aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/cpuset.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/cpuset.c')
-rw-r--r--kernel/cpuset.c1601
1 files changed, 601 insertions, 1000 deletions
diff --git a/kernel/cpuset.c b/kernel/cpuset.c
index 64950fa5d321..50f5dc463688 100644
--- a/kernel/cpuset.c
+++ b/kernel/cpuset.c
@@ -4,7 +4,8 @@
4 * Processor and Memory placement constraints for sets of tasks. 4 * Processor and Memory placement constraints for sets of tasks.
5 * 5 *
6 * Copyright (C) 2003 BULL SA. 6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
8 * 9 *
9 * Portions derived from Patrick Mochel's sysfs code. 10 * Portions derived from Patrick Mochel's sysfs code.
10 * sysfs is Copyright (c) 2001-3 Patrick Mochel 11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
@@ -12,6 +13,7 @@
12 * 2003-10-10 Written by Simon Derr. 13 * 2003-10-10 Written by Simon Derr.
13 * 2003-10-22 Updates by Stephen Hemminger. 14 * 2003-10-22 Updates by Stephen Hemminger.
14 * 2004 May-July Rework by Paul Jackson. 15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
15 * 17 *
16 * This file is subject to the terms and conditions of the GNU General Public 18 * This file is subject to the terms and conditions of the GNU General Public
17 * License. See the file COPYING in the main directory of the Linux 19 * License. See the file COPYING in the main directory of the Linux
@@ -36,6 +38,7 @@
36#include <linux/mount.h> 38#include <linux/mount.h>
37#include <linux/namei.h> 39#include <linux/namei.h>
38#include <linux/pagemap.h> 40#include <linux/pagemap.h>
41#include <linux/prio_heap.h>
39#include <linux/proc_fs.h> 42#include <linux/proc_fs.h>
40#include <linux/rcupdate.h> 43#include <linux/rcupdate.h>
41#include <linux/sched.h> 44#include <linux/sched.h>
@@ -52,8 +55,7 @@
52#include <asm/uaccess.h> 55#include <asm/uaccess.h>
53#include <asm/atomic.h> 56#include <asm/atomic.h>
54#include <linux/mutex.h> 57#include <linux/mutex.h>
55 58#include <linux/kfifo.h>
56#define CPUSET_SUPER_MAGIC 0x27e0eb
57 59
58/* 60/*
59 * Tracks how many cpusets are currently defined in system. 61 * Tracks how many cpusets are currently defined in system.
@@ -62,6 +64,10 @@
62 */ 64 */
63int number_of_cpusets __read_mostly; 65int number_of_cpusets __read_mostly;
64 66
67/* Retrieve the cpuset from a cgroup */
68struct cgroup_subsys cpuset_subsys;
69struct cpuset;
70
65/* See "Frequency meter" comments, below. */ 71/* See "Frequency meter" comments, below. */
66 72
67struct fmeter { 73struct fmeter {
@@ -72,24 +78,13 @@ struct fmeter {
72}; 78};
73 79
74struct cpuset { 80struct cpuset {
81 struct cgroup_subsys_state css;
82
75 unsigned long flags; /* "unsigned long" so bitops work */ 83 unsigned long flags; /* "unsigned long" so bitops work */
76 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */ 84 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
77 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */ 85 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
78 86
79 /*
80 * Count is atomic so can incr (fork) or decr (exit) without a lock.
81 */
82 atomic_t count; /* count tasks using this cpuset */
83
84 /*
85 * We link our 'sibling' struct into our parents 'children'.
86 * Our children link their 'sibling' into our 'children'.
87 */
88 struct list_head sibling; /* my parents children */
89 struct list_head children; /* my children */
90
91 struct cpuset *parent; /* my parent */ 87 struct cpuset *parent; /* my parent */
92 struct dentry *dentry; /* cpuset fs entry */
93 88
94 /* 89 /*
95 * Copy of global cpuset_mems_generation as of the most 90 * Copy of global cpuset_mems_generation as of the most
@@ -98,15 +93,32 @@ struct cpuset {
98 int mems_generation; 93 int mems_generation;
99 94
100 struct fmeter fmeter; /* memory_pressure filter */ 95 struct fmeter fmeter; /* memory_pressure filter */
96
97 /* partition number for rebuild_sched_domains() */
98 int pn;
101}; 99};
102 100
101/* Retrieve the cpuset for a cgroup */
102static inline struct cpuset *cgroup_cs(struct cgroup *cont)
103{
104 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
105 struct cpuset, css);
106}
107
108/* Retrieve the cpuset for a task */
109static inline struct cpuset *task_cs(struct task_struct *task)
110{
111 return container_of(task_subsys_state(task, cpuset_subsys_id),
112 struct cpuset, css);
113}
114
115
103/* bits in struct cpuset flags field */ 116/* bits in struct cpuset flags field */
104typedef enum { 117typedef enum {
105 CS_CPU_EXCLUSIVE, 118 CS_CPU_EXCLUSIVE,
106 CS_MEM_EXCLUSIVE, 119 CS_MEM_EXCLUSIVE,
107 CS_MEMORY_MIGRATE, 120 CS_MEMORY_MIGRATE,
108 CS_REMOVED, 121 CS_SCHED_LOAD_BALANCE,
109 CS_NOTIFY_ON_RELEASE,
110 CS_SPREAD_PAGE, 122 CS_SPREAD_PAGE,
111 CS_SPREAD_SLAB, 123 CS_SPREAD_SLAB,
112} cpuset_flagbits_t; 124} cpuset_flagbits_t;
@@ -122,14 +134,9 @@ static inline int is_mem_exclusive(const struct cpuset *cs)
122 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); 134 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
123} 135}
124 136
125static inline int is_removed(const struct cpuset *cs) 137static inline int is_sched_load_balance(const struct cpuset *cs)
126{ 138{
127 return test_bit(CS_REMOVED, &cs->flags); 139 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
128}
129
130static inline int notify_on_release(const struct cpuset *cs)
131{
132 return test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
133} 140}
134 141
135static inline int is_memory_migrate(const struct cpuset *cs) 142static inline int is_memory_migrate(const struct cpuset *cs)
@@ -172,14 +179,8 @@ static struct cpuset top_cpuset = {
172 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)), 179 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
173 .cpus_allowed = CPU_MASK_ALL, 180 .cpus_allowed = CPU_MASK_ALL,
174 .mems_allowed = NODE_MASK_ALL, 181 .mems_allowed = NODE_MASK_ALL,
175 .count = ATOMIC_INIT(0),
176 .sibling = LIST_HEAD_INIT(top_cpuset.sibling),
177 .children = LIST_HEAD_INIT(top_cpuset.children),
178}; 182};
179 183
180static struct vfsmount *cpuset_mount;
181static struct super_block *cpuset_sb;
182
183/* 184/*
184 * We have two global cpuset mutexes below. They can nest. 185 * We have two global cpuset mutexes below. They can nest.
185 * It is ok to first take manage_mutex, then nest callback_mutex. We also 186 * It is ok to first take manage_mutex, then nest callback_mutex. We also
@@ -263,297 +264,33 @@ static struct super_block *cpuset_sb;
263 * the routine cpuset_update_task_memory_state(). 264 * the routine cpuset_update_task_memory_state().
264 */ 265 */
265 266
266static DEFINE_MUTEX(manage_mutex);
267static DEFINE_MUTEX(callback_mutex); 267static DEFINE_MUTEX(callback_mutex);
268 268
269/* 269/* This is ugly, but preserves the userspace API for existing cpuset
270 * A couple of forward declarations required, due to cyclic reference loop: 270 * users. If someone tries to mount the "cpuset" filesystem, we
271 * cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file 271 * silently switch it to mount "cgroup" instead */
272 * -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir.
273 */
274
275static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode);
276static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry);
277
278static struct backing_dev_info cpuset_backing_dev_info = {
279 .ra_pages = 0, /* No readahead */
280 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
281};
282
283static struct inode *cpuset_new_inode(mode_t mode)
284{
285 struct inode *inode = new_inode(cpuset_sb);
286
287 if (inode) {
288 inode->i_mode = mode;
289 inode->i_uid = current->fsuid;
290 inode->i_gid = current->fsgid;
291 inode->i_blocks = 0;
292 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
293 inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info;
294 }
295 return inode;
296}
297
298static void cpuset_diput(struct dentry *dentry, struct inode *inode)
299{
300 /* is dentry a directory ? if so, kfree() associated cpuset */
301 if (S_ISDIR(inode->i_mode)) {
302 struct cpuset *cs = dentry->d_fsdata;
303 BUG_ON(!(is_removed(cs)));
304 kfree(cs);
305 }
306 iput(inode);
307}
308
309static struct dentry_operations cpuset_dops = {
310 .d_iput = cpuset_diput,
311};
312
313static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name)
314{
315 struct dentry *d = lookup_one_len(name, parent, strlen(name));
316 if (!IS_ERR(d))
317 d->d_op = &cpuset_dops;
318 return d;
319}
320
321static void remove_dir(struct dentry *d)
322{
323 struct dentry *parent = dget(d->d_parent);
324
325 d_delete(d);
326 simple_rmdir(parent->d_inode, d);
327 dput(parent);
328}
329
330/*
331 * NOTE : the dentry must have been dget()'ed
332 */
333static void cpuset_d_remove_dir(struct dentry *dentry)
334{
335 struct list_head *node;
336
337 spin_lock(&dcache_lock);
338 node = dentry->d_subdirs.next;
339 while (node != &dentry->d_subdirs) {
340 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
341 list_del_init(node);
342 if (d->d_inode) {
343 d = dget_locked(d);
344 spin_unlock(&dcache_lock);
345 d_delete(d);
346 simple_unlink(dentry->d_inode, d);
347 dput(d);
348 spin_lock(&dcache_lock);
349 }
350 node = dentry->d_subdirs.next;
351 }
352 list_del_init(&dentry->d_u.d_child);
353 spin_unlock(&dcache_lock);
354 remove_dir(dentry);
355}
356
357static struct super_operations cpuset_ops = {
358 .statfs = simple_statfs,
359 .drop_inode = generic_delete_inode,
360};
361
362static int cpuset_fill_super(struct super_block *sb, void *unused_data,
363 int unused_silent)
364{
365 struct inode *inode;
366 struct dentry *root;
367
368 sb->s_blocksize = PAGE_CACHE_SIZE;
369 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
370 sb->s_magic = CPUSET_SUPER_MAGIC;
371 sb->s_op = &cpuset_ops;
372 cpuset_sb = sb;
373
374 inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR);
375 if (inode) {
376 inode->i_op = &simple_dir_inode_operations;
377 inode->i_fop = &simple_dir_operations;
378 /* directories start off with i_nlink == 2 (for "." entry) */
379 inc_nlink(inode);
380 } else {
381 return -ENOMEM;
382 }
383
384 root = d_alloc_root(inode);
385 if (!root) {
386 iput(inode);
387 return -ENOMEM;
388 }
389 sb->s_root = root;
390 return 0;
391}
392
393static int cpuset_get_sb(struct file_system_type *fs_type, 272static int cpuset_get_sb(struct file_system_type *fs_type,
394 int flags, const char *unused_dev_name, 273 int flags, const char *unused_dev_name,
395 void *data, struct vfsmount *mnt) 274 void *data, struct vfsmount *mnt)
396{ 275{
397 return get_sb_single(fs_type, flags, data, cpuset_fill_super, mnt); 276 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
277 int ret = -ENODEV;
278 if (cgroup_fs) {
279 char mountopts[] =
280 "cpuset,noprefix,"
281 "release_agent=/sbin/cpuset_release_agent";
282 ret = cgroup_fs->get_sb(cgroup_fs, flags,
283 unused_dev_name, mountopts, mnt);
284 put_filesystem(cgroup_fs);
285 }
286 return ret;
398} 287}
399 288
400static struct file_system_type cpuset_fs_type = { 289static struct file_system_type cpuset_fs_type = {
401 .name = "cpuset", 290 .name = "cpuset",
402 .get_sb = cpuset_get_sb, 291 .get_sb = cpuset_get_sb,
403 .kill_sb = kill_litter_super,
404}; 292};
405 293
406/* struct cftype:
407 *
408 * The files in the cpuset filesystem mostly have a very simple read/write
409 * handling, some common function will take care of it. Nevertheless some cases
410 * (read tasks) are special and therefore I define this structure for every
411 * kind of file.
