aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/auditsc.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/auditsc.c')
-rw-r--r--kernel/auditsc.c739
1 files changed, 290 insertions, 449 deletions
diff --git a/kernel/auditsc.c b/kernel/auditsc.c
index 4819f3711973..8cbddff6c283 100644
--- a/kernel/auditsc.c
+++ b/kernel/auditsc.c
@@ -124,43 +124,6 @@ struct audit_aux_data {
124/* Number of target pids per aux struct. */ 124/* Number of target pids per aux struct. */
125#define AUDIT_AUX_PIDS 16 125#define AUDIT_AUX_PIDS 16
126 126
127struct audit_aux_data_mq_open {
128 struct audit_aux_data d;
129 int oflag;
130 mode_t mode;
131 struct mq_attr attr;
132};
133
134struct audit_aux_data_mq_sendrecv {
135 struct audit_aux_data d;
136 mqd_t mqdes;
137 size_t msg_len;
138 unsigned int msg_prio;
139 struct timespec abs_timeout;
140};
141
142struct audit_aux_data_mq_notify {
143 struct audit_aux_data d;
144 mqd_t mqdes;
145 struct sigevent notification;
146};
147
148struct audit_aux_data_mq_getsetattr {
149 struct audit_aux_data d;
150 mqd_t mqdes;
151 struct mq_attr mqstat;
152};
153
154struct audit_aux_data_ipcctl {
155 struct audit_aux_data d;
156 struct ipc_perm p;
157 unsigned long qbytes;
158 uid_t uid;
159 gid_t gid;
160 mode_t mode;
161 u32 osid;
162};
163
164struct audit_aux_data_execve { 127struct audit_aux_data_execve {
165 struct audit_aux_data d; 128 struct audit_aux_data d;
166 int argc; 129 int argc;
@@ -168,23 +131,6 @@ struct audit_aux_data_execve {
168 struct mm_struct *mm; 131 struct mm_struct *mm;
169}; 132};
170 133
171struct audit_aux_data_socketcall {
172 struct audit_aux_data d;
173 int nargs;
174 unsigned long args[0];
175};
176
177struct audit_aux_data_sockaddr {
178 struct audit_aux_data d;
179 int len;
180 char a[0];
181};
182
183struct audit_aux_data_fd_pair {
184 struct audit_aux_data d;
185 int fd[2];
186};
187
188struct audit_aux_data_pids { 134struct audit_aux_data_pids {
189 struct audit_aux_data d; 135 struct audit_aux_data d;
190 pid_t target_pid[AUDIT_AUX_PIDS]; 136 pid_t target_pid[AUDIT_AUX_PIDS];
@@ -219,14 +165,14 @@ struct audit_tree_refs {
219struct audit_context { 165struct audit_context {
220 int dummy; /* must be the first element */ 166 int dummy; /* must be the first element */
221 int in_syscall; /* 1 if task is in a syscall */ 167 int in_syscall; /* 1 if task is in a syscall */
222 enum audit_state state; 168 enum audit_state state, current_state;
223 unsigned int serial; /* serial number for record */ 169 unsigned int serial; /* serial number for record */
224 struct timespec ctime; /* time of syscall entry */ 170 struct timespec ctime; /* time of syscall entry */
225 int major; /* syscall number */ 171 int major; /* syscall number */
226 unsigned long argv[4]; /* syscall arguments */ 172 unsigned long argv[4]; /* syscall arguments */
227 int return_valid; /* return code is valid */ 173 int return_valid; /* return code is valid */
228 long return_code;/* syscall return code */ 174 long return_code;/* syscall return code */
229 int auditable; /* 1 if record should be written */ 175 u64 prio;
230 int name_count; 176 int name_count;
231 struct audit_names names[AUDIT_NAMES]; 177 struct audit_names names[AUDIT_NAMES];
232 char * filterkey; /* key for rule that triggered record */ 178 char * filterkey; /* key for rule that triggered record */
@@ -234,7 +180,8 @@ struct audit_context {
