put_task_struct(tsk);
1236 synchronize_rcu();
1237 if (atomic_dec_and_test(&oldcs->count))
1238 check_for_release(oldcs, ppathbuf);
1239 return 0;
1240} 921}
1241 922
1242/* The various types of files and directories in a cpuset file system */ 923/* The various types of files and directories in a cpuset file system */
1243 924
1244typedef enum { 925typedef enum {
1245 FILE_ROOT,
1246 FILE_DIR,
1247 FILE_MEMORY_MIGRATE, 926 FILE_MEMORY_MIGRATE,
1248 FILE_CPULIST, 927 FILE_CPULIST,
1249 FILE_MEMLIST, 928 FILE_MEMLIST,
1250 FILE_CPU_EXCLUSIVE, 929 FILE_CPU_EXCLUSIVE,
1251 FILE_MEM_EXCLUSIVE, 930 FILE_MEM_EXCLUSIVE,
1252 FILE_NOTIFY_ON_RELEASE,
1253 FILE_MEMORY_PRESSURE_ENABLED, 931 FILE_MEMORY_PRESSURE_ENABLED,
1254 FILE_MEMORY_PRESSURE, 932 FILE_MEMORY_PRESSURE,
1255 FILE_SPREAD_PAGE, 933 FILE_SPREAD_PAGE,
1256 FILE_SPREAD_SLAB, 934 FILE_SPREAD_SLAB,
1257 FILE_TASKLIST,
1258} cpuset_filetype_t; 935} cpuset_filetype_t;
1259 936
1260static ssize_t cpuset_common_file_write(struct file *file, 937static ssize_t cpuset_common_file_write(struct cgroup *cont,
938 struct cftype *cft,
939 struct file *file,
1261 const char __user *userbuf, 940 const char __user *userbuf,
1262 size_t nbytes, loff_t *unused_ppos) 941 size_t nbytes, loff_t *unused_ppos)
1263{ 942{
1264 struct cpuset *cs = __d_cs(file->f_path.dentry->d_parent); 943 struct cpuset *cs = cgroup_cs(cont);
1265 struct cftype *cft = __d_cft(file->f_path.dentry);
1266 cpuset_filetype_t type = cft->private; 944 cpuset_filetype_t type = cft->private;
1267 char *buffer; 945 char *buffer;
1268 char *pathbuf = NULL;
1269 int retval = 0; 946 int retval = 0;
1270 947
1271 /* Crude upper limit on largest legitimate cpulist user might write. */ 948 /* Crude upper limit on largest legitimate cpulist user might write. */
@@ -1282,9 +959,9 @@ static ssize_t cpuset_common_file_write(struct file *file,
1282 } 959 }
1283 buffer[nbytes] = 0; /* nul-terminate */ 960 buffer[nbytes] = 0; /* nul-terminate */
1284 961
1285 mutex_lock(&manage_mutex); 962 cgroup_lock();
1286 963
1287 if (is_removed(cs)) { 964 if (cgroup_is_removed(cont)) {
1288 retval = -ENODEV; 965 retval = -ENODEV;
1289 goto out2; 966 goto out2;
1290 } 967 }
@@ -1302,9 +979,6 @@ static ssize_t cpuset_common_file_write(struct file *file,
1302 case FILE_MEM_EXCLUSIVE: 979 case FILE_MEM_EXCLUSIVE:
1303 retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer); 980 retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
1304 break; 981 break;
1305 case FILE_NOTIFY_ON_RELEASE:
1306 retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer);
1307 break;
1308 case FILE_MEMORY_MIGRATE: 982 case FILE_MEMORY_MIGRATE:
1309 retval = update_flag(CS_MEMORY_MIGRATE, cs, buffer); 983 retval = update_flag(CS_MEMORY_MIGRATE, cs, buffer);
1310 break; 984 break;
@@ -1322,9 +996,6 @@ static ssize_t cpuset_common_file_write(struct file *file,
1322 retval = update_flag(CS_SPREAD_SLAB, cs, buffer); 996 retval = update_flag(CS_SPREAD_SLAB, cs, buffer);
1323 cs->mems_generation = cpuset_mems_generation++; 997 cs->mems_generation = cpuset_mems_generation++;
1324 break; 998 break;
1325 case FILE_TASKLIST:
1326 retval = attach_task(cs, buffer, &pathbuf);
1327 break;
1328 default: 999 default:
1329 retval = -EINVAL; 1000 retval = -EINVAL;
1330 goto out2; 1001 goto out2;
@@ -1333,30 +1004,12 @@ static ssize_t cpuset_common_file_write(struct file *file,
1333 if (retval == 0) 1004 if (retval == 0)
1334 retval = nbytes; 1005 retval = nbytes;
1335out2: 1006out2:
1336 mutex_unlock(&manage_mutex); 1007 cgroup_unlock();
1337 cpuset_release_agent(pathbuf);
1338out1: 1008out1:
1339 kfree(buffer); 1009 kfree(buffer);
1340 return retval; 1010 return retval;
1341} 1011}
1342 1012
1343static ssize_t cpuset_file_write(struct file *file, const char __user *buf,
1344 size_t nbytes, loff_t *ppos)
1345{
1346 ssize_t retval = 0;
1347 struct cftype *cft = __d_cft(file->f_path.dentry);
1348 if (!cft)
1349 return -ENODEV;
1350
1351 /* special function ? */
1352 if (cft->write)
1353 retval = cft->write(file, buf, nbytes, ppos);
1354 else
1355 retval = cpuset_common_file_write(file, buf, nbytes, ppos);
1356
1357 return retval;
1358}
1359
1360/* 1013/*
1361 * These ascii lists should be read in a single call, by using a user 1014 * These ascii lists should be read in a single call, by using a user
1362 * buffer large enough to hold the entire map. If read in smaller 1015 * buffer large enough to hold the entire map. If read in smaller