412 *
413 *
414 * When reading/writing to a file:
415 * - the cpuset to use in file->f_path.dentry->d_parent->d_fsdata
416 * - the 'cftype' of the file is file->f_path.dentry->d_fsdata
417 */
418
419struct cftype {
420 char *name;
421 int private;
422 int (*open) (struct inode *inode, struct file *file);
423 ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes,
424 loff_t *ppos);
425 int (*write) (struct file *file, const char __user *buf, size_t nbytes,
426 loff_t *ppos);
427 int (*release) (struct inode *inode, struct file *file);
428};
429
430static inline struct cpuset *__d_cs(struct dentry *dentry)
431{
432 return dentry->d_fsdata;
433}
434
435static inline struct cftype *__d_cft(struct dentry *dentry)
436{
437 return dentry->d_fsdata;
438}
439
440/*
441 * Call with manage_mutex held. Writes path of cpuset into buf.
442 * Returns 0 on success, -errno on error.
443 */
444
445static int cpuset_path(const struct cpuset *cs, char *buf, int buflen)
446{
447 char *start;
448
449 start = buf + buflen;
450
451 *--start = '\0';
452 for (;;) {
453 int len = cs->dentry->d_name.len;
454 if ((start -= len) < buf)
455 return -ENAMETOOLONG;
456 memcpy(start, cs->dentry->d_name.name, len);
457 cs = cs->parent;
458 if (!cs)
459 break;
460 if (!cs->parent)
461 continue;
462 if (--start < buf)
463 return -ENAMETOOLONG;
464 *start = '/';
465 }
466 memmove(buf, start, buf + buflen - start);
467 return 0;
468}
469
470/*
471 * Notify userspace when a cpuset is released, by running
472 * /sbin/cpuset_release_agent with the name of the cpuset (path
473 * relative to the root of cpuset file system) as the argument.
474 *
475 * Most likely, this user command will try to rmdir this cpuset.
476 *
477 * This races with the possibility that some other task will be
478 * attached to this cpuset before it is removed, or that some other
479 * user task will 'mkdir' a child cpuset of this cpuset. That's ok.
480 * The presumed 'rmdir' will fail quietly if this cpuset is no longer
481 * unused, and this cpuset will be reprieved from its death sentence,
482 * to continue to serve a useful existence. Next time it's released,
483 * we will get notified again, if it still has 'notify_on_release' set.
484 *
485 * The final arg to call_usermodehelper() is 0, which means don't
486 * wait. The separate /sbin/cpuset_release_agent task is forked by
487 * call_usermodehelper(), then control in this thread returns here,
488 * without waiting for the release agent task. We don't bother to
489 * wait because the caller of this routine has no use for the exit
490 * status of the /sbin/cpuset_release_agent task, so no sense holding
491 * our caller up for that.
492 *
493 * When we had only one cpuset mutex, we had to call this
494 * without holding it, to avoid deadlock when call_usermodehelper()
495 * allocated memory. With two locks, we could now call this while
496 * holding manage_mutex, but we still don't, so as to minimize
497 * the time manage_mutex is held.
498 */
499
500static void cpuset_release_agent(const char *pathbuf)
501{
502 char *argv[3], *envp[3];
503 int i;
504
505 if (!pathbuf)
506 return;
507
508 i = 0;
509 argv[i++] = "/sbin/cpuset_release_agent";
510 argv[i++] = (char *)pathbuf;
511 argv[i] = NULL;
512
513 i = 0;
514 /* minimal command environment */
515 envp[i++] = "HOME=/";
516 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
517 envp[i] = NULL;
518
519 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
520 kfree(pathbuf);
521}
522
523/*
524 * Either cs->count of using tasks transitioned to zero, or the
525 * cs->children list of child cpusets just became empty. If this
526 * cs is notify_on_release() and now both the user count is zero and
527 * the list of children is empty, prepare cpuset path in a kmalloc'd
528 * buffer, to be returned via ppathbuf, so that the caller can invoke
529 * cpuset_release_agent() with it later on, once manage_mutex is dropped.
530 * Call here with manage_mutex held.
531 *
532 * This check_for_release() routine is responsible for kmalloc'ing
533 * pathbuf. The above cpuset_release_agent() is responsible for
534 * kfree'ing pathbuf. The caller of these routines is responsible
535 * for providing a pathbuf pointer, initialized to NULL, then
536 * calling check_for_release() with manage_mutex held and the address
537 * of the pathbuf pointer, then dropping manage_mutex, then calling
538 * cpuset_release_agent() with pathbuf, as set by check_for_release().
539 */
540
541static void check_for_release(struct cpuset *cs, char **ppathbuf)
542{
543 if (notify_on_release(cs) && atomic_read(&cs->count) == 0 &&
544 list_empty(&cs->children)) {
545 char *buf;
546
547 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
548 if (!buf)
549 return;
550 if (cpuset_path(cs, buf, PAGE_SIZE) < 0)
551 kfree(buf);
552 else
553 *ppathbuf = buf;
554 }
555}
556
557/* 294/*
558 * Return in *pmask the portion of a cpusets's cpus_allowed that 295 * Return in *pmask the portion of a cpusets's cpus_allowed that
559 * are online. If none are online, walk up the cpuset hierarchy 296 * are online. If none are online, walk up the cpuset hierarchy
@@ -653,20 +390,19 @@ void cpuset_update_task_memory_state(void)
653 struct task_struct *tsk = current; 390 struct task_struct *tsk = current;
654 struct cpuset *cs; 391 struct cpuset *cs;
655 392
656 if (tsk->cpuset == &top_cpuset) { 393 if (task_cs(tsk) == &top_cpuset) {
657 /* Don't need rcu for top_cpuset. It's never freed. */ 394 /* Don't need rcu for top_cpuset. It's never freed. */
658 my_cpusets_mem_gen = top_cpuset.mems_generation; 395 my_cpusets_mem_gen = top_cpuset.mems_generation;
659 } else { 396 } else {
660 rcu_read_lock(); 397 rcu_read_lock();
661 cs = rcu_dereference(tsk->cpuset); 398 my_cpusets_mem_gen = task_cs(current)->mems_generation;
662 my_cpusets_mem_gen = cs->mems_generation;
663 rcu_read_unlock(); 399 rcu_read_unlock();
664 } 400 }
665 401
666 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) { 402 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
667 mutex_lock(&callback_mutex); 403 mutex_lock(&callback_mutex);
668 task_lock(tsk); 404 task_lock(tsk);
669 cs = tsk->cpuset; /* Maybe changed when task not locked */ 405 cs = task_cs(tsk); /* Maybe changed when task not locked */
670 guarantee_online_mems(cs, &tsk->mems_allowed); 406 guarantee_online_mems(cs, &tsk->mems_allowed);
671 tsk->cpuset_mems_generation = cs->mems_generation; 407 tsk->cpuset_mems_generation = cs->mems_generation;
672 if (is_spread_page(cs)) 408 if (is_spread_page(cs))
@@ -721,11 +457,12 @@ static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
721 457
722static int validate_change(const struct cpuset *cur, const struct cpuset *trial) 458static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
723{ 459{
460 struct cgroup *cont;
724 struct cpuset *c, *par; 461 struct cpuset *c, *par;
725 462
726 /* Each of our child cpusets must be a subset of us */ 463 /* Each of our child cpusets must be a subset of us */
727 list_for_each_entry(c, &cur->children, sibling) { 464 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
728 if (!is_cpuset_subset(c, trial)) 465 if (!is_cpuset_subset(cgroup_cs(cont), trial))
729 return -EBUSY; 466 return -EBUSY;
730 } 467 }
731 468
@@ -740,7 +477,8 @@ static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
740 return -EACCES; 477 return -EACCES;
741 478
742 /* If either I or some sibling (!= me) is exclusive, we can't overlap */ 479 /* If either I or some sibling (!= me) is exclusive, we can't overlap */
743 list_for_each_entry(c, &par->children, sibling) { 480 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
481 c = cgroup_cs(cont);
744 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && 482 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
745 c != cur && 483 c != cur &&
746 cpus_intersects(trial->cpus_allowed, c->cpus_allowed)) 484 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
@@ -751,17 +489,265 @@ static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
751 return -EINVAL; 489 return -EINVAL;
752 } 490 }
753 491
492 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
493 if (cgroup_task_count(cur->css.cgroup)) {
494 if (cpus_empty(trial->cpus_allowed) ||
495 nodes_empty(trial->mems_allowed)) {
496 return -ENOSPC;
497 }
498 }
499
754 return 0; 500 return 0;
755} 501}
756 502
757/* 503/*
504 * Helper routine for rebuild_sched_domains().
505 * Do cpusets a, b have overlapping cpus_allowed masks?
506 */
507
508static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
509{
510 return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
511}
512
513/*
514 * rebuild_sched_domains()
515 *
516 * If the flag 'sched_load_balance' of any cpuset with non-empty
517 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
518 * which has that flag enabled, or if any cpuset with a non-empty
519 * 'cpus' is removed, then call this routine to rebuild the
520 * scheduler's dynamic sched domains.
521 *
522 * This routine builds a partial partition of the systems CPUs
523 * (the set of non-overlappping cpumask_t's in the array 'part'
524 * below), and passes that partial partition to the kernel/sched.c
525 * partition_sched_domains() routine, which will rebuild the
526 * schedulers load balancing domains (sched domains) as specified
527 * by that partial partition. A 'partial partition' is a set of
528 * non-overlapping subsets whose union is a subset of that set.
529 *
530 * See "What is sched_load_balance" in Documentation/cpusets.txt
531 * for a background explanation of this.
532 *
533 * Does not return errors, on the theory that the callers of this
534 * routine would rather not worry about failures to rebuild sched
535 * domains when operating in the severe memory shortage situations
536 * that could cause allocation failures below.
537 *
538 * Call with cgroup_mutex held. May take callback_mutex during
539 * call due to the kfifo_alloc() and kmalloc() calls. May nest
540 * a call to the lock_cpu_hotplug()/unlock_cpu_hotplug() pair.
541 * Must not be called holding callback_mutex, because we must not
542 * call lock_cpu_hotplug() while holding callback_mutex. Elsewhere
543 * the kernel nests callback_mutex inside lock_cpu_hotplug() calls.
544 * So the reverse nesting would risk an ABBA deadlock.
545 *
546 * The three key local variables below are:
547 * q - a kfifo queue of cpuset pointers, used to implement a
548 * top-down scan of all cpusets. This scan loads a pointer
549 * to each cpuset marked is_sched_load_balance into the
550 * array 'csa'. For our purposes, rebuilding the schedulers
551 * sched domains, we can ignore !is_sched_load_balance cpusets.
552 * csa - (for CpuSet Array) Array of pointers to all the cpusets
553 * that need to be load balanced, for convenient iterative
554 * access by the subsequent code that finds the best partition,
555 * i.e the set of domains (subsets) of CPUs such that the
556 * cpus_allowed of every cpuset marked is_sched_load_balance
557 * is a subset of one of these domains, while there are as
558 * many such domains as possible, each as small as possible.
559 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
560 * the kernel/sched.c routine partition_sched_domains() in a
561 * convenient format, that can be easily compared to the prior
562 * value to determine what partition elements (sched domains)
563 * were changed (added or removed.)
564 *
565 * Finding the best partition (set of domains):
566 * The triple nested loops below over i, j, k scan over the
567 * load balanced cpusets (using the array of cpuset pointers in
568 * csa[]) looking for pairs of cpusets that have overlapping
569 * cpus_allowed, but which don't have the same 'pn' partition
570 * number and gives them in the same partition number. It keeps
571 * looping on the 'restart' label until it can no longer find
572 * any such pairs.
573 *
574 * The union of the cpus_allowed masks from the set of
575 * all cpusets having the same 'pn' value then form the one
576 * element of the partition (one sched domain) to be passed to
577 * partition_sched_domains().