234 struct audit_context *previous; /* For nested syscalls */ 180 struct audit_context *previous; /* For nested syscalls */
235 struct audit_aux_data *aux; 181 struct audit_aux_data *aux;
236 struct audit_aux_data *aux_pids; 182 struct audit_aux_data *aux_pids;
237 183 struct sockaddr_storage *sockaddr;
184 size_t sockaddr_len;
238 /* Save things to print about task_struct */ 185 /* Save things to print about task_struct */
239 pid_t pid, ppid; 186 pid_t pid, ppid;
240 uid_t uid, euid, suid, fsuid; 187 uid_t uid, euid, suid, fsuid;
@@ -252,6 +199,49 @@ struct audit_context {
252 struct audit_tree_refs *trees, *first_trees; 199 struct audit_tree_refs *trees, *first_trees;
253 int tree_count; 200 int tree_count;
254 201
202 int type;
203 union {
204 struct {
205 int nargs;
206 long args[6];
207 } socketcall;
208 struct {
209 uid_t uid;
210 gid_t gid;
211 mode_t mode;
212 u32 osid;
213 int has_perm;
214 uid_t perm_uid;
215 gid_t perm_gid;
216 mode_t perm_mode;
217 unsigned long qbytes;
218 } ipc;
219 struct {
220 mqd_t mqdes;
221 struct mq_attr mqstat;
222 } mq_getsetattr;
223 struct {
224 mqd_t mqdes;
225 int sigev_signo;
226 } mq_notify;
227 struct {
228 mqd_t mqdes;
229 size_t msg_len;
230 unsigned int msg_prio;
231 struct timespec abs_timeout;
232 } mq_sendrecv;
233 struct {
234 int oflag;
235 mode_t mode;
236 struct mq_attr attr;
237 } mq_open;
238 struct {
239 pid_t pid;
240 struct audit_cap_data cap;
241 } capset;
242 };
243 int fds[2];
244
255#if AUDIT_DEBUG 245#if AUDIT_DEBUG
256 int put_count; 246 int put_count;
257 int ino_count; 247 int ino_count;
@@ -608,19 +598,12 @@ static int audit_filter_rules(struct task_struct *tsk,
608 } 598 }
609 } 599 }
610 /* Find ipc objects that match */ 600 /* Find ipc objects that match */
611 if (ctx) { 601 if (!ctx || ctx->type != AUDIT_IPC)
612 struct audit_aux_data *aux; 602 break;
613 for (aux = ctx->aux; aux; 603 if (security_audit_rule_match(ctx->ipc.osid,
614 aux = aux->next) { 604 f->type, f->op,
615 if (aux->type == AUDIT_IPC) { 605 f->lsm_rule, ctx))
616 struct audit_aux_data_ipcctl *axi = (void *)aux; 606 ++result;
617 if (security_audit_rule_match(axi->osid, f->type, f->op, f->lsm_rule, ctx)) {
618 ++result;
619 break;
620 }
621 }
622 }
623 }
624 } 607 }
625 break; 608 break;
626 case AUDIT_ARG0: 609 case AUDIT_ARG0:
@@ -647,8 +630,16 @@ static int audit_filter_rules(struct task_struct *tsk,
647 return 0; 630 return 0;
648 } 631 }
649 } 632 }
650 if (rule->filterkey && ctx) 633
651 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 634 if (ctx) {
635 if (rule->prio <= ctx->prio)
636 return 0;
637 if (rule->filterkey) {
638 kfree(ctx->filterkey);
639 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
640 }
641 ctx->prio = rule->prio;
642 }
652 switch (rule->action) { 643 switch (rule->action) {
653 case AUDIT_NEVER: *state = AUDIT_DISABLED; break; 644 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
654 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break; 645 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
@@ -661,7 +652,7 @@ static int audit_filter_rules(struct task_struct *tsk,
661 * completely disabled for this task. Since we only have the task 652 * completely disabled for this task. Since we only have the task
662 * structure at this point, we can only check uid and gid. 653 * structure at this point, we can only check uid and gid.