@@ -1391,11 +1044,13 @@ static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1391 return nodelist_scnprintf(page, PAGE_SIZE, mask); 1044 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1392} 1045}
1393 1046
1394static ssize_t cpuset_common_file_read(struct file *file, char __user *buf, 1047static ssize_t cpuset_common_file_read(struct cgroup *cont,
1395 size_t nbytes, loff_t *ppos) 1048 struct cftype *cft,
1049 struct file *file,
1050 char __user *buf,
1051 size_t nbytes, loff_t *ppos)
1396{ 1052{
1397 struct cftype *cft = __d_cft(file->f_path.dentry); 1053 struct cpuset *cs = cgroup_cs(cont);
1398 struct cpuset *cs = __d_cs(file->f_path.dentry->d_parent);
1399 cpuset_filetype_t type = cft->private; 1054 cpuset_filetype_t type = cft->private;
1400 char *page; 1055 char *page;
1401 ssize_t retval = 0; 1056 ssize_t retval = 0;
@@ -1419,9 +1074,6 @@ static ssize_t cpuset_common_file_read(struct file *file, char __user *buf,
1419 case FILE_MEM_EXCLUSIVE: 1074 case FILE_MEM_EXCLUSIVE:
1420 *s++ = is_mem_exclusive(cs) ? '1' : '0'; 1075 *s++ = is_mem_exclusive(cs) ? '1' : '0';
1421 break; 1076 break;
1422 case FILE_NOTIFY_ON_RELEASE:
1423 *s++ = notify_on_release(cs) ? '1' : '0';
1424 break;
1425 case FILE_MEMORY_MIGRATE: 1077 case FILE_MEMORY_MIGRATE:
1426 *s++ = is_memory_migrate(cs) ? '1' : '0'; 1078 *s++ = is_memory_migrate(cs) ? '1' : '0';
1427 break; 1079 break;
@@ -1449,390 +1101,141 @@ out:
1449 return retval; 1101 return retval;
1450} 1102}
1451 1103
1452static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes,
1453 loff_t *ppos)
1454{
1455 ssize_t retval = 0;
1456 struct cftype *cft = __d_cft(file->f_path.dentry);
1457 if (!cft)
1458 return -ENODEV;
1459 1104
1460 /* special function ? */
1461 if (cft->read)
1462 retval = cft->read(file, buf, nbytes, ppos);
1463 else
1464 retval = cpuset_common_file_read(file, buf, nbytes, ppos);
1465 1105
1466 return retval;
1467}
1468 1106
1469static int cpuset_file_open(struct inode *inode, struct file *file)
1470{
1471 int err;
1472 struct cftype *cft;
1473
1474 err = generic_file_open(inode, file);
1475 if (err)
1476 return err;
1477
1478 cft = __d_cft(file->f_path.dentry);
1479 if (!cft)
1480 return -ENODEV;
1481 if (cft->open)
1482 err = cft->open(inode, file);
1483 else
1484 err = 0;
1485
1486 return err;
1487}
1488
1489static int cpuset_file_release(struct inode *inode, struct file *file)
1490{
1491 struct cftype *cft = __d_cft(file->f_path.dentry);
1492 if (cft->release)
1493 return cft->release(inode, file);
1494 return 0;
1495}
1496
1497/*
1498 * cpuset_rename - Only allow simple rename of directories in place.
1499 */
1500static int cpuset_rename(struct inode *old_dir, struct dentry *old_dentry,
1501 struct inode *new_dir, struct dentry *new_dentry)
1502{
1503 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1504 return -ENOTDIR;
1505 if (new_dentry->d_inode)
1506 return -EEXIST;
1507 if (old_dir != new_dir)
1508 return -EIO;
1509 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1510}
1511
1512static const struct file_operations cpuset_file_operations = {
1513 .read = cpuset_file_read,
1514 .write = cpuset_file_write,
1515 .llseek = generic_file_llseek,
1516 .open = cpuset_file_open,
1517 .release = cpuset_file_release,
1518};
1519
1520static const struct inode_operations cpuset_dir_inode_operations = {
1521 .lookup = simple_lookup,
1522 .mkdir = cpuset_mkdir,
1523 .rmdir = cpuset_rmdir,
1524 .rename = cpuset_rename,
1525};
1526
1527static int cpuset_create_file(struct dentry *dentry, int mode)
1528{
1529 struct inode *inode;
1530
1531 if (!dentry)
1532 return -ENOENT;
1533 if (dentry->d_inode)
1534 return -EEXIST;
1535
1536 inode = cpuset_new_inode(mode);
1537 if (!inode)
1538 return -ENOMEM;
1539
1540 if (S_ISDIR(mode)) {
1541 inode->i_op = &cpuset_dir_inode_operations;
1542 inode->i_fop = &simple_dir_operations;
1543
1544 /* start off with i_nlink == 2 (for "." entry) */
1545 inc_nlink(inode);
1546 } else if (S_ISREG(mode)) {
1547 inode->i_size = 0;
1548 inode->i_fop = &cpuset_file_operations;
1549 }
1550
1551 d_instantiate(dentry, inode);
1552 dget(dentry); /* Extra count - pin the dentry in core */
1553 return 0;
1554}
1555
1556/*
1557 * cpuset_create_dir - create a directory for an object.
1558 * cs: the cpuset we create the directory for.
1559 * It must have a valid ->parent field
1560 * And we are going to fill its ->dentry field.
1561 * name: The name to give to the cpuset directory. Will be copied.
1562 * mode: mode to set on new directory.