578 */
579
580static void rebuild_sched_domains(void)
581{
582 struct kfifo *q; /* queue of cpusets to be scanned */
583 struct cpuset *cp; /* scans q */
584 struct cpuset **csa; /* array of all cpuset ptrs */
585 int csn; /* how many cpuset ptrs in csa so far */
586 int i, j, k; /* indices for partition finding loops */
587 cpumask_t *doms; /* resulting partition; i.e. sched domains */
588 int ndoms; /* number of sched domains in result */
589 int nslot; /* next empty doms[] cpumask_t slot */
590
591 q = NULL;
592 csa = NULL;
593 doms = NULL;
594
595 /* Special case for the 99% of systems with one, full, sched domain */
596 if (is_sched_load_balance(&top_cpuset)) {
597 ndoms = 1;
598 doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
599 if (!doms)
600 goto rebuild;
601 *doms = top_cpuset.cpus_allowed;
602 goto rebuild;
603 }
604
605 q = kfifo_alloc(number_of_cpusets * sizeof(cp), GFP_KERNEL, NULL);
606 if (IS_ERR(q))
607 goto done;
608 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
609 if (!csa)
610 goto done;
611 csn = 0;
612
613 cp = &top_cpuset;
614 __kfifo_put(q, (void *)&cp, sizeof(cp));
615 while (__kfifo_get(q, (void *)&cp, sizeof(cp))) {
616 struct cgroup *cont;
617 struct cpuset *child; /* scans child cpusets of cp */
618 if (is_sched_load_balance(cp))
619 csa[csn++] = cp;
620 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
621 child = cgroup_cs(cont);
622 __kfifo_put(q, (void *)&child, sizeof(cp));
623 }
624 }
625
626 for (i = 0; i < csn; i++)
627 csa[i]->pn = i;
628 ndoms = csn;
629
630restart:
631 /* Find the best partition (set of sched domains) */
632 for (i = 0; i < csn; i++) {
633 struct cpuset *a = csa[i];
634 int apn = a->pn;
635
636 for (j = 0; j < csn; j++) {
637 struct cpuset *b = csa[j];
638 int bpn = b->pn;
639
640 if (apn != bpn && cpusets_overlap(a, b)) {
641 for (k = 0; k < csn; k++) {
642 struct cpuset *c = csa[k];
643
644 if (c->pn == bpn)
645 c->pn = apn;
646 }
647 ndoms--; /* one less element */
648 goto restart;
649 }
650 }
651 }
652
653 /* Convert <csn, csa> to <ndoms, doms> */
654 doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
655 if (!doms)
656 goto rebuild;
657
658 for (nslot = 0, i = 0; i < csn; i++) {
659 struct cpuset *a = csa[i];
660 int apn = a->pn;
661
662 if (apn >= 0) {
663 cpumask_t *dp = doms + nslot;
664
665 if (nslot == ndoms) {
666 static int warnings = 10;
667 if (warnings) {
668 printk(KERN_WARNING
669 "rebuild_sched_domains confused:"
670 " nslot %d, ndoms %d, csn %d, i %d,"
671 " apn %d\n",
672 nslot, ndoms, csn, i, apn);
673 warnings--;
674 }
675 continue;
676 }
677
678 cpus_clear(*dp);
679 for (j = i; j < csn; j++) {
680 struct cpuset *b = csa[j];
681
682 if (apn == b->pn) {
683 cpus_or(*dp, *dp, b->cpus_allowed);
684 b->pn = -1;
685 }
686 }
687 nslot++;
688 }
689 }
690 BUG_ON(nslot != ndoms);
691
692rebuild:
693 /* Have scheduler rebuild sched domains */
694 lock_cpu_hotplug();
695 partition_sched_domains(ndoms, doms);
696 unlock_cpu_hotplug();
697
698done:
699 if (q && !IS_ERR(q))
700 kfifo_free(q);
701 kfree(csa);
702 /* Don't kfree(doms) -- partition_sched_domains() does that. */
703}
704
705static inline int started_after_time(struct task_struct *t1,
706 struct timespec *time,
707 struct task_struct *t2)
708{
709 int start_diff = timespec_compare(&t1->start_time, time);
710 if (start_diff > 0) {
711 return 1;
712 } else if (start_diff < 0) {
713 return 0;
714 } else {
715 /*
716 * Arbitrarily, if two processes started at the same
717 * time, we'll say that the lower pointer value
718 * started first. Note that t2 may have exited by now
719 * so this may not be a valid pointer any longer, but
720 * that's fine - it still serves to distinguish
721 * between two tasks started (effectively)
722 * simultaneously.
723 */
724 return t1 > t2;
725 }
726}
727
728static inline int started_after(void *p1, void *p2)
729{
730 struct task_struct *t1 = p1;
731 struct task_struct *t2 = p2;
732 return started_after_time(t1, &t2->start_time, t2);
733}
734
735/*
758 * Call with manage_mutex held. May take callback_mutex during call. 736 * Call with manage_mutex held. May take callback_mutex during call.
759 */ 737 */
760 738
761static int update_cpumask(struct cpuset *cs, char *buf) 739static int update_cpumask(struct cpuset *cs, char *buf)
762{ 740{
763 struct cpuset trialcs; 741 struct cpuset trialcs;
764 int retval; 742 int retval, i;
743 int is_load_balanced;
744 struct cgroup_iter it;
745 struct cgroup *cgrp = cs->css.cgroup;
746 struct task_struct *p, *dropped;
747 /* Never dereference latest_task, since it's not refcounted */
748 struct task_struct *latest_task = NULL;
749 struct ptr_heap heap;
750 struct timespec latest_time = { 0, 0 };
765 751
766 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */ 752 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
767 if (cs == &top_cpuset) 753 if (cs == &top_cpuset)
@@ -770,11 +756,13 @@ static int update_cpumask(struct cpuset *cs, char *buf)
770 trialcs = *cs; 756 trialcs = *cs;
771 757
772 /* 758 /*
773 * We allow a cpuset's cpus_allowed to be empty; if it has attached 759 * An empty cpus_allowed is ok iff there are no tasks in the cpuset.
774 * tasks, we'll catch it later when we validate the change and return 760 * Since cpulist_parse() fails on an empty mask, we special case
775 * -ENOSPC. 761 * that parsing. The validate_change() call ensures that cpusets
762 * with tasks have cpus.
776 */ 763 */
777 if (!buf[0] || (buf[0] == '\n' && !buf[1])) { 764 buf = strstrip(buf);
765 if (!*buf) {
778 cpus_clear(trialcs.cpus_allowed); 766 cpus_clear(trialcs.cpus_allowed);
779 } else { 767 } else {
780 retval = cpulist_parse(buf, trialcs.cpus_allowed); 768 retval = cpulist_parse(buf, trialcs.cpus_allowed);
@@ -782,15 +770,79 @@ static int update_cpumask(struct cpuset *cs, char *buf)
782 return retval; 770 return retval;
783 } 771 }
784 cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map); 772 cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
785 /* cpus_allowed cannot be empty for a cpuset with attached tasks. */
786 if (atomic_read(&cs->count) && cpus_empty(trialcs.cpus_allowed))
787 return -ENOSPC;
788 retval = validate_change(cs, &trialcs); 773 retval = validate_change(cs, &trialcs);
789 if (retval < 0) 774 if (retval < 0)
790 return retval; 775 return retval;
776
777 /* Nothing to do if the cpus didn't change */
778 if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
779 return 0;
780 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, &started_after);
781 if (retval)
782 return retval;
783
784 is_load_balanced = is_sched_load_balance(&trialcs);
785
791 mutex_lock(&callback_mutex); 786 mutex_lock(&callback_mutex);
792 cs->cpus_allowed = trialcs.cpus_allowed; 787 cs->cpus_allowed = trialcs.cpus_allowed;
793 mutex_unlock(&callback_mutex); 788 mutex_unlock(&callback_mutex);
789
790 again:
791 /*
792 * Scan tasks in the cpuset, and update the cpumasks of any
793 * that need an update. Since we can't call set_cpus_allowed()
794 * while holding tasklist_lock, gather tasks to be processed
795 * in a heap structure. If the statically-sized heap fills up,
796 * overflow tasks that started later, and in future iterations
797 * only consider tasks that started after the latest task in
798 * the previous pass. This guarantees forward progress and
799 * that we don't miss any tasks
800 */
801 heap.size = 0;
802 cgroup_iter_start(cgrp, &it);
803 while ((p = cgroup_iter_next(cgrp, &it))) {
804 /* Only affect tasks that don't have the right cpus_allowed */
805 if (cpus_equal(p->cpus_allowed, cs->cpus_allowed))
806 continue;
807 /*
808 * Only process tasks that started after the last task
809 * we processed
810 */
811 if (!started_after_time(p, &latest_time, latest_task))
812 continue;
813 dropped = heap_insert(&heap, p);
814 if (dropped == NULL) {
815 get_task_struct(p);
816 } else if (dropped != p) {
817 get_task_struct(p);
818 put_task_struct(dropped);
819 }
820 }
821 cgroup_iter_end(cgrp, &it);
822 if (heap.size) {
823 for (i = 0; i < heap.size; i++) {
824 struct task_struct *p = heap.ptrs[i];
825 if (i == 0) {
826 latest_time = p->start_time;
827 latest_task = p;
828 }
829 set_cpus_allowed(p, cs->cpus_allowed);
830 put_task_struct(p);
831 }
832 /*
833 * If we had to process any tasks at all, scan again
834 * in case some of them were in the middle of forking
835 * children that didn't notice the new cpumask
836 * restriction. Not the most efficient way to do it,
837 * but it avoids having to take callback_mutex in the
838 * fork path
839 */
840 goto again;
841 }
842 heap_free(&heap);
843 if (is_load_balanced)
844 rebuild_sched_domains();
845
794 return 0; 846 return 0;
795} 847}
796 848
@@ -839,7 +891,7 @@ static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
839 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL); 891 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
840 892
841 mutex_lock(&callback_mutex); 893 mutex_lock(&callback_mutex);
842 guarantee_online_mems(tsk->cpuset, &tsk->mems_allowed); 894 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
843 mutex_unlock(&callback_mutex); 895 mutex_unlock(&callback_mutex);
844} 896}
845 897
@@ -857,16 +909,19 @@ static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
857 * their mempolicies to the cpusets new mems_allowed. 909 * their mempolicies to the cpusets new mems_allowed.
858 */ 910 */
859 911
912static void *cpuset_being_rebound;
913
860static int update_nodemask(struct cpuset *cs, char *buf) 914static int update_nodemask(struct cpuset *cs, char *buf)
861{ 915{
862 struct cpuset trialcs; 916 struct cpuset trialcs;
863 nodemask_t oldmem; 917 nodemask_t oldmem;
864 struct task_struct *g, *p; 918 struct task_struct *p;
865 struct mm_struct **mmarray; 919 struct mm_struct **mmarray;
866 int i, n, ntasks; 920 int i, n, ntasks;
867 int migrate; 921 int migrate;
868 int fudge; 922 int fudge;
869 int retval; 923 int retval;
924 struct cgroup_iter it;
870 925
871 /* 926 /*
872 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY]; 927 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
@@ -878,29 +933,19 @@ static int update_nodemask(struct cpuset *cs, char *buf)
878 trialcs = *cs; 933 trialcs = *cs;
879 934
880 /* 935 /*
881 * We allow a cpuset's mems_allowed to be empty; if it has attached 936 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
882 * tasks, we'll catch it later when we validate the change and return 937 * Since nodelist_parse() fails on an empty mask, we special case
883 * -ENOSPC. 938 * that parsing. The validate_change() call ensures that cpusets
939 * with tasks have memory.
884 */ 940 */
885 if (!buf[0] || (buf[0] == '\n' && !buf[1])) { 941 buf = strstrip(buf);
942 if (!*buf) {
886 nodes_clear(trialcs.mems_allowed); 943 nodes_clear(trialcs.mems_allowed);
887 } else { 944 } else {
888 retval = nodelist_parse(buf, trialcs.mems_allowed); 945 retval = nodelist_parse(buf, trialcs.mems_allowed);
889 if (retval < 0) 946 if (retval < 0)
890 goto done; 947 goto done;
891 if (!nodes_intersects(trialcs.mems_allowed,
892 node_states[N_HIGH_MEMORY])) {
893 /*
894 * error if only memoryless nodes specified.
