aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/cpuset.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/cpuset.c')
-rw-r--r--kernel/cpuset.c184
1 files changed, 46 insertions, 138 deletions
diff --git a/kernel/cpuset.c b/kernel/cpuset.c
index af5a83d52187..7e75a41bd508 100644
--- a/kernel/cpuset.c
+++ b/kernel/cpuset.c
@@ -97,12 +97,6 @@ struct cpuset {
97 97
98 struct cpuset *parent; /* my parent */ 98 struct cpuset *parent; /* my parent */
99 99
100 /*
101 * Copy of global cpuset_mems_generation as of the most
102 * recent time this cpuset changed its mems_allowed.
103 */
104 int mems_generation;
105
106 struct fmeter fmeter; /* memory_pressure filter */ 100 struct fmeter fmeter; /* memory_pressure filter */
107 101
108 /* partition number for rebuild_sched_domains() */ 102 /* partition number for rebuild_sched_domains() */
@@ -176,27 +170,6 @@ static inline int is_spread_slab(const struct cpuset *cs)
176 return test_bit(CS_SPREAD_SLAB, &cs->flags); 170 return test_bit(CS_SPREAD_SLAB, &cs->flags);
177} 171}
178 172
179/*
180 * Increment this integer everytime any cpuset changes its
181 * mems_allowed value. Users of cpusets can track this generation
182 * number, and avoid having to lock and reload mems_allowed unless
183 * the cpuset they're using changes generation.
184 *
185 * A single, global generation is needed because cpuset_attach_task() could
186 * reattach a task to a different cpuset, which must not have its
187 * generation numbers aliased with those of that tasks previous cpuset.
188 *
189 * Generations are needed for mems_allowed because one task cannot
190 * modify another's memory placement. So we must enable every task,
191 * on every visit to __alloc_pages(), to efficiently check whether
192 * its current->cpuset->mems_allowed has changed, requiring an update
193 * of its current->mems_allowed.
194 *
195 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
196 * there is no need to mark it atomic.
197 */
198static int cpuset_mems_generation;
199
200static struct cpuset top_cpuset = { 173static struct cpuset top_cpuset = {
201 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)), 174 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
202}; 175};
@@ -228,8 +201,9 @@ static struct cpuset top_cpuset = {
228 * If a task is only holding callback_mutex, then it has read-only 201 * If a task is only holding callback_mutex, then it has read-only
229 * access to cpusets. 202 * access to cpusets.
230 * 203 *
231 * The task_struct fields mems_allowed and mems_generation may only 204 * Now, the task_struct fields mems_allowed and mempolicy may be changed
232 * be accessed in the context of that task, so require no locks. 205 * by other task, we use alloc_lock in the task_struct fields to protect
206 * them.
233 * 207 *
234 * The cpuset_common_file_read() handlers only hold callback_mutex across 208 * The cpuset_common_file_read() handlers only hold callback_mutex across
235 * small pieces of code, such as when reading out possibly multi-word 209 * small pieces of code, such as when reading out possibly multi-word
@@ -349,69 +323,6 @@ static void cpuset_update_task_spread_flag(struct cpuset *cs,
349 tsk->flags &= ~PF_SPREAD_SLAB; 323 tsk->flags &= ~PF_SPREAD_SLAB;
350} 324}
351 325
352/**
353 * cpuset_update_task_memory_state - update task memory placement
354 *
355 * If the current tasks cpusets mems_allowed changed behind our
356 * backs, update current->mems_allowed, mems_generation and task NUMA
357 * mempolicy to the new value.
358 *
359 * Task mempolicy is updated by rebinding it relative to the
360 * current->cpuset if a task has its memory placement changed.
361 * Do not call this routine if in_interrupt().
362 *
363 * Call without callback_mutex or task_lock() held. May be
364 * called with or without cgroup_mutex held. Thanks in part to
365 * 'the_top_cpuset_hack', the task's cpuset pointer will never
366 * be NULL. This routine also might acquire callback_mutex during
367 * call.