1563 */
1564
1565static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode)
1566{
1567 struct dentry *dentry = NULL;
1568 struct dentry *parent;
1569 int error = 0;
1570
1571 parent = cs->parent->dentry;
1572 dentry = cpuset_get_dentry(parent, name);
1573 if (IS_ERR(dentry))
1574 return PTR_ERR(dentry);
1575 error = cpuset_create_file(dentry, S_IFDIR | mode);
1576 if (!error) {
1577 dentry->d_fsdata = cs;
1578 inc_nlink(parent->d_inode);
1579 cs->dentry = dentry;
1580 }
1581 dput(dentry);
1582
1583 return error;
1584}
1585
1586static int cpuset_add_file(struct dentry *dir, const struct cftype *cft)
1587{
1588 struct dentry *dentry;
1589 int error;
1590
1591 mutex_lock(&dir->d_inode->i_mutex);
1592 dentry = cpuset_get_dentry(dir, cft->name);
1593 if (!IS_ERR(dentry)) {
1594 error = cpuset_create_file(dentry, 0644 | S_IFREG);
1595 if (!error)
1596 dentry->d_fsdata = (void *)cft;
1597 dput(dentry);
1598 } else
1599 error = PTR_ERR(dentry);
1600 mutex_unlock(&dir->d_inode->i_mutex);
1601 return error;
1602}
1603
1604/*
1605 * Stuff for reading the 'tasks' file.
1606 *
1607 * Reading this file can return large amounts of data if a cpuset has
1608 * *lots* of attached tasks. So it may need several calls to read(),
1609 * but we cannot guarantee that the information we produce is correct
1610 * unless we produce it entirely atomically.
1611 *
1612 * Upon tasks file open(), a struct ctr_struct is allocated, that
1613 * will have a pointer to an array (also allocated here). The struct
1614 * ctr_struct * is stored in file->private_data. Its resources will
1615 * be freed by release() when the file is closed. The array is used
1616 * to sprintf the PIDs and then used by read().
1617 */
1618
1619/* cpusets_tasks_read array */
1620
1621struct ctr_struct {
1622 char *buf;
1623 int bufsz;
1624};
1625
1626/*
1627 * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'.
1628 * Return actual number of pids loaded. No need to task_lock(p)
1629 * when reading out p->cpuset, as we don't really care if it changes
1630 * on the next cycle, and we are not going to try to dereference it.
1631 */
1632static int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs)
1633{
1634 int n = 0;
1635 struct task_struct *g, *p;
1636
1637 read_lock(&tasklist_lock);
1638
1639 do_each_thread(g, p) {
1640 if (p->cpuset == cs) {
1641 pidarray[n++] = p->pid;
1642 if (unlikely(n == npids))
1643 goto array_full;
1644 }
1645 } while_each_thread(g, p);
1646
1647array_full:
1648 read_unlock(&tasklist_lock);
1649 return n;
1650}
1651
1652static int cmppid(const void *a, const void *b)
1653{
1654 return *(pid_t *)a - *(pid_t *)b;
1655}
1656
1657/*
1658 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
1659 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
1660 * count 'cnt' of how many chars would be written if buf were large enough.
1661 */
1662static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
1663{
1664 int cnt = 0;
1665 int i;
1666
1667 for (i = 0; i < npids; i++)
1668 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
1669 return cnt;
1670}
1671
1672/*
1673 * Handle an open on 'tasks' file. Prepare a buffer listing the
1674 * process id's of tasks currently attached to the cpuset being opened.
1675 *
1676 * Does not require any specific cpuset mutexes, and does not take any.
1677 */
1678static int cpuset_tasks_open(struct inode *unused, struct file *file)
1679{
1680 struct cpuset *cs = __d_cs(file->f_path.dentry->d_parent);
1681 struct ctr_struct *ctr;
1682 pid_t *pidarray;
1683 int npids;
1684 char c;
1685
1686 if (!(file->f_mode & FMODE_READ))
1687 return 0;
1688
1689 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
1690 if (!ctr)
1691 goto err0;
1692
1693 /*
1694 * If cpuset gets more users after we read count, we won't have
1695 * enough space - tough. This race is indistinguishable to the
1696 * caller from the case that the additional cpuset users didn't
1697 * show up until sometime later on.