895 */
896 retval = -ENOSPC;
897 goto done;
898 }
899 } 948 }
900 /*
901 * Exclude memoryless nodes. We know that trialcs.mems_allowed
902 * contains at least one node with memory.
903 */
904 nodes_and(trialcs.mems_allowed, trialcs.mems_allowed, 949 nodes_and(trialcs.mems_allowed, trialcs.mems_allowed,
905 node_states[N_HIGH_MEMORY]); 950 node_states[N_HIGH_MEMORY]);
906 oldmem = cs->mems_allowed; 951 oldmem = cs->mems_allowed;
@@ -908,11 +953,6 @@ static int update_nodemask(struct cpuset *cs, char *buf)
908 retval = 0; /* Too easy - nothing to do */ 953 retval = 0; /* Too easy - nothing to do */
909 goto done; 954 goto done;
910 } 955 }
911 /* mems_allowed cannot be empty for a cpuset with attached tasks. */
912 if (atomic_read(&cs->count) && nodes_empty(trialcs.mems_allowed)) {
913 retval = -ENOSPC;
914 goto done;
915 }
916 retval = validate_change(cs, &trialcs); 956 retval = validate_change(cs, &trialcs);
917 if (retval < 0) 957 if (retval < 0)
918 goto done; 958 goto done;
@@ -922,7 +962,7 @@ static int update_nodemask(struct cpuset *cs, char *buf)
922 cs->mems_generation = cpuset_mems_generation++; 962 cs->mems_generation = cpuset_mems_generation++;
923 mutex_unlock(&callback_mutex); 963 mutex_unlock(&callback_mutex);
924 964
925 set_cpuset_being_rebound(cs); /* causes mpol_copy() rebind */ 965 cpuset_being_rebound = cs; /* causes mpol_copy() rebind */
926 966
927 fudge = 10; /* spare mmarray[] slots */ 967 fudge = 10; /* spare mmarray[] slots */
928 fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */ 968 fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
@@ -936,13 +976,13 @@ static int update_nodemask(struct cpuset *cs, char *buf)
936 * enough mmarray[] w/o using GFP_ATOMIC. 976 * enough mmarray[] w/o using GFP_ATOMIC.
937 */ 977 */
938 while (1) { 978 while (1) {
939 ntasks = atomic_read(&cs->count); /* guess */ 979 ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
940 ntasks += fudge; 980 ntasks += fudge;
941 mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL); 981 mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
942 if (!mmarray) 982 if (!mmarray)
943 goto done; 983 goto done;
944 read_lock(&tasklist_lock); /* block fork */ 984 read_lock(&tasklist_lock); /* block fork */
945 if (atomic_read(&cs->count) <= ntasks) 985 if (cgroup_task_count(cs->css.cgroup) <= ntasks)
946 break; /* got enough */ 986 break; /* got enough */
947 read_unlock(&tasklist_lock); /* try again */ 987 read_unlock(&tasklist_lock); /* try again */
948 kfree(mmarray); 988 kfree(mmarray);
@@ -951,21 +991,21 @@ static int update_nodemask(struct cpuset *cs, char *buf)
951 n = 0; 991 n = 0;
952 992
953 /* Load up mmarray[] with mm reference for each task in cpuset. */ 993 /* Load up mmarray[] with mm reference for each task in cpuset. */
954 do_each_thread(g, p) { 994 cgroup_iter_start(cs->css.cgroup, &it);
995 while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
955 struct mm_struct *mm; 996 struct mm_struct *mm;
956 997
957 if (n >= ntasks) { 998 if (n >= ntasks) {
958 printk(KERN_WARNING 999 printk(KERN_WARNING
959 "Cpuset mempolicy rebind incomplete.\n"); 1000 "Cpuset mempolicy rebind incomplete.\n");
960 continue; 1001 break;
961 } 1002 }
962 if (p->cpuset != cs)
963 continue;
964 mm = get_task_mm(p); 1003 mm = get_task_mm(p);
965 if (!mm) 1004 if (!mm)
966 continue; 1005 continue;
967 mmarray[n++] = mm; 1006 mmarray[n++] = mm;
968 } while_each_thread(g, p); 1007 }
1008 cgroup_iter_end(cs->css.cgroup, &it);
969 read_unlock(&tasklist_lock); 1009 read_unlock(&tasklist_lock);
970 1010
971 /* 1011 /*
@@ -993,12 +1033,17 @@ static int update_nodemask(struct cpuset *cs, char *buf)
993 1033
994 /* We're done rebinding vma's to this cpusets new mems_allowed. */ 1034 /* We're done rebinding vma's to this cpusets new mems_allowed. */
995 kfree(mmarray); 1035 kfree(mmarray);
996 set_cpuset_being_rebound(NULL); 1036 cpuset_being_rebound = NULL;
997 retval = 0; 1037 retval = 0;
998done: 1038done:
999 return retval; 1039 return retval;
1000} 1040}
1001 1041
1042int current_cpuset_is_being_rebound(void)
1043{
1044 return task_cs(current) == cpuset_being_rebound;
1045}
1046
1002/* 1047/*
1003 * Call with manage_mutex held. 1048 * Call with manage_mutex held.
1004 */ 1049 */
@@ -1015,6 +1060,7 @@ static int update_memory_pressure_enabled(struct cpuset *cs, char *buf)
1015/* 1060/*
1016 * update_flag - read a 0 or a 1 in a file and update associated flag 1061 * update_flag - read a 0 or a 1 in a file and update associated flag
1017 * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE, 1062 * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
1063 * CS_SCHED_LOAD_BALANCE,
1018 * CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE, 1064 * CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE,
1019 * CS_SPREAD_PAGE, CS_SPREAD_SLAB) 1065 * CS_SPREAD_PAGE, CS_SPREAD_SLAB)
1020 * cs: the cpuset to update 1066 * cs: the cpuset to update
@@ -1028,6 +1074,7 @@ static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
1028 int turning_on; 1074 int turning_on;
1029 struct cpuset trialcs; 1075 struct cpuset trialcs;
1030 int err; 1076 int err;
1077 int cpus_nonempty, balance_flag_changed;
1031 1078
1032 turning_on = (simple_strtoul(buf, NULL, 10) != 0); 1079 turning_on = (simple_strtoul(buf, NULL, 10) != 0);
1033 1080
@@ -1040,10 +1087,18 @@ static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
1040 err = validate_change(cs, &trialcs); 1087 err = validate_change(cs, &trialcs);
1041 if (err < 0) 1088 if (err < 0)
1042 return err; 1089 return err;
1090
1091 cpus_nonempty = !cpus_empty(trialcs.cpus_allowed);
1092 balance_flag_changed = (is_sched_load_balance(cs) !=
1093 is_sched_load_balance(&trialcs));
1094
1043 mutex_lock(&callback_mutex); 1095 mutex_lock(&callback_mutex);
1044 cs->flags = trialcs.flags; 1096 cs->flags = trialcs.flags;
1045 mutex_unlock(&callback_mutex); 1097 mutex_unlock(&callback_mutex);
1046 1098
1099 if (cpus_nonempty && balance_flag_changed)
1100 rebuild_sched_domains();
1101
1047 return 0; 1102 return 0;
1048} 1103}
1049 1104
@@ -1145,85 +1200,34 @@ static int fmeter_getrate(struct fmeter *fmp)
1145 return val; 1200 return val;
1146} 1201}
1147 1202
1148/* 1203static int cpuset_can_attach(struct cgroup_subsys *ss,
1149 * Attack task specified by pid in 'pidbuf' to cpuset 'cs', possibly 1204 struct cgroup *cont, struct task_struct *tsk)
1150 * writing the path of the old cpuset in 'ppathbuf' if it needs to be
1151 * notified on release.
1152 *
1153 * Call holding manage_mutex. May take callback_mutex and task_lock of
1154 * the task 'pid' during call.
1155 */
1156
1157static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
1158{ 1205{
1159 pid_t pid; 1206 struct cpuset *cs = cgroup_cs(cont);
1160 struct task_struct *tsk;
1161 struct cpuset *oldcs;
1162 cpumask_t cpus;
1163 nodemask_t from, to;
1164 struct mm_struct *mm;
1165 int retval;
1166 1207
1167 if (sscanf(pidbuf, "%d", &pid) != 1)
1168 return -EIO;
1169 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) 1208 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1170 return -ENOSPC; 1209 return -ENOSPC;
1171 1210
1172 if (pid) { 1211 return security_task_setscheduler(tsk, 0, NULL);
1173 read_lock(&tasklist_lock); 1212}
1174
1175 tsk = find_task_by_pid(pid);
1176 if (!tsk || tsk->flags & PF_EXITING) {
1177 read_unlock(&tasklist_lock);
1178 return -ESRCH;
1179 }
1180
1181 get_task_struct(tsk);
1182 read_unlock(&tasklist_lock);
1183
1184 if ((current->euid) && (current->euid != tsk->uid)
1185 && (current->euid != tsk->suid)) {
1186 put_task_struct(tsk);
1187 return -EACCES;
1188 }
1189 } else {
1190 tsk = current;
1191 get_task_struct(tsk);
1192 }
1193 1213
1194 retval = security_task_setscheduler(tsk, 0, NULL); 1214static void cpuset_attach(struct cgroup_subsys *ss,
1195 if (retval) { 1215 struct cgroup *cont, struct cgroup *oldcont,
1196 put_task_struct(tsk); 1216 struct task_struct *tsk)
1197 return retval; 1217{
1198 } 1218 cpumask_t cpus;
1219 nodemask_t from, to;
1220 struct mm_struct *mm;
1221 struct cpuset *cs = cgroup_cs(cont);
1222 struct cpuset *oldcs = cgroup_cs(oldcont);
1199 1223
1200 mutex_lock(&callback_mutex); 1224 mutex_lock(&callback_mutex);
1201
1202 task_lock(tsk);
1203 oldcs = tsk->cpuset;
1204 /*
1205 * After getting 'oldcs' cpuset ptr, be sure still not exiting.
1206 * If 'oldcs' might be the top_cpuset due to the_top_cpuset_hack
1207 * then fail this attach_task(), to avoid breaking top_cpuset.count.