663 */ 654 */
664static enum audit_state audit_filter_task(struct task_struct *tsk) 655static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
665{ 656{
666 struct audit_entry *e; 657 struct audit_entry *e;
667 enum audit_state state; 658 enum audit_state state;
@@ -669,6 +660,8 @@ static enum audit_state audit_filter_task(struct task_struct *tsk)
669 rcu_read_lock(); 660 rcu_read_lock();
670 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 661 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
671 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) { 662 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
663 if (state == AUDIT_RECORD_CONTEXT)
664 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
672 rcu_read_unlock(); 665 rcu_read_unlock();
673 return state; 666 return state;
674 } 667 }
@@ -702,6 +695,7 @@ static enum audit_state audit_filter_syscall(struct task_struct *tsk,
702 audit_filter_rules(tsk, &e->rule, ctx, NULL, 695 audit_filter_rules(tsk, &e->rule, ctx, NULL,
703 &state)) { 696 &state)) {
704 rcu_read_unlock(); 697 rcu_read_unlock();
698 ctx->current_state = state;
705 return state; 699 return state;
706 } 700 }
707 } 701 }
@@ -715,15 +709,14 @@ static enum audit_state audit_filter_syscall(struct task_struct *tsk,
715 * buckets applicable to the inode numbers in audit_names[]. 709 * buckets applicable to the inode numbers in audit_names[].
716 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 710 * Regarding audit_state, same rules apply as for audit_filter_syscall().
717 */ 711 */
718enum audit_state audit_filter_inodes(struct task_struct *tsk, 712void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
719 struct audit_context *ctx)
720{ 713{
721 int i; 714 int i;
722 struct audit_entry *e; 715 struct audit_entry *e;
723 enum audit_state state; 716 enum audit_state state;
724 717
725 if (audit_pid && tsk->tgid == audit_pid) 718 if (audit_pid && tsk->tgid == audit_pid)
726 return AUDIT_DISABLED; 719 return;
727 720
728 rcu_read_lock(); 721 rcu_read_lock();
729 for (i = 0; i < ctx->name_count; i++) { 722 for (i = 0; i < ctx->name_count; i++) {
@@ -740,17 +733,20 @@ enum audit_state audit_filter_inodes(struct task_struct *tsk,
740 if ((e->rule.mask[word] & bit) == bit && 733 if ((e->rule.mask[word] & bit) == bit &&
741 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) { 734 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
742 rcu_read_unlock(); 735 rcu_read_unlock();
743 return state; 736 ctx->current_state = state;
737 return;
744 } 738 }
745 } 739 }
746 } 740 }
747 rcu_read_unlock(); 741 rcu_read_unlock();
748 return AUDIT_BUILD_CONTEXT;
749} 742}
750 743
751void audit_set_auditable(struct audit_context *ctx) 744static void audit_set_auditable(struct audit_context *ctx)
752{ 745{
753 ctx->auditable = 1; 746 if (!ctx->prio) {
747 ctx->prio = 1;
748 ctx->current_state = AUDIT_RECORD_CONTEXT;
749 }
754} 750}
755 751
756static inline struct audit_context *audit_get_context(struct task_struct *tsk, 752static inline struct audit_context *audit_get_context(struct task_struct *tsk,
@@ -781,23 +777,11 @@ static inline struct audit_context *audit_get_context(struct task_struct *tsk,
781 else 777 else
782 context->return_code = return_code; 778 context->return_code = return_code;
783 779
784 if (context->in_syscall && !context->dummy && !context->auditable) { 780 if (context->in_syscall && !context->dummy) {
785 enum audit_state state; 781 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
786 782 audit_filter_inodes(tsk, context);
787 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
788 if (state == AUDIT_RECORD_CONTEXT) {
789 context->auditable = 1;
790 goto get_context;
791 }
792
793 state = audit_filter_inodes(tsk, context);