1698 */
1699 npids = atomic_read(&cs->count);
1700 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
1701 if (!pidarray)
1702 goto err1;
1703
1704 npids = pid_array_load(pidarray, npids, cs);
1705 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
1706
1707 /* Call pid_array_to_buf() twice, first just to get bufsz */
1708 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
1709 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
1710 if (!ctr->buf)
1711 goto err2;
1712 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
1713
1714 kfree(pidarray);
1715 file->private_data = ctr;
1716 return 0;
1717
1718err2:
1719 kfree(pidarray);
1720err1:
1721 kfree(ctr);
1722err0:
1723 return -ENOMEM;
1724}
1725
1726static ssize_t cpuset_tasks_read(struct file *file, char __user *buf,
1727 size_t nbytes, loff_t *ppos)
1728{
1729 struct ctr_struct *ctr = file->private_data;
1730
1731 return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz);
1732}
1733
1734static int cpuset_tasks_release(struct inode *unused_inode, struct file *file)
1735{
1736 struct ctr_struct *ctr;
1737
1738 if (file->f_mode & FMODE_READ) {
1739 ctr = file->private_data;
1740 kfree(ctr->buf);
1741 kfree(ctr);
1742 }
1743 return 0;
1744}
1745 1107
1746/* 1108/*
1747 * for the common functions, 'private' gives the type of file 1109 * for the common functions, 'private' gives the type of file
1748 */ 1110 */
1749 1111
1750static struct cftype cft_tasks = {
1751 .name = "tasks",
1752 .open = cpuset_tasks_open,
1753 .read = cpuset_tasks_read,
1754 .release = cpuset_tasks_release,
1755 .private = FILE_TASKLIST,
1756};
1757
1758static struct cftype cft_cpus = { 1112static struct cftype cft_cpus = {
1759 .name = "cpus", 1113 .name = "cpus",
1114 .read = cpuset_common_file_read,
1115 .write = cpuset_common_file_write,
1760 .private = FILE_CPULIST, 1116 .private = FILE_CPULIST,
1761}; 1117};
1762 1118
1763static struct cftype cft_mems = { 1119static struct cftype cft_mems = {
1764 .name = "mems", 1120 .name = "mems",
1121 .read = cpuset_common_file_read,
1122 .write = cpuset_common_file_write,
1765 .private = FILE_MEMLIST, 1123 .private = FILE_MEMLIST,
1766}; 1124};
1767 1125
1768static struct cftype cft_cpu_exclusive = { 1126static struct cftype cft_cpu_exclusive = {
1769 .name = "cpu_exclusive", 1127 .name = "cpu_exclusive",
1128 .read = cpuset_common_file_read,
1129 .write = cpuset_common_file_write,
1770 .private = FILE_CPU_EXCLUSIVE, 1130 .private = FILE_CPU_EXCLUSIVE,
1771}; 1131};
1772 1132
1773static struct cftype cft_mem_exclusive = { 1133static struct cftype cft_mem_exclusive = {
1774 .name = "mem_exclusive", 1134 .name = "mem_exclusive",
1135 .read = cpuset_common_file_read,
1136 .write = cpuset_common_file_write,
1775 .private = FILE_MEM_EXCLUSIVE, 1137 .private = FILE_MEM_EXCLUSIVE,
1776}; 1138};
1777 1139
1778static struct cftype cft_notify_on_release = {
1779 .name = "notify_on_release",
1780 .private = FILE_NOTIFY_ON_RELEASE,
1781};
1782
1783static struct cftype cft_memory_migrate = { 1140static struct cftype cft_memory_migrate = {
1784 .name = "memory_migrate", 1141 .name = "memory_migrate",
1142 .read = cpuset_common_file_read,
1143 .write = cpuset_common_file_write,
1785 .private = FILE_MEMORY_MIGRATE, 1144 .private = FILE_MEMORY_MIGRATE,
1786}; 1145};
1787 1146
1788static struct cftype cft_memory_pressure_enabled = { 1147static struct cftype cft_memory_pressure_enabled = {
1789 .name = "memory_pressure_enabled", 1148 .name = "memory_pressure_enabled",
1149 .read = cpuset_common_file_read,
1150 .write = cpuset_common_file_write,
1790 .private = FILE_MEMORY_PRESSURE_ENABLED, 1151 .private = FILE_MEMORY_PRESSURE_ENABLED,
1791}; 1152};
1792 1153
1793static struct cftype cft_memory_pressure = { 1154static struct cftype cft_memory_pressure = {
1794 .name = "memory_pressure", 1155 .name = "memory_pressure",
1156 .read = cpuset_common_file_read,
1157 .write = cpuset_common_file_write,
1795 .private = FILE_MEMORY_PRESSURE, 1158 .private = FILE_MEMORY_PRESSURE,
1796}; 1159};
1797 1160
1798static struct cftype cft_spread_page = { 1161static struct cftype cft_spread_page = {
1799 .name = "memory_spread_page", 1162 .name = "memory_spread_page",
1163 .read = cpuset_common_file_read,
1164 .write = cpuset_common_file_write,
1800 .private = FILE_SPREAD_PAGE, 1165 .private = FILE_SPREAD_PAGE,
1801}; 1166};
1802 1167
1803static struct cftype cft_spread_slab = { 1168static struct cftype cft_spread_slab = {
1804 .name = "memory_spread_slab", 1169 .name = "memory_spread_slab",
1170 .read = cpuset_common_file_read,
1171 .write = cpuset_common_file_write,
1805 .private = FILE_SPREAD_SLAB, 1172 .private = FILE_SPREAD_SLAB,
1806}; 1173};
1807 1174
1808static int cpuset_populate_dir(struct dentry *cs_dentry) 1175static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1809{ 1176{
1810 int err; 1177 int err;
1811 1178
1812 if ((err = cpuset_add_file(cs_dentry, &cft_cpus)) < 0) 1179 if ((err = cgroup_add_file(cont, ss, &cft_cpus)) < 0)
1813 return err; 1180 return err;
1814 if ((err = cpuset_add_file(cs_dentry, &cft_mems)) < 0) 1181 if ((err = cgroup_add_file(cont, ss, &cft_mems)) < 0)
1815 return err; 1182 return err;
1816 if ((err = cpuset_add_file(cs_dentry, &cft_cpu_exclusive)) < 0) 1183 if ((err = cgroup_add_file(cont, ss, &cft_cpu_exclusive)) < 0)
1817 return err; 1184 return err;
1818 if ((err = cpuset_add_file(cs_dentry, &cft_mem_exclusive)) < 0) 1185 if ((err = cgroup_add_file(cont, ss, &cft_mem_exclusive)) < 0)
1819 return err; 1186 return err;
1820 if ((err = cpuset_add_file(cs_dentry, &cft_notify_on_release)) < 0) 1187 if ((err = cgroup_add_file(cont, ss, &cft_memory_migrate)) < 0)
1821 return err; 1188 return err;
1822 if ((err = cpuset_add_file(cs_dentry, &cft_memory_migrate)) < 0) 1189 if ((err = cgroup_add_file(cont, ss, &cft_memory_pressure)) < 0)
1823 return err; 1190 return err;
1824 if ((err = cpuset_add_file(cs_dentry, &cft_memory_pressure)) < 0) 1191 if ((err = cgroup_add_file(cont, ss, &cft_spread_page)) < 0)
1825 return err; 1192 return err;
1826 if ((err = cpuset_add_file(cs_dentry, &cft_spread_page)) < 0) 1193 if ((err = cgroup_add_file(cont, ss, &cft_spread_slab)) < 0)
1827 return err;
1828 if ((err = cpuset_add_file(cs_dentry, &cft_spread_slab)) < 0)
1829 return err;
1830 if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0)
1831 return err; 1194 return err;
1195 /* memory_pressure_enabled is in root cpuset only */
1196 if (err == 0 && !cont->parent)
1197 err = cgroup_add_file(cont, ss,
1198 &cft_memory_pressure_enabled);
1832 return 0; 1199 return 0;
1833} 1200}
1834 1201
1835/* 1202/*
1203 * post_clone() is called at the end of cgroup_clone().