1208 */
1209 if (tsk->flags & PF_EXITING) {
1210 task_unlock(tsk);
1211 mutex_unlock(&callback_mutex);
1212 put_task_struct(tsk);
1213 return -ESRCH;
1214 }
1215 atomic_inc(&cs->count);
1216 rcu_assign_pointer(tsk->cpuset, cs);
1217 task_unlock(tsk);
1218
1219 guarantee_online_cpus(cs, &cpus); 1225 guarantee_online_cpus(cs, &cpus);
1220 set_cpus_allowed(tsk, cpus); 1226 set_cpus_allowed(tsk, cpus);
1227 mutex_unlock(&callback_mutex);
1221 1228
1222 from = oldcs->mems_allowed; 1229 from = oldcs->mems_allowed;
1223 to = cs->mems_allowed; 1230 to = cs->mems_allowed;
1224
1225 mutex_unlock(&callback_mutex);
1226
1227 mm = get_task_mm(tsk); 1231 mm = get_task_mm(tsk);
1228 if (mm) { 1232 if (mm) {
1229 mpol_rebind_mm(mm, &to); 1233 mpol_rebind_mm(mm, &to);
@@ -1232,44 +1236,36 @@ static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
1232 mmput(mm); 1236 mmput(mm);
1233 } 1237 }
1234 1238
1235 put_task_struct(tsk);
1236 synchronize_rcu();
1237 if (atomic_dec_and_test(&oldcs->count))
1238 check_for_release(oldcs, ppathbuf);
1239 return 0;
1240} 1239}
1241 1240
1242/* The various types of files and directories in a cpuset file system */ 1241/* The various types of files and directories in a cpuset file system */
1243 1242
1244typedef enum { 1243typedef enum {
1245 FILE_ROOT,
1246 FILE_DIR,
1247 FILE_MEMORY_MIGRATE, 1244 FILE_MEMORY_MIGRATE,
1248 FILE_CPULIST, 1245 FILE_CPULIST,
1249 FILE_MEMLIST, 1246 FILE_MEMLIST,
1250 FILE_CPU_EXCLUSIVE, 1247 FILE_CPU_EXCLUSIVE,
1251 FILE_MEM_EXCLUSIVE, 1248 FILE_MEM_EXCLUSIVE,
1252 FILE_NOTIFY_ON_RELEASE, 1249 FILE_SCHED_LOAD_BALANCE,
1253 FILE_MEMORY_PRESSURE_ENABLED, 1250 FILE_MEMORY_PRESSURE_ENABLED,
1254 FILE_MEMORY_PRESSURE, 1251 FILE_MEMORY_PRESSURE,
1255 FILE_SPREAD_PAGE, 1252 FILE_SPREAD_PAGE,
1256 FILE_SPREAD_SLAB, 1253 FILE_SPREAD_SLAB,
1257 FILE_TASKLIST,
1258} cpuset_filetype_t; 1254} cpuset_filetype_t;
1259 1255
1260static ssize_t cpuset_common_file_write(struct file *file, 1256static ssize_t cpuset_common_file_write(struct cgroup *cont,
1257 struct cftype *cft,
1258 struct file *file,
1261 const char __user *userbuf, 1259 const char __user *userbuf,
1262 size_t nbytes, loff_t *unused_ppos) 1260 size_t nbytes, loff_t *unused_ppos)
1263{ 1261{
1264 struct cpuset *cs = __d_cs(file->f_path.dentry->d_parent); 1262 struct cpuset *cs = cgroup_cs(cont);
1265 struct cftype *cft = __d_cft(file->f_path.dentry);
1266 cpuset_filetype_t type = cft->private; 1263 cpuset_filetype_t type = cft->private;
1267 char *buffer; 1264 char *buffer;
1268 char *pathbuf = NULL;
1269 int retval = 0; 1265 int retval = 0;
1270 1266
1271 /* Crude upper limit on largest legitimate cpulist user might write. */ 1267 /* Crude upper limit on largest legitimate cpulist user might write. */
1272 if (nbytes > 100 + 6 * max(NR_CPUS, MAX_NUMNODES)) 1268 if (nbytes > 100U + 6 * max(NR_CPUS, MAX_NUMNODES))
1273 return -E2BIG; 1269 return -E2BIG;
1274 1270
1275 /* +1 for nul-terminator */ 1271 /* +1 for nul-terminator */
@@ -1282,9 +1278,9 @@ static ssize_t cpuset_common_file_write(struct file *file,
1282 } 1278 }
1283 buffer[nbytes] = 0; /* nul-terminate */ 1279 buffer[nbytes] = 0; /* nul-terminate */
1284 1280
1285 mutex_lock(&manage_mutex); 1281 cgroup_lock();
1286 1282
1287 if (is_removed(cs)) { 1283 if (cgroup_is_removed(cont)) {
1288 retval = -ENODEV; 1284 retval = -ENODEV;
1289 goto out2; 1285 goto out2;
1290 } 1286 }
@@ -1302,8 +1298,8 @@ static ssize_t cpuset_common_file_write(struct file *file,
1302 case FILE_MEM_EXCLUSIVE: 1298 case FILE_MEM_EXCLUSIVE:
1303 retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer); 1299 retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
1304 break; 1300 break;
1305 case FILE_NOTIFY_ON_RELEASE: 1301 case FILE_SCHED_LOAD_BALANCE:
1306 retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer); 1302 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, buffer);
1307 break; 1303 break;
1308 case FILE_MEMORY_MIGRATE: 1304 case FILE_MEMORY_MIGRATE:
1309 retval = update_flag(CS_MEMORY_MIGRATE, cs, buffer); 1305 retval = update_flag(CS_MEMORY_MIGRATE, cs, buffer);
@@ -1322,9 +1318,6 @@ static ssize_t cpuset_common_file_write(struct file *file,
1322 retval = update_flag(CS_SPREAD_SLAB, cs, buffer); 1318 retval = update_flag(CS_SPREAD_SLAB, cs, buffer);
1323 cs->mems_generation = cpuset_mems_generation++; 1319 cs->mems_generation = cpuset_mems_generation++;
1324 break; 1320 break;
1325 case FILE_TASKLIST:
1326 retval = attach_task(cs, buffer, &pathbuf);
1327 break;
1328 default: 1321 default:
1329 retval = -EINVAL; 1322 retval = -EINVAL;
1330 goto out2; 1323 goto out2;
@@ -1333,30 +1326,12 @@ static ssize_t cpuset_common_file_write(struct file *file,
1333 if (retval == 0) 1326 if (retval == 0)
1334 retval = nbytes; 1327 retval = nbytes;
1335out2: 1328out2:
1336 mutex_unlock(&manage_mutex); 1329 cgroup_unlock();
1337 cpuset_release_agent(pathbuf);
1338out1: 1330out1:
1339 kfree(buffer); 1331 kfree(buffer);
1340 return retval; 1332 return retval;
1341} 1333}
1342 1334
1343static ssize_t cpuset_file_write(struct file *file, const char __user *buf,
1344 size_t nbytes, loff_t *ppos)
1345{
1346 ssize_t retval = 0;
1347 struct cftype *cft = __d_cft(file->f_path.dentry);
1348 if (!cft)
1349 return -ENODEV;
1350
1351 /* special function ? */
1352 if (cft->write)
1353 retval = cft->write(file, buf, nbytes, ppos);
1354 else
1355 retval = cpuset_common_file_write(file, buf, nbytes, ppos);
1356
1357 return retval;
1358}
1359
1360/* 1335/*
1361 * These ascii lists should be read in a single call, by using a user 1336 * These ascii lists should be read in a single call, by using a user
1362 * buffer large enough to hold the entire map. If read in smaller 1337 * buffer large enough to hold the entire map. If read in smaller
@@ -1391,11 +1366,13 @@ static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1391 return nodelist_scnprintf(page, PAGE_SIZE, mask); 1366 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1392} 1367}
1393 1368
1394static ssize_t cpuset_common_file_read(struct file *file, char __user *buf, 1369static ssize_t cpuset_common_file_read(struct cgroup *cont,
1395 size_t nbytes, loff_t *ppos) 1370 struct cftype *cft,
1371 struct file *file,
1372 char __user *buf,
1373 size_t nbytes, loff_t *ppos)
1396{ 1374{
1397 struct cftype *cft = __d_cft(file->f_path.dentry); 1375 struct cpuset *cs = cgroup_cs(cont);
1398 struct cpuset *cs = __d_cs(file->f_path.dentry->d_parent);
1399 cpuset_filetype_t type = cft->private; 1376 cpuset_filetype_t type = cft->private;
1400 char *page; 1377 char *page;
1401 ssize_t retval = 0; 1378 ssize_t retval = 0;
@@ -1419,8 +1396,8 @@ static ssize_t cpuset_common_file_read(struct file *file, char __user *buf,
1419 case FILE_MEM_EXCLUSIVE: 1396 case FILE_MEM_EXCLUSIVE:
1420 *s++ = is_mem_exclusive(cs) ? '1' : '0'; 1397 *s++ = is_mem_exclusive(cs) ? '1' : '0';
1421 break; 1398 break;
1422 case FILE_NOTIFY_ON_RELEASE: 1399 case FILE_SCHED_LOAD_BALANCE:
1423 *s++ = notify_on_release(cs) ? '1' : '0'; 1400 *s++ = is_sched_load_balance(cs) ? '1' : '0';
1424 break; 1401 break;
1425 case FILE_MEMORY_MIGRATE: 1402 case FILE_MEMORY_MIGRATE:
1426 *s++ = is_memory_migrate(cs) ? '1' : '0'; 1403 *s++ = is_memory_migrate(cs) ? '1' : '0';
@@ -1449,390 +1426,150 @@ out:
1449 return retval; 1426 return retval;
1450} 1427}
1451 1428
1452static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes,
1453 loff_t *ppos)
1454{
1455 ssize_t retval = 0;
1456 struct cftype *cft = __d_cft(file->f_path.dentry);
1457 if (!cft)
1458 return -ENODEV;
1459
1460 /* special function ? */
1461 if (cft->read)
1462 retval = cft->read(file, buf, nbytes, ppos);
1463 else
1464 retval = cpuset_common_file_read(file, buf, nbytes, ppos);
1465
1466 return retval;
1467}
1468
1469static int cpuset_file_open(struct inode *inode, struct file *file)
1470{
1471 int err;
1472 struct cftype *cft;
1473
1474 err = generic_file_open(inode, file);
1475 if (err)
1476 return err;
1477
1478 cft = __d_cft(file->f_path.dentry);
1479 if (!cft)
1480 return -ENODEV;
1481 if (cft->open)
1482 err = cft->open(inode, file);
1483 else
1484 err = 0;
1485
1486 return err;
1487}
1488
1489static int cpuset_file_release(struct inode *inode, struct file *file)
1490{
1491 struct cftype *cft = __d_cft(file->f_path.dentry);
1492 if (cft->release)
1493 return cft->release(inode, file);
1494 return 0;
1495}
1496
1497/*
1498 * cpuset_rename - Only allow simple rename of directories in place.
1499 */
1500static int cpuset_rename(struct inode *old_dir, struct dentry *old_dentry,
1501 struct inode *new_dir, struct dentry *new_dentry)
1502{
1503 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1504 return -ENOTDIR;
1505 if (new_dentry->d_inode)
1506 return -EEXIST;
1507 if (old_dir != new_dir)
1508 return -EIO;
1509 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1510}
1511
1512static const struct file_operations cpuset_file_operations = {
1513 .read = cpuset_file_read,
1514 .write = cpuset_file_write,
1515 .llseek = generic_file_llseek,
1516 .open = cpuset_file_open,
1517 .release = cpuset_file_release,
1518};
1519
1520static const struct inode_operations cpuset_dir_inode_operations = {
1521 .lookup = simple_lookup,
1522 .mkdir = cpuset_mkdir,
1523 .rmdir = cpuset_rmdir,
1524 .rename = cpuset_rename,
1525};
1526
1527static int cpuset_create_file(struct dentry *dentry, int mode)
1528{
1529 struct inode *inode;
1530
1531 if (!dentry)
1532 return -ENOENT;
1533 if (dentry->d_inode)
1534 return -EEXIST;
1535
1536 inode = cpuset_new_inode(mode);
1537 if (!inode)
1538 return -ENOMEM;
1539
1540 if (S_ISDIR(mode)) {
1541 inode->i_op = &cpuset_dir_inode_operations;
1542 inode->i_fop = &simple_dir_operations;
1543
1544 /* start off with i_nlink == 2 (for "." entry) */
1545 inc_nlink(inode);
1546 } else if (S_ISREG(mode)) {
1547 inode->i_size = 0;
1548 inode->i_fop = &cpuset_file_operations;
1549 }
1550
1551 d_instantiate(dentry, inode);
1552 dget(dentry); /* Extra count - pin the dentry in core */
1553 return 0;
1554}
1555
1556/*
1557 * cpuset_create_dir - create a directory for an object.
1558 * cs: the cpuset we create the directory for.
1559 * It must have a valid ->parent field
1560 * And we are going to fill its ->dentry field.
1561 * name: The name to give to the cpuset directory. Will be copied.
1562 * mode: mode to set on new directory.