794 if (state == AUDIT_RECORD_CONTEXT)
795 context->auditable = 1;
796
797 } 783 }
798 784
799get_context:
800
801 tsk->audit_context = NULL; 785 tsk->audit_context = NULL;
802 return context; 786 return context;
803} 787}
@@ -807,8 +791,7 @@ static inline void audit_free_names(struct audit_context *context)
807 int i; 791 int i;
808 792
809#if AUDIT_DEBUG == 2 793#if AUDIT_DEBUG == 2
810 if (context->auditable 794 if (context->put_count + context->ino_count != context->name_count) {
811 ||context->put_count + context->ino_count != context->name_count) {
812 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d" 795 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
813 " name_count=%d put_count=%d" 796 " name_count=%d put_count=%d"
814 " ino_count=%d [NOT freeing]\n", 797 " ino_count=%d [NOT freeing]\n",
@@ -859,6 +842,7 @@ static inline void audit_zero_context(struct audit_context *context,
859{ 842{
860 memset(context, 0, sizeof(*context)); 843 memset(context, 0, sizeof(*context));
861 context->state = state; 844 context->state = state;
845 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
862} 846}
863 847
864static inline struct audit_context *audit_alloc_context(enum audit_state state) 848static inline struct audit_context *audit_alloc_context(enum audit_state state)
@@ -884,18 +868,21 @@ int audit_alloc(struct task_struct *tsk)
884{ 868{
885 struct audit_context *context; 869 struct audit_context *context;
886 enum audit_state state; 870 enum audit_state state;
871 char *key = NULL;
887 872
888 if (likely(!audit_ever_enabled)) 873 if (likely(!audit_ever_enabled))
889 return 0; /* Return if not auditing. */ 874 return 0; /* Return if not auditing. */
890 875
891 state = audit_filter_task(tsk); 876 state = audit_filter_task(tsk, &key);
892 if (likely(state == AUDIT_DISABLED)) 877 if (likely(state == AUDIT_DISABLED))
893 return 0; 878 return 0;
894 879
895 if (!(context = audit_alloc_context(state))) { 880 if (!(context = audit_alloc_context(state))) {
881 kfree(key);
896 audit_log_lost("out of memory in audit_alloc"); 882 audit_log_lost("out of memory in audit_alloc");
897 return -ENOMEM; 883 return -ENOMEM;
898 } 884 }
885 context->filterkey = key;
899 886
900 tsk->audit_context = context; 887 tsk->audit_context = context;
901 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 888 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
@@ -921,6 +908,7 @@ static inline void audit_free_context(struct audit_context *context)
921 free_tree_refs(context); 908 free_tree_refs(context);
922 audit_free_aux(context); 909 audit_free_aux(context);
923 kfree(context->filterkey); 910 kfree(context->filterkey);
911 kfree(context->sockaddr);
924 kfree(context); 912 kfree(context);
925 context = previous; 913 context = previous;
926 } while (context); 914 } while (context);
@@ -1230,6 +1218,97 @@ static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1230 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver); 1218 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1231} 1219}
1232 1220
1221static void show_special(struct audit_context *context, int *call_panic)
1222{
1223 struct audit_buffer *ab;
1224 int i;
1225
1226 ab = audit_log_start(context, GFP_KERNEL, context->type);
1227 if (!ab)
1228 return;
1229
1230 switch (context->type) {
1231 case AUDIT_SOCKETCALL: {
1232 int nargs = context->socketcall.nargs;
1233 audit_log_format(ab, "nargs=%d", nargs);
1234 for (i = 0; i < nargs; i++)
1235 audit_log_format(ab, " a%d=%lx", i,
1236 context->socketcall.args[i]);
1237 break; }
1238 case AUDIT_IPC: {
1239 u32 osid = context->ipc.osid;
1240
1241 audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1242 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1243 if (osid) {