1204 * 'cgroup' was just created automatically as a result of
1205 * a cgroup_clone(), and the current task is about to
1206 * be moved into 'cgroup'.
1207 *
1208 * Currently we refuse to set up the cgroup - thereby
1209 * refusing the task to be entered, and as a result refusing
1210 * the sys_unshare() or clone() which initiated it - if any
1211 * sibling cpusets have exclusive cpus or mem.
1212 *
1213 * If this becomes a problem for some users who wish to
1214 * allow that scenario, then cpuset_post_clone() could be
1215 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1216 * (and likewise for mems) to the new cgroup.
1217 */
1218static void cpuset_post_clone(struct cgroup_subsys *ss,
1219 struct cgroup *cgroup)
1220{
1221 struct cgroup *parent, *child;
1222 struct cpuset *cs, *parent_cs;
1223
1224 parent = cgroup->parent;
1225 list_for_each_entry(child, &parent->children, sibling) {
1226 cs = cgroup_cs(child);
1227 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1228 return;
1229 }
1230 cs = cgroup_cs(cgroup);
1231 parent_cs = cgroup_cs(parent);
1232
1233 cs->mems_allowed = parent_cs->mems_allowed;
1234 cs->cpus_allowed = parent_cs->cpus_allowed;
1235 return;
1236}
1237
1238/*
1836 * cpuset_create - create a cpuset 1239 * cpuset_create - create a cpuset
1837 * parent: cpuset that will be parent of the new cpuset. 1240 * parent: cpuset that will be parent of the new cpuset.
1838 * name: name of the new cpuset. Will be strcpy'ed. 1241 * name: name of the new cpuset. Will be strcpy'ed.
@@ -1841,106 +1244,60 @@ static int cpuset_populate_dir(struct dentry *cs_dentry)
1841 * Must be called with the mutex on the parent inode held 1244 * Must be called with the mutex on the parent inode held
1842 */ 1245 */
1843 1246
1844static long cpuset_create(struct cpuset *parent, const char *name, int mode) 1247static struct cgroup_subsys_state *cpuset_create(
1248 struct cgroup_subsys *ss,
1249 struct cgroup *cont)
1845{ 1250{
1846 struct cpuset *cs; 1251 struct cpuset *cs;
1847 int err; 1252 struct cpuset *parent;
1848 1253
1254 if (!cont->parent) {
1255 /* This is early initialization for the top cgroup */
1256 top_cpuset.mems_generation = cpuset_mems_generation++;
1257 return &top_cpuset.css;
1258 }
1259 parent = cgroup_cs(cont->parent);
1849 cs = kmalloc(sizeof(*cs), GFP_KERNEL); 1260 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1850 if (!cs) 1261 if (!cs)
1851 return -ENOMEM; 1262 return ERR_PTR(-ENOMEM);
1852 1263
1853 mutex_lock(&manage_mutex);
1854 cpuset_update_task_memory_state(); 1264 cpuset_update_task_memory_state();
1855 cs->flags = 0; 1265 cs->flags = 0;
1856 if (notify_on_release(parent))
1857 set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
1858 if (is_spread_page(parent)) 1266 if (is_spread_page(parent))
1859 set_bit(CS_SPREAD_PAGE, &cs->flags); 1267 set_bit(CS_SPREAD_PAGE, &cs->flags);
1860 if (is_spread_slab(parent)) 1268 if (is_spread_slab(parent))
1861 set_bit(CS_SPREAD_SLAB, &cs->flags); 1269 set_bit(CS_SPREAD_SLAB, &cs->flags);
1862 cs->cpus_allowed = CPU_MASK_NONE; 1270 cs->cpus_allowed = CPU_MASK_NONE;
1863 cs->mems_allowed = NODE_MASK_NONE; 1271 cs->mems_allowed = NODE_MASK_NONE;
1864 atomic_set(&cs->count, 0);
1865 INIT_LIST_HEAD(&cs->sibling);
1866 INIT_LIST_HEAD(&cs->children);
1867 cs->mems_generation = cpuset_mems_generation++; 1272 cs->mems_generation = cpuset_mems_generation++;
1868 fmeter_init(&cs->fmeter); 1273 fmeter_init(&cs->fmeter);
1869 1274
1870 cs->parent = parent; 1275 cs->parent = parent;
1871
1872 mutex_lock(&callback_mutex);
1873 list_add(&cs->sibling, &cs->parent->children);
1874 number_of_cpusets++; 1276 number_of_cpusets++;
1875 mutex_unlock(&callback_mutex); 1277 return &cs->css ;
1876
1877 err = cpuset_create_dir(cs, name, mode);
1878 if (err < 0)
1879 goto err;
1880
1881 /*
1882 * Release manage_mutex before cpuset_populate_dir() because it
1883 * will down() this new directory's i_mutex and if we race with
1884 * another mkdir, we might deadlock.