1563 */
1564
1565static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode)
1566{
1567 struct dentry *dentry = NULL;
1568 struct dentry *parent;
1569 int error = 0;
1570
1571 parent = cs->parent->dentry;
1572 dentry = cpuset_get_dentry(parent, name);
1573 if (IS_ERR(dentry))
1574 return PTR_ERR(dentry);
1575 error = cpuset_create_file(dentry, S_IFDIR | mode);
1576 if (!error) {
1577 dentry->d_fsdata = cs;
1578 inc_nlink(parent->d_inode);
1579 cs->dentry = dentry;
1580 }
1581 dput(dentry);
1582
1583 return error;
1584}
1585
1586static int cpuset_add_file(struct dentry *dir, const struct cftype *cft)
1587{
1588 struct dentry *dentry;
1589 int error;
1590
1591 mutex_lock(&dir->d_inode->i_mutex);
1592 dentry = cpuset_get_dentry(dir, cft->name);
1593 if (!IS_ERR(dentry)) {
1594 error = cpuset_create_file(dentry, 0644 | S_IFREG);
1595 if (!error)
1596 dentry->d_fsdata = (void *)cft;
1597 dput(dentry);
1598 } else
1599 error = PTR_ERR(dentry);
1600 mutex_unlock(&dir->d_inode->i_mutex);
1601 return error;
1602}
1603
1604/*
1605 * Stuff for reading the 'tasks' file.
1606 *
1607 * Reading this file can return large amounts of data if a cpuset has
1608 * *lots* of attached tasks. So it may need several calls to read(),
1609 * but we cannot guarantee that the information we produce is correct
1610 * unless we produce it entirely atomically.
1611 *
1612 * Upon tasks file open(), a struct ctr_struct is allocated, that
1613 * will have a pointer to an array (also allocated here). The struct
1614 * ctr_struct * is stored in file->private_data. Its resources will
1615 * be freed by release() when the file is closed. The array is used
1616 * to sprintf the PIDs and then used by read().
1617 */
1618
1619/* cpusets_tasks_read array */
1620
1621struct ctr_struct {
1622 char *buf;
1623 int bufsz;
1624};
1625
1626/*
1627 * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'.
1628 * Return actual number of pids loaded. No need to task_lock(p)
1629 * when reading out p->cpuset, as we don't really care if it changes
1630 * on the next cycle, and we are not going to try to dereference it.
1631 */
1632static int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs)
1633{
1634 int n = 0;
1635 struct task_struct *g, *p;
1636
1637 read_lock(&tasklist_lock);
1638
1639 do_each_thread(g, p) {
1640 if (p->cpuset == cs) {
1641 if (unlikely(n == npids))
1642 goto array_full;
1643 pidarray[n++] = p->pid;
1644 }
1645 } while_each_thread(g, p);
1646
1647array_full:
1648 read_unlock(&tasklist_lock);
1649 return n;
1650}
1651
1652static int cmppid(const void *a, const void *b)
1653{
1654 return *(pid_t *)a - *(pid_t *)b;
1655}
1656
1657/*
1658 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
1659 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
1660 * count 'cnt' of how many chars would be written if buf were large enough.
1661 */
1662static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
1663{
1664 int cnt = 0;
1665 int i;
1666
1667 for (i = 0; i < npids; i++)
1668 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
1669 return cnt;
1670}
1671
1672/*
1673 * Handle an open on 'tasks' file. Prepare a buffer listing the
1674 * process id's of tasks currently attached to the cpuset being opened.
1675 *
1676 * Does not require any specific cpuset mutexes, and does not take any.
1677 */
1678static int cpuset_tasks_open(struct inode *unused, struct file *file)
1679{
1680 struct cpuset *cs = __d_cs(file->f_path.dentry->d_parent);
1681 struct ctr_struct *ctr;
1682 pid_t *pidarray;
1683 int npids;
1684 char c;
1685
1686 if (!(file->f_mode & FMODE_READ))
1687 return 0;
1688
1689 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
1690 if (!ctr)
1691 goto err0;
1692
1693 /*
1694 * If cpuset gets more users after we read count, we won't have
1695 * enough space - tough. This race is indistinguishable to the
1696 * caller from the case that the additional cpuset users didn't
1697 * show up until sometime later on.
1698 */
1699 npids = atomic_read(&cs->count);
1700 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
1701 if (!pidarray)
1702 goto err1;
1703
1704 npids = pid_array_load(pidarray, npids, cs);
1705 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
1706
1707 /* Call pid_array_to_buf() twice, first just to get bufsz */
1708 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
1709 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
1710 if (!ctr->buf)
1711 goto err2;
1712 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
1713
1714 kfree(pidarray);
1715 file->private_data = ctr;
1716 return 0;
1717
1718err2:
1719 kfree(pidarray);
1720err1:
1721 kfree(ctr);
1722err0:
1723 return -ENOMEM;
1724}
1725
1726static ssize_t cpuset_tasks_read(struct file *file, char __user *buf,
1727 size_t nbytes, loff_t *ppos)
1728{
1729 struct ctr_struct *ctr = file->private_data;
1730 1429
1731 return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz);
1732}
1733 1430
1734static int cpuset_tasks_release(struct inode *unused_inode, struct file *file)
1735{
1736 struct ctr_struct *ctr;
1737 1431
1738 if (file->f_mode & FMODE_READ) {
1739 ctr = file->private_data;
1740 kfree(ctr->buf);
1741 kfree(ctr);
1742 }
1743 return 0;
1744}
1745 1432
1746/* 1433/*
1747 * for the common functions, 'private' gives the type of file 1434 * for the common functions, 'private' gives the type of file
1748 */ 1435 */
1749 1436
1750static struct cftype cft_tasks = {
1751 .name = "tasks",
1752 .open = cpuset_tasks_open,
1753 .read = cpuset_tasks_read,
1754 .release = cpuset_tasks_release,
1755 .private = FILE_TASKLIST,
1756};
1757
1758static struct cftype cft_cpus = { 1437static struct cftype cft_cpus = {
1759 .name = "cpus", 1438 .name = "cpus",
1439 .read = cpuset_common_file_read,
1440 .write = cpuset_common_file_write,
1760 .private = FILE_CPULIST, 1441 .private = FILE_CPULIST,
1761}; 1442};
1762 1443
1763static struct cftype cft_mems = { 1444static struct cftype cft_mems = {
1764 .name = "mems", 1445 .name = "mems",
1446 .read = cpuset_common_file_read,
1447 .write = cpuset_common_file_write,
1765 .private = FILE_MEMLIST, 1448 .private = FILE_MEMLIST,
1766}; 1449};
1767 1450
1768static struct cftype cft_cpu_exclusive = { 1451static struct cftype cft_cpu_exclusive = {
1769 .name = "cpu_exclusive", 1452 .name = "cpu_exclusive",
1453 .read = cpuset_common_file_read,
1454 .write = cpuset_common_file_write,
1770 .private = FILE_CPU_EXCLUSIVE, 1455 .private = FILE_CPU_EXCLUSIVE,
1771}; 1456};
1772 1457
1773static struct cftype cft_mem_exclusive = { 1458static struct cftype cft_mem_exclusive = {
1774 .name = "mem_exclusive", 1459 .name = "mem_exclusive",
1460 .read = cpuset_common_file_read,
1461 .write = cpuset_common_file_write,
1775 .private = FILE_MEM_EXCLUSIVE, 1462 .private = FILE_MEM_EXCLUSIVE,
1776}; 1463};
1777 1464
1778static struct cftype cft_notify_on_release = { 1465static struct cftype cft_sched_load_balance = {
1779 .name = "notify_on_release", 1466 .name = "sched_load_balance",
1780 .private = FILE_NOTIFY_ON_RELEASE, 1467 .read = cpuset_common_file_read,
1468 .write = cpuset_common_file_write,
1469 .private = FILE_SCHED_LOAD_BALANCE,
1781}; 1470};
1782 1471
1783static struct cftype cft_memory_migrate = { 1472static struct cftype cft_memory_migrate = {
1784 .name = "memory_migrate", 1473 .name = "memory_migrate",
1474 .read = cpuset_common_file_read,
1475 .write = cpuset_common_file_write,
1785 .private = FILE_MEMORY_MIGRATE, 1476 .private = FILE_MEMORY_MIGRATE,
1786}; 1477};
1787 1478
1788static struct cftype cft_memory_pressure_enabled = { 1479static struct cftype cft_memory_pressure_enabled = {
1789 .name = "memory_pressure_enabled", 1480 .name = "memory_pressure_enabled",
1481 .read = cpuset_common_file_read,
1482 .write = cpuset_common_file_write,
1790 .private = FILE_MEMORY_PRESSURE_ENABLED, 1483 .private = FILE_MEMORY_PRESSURE_ENABLED,
1791}; 1484};
1792 1485
1793static struct cftype cft_memory_pressure = { 1486static struct cftype cft_memory_pressure = {
1794 .name = "memory_pressure", 1487 .name = "memory_pressure",
1488 .read = cpuset_common_file_read,
1489 .write = cpuset_common_file_write,
1795 .private = FILE_MEMORY_PRESSURE, 1490 .private = FILE_MEMORY_PRESSURE,
1796}; 1491};
1797 1492
1798static struct cftype cft_spread_page = { 1493static struct cftype cft_spread_page = {
1799 .name = "memory_spread_page", 1494 .name = "memory_spread_page",
1495 .read = cpuset_common_file_read,
1496 .write = cpuset_common_file_write,
1800 .private = FILE_SPREAD_PAGE, 1497 .private = FILE_SPREAD_PAGE,
1801}; 1498};
1802 1499
1803static struct cftype cft_spread_slab = { 1500static struct cftype cft_spread_slab = {
1804 .name = "memory_spread_slab", 1501 .name = "memory_spread_slab",
1502 .read = cpuset_common_file_read,
1503 .write = cpuset_common_file_write,
1805 .private = FILE_SPREAD_SLAB, 1504 .private = FILE_SPREAD_SLAB,
1806}; 1505};
1807 1506
1808static int cpuset_populate_dir(struct dentry *cs_dentry) 1507static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1809{ 1508{
1810 int err; 1509 int err;
1811 1510
1812 if ((err = cpuset_add_file(cs_dentry, &cft_cpus)) < 0) 1511 if ((err = cgroup_add_file(cont, ss, &cft_cpus)) < 0)
1813 return err; 1512 return err;
1814 if ((err = cpuset_add_file(cs_dentry, &cft_mems)) < 0) 1513 if ((err = cgroup_add_file(cont, ss, &cft_mems)) < 0)
1815 return err; 1514 return err;
1816 if ((err = cpuset_add_file(cs_dentry, &cft_cpu_exclusive)) < 0) 1515 if ((err = cgroup_add_file(cont, ss, &cft_cpu_exclusive)) < 0)
1817 return err; 1516 return err;
1818 if ((err = cpuset_add_file(cs_dentry, &cft_mem_exclusive)) < 0) 1517 if ((err = cgroup_add_file(cont, ss, &cft_mem_exclusive)) < 0)
1819 return err; 1518 return err;
1820 if ((err = cpuset_add_file(cs_dentry, &cft_notify_on_release)) < 0) 1519 if ((err = cgroup_add_file(cont, ss, &cft_memory_migrate)) < 0)
1821 return err; 1520 return err;
1822 if ((err = cpuset_add_file(cs_dentry, &cft_memory_migrate)) < 0) 1521 if ((err = cgroup_add_file(cont, ss, &cft_sched_load_balance)) < 0)
1823 return err; 1522 return err;
1824 if ((err = cpuset_add_file(cs_dentry, &cft_memory_pressure)) < 0) 1523 if ((err = cgroup_add_file(cont, ss, &cft_memory_pressure)) < 0)
1825 return err; 1524 return err;
1826 if ((err = cpuset_add_file(cs_dentry, &cft_spread_page)) < 0) 1525 if ((err = cgroup_add_file(cont, ss, &cft_spread_page)) < 0)
1827 return err; 1526 return err;
1828 if ((err = cpuset_add_file(cs_dentry, &cft_spread_slab)) < 0) 1527 if ((err = cgroup_add_file(cont, ss, &cft_spread_slab)) < 0)
1829 return err;
1830 if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0)
1831 return err; 1528 return err;
1529 /* memory_pressure_enabled is in root cpuset only */
1530 if (err == 0 && !cont->parent)
1531 err = cgroup_add_file(cont, ss,
1532 &cft_memory_pressure_enabled);
1832 return 0; 1533 return 0;
1833} 1534}
1834 1535
1835/* 1536/*
1537 * post_clone() is called at the end of cgroup_clone().
1538 * 'cgroup' was just created automatically as a result of
1539 * a cgroup_clone(), and the current task is about to
1540 * be moved into 'cgroup'.