368 *
369 * Reading current->cpuset->mems_generation doesn't need task_lock
370 * to guard the current->cpuset derefence, because it is guarded
371 * from concurrent freeing of current->cpuset using RCU.
372 *
373 * The rcu_dereference() is technically probably not needed,
374 * as I don't actually mind if I see a new cpuset pointer but
375 * an old value of mems_generation. However this really only
376 * matters on alpha systems using cpusets heavily. If I dropped
377 * that rcu_dereference(), it would save them a memory barrier.
378 * For all other arch's, rcu_dereference is a no-op anyway, and for
379 * alpha systems not using cpusets, another planned optimization,
380 * avoiding the rcu critical section for tasks in the root cpuset
381 * which is statically allocated, so can't vanish, will make this
382 * irrelevant. Better to use RCU as intended, than to engage in
383 * some cute trick to save a memory barrier that is impossible to
384 * test, for alpha systems using cpusets heavily, which might not
385 * even exist.
386 *
387 * This routine is needed to update the per-task mems_allowed data,
388 * within the tasks context, when it is trying to allocate memory
389 * (in various mm/mempolicy.c routines) and notices that some other
390 * task has been modifying its cpuset.
391 */
392
393void cpuset_update_task_memory_state(void)
394{
395 int my_cpusets_mem_gen;
396 struct task_struct *tsk = current;
397 struct cpuset *cs;
398
399 rcu_read_lock();
400 my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
401 rcu_read_unlock();
402
403 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
404 mutex_lock(&callback_mutex);
405 task_lock(tsk);
406 cs = task_cs(tsk); /* Maybe changed when task not locked */
407 guarantee_online_mems(cs, &tsk->mems_allowed);
408 tsk->cpuset_mems_generation = cs->mems_generation;
409 task_unlock(tsk);
410 mutex_unlock(&callback_mutex);
411 mpol_rebind_task(tsk, &tsk->mems_allowed);
412 }
413}
414
415/* 326/*
416 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? 327 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
417 * 328 *
@@ -1017,14 +928,6 @@ static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1017 * other task, the task_struct mems_allowed that we are hacking 928 * other task, the task_struct mems_allowed that we are hacking
1018 * is for our current task, which must allocate new pages for that 929 * is for our current task, which must allocate new pages for that
1019 * migrating memory region. 930 * migrating memory region.
1020 *
1021 * We call cpuset_update_task_memory_state() before hacking
1022 * our tasks mems_allowed, so that we are assured of being in
1023 * sync with our tasks cpuset, and in particular, callbacks to
1024 * cpuset_update_task_memory_state() from nested page allocations
1025 * won't see any mismatch of our cpuset and task mems_generation
1026 * values, so won't overwrite our hacked tasks mems_allowed
1027 * nodemask.
1028 */ 931 */
1029 932
1030static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, 933static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
@@ -1032,22 +935,37 @@ static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1032{ 935{
1033 struct task_struct *tsk = current; 936 struct task_struct *tsk = current;
1034 937
1035 cpuset_update_task_memory_state();
1036
1037 mutex_lock(&callback_mutex);
1038 tsk->mems_allowed = *to; 938 tsk->mems_allowed = *to;
1039 mutex_unlock(&callback_mutex);
1040 939
1041 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL); 940 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
1042 941
1043 mutex_lock(&callback_mutex);
1044 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed); 942 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
1045 mutex_unlock(&callback_mutex);
1046} 943}
1047 944
1048/* 945/*
1049 * Rebind task's vmas to cpuset's new mems_allowed, and migrate pages to new 946 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1050 * nodes if memory_migrate flag is set. Called with cgroup_mutex held. 947 * @tsk: the task to change
948 * @newmems: new nodes that the task will be set
949 *
950 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
951 * we structure updates as setting all new allowed nodes, then clearing newly
952 * disallowed ones.
953 *
954 * Called with task's alloc_lock held
955 */
956static void cpuset_change_task_nodemask(struct task_struct *tsk,
957 nodemask_t *newmems)
958{
959 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
960 mpol_rebind_task(tsk, &tsk->mems_allowed);
961 mpol_rebind_task(tsk, newmems);
962 tsk->mems_allowed = *newmems;
963}
964
965/*
966 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
967 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
968 * memory_migrate flag is set. Called with cgroup_mutex held.