1244 char *ctx = NULL;
1245 u32 len;
1246 if (security_secid_to_secctx(osid, &ctx, &len)) {
1247 audit_log_format(ab, " osid=%u", osid);
1248 *call_panic = 1;
1249 } else {
1250 audit_log_format(ab, " obj=%s", ctx);
1251 security_release_secctx(ctx, len);
1252 }
1253 }
1254 if (context->ipc.has_perm) {
1255 audit_log_end(ab);
1256 ab = audit_log_start(context, GFP_KERNEL,
1257 AUDIT_IPC_SET_PERM);
1258 audit_log_format(ab,
1259 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1260 context->ipc.qbytes,
1261 context->ipc.perm_uid,
1262 context->ipc.perm_gid,
1263 context->ipc.perm_mode);
1264 if (!ab)
1265 return;
1266 }
1267 break; }
1268 case AUDIT_MQ_OPEN: {
1269 audit_log_format(ab,
1270 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1271 "mq_msgsize=%ld mq_curmsgs=%ld",
1272 context->mq_open.oflag, context->mq_open.mode,
1273 context->mq_open.attr.mq_flags,
1274 context->mq_open.attr.mq_maxmsg,
1275 context->mq_open.attr.mq_msgsize,
1276 context->mq_open.attr.mq_curmsgs);
1277 break; }
1278 case AUDIT_MQ_SENDRECV: {
1279 audit_log_format(ab,
1280 "mqdes=%d msg_len=%zd msg_prio=%u "
1281 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1282 context->mq_sendrecv.mqdes,
1283 context->mq_sendrecv.msg_len,
1284 context->mq_sendrecv.msg_prio,
1285 context->mq_sendrecv.abs_timeout.tv_sec,
1286 context->mq_sendrecv.abs_timeout.tv_nsec);
1287 break; }
1288 case AUDIT_MQ_NOTIFY: {
1289 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1290 context->mq_notify.mqdes,
1291 context->mq_notify.sigev_signo);
1292 break; }
1293 case AUDIT_MQ_GETSETATTR: {
1294 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1295 audit_log_format(ab,
1296 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1297 "mq_curmsgs=%ld ",
1298 context->mq_getsetattr.mqdes,
1299 attr->mq_flags, attr->mq_maxmsg,
1300 attr->mq_msgsize, attr->mq_curmsgs);
1301 break; }
1302 case AUDIT_CAPSET: {
1303 audit_log_format(ab, "pid=%d", context->capset.pid);
1304 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1305 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1306 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1307 break; }
1308 }
1309 audit_log_end(ab);
1310}
1311
1233static void audit_log_exit(struct audit_context *context, struct task_struct *tsk) 1312static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1234{ 1313{
1235 const struct cred *cred; 1314 const struct cred *cred;
@@ -1307,94 +1386,12 @@ static void audit_log_exit(struct audit_context *context, struct task_struct *ts
1307 continue; /* audit_panic has been called */ 1386 continue; /* audit_panic has been called */
1308 1387
1309 switch (aux->type) { 1388 switch (aux->type) {
1310 case AUDIT_MQ_OPEN: {
1311 struct audit_aux_data_mq_open *axi = (void *)aux;
1312 audit_log_format(ab,
1313 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1314 "mq_msgsize=%ld mq_curmsgs=%ld",
1315 axi->oflag, axi->mode, axi->attr.mq_flags,
1316 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
1317 axi->attr.mq_curmsgs);
1318 break; }
1319
1320 case AUDIT_MQ_SENDRECV: {
1321 struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
1322 audit_log_format(ab,
1323 "mqdes=%d msg_len=%zd msg_prio=%u "
1324 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1325 axi->mqdes, axi->msg_len, axi->msg_prio,
1326 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
1327 break; }
1328
1329 case AUDIT_MQ_NOTIFY: {
1330 struct audit_aux_data_mq_notify *axi = (void *)aux;
1331 audit_log_format(ab,
1332 "mqdes=%d sigev_signo=%d",
1333 axi->mqdes,
1334 axi->notification.sigev_signo);
1335 break; }
1336
1337 case AUDIT_MQ_GETSETATTR: {
1338 struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
1339 audit_log_format(ab,