1541 *
1542 * Currently we refuse to set up the cgroup - thereby
1543 * refusing the task to be entered, and as a result refusing
1544 * the sys_unshare() or clone() which initiated it - if any
1545 * sibling cpusets have exclusive cpus or mem.
1546 *
1547 * If this becomes a problem for some users who wish to
1548 * allow that scenario, then cpuset_post_clone() could be
1549 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1550 * (and likewise for mems) to the new cgroup.
1551 */
1552static void cpuset_post_clone(struct cgroup_subsys *ss,
1553 struct cgroup *cgroup)
1554{
1555 struct cgroup *parent, *child;
1556 struct cpuset *cs, *parent_cs;
1557
1558 parent = cgroup->parent;
1559 list_for_each_entry(child, &parent->children, sibling) {
1560 cs = cgroup_cs(child);
1561 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1562 return;
1563 }
1564 cs = cgroup_cs(cgroup);
1565 parent_cs = cgroup_cs(parent);
1566
1567 cs->mems_allowed = parent_cs->mems_allowed;
1568 cs->cpus_allowed = parent_cs->cpus_allowed;
1569 return;
1570}
1571
1572/*
1836 * cpuset_create - create a cpuset 1573 * cpuset_create - create a cpuset
1837 * parent: cpuset that will be parent of the new cpuset. 1574 * parent: cpuset that will be parent of the new cpuset.
1838 * name: name of the new cpuset. Will be strcpy'ed. 1575 * name: name of the new cpuset. Will be strcpy'ed.
@@ -1841,106 +1578,77 @@ static int cpuset_populate_dir(struct dentry *cs_dentry)
1841 * Must be called with the mutex on the parent inode held 1578 * Must be called with the mutex on the parent inode held
1842 */ 1579 */
1843 1580
1844static long cpuset_create(struct cpuset *parent, const char *name, int mode) 1581static struct cgroup_subsys_state *cpuset_create(
1582 struct cgroup_subsys *ss,
1583 struct cgroup *cont)
1845{ 1584{
1846 struct cpuset *cs; 1585 struct cpuset *cs;
1847 int err; 1586 struct cpuset *parent;
1848 1587
1588 if (!cont->parent) {
1589 /* This is early initialization for the top cgroup */
1590 top_cpuset.mems_generation = cpuset_mems_generation++;
1591 return &top_cpuset.css;
1592 }
1593 parent = cgroup_cs(cont->parent);
1849 cs = kmalloc(sizeof(*cs), GFP_KERNEL); 1594 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1850 if (!cs) 1595 if (!cs)
1851 return -ENOMEM; 1596 return ERR_PTR(-ENOMEM);
1852 1597
1853 mutex_lock(&manage_mutex);
1854 cpuset_update_task_memory_state(); 1598 cpuset_update_task_memory_state();
1855 cs->flags = 0; 1599 cs->flags = 0;
1856 if (notify_on_release(parent))
1857 set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
1858 if (is_spread_page(parent)) 1600 if (is_spread_page(parent))
1859 set_bit(CS_SPREAD_PAGE, &cs->flags); 1601 set_bit(CS_SPREAD_PAGE, &cs->flags);
1860 if (is_spread_slab(parent)) 1602 if (is_spread_slab(parent))
1861 set_bit(CS_SPREAD_SLAB, &cs->flags); 1603 set_bit(CS_SPREAD_SLAB, &cs->flags);
1604 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1862 cs->cpus_allowed = CPU_MASK_NONE; 1605 cs->cpus_allowed = CPU_MASK_NONE;
1863 cs->mems_allowed = NODE_MASK_NONE; 1606 cs->mems_allowed = NODE_MASK_NONE;
1864 atomic_set(&cs->count, 0);
1865 INIT_LIST_HEAD(&cs->sibling);
1866 INIT_LIST_HEAD(&cs->children);
1867 cs->mems_generation = cpuset_mems_generation++; 1607 cs->mems_generation = cpuset_mems_generation++;
1868 fmeter_init(&cs->fmeter); 1608 fmeter_init(&cs->fmeter);
1869 1609
1870 cs->parent = parent; 1610 cs->parent = parent;
1871
1872 mutex_lock(&callback_mutex);
1873 list_add(&cs->sibling, &cs->parent->children);
1874 number_of_cpusets++; 1611 number_of_cpusets++;
1875 mutex_unlock(&callback_mutex); 1612 return &cs->css ;
1876
1877 err = cpuset_create_dir(cs, name, mode);
1878 if (err < 0)
1879 goto err;
1880
1881 /*
1882 * Release manage_mutex before cpuset_populate_dir() because it
1883 * will down() this new directory's i_mutex and if we race with
1884 * another mkdir, we might deadlock.
1885 */
1886 mutex_unlock(&manage_mutex);
1887
1888 err = cpuset_populate_dir(cs->dentry);
1889 /* If err < 0, we have a half-filled directory - oh well ;) */
1890 return 0;
1891err:
1892 list_del(&cs->sibling);
1893 mutex_unlock(&manage_mutex);
1894 kfree(cs);
1895 return err;
1896} 1613}
1897 1614
1898static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode) 1615/*
1899{ 1616 * Locking note on the strange update_flag() call below:
1900 struct cpuset *c_parent = dentry->d_parent->d_fsdata; 1617 *
1901 1618 * If the cpuset being removed has its flag 'sched_load_balance'
1902 /* the vfs holds inode->i_mutex already */ 1619 * enabled, then simulate turning sched_load_balance off, which
1903 return cpuset_create(c_parent, dentry->d_name.name, mode | S_IFDIR); 1620 * will call rebuild_sched_domains(). The lock_cpu_hotplug()
1904} 1621 * call in rebuild_sched_domains() must not be made while holding
1622 * callback_mutex. Elsewhere the kernel nests callback_mutex inside
1623 * lock_cpu_hotplug() calls. So the reverse nesting would risk an
1624 * ABBA deadlock.
1625 */
1905 1626
1906static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry) 1627static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1907{ 1628{
1908 struct cpuset *cs = dentry->d_fsdata; 1629 struct cpuset *cs = cgroup_cs(cont);
1909 struct dentry *d;
1910 struct cpuset *parent;
1911 char *pathbuf = NULL;
1912 1630
1913 /* the vfs holds both inode->i_mutex already */
1914
1915 mutex_lock(&manage_mutex);
1916 cpuset_update_task_memory_state(); 1631 cpuset_update_task_memory_state();
1917 if (atomic_read(&cs->count) > 0) { 1632
1918 mutex_unlock(&manage_mutex); 1633 if (is_sched_load_balance(cs))
1919 return -EBUSY; 1634 update_flag(CS_SCHED_LOAD_BALANCE, cs, "0");
1920 } 1635
1921 if (!list_empty(&cs->children)) {
1922 mutex_unlock(&manage_mutex);
1923 return -EBUSY;
1924 }
1925 parent = cs->parent;
1926 mutex_lock(&callback_mutex);
1927 set_bit(CS_REMOVED, &cs->flags);
1928 list_del(&cs->sibling); /* delete my sibling from parent->children */
1929 spin_lock(&cs->dentry->d_lock);
1930 d = dget(cs->dentry);
1931 cs->dentry = NULL;
1932 spin_unlock(&d->d_lock);
1933 cpuset_d_remove_dir(d);
1934 dput(d);
1935 number_of_cpusets--; 1636 number_of_cpusets--;
1936 mutex_unlock(&callback_mutex); 1637 kfree(cs);
1937 if (list_empty(&parent->children))
1938 check_for_release(parent, &pathbuf);
1939 mutex_unlock(&manage_mutex);
1940 cpuset_release_agent(pathbuf);
1941 return 0;
1942} 1638}
1943 1639
1640struct cgroup_subsys cpuset_subsys = {
1641 .name = "cpuset",
1642 .create = cpuset_create,
1643 .destroy = cpuset_destroy,
1644 .can_attach = cpuset_can_attach,
1645 .attach = cpuset_attach,
1646 .populate = cpuset_populate,
1647 .post_clone = cpuset_post_clone,
1648 .subsys_id = cpuset_subsys_id,
1649 .early_init = 1,
1650};
1651
1944/* 1652/*
1945 * cpuset_init_early - just enough so that the calls to 1653 * cpuset_init_early - just enough so that the calls to
1946 * cpuset_update_task_memory_state() in early init code 1654 * cpuset_update_task_memory_state() in early init code
@@ -1949,13 +1657,11 @@ static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry)
1949 1657
1950int __init cpuset_init_early(void) 1658int __init cpuset_init_early(void)
1951{ 1659{
1952 struct task_struct *tsk = current; 1660 top_cpuset.mems_generation = cpuset_mems_generation++;
1953
1954 tsk->cpuset = &top_cpuset;
1955 tsk->cpuset->mems_generation = cpuset_mems_generation++;
1956 return 0; 1661 return 0;
1957} 1662}
1958 1663
1664
1959/** 1665/**
1960 * cpuset_init - initialize cpusets at system boot 1666 * cpuset_init - initialize cpusets at system boot
1961 * 1667 *
@@ -1964,39 +1670,21 @@ int __init cpuset_init_early(void)
1964 1670
1965int __init cpuset_init(void) 1671int __init cpuset_init(void)
1966{ 1672{
1967 struct dentry *root; 1673 int err = 0;
1968 int err;
1969 1674
1970 top_cpuset.cpus_allowed = CPU_MASK_ALL; 1675 top_cpuset.cpus_allowed = CPU_MASK_ALL;
1971 top_cpuset.mems_allowed = NODE_MASK_ALL; 1676 top_cpuset.mems_allowed = NODE_MASK_ALL;
1972 1677
1973 fmeter_init(&top_cpuset.fmeter); 1678 fmeter_init(&top_cpuset.fmeter);
1974 top_cpuset.mems_generation = cpuset_mems_generation++; 1679 top_cpuset.mems_generation = cpuset_mems_generation++;
1975 1680 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1976 init_task.cpuset = &top_cpuset;
1977 1681
1978 err = register_filesystem(&cpuset_fs_type); 1682 err = register_filesystem(&cpuset_fs_type);
1979 if (err < 0) 1683 if (err < 0)
1980 goto out; 1684 return err;
1981 cpuset_mount = kern_mount(&cpuset_fs_type); 1685
1982 if (IS_ERR(cpuset_mount)) {
1983 printk(KERN_ERR "cpuset: could not mount!\n");
1984 err = PTR_ERR(cpuset_mount);
1985 cpuset_mount = NULL;
1986 goto out;
1987 }
1988 root = cpuset_mount->mnt_sb->s_root;
1989 root->d_fsdata = &top_cpuset;
1990 inc_nlink(root->d_inode);
1991 top_cpuset.dentry = root;
1992 root->d_inode->i_op = &cpuset_dir_inode_operations;
1993 number_of_cpusets = 1; 1686 number_of_cpusets = 1;
1994 err = cpuset_populate_dir(root); 1687 return 0;
1995 /* memory_pressure_enabled is in root cpuset only */
1996 if (err == 0)
1997 err = cpuset_add_file(root, &cft_memory_pressure_enabled);
1998out:
1999 return err;
2000} 1688}
2001 1689
2002/* 1690/*
@@ -2022,10 +1710,12 @@ out:
2022 1710
2023static void guarantee_online_cpus_mems_in_subtree(const struct cpuset *cur) 1711static void guarantee_online_cpus_mems_in_subtree(const struct cpuset *cur)
2024{ 1712{
1713 struct cgroup *cont;
2025 struct cpuset *c; 1714 struct cpuset *c;
2026 1715
2027 /* Each of our child cpusets mems must be online */ 1716 /* Each of our child cpusets mems must be online */
2028 list_for_each_entry(c, &cur->children, sibling) { 1717 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
1718 c = cgroup_cs(cont);
2029 guarantee_online_cpus_mems_in_subtree(c); 1719 guarantee_online_cpus_mems_in_subtree(c);
2030 if (!cpus_empty(c->cpus_allowed)) 1720 if (!cpus_empty(c->cpus_allowed))
2031 guarantee_online_cpus(c, &c->cpus_allowed); 1721 guarantee_online_cpus(c, &c->cpus_allowed);
@@ -2053,7 +1743,7 @@ static void guarantee_online_cpus_mems_in_subtree(const struct cpuset *cur)
2053 1743
2054static void common_cpu_mem_hotplug_unplug(void) 1744static void common_cpu_mem_hotplug_unplug(void)
2055{ 1745{
2056 mutex_lock(&manage_mutex); 1746 cgroup_lock();
2057 mutex_lock(&callback_mutex); 1747 mutex_lock(&callback_mutex);
2058 1748
2059 guarantee_online_cpus_mems_in_subtree(&top_cpuset); 1749 guarantee_online_cpus_mems_in_subtree(&top_cpuset);
@@ -2061,7 +1751,7 @@ static void common_cpu_mem_hotplug_unplug(void)
2061 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; 1751 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2062 1752
2063 mutex_unlock(&callback_mutex); 1753 mutex_unlock(&callback_mutex);
2064 mutex_unlock(&manage_mutex); 1754 cgroup_unlock();
2065} 1755}
2066 1756
2067/* 1757/*
@@ -2074,8 +1764,8 @@ static void common_cpu_mem_hotplug_unplug(void)
2074 * cpu_online_map on each CPU hotplug (cpuhp) event. 1764 * cpu_online_map on each CPU hotplug (cpuhp) event.