1885 */
1886 mutex_unlock(&manage_mutex);
1887
1888 err = cpuset_populate_dir(cs->dentry);
1889 /* If err < 0, we have a half-filled directory - oh well ;) */
1890 return 0;
1891err:
1892 list_del(&cs->sibling);
1893 mutex_unlock(&manage_mutex);
1894 kfree(cs);
1895 return err;
1896}
1897
1898static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1899{
1900 struct cpuset *c_parent = dentry->d_parent->d_fsdata;
1901
1902 /* the vfs holds inode->i_mutex already */
1903 return cpuset_create(c_parent, dentry->d_name.name, mode | S_IFDIR);
1904} 1278}
1905 1279
1906static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry) 1280static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1907{ 1281{
1908 struct cpuset *cs = dentry->d_fsdata; 1282 struct cpuset *cs = cgroup_cs(cont);
1909 struct dentry *d;
1910 struct cpuset *parent;
1911 char *pathbuf = NULL;
1912
1913 /* the vfs holds both inode->i_mutex already */
1914 1283
1915 mutex_lock(&manage_mutex);
1916 cpuset_update_task_memory_state(); 1284 cpuset_update_task_memory_state();
1917 if (atomic_read(&cs->count) > 0) {
1918 mutex_unlock(&manage_mutex);
1919 return -EBUSY;
1920 }
1921 if (!list_empty(&cs->children)) {
1922 mutex_unlock(&manage_mutex);
1923 return -EBUSY;
1924 }
1925 parent = cs->parent;
1926 mutex_lock(&callback_mutex);
1927 set_bit(CS_REMOVED, &cs->flags);
1928 list_del(&cs->sibling); /* delete my sibling from parent->children */
1929 spin_lock(&cs->dentry->d_lock);
1930 d = dget(cs->dentry);
1931 cs->dentry = NULL;
1932 spin_unlock(&d->d_lock);
1933 cpuset_d_remove_dir(d);
1934 dput(d);
1935 number_of_cpusets--; 1285 number_of_cpusets--;
1936 mutex_unlock(&callback_mutex); 1286 kfree(cs);
1937 if (list_empty(&parent->children))
1938 check_for_release(parent, &pathbuf);
1939 mutex_unlock(&manage_mutex);
1940 cpuset_release_agent(pathbuf);
1941 return 0;
1942} 1287}
1943 1288
1289struct cgroup_subsys cpuset_subsys = {
1290 .name = "cpuset",
1291 .create = cpuset_create,
1292 .destroy = cpuset_destroy,
1293 .can_attach = cpuset_can_attach,
1294 .attach = cpuset_attach,
1295 .populate = cpuset_populate,
1296 .post_clone = cpuset_post_clone,
1297 .subsys_id = cpuset_subsys_id,
1298 .early_init = 1,
1299};
1300
1944/* 1301/*
1945 * cpuset_init_early - just enough so that the calls to 1302 * cpuset_init_early - just enough so that the calls to
1946 * cpuset_update_task_memory_state() in early init code 1303 * cpuset_update_task_memory_state() in early init code
@@ -1949,13 +1306,11 @@ static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry)
1949 1306
1950int __init cpuset_init_early(void) 1307int __init cpuset_init_early(void)
1951{ 1308{
1952 struct task_struct *tsk = current; 1309 top_cpuset.mems_generation = cpuset_mems_generation++;
1953
1954 tsk->cpuset = &top_cpuset;
1955 tsk->cpuset->mems_generation = cpuset_mems_generation++;
1956 return 0; 1310 return 0;
1957} 1311}
1958 1312
1313
1959/** 1314/**
1960 * cpuset_init - initialize cpusets at system boot 1315 * cpuset_init - initialize cpusets at system boot
1961 * 1316 *
@@ -1964,8 +1319,7 @@ int __init cpuset_init_early(void)
1964 1319
1965int __init cpuset_init(void) 1320int __init cpuset_init(void)
1966{ 1321{
1967 struct dentry *root; 1322 int err = 0;
1968 int err;
1969 1323
1970 top_cpuset.cpus_allowed = CPU_MASK_ALL; 1324 top_cpuset.cpus_allowed = CPU_MASK_ALL;
1971 top_cpuset.mems_allowed = NODE_MASK_ALL; 1325 top_cpuset.mems_allowed = NODE_MASK_ALL;
@@ -1973,30 +1327,12 @@ int __init cpuset_init(void)
1973 fmeter_init(&top_cpuset.fmeter); 1327 fmeter_init(&top_cpuset.fmeter);
1974 top_cpuset.mems_generation = cpuset_mems_generation++; 1328 top_cpuset.mems_generation = cpuset_mems_generation++;
1975 1329
1976 init_task.cpuset = &top_cpuset;
1977
1978 err = register_filesystem(&cpuset_fs_type); 1330 err = register_filesystem(&cpuset_fs_type);
1979 if (err < 0) 1331 if (err < 0)
1980 goto out; 1332 return err;
1981 cpuset_mount = kern_mount(&cpuset_fs_type); 1333
1982 if (IS_ERR(cpuset_mount)) {
1983 printk(KERN_ERR "cpuset: could not mount!\n");
1984 err = PTR_ERR(cpuset_mount);
1985 cpuset_mount = NULL;
1986 goto out;
1987 }
1988 root = cpuset_mount->mnt_sb->s_root;
1989 root->d_fsdata = &top_cpuset;
1990 inc_nlink(root->d_inode);
1991 top_cpuset.dentry = root;
1992 root->d_inode->i_op = &cpuset_dir_inode_operations;
1993 number_of_cpusets = 1; 1334 number_of_cpusets = 1;
1994 err = cpuset_populate_dir(root); 1335 return 0;
1995 /* memory_pressure_enabled is in root cpuset only */
1996 if (err == 0)
1997 err = cpuset_add_file(root, &cft_memory_pressure_enabled);
1998out:
1999 return err;
2000} 1336}
2001 1337
2002/* 1338/*
@@ -2022,10 +1358,12 @@ out:
2022 1358
2023static void guarantee_online_cpus_mems_in_subtree(const struct cpuset *cur) 1359static void guarantee_online_cpus_mems_in_subtree(const struct cpuset *cur)
2024{ 1360{
1361 struct cgroup *cont;
2025 struct cpuset *c; 1362 struct cpuset *c;
2026 1363