1340 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1341 "mq_curmsgs=%ld ",
1342 axi->mqdes,
1343 axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
1344 axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
1345 break; }
1346
1347 case AUDIT_IPC: {
1348 struct audit_aux_data_ipcctl *axi = (void *)aux;
1349 audit_log_format(ab,
1350 "ouid=%u ogid=%u mode=%#o",
1351 axi->uid, axi->gid, axi->mode);
1352 if (axi->osid != 0) {
1353 char *ctx = NULL;
1354 u32 len;
1355 if (security_secid_to_secctx(
1356 axi->osid, &ctx, &len)) {
1357 audit_log_format(ab, " osid=%u",
1358 axi->osid);
1359 call_panic = 1;
1360 } else {
1361 audit_log_format(ab, " obj=%s", ctx);
1362 security_release_secctx(ctx, len);
1363 }
1364 }
1365 break; }
1366
1367 case AUDIT_IPC_SET_PERM: {
1368 struct audit_aux_data_ipcctl *axi = (void *)aux;
1369 audit_log_format(ab,
1370 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1371 axi->qbytes, axi->uid, axi->gid, axi->mode);
1372 break; }
1373 1389
1374 case AUDIT_EXECVE: { 1390 case AUDIT_EXECVE: {
1375 struct audit_aux_data_execve *axi = (void *)aux; 1391 struct audit_aux_data_execve *axi = (void *)aux;
1376 audit_log_execve_info(context, &ab, axi); 1392 audit_log_execve_info(context, &ab, axi);
1377 break; } 1393 break; }
1378 1394
1379 case AUDIT_SOCKETCALL: {
1380 struct audit_aux_data_socketcall *axs = (void *)aux;
1381 audit_log_format(ab, "nargs=%d", axs->nargs);
1382 for (i=0; i<axs->nargs; i++)
1383 audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
1384 break; }
1385
1386 case AUDIT_SOCKADDR: {
1387 struct audit_aux_data_sockaddr *axs = (void *)aux;
1388
1389 audit_log_format(ab, "saddr=");
1390 audit_log_n_hex(ab, axs->a, axs->len);
1391 break; }
1392
1393 case AUDIT_FD_PAIR: {
1394 struct audit_aux_data_fd_pair *axs = (void *)aux;
1395 audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
1396 break; }
1397
1398 case AUDIT_BPRM_FCAPS: { 1395 case AUDIT_BPRM_FCAPS: {
1399 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1396 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1400 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1397 audit_log_format(ab, "fver=%x", axs->fcap_ver);
@@ -1409,18 +1406,32 @@ static void audit_log_exit(struct audit_context *context, struct task_struct *ts
1409 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective); 1406 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1410 break; } 1407 break; }
1411 1408
1412 case AUDIT_CAPSET: {
1413 struct audit_aux_data_capset *axs = (void *)aux;
1414 audit_log_format(ab, "pid=%d", axs->pid);
1415 audit_log_cap(ab, "cap_pi", &axs->cap.inheritable);
1416 audit_log_cap(ab, "cap_pp", &axs->cap.permitted);
1417 audit_log_cap(ab, "cap_pe", &axs->cap.effective);
1418 break; }
1419
1420 } 1409 }
1421 audit_log_end(ab); 1410 audit_log_end(ab);
1422 } 1411 }
1423 1412
1413 if (context->type)
1414 show_special(context, &call_panic);
1415
1416 if (context->fds[0] >= 0) {
1417 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1418 if (ab) {
1419 audit_log_format(ab, "fd0=%d fd1=%d",
1420 context->fds[0], context->fds[1]);
1421 audit_log_end(ab);
1422 }
1423 }
1424
1425 if (context->sockaddr_len) {
1426 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1427 if (ab) {
1428 audit_log_format(ab, "saddr=");
1429 audit_log_n_hex(ab, (void *)context->sockaddr,
1430 context->sockaddr_len);
1431 audit_log_end(ab);
1432 }
1433 }
1434
1424 for (aux = context->aux_pids; aux; aux = aux->next) { 1435 for (aux = context->aux_pids; aux; aux = aux->next) {
1425 struct audit_aux_data_pids *axs = (void *)aux; 1436 struct audit_aux_data_pids *axs = (void *)aux;
1426 1437
@@ -1536,7 +1547,7 @@ void audit_free(struct task_struct *tsk)