2075 */ 1765 */
2076 1766
2077static int cpuset_handle_cpuhp(struct notifier_block *nb, 1767static int cpuset_handle_cpuhp(struct notifier_block *unused_nb,
2078 unsigned long phase, void *cpu) 1768 unsigned long phase, void *unused_cpu)
2079{ 1769{
2080 if (phase == CPU_DYING || phase == CPU_DYING_FROZEN) 1770 if (phase == CPU_DYING || phase == CPU_DYING_FROZEN)
2081 return NOTIFY_DONE; 1771 return NOTIFY_DONE;
@@ -2113,109 +1803,7 @@ void __init cpuset_init_smp(void)
2113} 1803}
2114 1804
2115/** 1805/**
2116 * cpuset_fork - attach newly forked task to its parents cpuset.
2117 * @tsk: pointer to task_struct of forking parent process.
2118 *
2119 * Description: A task inherits its parent's cpuset at fork().
2120 *
2121 * A pointer to the shared cpuset was automatically copied in fork.c
2122 * by dup_task_struct(). However, we ignore that copy, since it was
2123 * not made under the protection of task_lock(), so might no longer be
2124 * a valid cpuset pointer. attach_task() might have already changed
2125 * current->cpuset, allowing the previously referenced cpuset to
2126 * be removed and freed. Instead, we task_lock(current) and copy
2127 * its present value of current->cpuset for our freshly forked child.
2128 *
2129 * At the point that cpuset_fork() is called, 'current' is the parent
2130 * task, and the passed argument 'child' points to the child task.
2131 **/
2132
2133void cpuset_fork(struct task_struct *child)
2134{
2135 task_lock(current);
2136 child->cpuset = current->cpuset;
2137 atomic_inc(&child->cpuset->count);
2138 task_unlock(current);
2139}
2140
2141/**
2142 * cpuset_exit - detach cpuset from exiting task
2143 * @tsk: pointer to task_struct of exiting process
2144 *
2145 * Description: Detach cpuset from @tsk and release it.
2146 *
2147 * Note that cpusets marked notify_on_release force every task in
2148 * them to take the global manage_mutex mutex when exiting.
2149 * This could impact scaling on very large systems. Be reluctant to
2150 * use notify_on_release cpusets where very high task exit scaling
2151 * is required on large systems.
2152 *
2153 * Don't even think about derefencing 'cs' after the cpuset use count
2154 * goes to zero, except inside a critical section guarded by manage_mutex
2155 * or callback_mutex. Otherwise a zero cpuset use count is a license to
2156 * any other task to nuke the cpuset immediately, via cpuset_rmdir().
2157 *
2158 * This routine has to take manage_mutex, not callback_mutex, because
2159 * it is holding that mutex while calling check_for_release(),
2160 * which calls kmalloc(), so can't be called holding callback_mutex().
2161 *
2162 * the_top_cpuset_hack:
2163 *
2164 * Set the exiting tasks cpuset to the root cpuset (top_cpuset).
2165 *
2166 * Don't leave a task unable to allocate memory, as that is an
2167 * accident waiting to happen should someone add a callout in
2168 * do_exit() after the cpuset_exit() call that might allocate.
2169 * If a task tries to allocate memory with an invalid cpuset,
2170 * it will oops in cpuset_update_task_memory_state().
2171 *
2172 * We call cpuset_exit() while the task is still competent to
2173 * handle notify_on_release(), then leave the task attached to
2174 * the root cpuset (top_cpuset) for the remainder of its exit.
2175 *
2176 * To do this properly, we would increment the reference count on
2177 * top_cpuset, and near the very end of the kernel/exit.c do_exit()
2178 * code we would add a second cpuset function call, to drop that
2179 * reference. This would just create an unnecessary hot spot on
2180 * the top_cpuset reference count, to no avail.
2181 *
2182 * Normally, holding a reference to a cpuset without bumping its
2183 * count is unsafe. The cpuset could go away, or someone could
2184 * attach us to a different cpuset, decrementing the count on
2185 * the first cpuset that we never incremented. But in this case,
2186 * top_cpuset isn't going away, and either task has PF_EXITING set,
2187 * which wards off any attach_task() attempts, or task is a failed
2188 * fork, never visible to attach_task.
2189 *
2190 * Another way to do this would be to set the cpuset pointer
2191 * to NULL here, and check in cpuset_update_task_memory_state()
2192 * for a NULL pointer. This hack avoids that NULL check, for no
2193 * cost (other than this way too long comment ;).
2194 **/
2195 1806
2196void cpuset_exit(struct task_struct *tsk)
2197{
2198 struct cpuset *cs;
2199
2200 task_lock(current);
2201 cs = tsk->cpuset;
2202 tsk->cpuset = &top_cpuset; /* the_top_cpuset_hack - see above */
2203 task_unlock(current);
2204
2205 if (notify_on_release(cs)) {
2206 char *pathbuf = NULL;
2207
2208 mutex_lock(&manage_mutex);
2209 if (atomic_dec_and_test(&cs->count))
2210 check_for_release(cs, &pathbuf);
2211 mutex_unlock(&manage_mutex);
2212 cpuset_release_agent(pathbuf);
2213 } else {
2214 atomic_dec(&cs->count);
2215 }
2216}
2217
2218/**
2219 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. 1807 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2220 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 1808 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2221 * 1809 *
@@ -2230,10 +1818,23 @@ cpumask_t cpuset_cpus_allowed(struct task_struct *tsk)
2230 cpumask_t mask; 1818 cpumask_t mask;
2231 1819
2232 mutex_lock(&callback_mutex); 1820 mutex_lock(&callback_mutex);
1821 mask = cpuset_cpus_allowed_locked(tsk);
1822 mutex_unlock(&callback_mutex);
1823
1824 return mask;
1825}
1826
1827/**
1828 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
1829 * Must be called with callback_mutex held.
1830 **/
1831cpumask_t cpuset_cpus_allowed_locked(struct task_struct *tsk)
1832{
1833 cpumask_t mask;
1834
2233 task_lock(tsk); 1835 task_lock(tsk);
2234 guarantee_online_cpus(tsk->cpuset, &mask); 1836 guarantee_online_cpus(task_cs(tsk), &mask);
2235 task_unlock(tsk); 1837 task_unlock(tsk);
2236 mutex_unlock(&callback_mutex);
2237 1838
2238 return mask; 1839 return mask;
2239} 1840}
@@ -2259,7 +1860,7 @@ nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2259 1860
2260 mutex_lock(&callback_mutex); 1861 mutex_lock(&callback_mutex);
2261 task_lock(tsk); 1862 task_lock(tsk);
2262 guarantee_online_mems(tsk->cpuset, &mask); 1863 guarantee_online_mems(task_cs(tsk), &mask);
2263 task_unlock(tsk); 1864 task_unlock(tsk);
2264 mutex_unlock(&callback_mutex); 1865 mutex_unlock(&callback_mutex);
2265 1866
@@ -2390,7 +1991,7 @@ int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
2390 mutex_lock(&callback_mutex); 1991 mutex_lock(&callback_mutex);
2391 1992
2392 task_lock(current); 1993 task_lock(current);
2393 cs = nearest_exclusive_ancestor(current->cpuset); 1994 cs = nearest_exclusive_ancestor(task_cs(current));
2394 task_unlock(current); 1995 task_unlock(current);
2395 1996
2396 allowed = node_isset(node, cs->mems_allowed); 1997 allowed = node_isset(node, cs->mems_allowed);
@@ -2550,14 +2151,12 @@ int cpuset_memory_pressure_enabled __read_mostly;
2550 2151
2551void __cpuset_memory_pressure_bump(void) 2152void __cpuset_memory_pressure_bump(void)
2552{ 2153{
2553 struct cpuset *cs;
2554
2555 task_lock(current); 2154 task_lock(current);
2556 cs = current->cpuset; 2155 fmeter_markevent(&task_cs(current)->fmeter);
2557 fmeter_markevent(&cs->fmeter);
2558 task_unlock(current); 2156 task_unlock(current);
2559} 2157}
2560 2158
2159#ifdef CONFIG_PROC_PID_CPUSET
2561/* 2160/*
2562 * proc_cpuset_show() 2161 * proc_cpuset_show()
2563 * - Print tasks cpuset path into seq_file. 2162 * - Print tasks cpuset path into seq_file.
@@ -2569,11 +2168,12 @@ void __cpuset_memory_pressure_bump(void)
2569 * the_top_cpuset_hack in cpuset_exit(), which sets an exiting tasks 2168 * the_top_cpuset_hack in cpuset_exit(), which sets an exiting tasks
2570 * cpuset to top_cpuset. 2169 * cpuset to top_cpuset.
2571 */ 2170 */
2572static int proc_cpuset_show(struct seq_file *m, void *v) 2171static int proc_cpuset_show(struct seq_file *m, void *unused_v)
2573{ 2172{
2574 struct pid *pid; 2173 struct pid *pid;
2575 struct task_struct *tsk; 2174 struct task_struct *tsk;
2576 char *buf; 2175 char *buf;
2176 struct cgroup_subsys_state *css;
2577 int retval; 2177 int retval;
2578 2178
2579 retval = -ENOMEM; 2179 retval = -ENOMEM;
@@ -2588,15 +2188,15 @@ static int proc_cpuset_show(struct seq_file *m, void *v)
2588 goto out_free; 2188 goto out_free;
2589 2189
2590 retval = -EINVAL; 2190 retval = -EINVAL;
2591 mutex_lock(&manage_mutex); 2191 cgroup_lock();
2592 2192 css = task_subsys_state(tsk, cpuset_subsys_id);
2593 retval = cpuset_path(tsk->cpuset, buf, PAGE_SIZE); 2193 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
2594 if (retval < 0) 2194 if (retval < 0)
2595 goto out_unlock; 2195 goto out_unlock;
2596 seq_puts(m, buf); 2196 seq_puts(m, buf);
2597 seq_putc(m, '\n'); 2197 seq_putc(m, '\n');
2598out_unlock: 2198out_unlock:
2599 mutex_unlock(&manage_mutex); 2199 cgroup_unlock();
2600 put_task_struct(tsk); 2200 put_task_struct(tsk);
2601out_free: 2201out_free:
2602 kfree(buf); 2202 kfree(buf);
@@ -2616,6 +2216,7 @@ const struct file_operations proc_cpuset_operations = {
2616 .llseek = seq_lseek, 2216 .llseek = seq_lseek,
2617 .release = single_release, 2217 .release = single_release,
2618}; 2218};
2219#endif /* CONFIG_PROC_PID_CPUSET */
2619 2220
2620/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */ 2221/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
2621char *cpuset_task_status_allowed(struct task_struct *task, char *buffer) 2222char *cpuset_task_status_allowed(struct task_struct *task, char *buffer)