1051 */ 969 */
1052static void cpuset_change_nodemask(struct task_struct *p, 970static void cpuset_change_nodemask(struct task_struct *p,
1053 struct cgroup_scanner *scan) 971 struct cgroup_scanner *scan)
@@ -1056,12 +974,19 @@ static void cpuset_change_nodemask(struct task_struct *p,
1056 struct cpuset *cs; 974 struct cpuset *cs;
1057 int migrate; 975 int migrate;
1058 const nodemask_t *oldmem = scan->data; 976 const nodemask_t *oldmem = scan->data;
977 nodemask_t newmems;
978
979 cs = cgroup_cs(scan->cg);
980 guarantee_online_mems(cs, &newmems);
981
982 task_lock(p);
983 cpuset_change_task_nodemask(p, &newmems);
984 task_unlock(p);
1059 985
1060 mm = get_task_mm(p); 986 mm = get_task_mm(p);
1061 if (!mm) 987 if (!mm)
1062 return; 988 return;
1063 989
1064 cs = cgroup_cs(scan->cg);
1065 migrate = is_memory_migrate(cs); 990 migrate = is_memory_migrate(cs);
1066 991
1067 mpol_rebind_mm(mm, &cs->mems_allowed); 992 mpol_rebind_mm(mm, &cs->mems_allowed);
@@ -1114,10 +1039,10 @@ static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1114/* 1039/*
1115 * Handle user request to change the 'mems' memory placement 1040 * Handle user request to change the 'mems' memory placement
1116 * of a cpuset. Needs to validate the request, update the 1041 * of a cpuset. Needs to validate the request, update the
1117 * cpusets mems_allowed and mems_generation, and for each 1042 * cpusets mems_allowed, and for each task in the cpuset,
1118 * task in the cpuset, rebind any vma mempolicies and if 1043 * update mems_allowed and rebind task's mempolicy and any vma
1119 * the cpuset is marked 'memory_migrate', migrate the tasks 1044 * mempolicies and if the cpuset is marked 'memory_migrate',
1120 * pages to the new memory. 1045 * migrate the tasks pages to the new memory.
1121 * 1046 *
1122 * Call with cgroup_mutex held. May take callback_mutex during call. 1047 * Call with cgroup_mutex held. May take callback_mutex during call.
1123 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 1048 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
@@ -1170,7 +1095,6 @@ static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1170 1095
1171 mutex_lock(&callback_mutex); 1096 mutex_lock(&callback_mutex);
1172 cs->mems_allowed = trialcs->mems_allowed; 1097 cs->mems_allowed = trialcs->mems_allowed;
1173 cs->mems_generation = cpuset_mems_generation++;
1174 mutex_unlock(&callback_mutex); 1098 mutex_unlock(&callback_mutex);
1175 1099
1176 update_tasks_nodemask(cs, &oldmem, &heap); 1100 update_tasks_nodemask(cs, &oldmem, &heap);
@@ -1434,15 +1358,18 @@ static void cpuset_attach(struct cgroup_subsys *ss,
1434 1358
1435 if (cs == &top_cpuset) { 1359 if (cs == &top_cpuset) {
1436 cpumask_copy(cpus_attach, cpu_possible_mask); 1360 cpumask_copy(cpus_attach, cpu_possible_mask);
1361 to = node_possible_map;
1437 } else { 1362 } else {
1438 mutex_lock(&callback_mutex);
1439 guarantee_online_cpus(cs, cpus_attach); 1363 guarantee_online_cpus(cs, cpus_attach);
1440 mutex_unlock(&callback_mutex); 1364 guarantee_online_mems(cs, &to);
1441 } 1365 }
1442 err = set_cpus_allowed_ptr(tsk, cpus_attach); 1366 err = set_cpus_allowed_ptr(tsk, cpus_attach);
1443 if (err) 1367 if (err)
1444 return; 1368 return;
1445 1369
1370 task_lock(tsk);
1371 cpuset_change_task_nodemask(tsk, &to);
1372 task_unlock(tsk);