2027 /* Each of our child cpusets mems must be online */ 1364 /* Each of our child cpusets mems must be online */
2028 list_for_each_entry(c, &cur->children, sibling) { 1365 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
1366 c = cgroup_cs(cont);
2029 guarantee_online_cpus_mems_in_subtree(c); 1367 guarantee_online_cpus_mems_in_subtree(c);
2030 if (!cpus_empty(c->cpus_allowed)) 1368 if (!cpus_empty(c->cpus_allowed))
2031 guarantee_online_cpus(c, &c->cpus_allowed); 1369 guarantee_online_cpus(c, &c->cpus_allowed);
@@ -2053,7 +1391,7 @@ static void guarantee_online_cpus_mems_in_subtree(const struct cpuset *cur)
2053 1391
2054static void common_cpu_mem_hotplug_unplug(void) 1392static void common_cpu_mem_hotplug_unplug(void)
2055{ 1393{
2056 mutex_lock(&manage_mutex); 1394 cgroup_lock();
2057 mutex_lock(&callback_mutex); 1395 mutex_lock(&callback_mutex);
2058 1396
2059 guarantee_online_cpus_mems_in_subtree(&top_cpuset); 1397 guarantee_online_cpus_mems_in_subtree(&top_cpuset);
@@ -2061,7 +1399,7 @@ static void common_cpu_mem_hotplug_unplug(void)
2061 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; 1399 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2062 1400
2063 mutex_unlock(&callback_mutex); 1401 mutex_unlock(&callback_mutex);
2064 mutex_unlock(&manage_mutex); 1402 cgroup_unlock();
2065} 1403}
2066 1404
2067/* 1405/*
@@ -2113,109 +1451,7 @@ void __init cpuset_init_smp(void)
2113} 1451}
2114 1452
2115/** 1453/**
2116 * cpuset_fork - attach newly forked task to its parents cpuset.
2117 * @tsk: pointer to task_struct of forking parent process.
2118 *
2119 * Description: A task inherits its parent's cpuset at fork().
2120 *
2121 * A pointer to the shared cpuset was automatically copied in fork.c
2122 * by dup_task_struct(). However, we ignore that copy, since it was
2123 * not made under the protection of task_lock(), so might no longer be
2124 * a valid cpuset pointer. attach_task() might have already changed
2125 * current->cpuset, allowing the previously referenced cpuset to
2126 * be removed and freed. Instead, we task_lock(current) and copy
2127 * its present value of current->cpuset for our freshly forked child.
2128 *
2129 * At the point that cpuset_fork() is called, 'current' is the parent
2130 * task, and the passed argument 'child' points to the child task.
2131 **/
2132
2133void cpuset_fork(struct task_struct *child)
2134{
2135 task_lock(current);
2136 child->cpuset = current->cpuset;
2137 atomic_inc(&child->cpuset->count);
2138 task_unlock(current);
2139}
2140
2141/**
2142 * cpuset_exit - detach cpuset from exiting task
2143 * @tsk: pointer to task_struct of exiting process
2144 *
2145 * Description: Detach cpuset from @tsk and release it.
2146 *
2147 * Note that cpusets marked notify_on_release force every task in
2148 * them to take the global manage_mutex mutex when exiting.
2149 * This could impact scaling on very large systems. Be reluctant to
2150 * use notify_on_release cpusets where very high task exit scaling
2151 * is required on large systems.
2152 *
2153 * Don't even think about derefencing 'cs' after the cpuset use count
2154 * goes to zero, except inside a critical section guarded by manage_mutex
2155 * or callback_mutex. Otherwise a zero cpuset use count is a license to
2156 * any other task to nuke the cpuset immediately, via cpuset_rmdir().
2157 *
2158 * This routine has to take manage_mutex, not callback_mutex, because
2159 * it is holding that mutex while calling check_for_release(),
2160 * which calls kmalloc(), so can't be called holding callback_mutex().
2161 *
2162 * the_top_cpuset_hack:
2163 *
2164 * Set the exiting tasks cpuset to the root cpuset (top_cpuset).
2165 *
2166 * Don't leave a task unable to allocate memory, as that is an
2167 * accident waiting to happen should someone add a callout in
2168 * do_exit() after the cpuset_exit() call that might allocate.
2169 * If a task tries to allocate memory with an invalid cpuset,
2170 * it will oops in cpuset_update_task_memory_state().
2171 *
2172 * We call cpuset_exit() while the task is still competent to
2173 * handle notify_on_release(), then leave the task attached to
2174 * the root cpuset (top_cpuset) for the remainder of its exit.
2175 *
2176 * To do this properly, we would increment the reference count on
2177 * top_cpuset, and near the very end of the kernel/exit.c do_exit()
2178 * code we would add a second cpuset function call, to drop that
2179 * reference. This would just create an unnecessary hot spot on
2180 * the top_cpuset reference count, to no avail.
2181 *
2182 * Normally, holding a reference to a cpuset without bumping its
2183 * count is unsafe. The cpuset could go away, or someone could
2184 * attach us to a different cpuset, decrementing the count on
2185 * the first cpuset that we never incremented. But in this case,
2186 * top_cpuset isn't going away, and either task has PF_EXITING set,
2187 * which wards off any attach_task() attempts, or task is a failed
2188 * fork, never visible to attach_task.