1446 cpuset_update_task_spread_flag(cs, tsk); 1373 cpuset_update_task_spread_flag(cs, tsk);
1447 1374
1448 from = oldcs->mems_allowed; 1375 from = oldcs->mems_allowed;
@@ -1848,8 +1775,6 @@ static struct cgroup_subsys_state *cpuset_create(
1848 struct cpuset *parent; 1775 struct cpuset *parent;
1849 1776
1850 if (!cont->parent) { 1777 if (!cont->parent) {
1851 /* This is early initialization for the top cgroup */
1852 top_cpuset.mems_generation = cpuset_mems_generation++;
1853 return &top_cpuset.css; 1778 return &top_cpuset.css;
1854 } 1779 }
1855 parent = cgroup_cs(cont->parent); 1780 parent = cgroup_cs(cont->parent);
@@ -1861,7 +1786,6 @@ static struct cgroup_subsys_state *cpuset_create(
1861 return ERR_PTR(-ENOMEM); 1786 return ERR_PTR(-ENOMEM);
1862 } 1787 }
1863 1788
1864 cpuset_update_task_memory_state();
1865 cs->flags = 0; 1789 cs->flags = 0;
1866 if (is_spread_page(parent)) 1790 if (is_spread_page(parent))
1867 set_bit(CS_SPREAD_PAGE, &cs->flags); 1791 set_bit(CS_SPREAD_PAGE, &cs->flags);
@@ -1870,7 +1794,6 @@ static struct cgroup_subsys_state *cpuset_create(
1870 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1794 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1871 cpumask_clear(cs->cpus_allowed); 1795 cpumask_clear(cs->cpus_allowed);
1872 nodes_clear(cs->mems_allowed); 1796 nodes_clear(cs->mems_allowed);
1873 cs->mems_generation = cpuset_mems_generation++;
1874 fmeter_init(&cs->fmeter); 1797 fmeter_init(&cs->fmeter);
1875 cs->relax_domain_level = -1; 1798 cs->relax_domain_level = -1;
1876 1799
@@ -1889,8 +1812,6 @@ static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1889{ 1812{
1890 struct cpuset *cs = cgroup_cs(cont); 1813 struct cpuset *cs = cgroup_cs(cont);
1891 1814
1892 cpuset_update_task_memory_state();
1893
1894 if (is_sched_load_balance(cs)) 1815 if (is_sched_load_balance(cs))
1895 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 1816 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1896 1817
@@ -1911,21 +1832,6 @@ struct cgroup_subsys cpuset_subsys = {
1911 .early_init = 1, 1832 .early_init = 1,
1912}; 1833};
1913 1834
1914/*
1915 * cpuset_init_early - just enough so that the calls to
1916 * cpuset_update_task_memory_state() in early init code
1917 * are harmless.
1918 */
1919
1920int __init cpuset_init_early(void)
1921{
1922 alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_NOWAIT);
1923
1924 top_cpuset.mems_generation = cpuset_mems_generation++;
1925 return 0;
1926}
1927
1928
1929/** 1835/**
1930 * cpuset_init - initialize cpusets at system boot 1836 * cpuset_init - initialize cpusets at system boot
1931 * 1837 *
@@ -1936,11 +1842,13 @@ int __init cpuset_init(void)
1936{ 1842{
1937 int err = 0; 1843 int err = 0;
1938 1844
1845 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1846 BUG();
1847
1939 cpumask_setall(top_cpuset.cpus_allowed); 1848 cpumask_setall(top_cpuset.cpus_allowed);
1940 nodes_setall(top_cpuset.mems_allowed); 1849 nodes_setall(top_cpuset.mems_allowed);
1941 1850
1942 fmeter_init(&top_cpuset.fmeter); 1851 fmeter_init(&top_cpuset.fmeter);
1943 top_cpuset.mems_generation = cpuset_mems_generation++;
1944 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); 1852 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1945 top_cpuset.relax_domain_level = -1; 1853 top_cpuset.relax_domain_level = -1;
1946 1854