2189 *
2190 * Another way to do this would be to set the cpuset pointer
2191 * to NULL here, and check in cpuset_update_task_memory_state()
2192 * for a NULL pointer. This hack avoids that NULL check, for no
2193 * cost (other than this way too long comment ;).
2194 **/
2195
2196void cpuset_exit(struct task_struct *tsk)
2197{
2198 struct cpuset *cs;
2199
2200 task_lock(current);
2201 cs = tsk->cpuset;
2202 tsk->cpuset = &top_cpuset; /* the_top_cpuset_hack - see above */
2203 task_unlock(current);
2204
2205 if (notify_on_release(cs)) {
2206 char *pathbuf = NULL;
2207 1454
2208 mutex_lock(&manage_mutex);
2209 if (atomic_dec_and_test(&cs->count))
2210 check_for_release(cs, &pathbuf);
2211 mutex_unlock(&manage_mutex);
2212 cpuset_release_agent(pathbuf);
2213 } else {
2214 atomic_dec(&cs->count);
2215 }
2216}
2217
2218/**
2219 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. 1455 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2220 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 1456 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2221 * 1457 *
@@ -2231,7 +1467,7 @@ cpumask_t cpuset_cpus_allowed(struct task_struct *tsk)
2231 1467
2232 mutex_lock(&callback_mutex); 1468 mutex_lock(&callback_mutex);
2233 task_lock(tsk); 1469 task_lock(tsk);
2234 guarantee_online_cpus(tsk->cpuset, &mask); 1470 guarantee_online_cpus(task_cs(tsk), &mask);
2235 task_unlock(tsk); 1471 task_unlock(tsk);
2236 mutex_unlock(&callback_mutex); 1472 mutex_unlock(&callback_mutex);
2237 1473
@@ -2259,7 +1495,7 @@ nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2259 1495
2260 mutex_lock(&callback_mutex); 1496 mutex_lock(&callback_mutex);
2261 task_lock(tsk); 1497 task_lock(tsk);
2262 guarantee_online_mems(tsk->cpuset, &mask); 1498 guarantee_online_mems(task_cs(tsk), &mask);
2263 task_unlock(tsk); 1499 task_unlock(tsk);
2264 mutex_unlock(&callback_mutex); 1500 mutex_unlock(&callback_mutex);
2265 1501
@@ -2390,7 +1626,7 @@ int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
2390 mutex_lock(&callback_mutex); 1626 mutex_lock(&callback_mutex);
2391 1627
2392 task_lock(current); 1628 task_lock(current);
2393 cs = nearest_exclusive_ancestor(current->cpuset); 1629 cs = nearest_exclusive_ancestor(task_cs(current));
2394 task_unlock(current); 1630 task_unlock(current);
2395 1631
2396 allowed = node_isset(node, cs->mems_allowed); 1632 allowed = node_isset(node, cs->mems_allowed);
@@ -2550,14 +1786,12 @@ int cpuset_memory_pressure_enabled __read_mostly;
2550 1786
2551void __cpuset_memory_pressure_bump(void) 1787void __cpuset_memory_pressure_bump(void)
2552{ 1788{
2553 struct cpuset *cs;
2554
2555 task_lock(current); 1789 task_lock(current);
2556 cs = current->cpuset; 1790 fmeter_markevent(&task_cs(current)->fmeter);
2557 fmeter_markevent(&cs->fmeter);
2558 task_unlock(current); 1791 task_unlock(current);
2559} 1792}
2560 1793
1794#ifdef CONFIG_PROC_PID_CPUSET
2561/* 1795/*
2562 * proc_cpuset_show() 1796 * proc_cpuset_show()
2563 * - Print tasks cpuset path into seq_file. 1797 * - Print tasks cpuset path into seq_file.
@@ -2574,6 +1808,7 @@ static int proc_cpuset_show(struct seq_file *m, void *v)
2574 struct pid *pid; 1808 struct pid *pid;
2575 struct task_struct *tsk; 1809 struct task_struct *tsk;
2576 char *buf; 1810 char *buf;
1811 struct cgroup_subsys_state *css;
2577 int retval; 1812 int retval;
2578 1813
2579 retval = -ENOMEM; 1814 retval = -ENOMEM;
@@ -2588,15 +1823,15 @@ static int proc_cpuset_show(struct seq_file *m, void *v)
2588 goto out_free; 1823 goto out_free;
2589 1824
2590 retval = -EINVAL; 1825 retval = -EINVAL;
2591 mutex_lock(&manage_mutex); 1826 cgroup_lock();
2592 1827 css = task_subsys_state(tsk, cpuset_subsys_id);
2593 retval = cpuset_path(tsk->cpuset, buf, PAGE_SIZE); 1828 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
2594 if (retval < 0) 1829 if (retval < 0)
2595 goto out_unlock; 1830 goto out_unlock;
2596 seq_puts(m, buf); 1831 seq_puts(m, buf);
2597 seq_putc(m, '\n'); 1832 seq_putc(m, '\n');
2598out_unlock: 1833out_unlock:
2599 mutex_unlock(&manage_mutex); 1834 cgroup_unlock();
2600 put_task_struct(tsk); 1835 put_task_struct(tsk);
2601out_free: 1836out_free:
2602 kfree(buf); 1837 kfree(buf);
@@ -2616,6 +1851,7 @@ const struct file_operations proc_cpuset_operations = {
2616 .llseek = seq_lseek, 1851 .llseek = seq_lseek,
2617 .release = single_release, 1852 .release = single_release,
2618}; 1853};
1854#endif /* CONFIG_PROC_PID_CPUSET */
2619 1855
2620/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */ 1856/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
2621char *cpuset_task_status_allowed(struct task_struct *task, char *buffer) 1857char *cpuset_task_status_allowed(struct task_struct *task, char *buffer)