1536 * We use GFP_ATOMIC here because we might be doing this 1547 * We use GFP_ATOMIC here because we might be doing this
1537 * in the context of the idle thread */ 1548 * in the context of the idle thread */
1538 /* that can happen only if we are called from do_exit() */ 1549 /* that can happen only if we are called from do_exit() */
1539 if (context->in_syscall && context->auditable) 1550 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1540 audit_log_exit(context, tsk); 1551 audit_log_exit(context, tsk);
1541 1552
1542 audit_free_context(context); 1553 audit_free_context(context);
@@ -1620,15 +1631,17 @@ void audit_syscall_entry(int arch, int major,
1620 1631
1621 state = context->state; 1632 state = context->state;
1622 context->dummy = !audit_n_rules; 1633 context->dummy = !audit_n_rules;
1623 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT)) 1634 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1635 context->prio = 0;
1624 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]); 1636 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1637 }
1625 if (likely(state == AUDIT_DISABLED)) 1638 if (likely(state == AUDIT_DISABLED))
1626 return; 1639 return;
1627 1640
1628 context->serial = 0; 1641 context->serial = 0;
1629 context->ctime = CURRENT_TIME; 1642 context->ctime = CURRENT_TIME;
1630 context->in_syscall = 1; 1643 context->in_syscall = 1;
1631 context->auditable = !!(state == AUDIT_RECORD_CONTEXT); 1644 context->current_state = state;
1632 context->ppid = 0; 1645 context->ppid = 0;
1633} 1646}
1634 1647
@@ -1636,17 +1649,20 @@ void audit_finish_fork(struct task_struct *child)
1636{ 1649{
1637 struct audit_context *ctx = current->audit_context; 1650 struct audit_context *ctx = current->audit_context;
1638 struct audit_context *p = child->audit_context; 1651 struct audit_context *p = child->audit_context;
1639 if (!p || !ctx || !ctx->auditable) 1652 if (!p || !ctx)
1653 return;
1654 if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT)
1640 return; 1655 return;
1641 p->arch = ctx->arch; 1656 p->arch = ctx->arch;
1642 p->major = ctx->major; 1657 p->major = ctx->major;
1643 memcpy(p->argv, ctx->argv, sizeof(ctx->argv)); 1658 memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1644 p->ctime = ctx->ctime; 1659 p->ctime = ctx->ctime;
1645 p->dummy = ctx->dummy; 1660 p->dummy = ctx->dummy;
1646 p->auditable = ctx->auditable;
1647 p->in_syscall = ctx->in_syscall; 1661 p->in_syscall = ctx->in_syscall;
1648 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL); 1662 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1649 p->ppid = current->pid; 1663 p->ppid = current->pid;
1664 p->prio = ctx->prio;
1665 p->current_state = ctx->current_state;
1650} 1666}
1651 1667
1652/** 1668/**
@@ -1670,11 +1686,11 @@ void audit_syscall_exit(int valid, long return_code)
1670 if (likely(!context)) 1686 if (likely(!context))
1671 return; 1687 return;
1672 1688
1673 if (context->in_syscall && context->auditable) 1689 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1674 audit_log_exit(context, tsk); 1690 audit_log_exit(context, tsk);
1675 1691
1676 context->in_syscall = 0; 1692 context->in_syscall = 0;
1677 context->auditable = 0; 1693 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1678 1694
1679 if (context->previous) { 1695 if (context->previous) {
1680 struct audit_context *new_context = context->previous; 1696 struct audit_context *new_context = context->previous;
@@ -1689,8 +1705,13 @@ void audit_syscall_exit(int valid, long return_code)
1689 context->aux_pids = NULL; 1705 context->aux_pids = NULL;
1690 context->target_pid = 0; 1706 context->target_pid = 0;
1691 context->target_sid = 0; 1707 context->target_sid = 0;
1692 kfree(context->filterkey); 1708 context->sockaddr_len = 0;
1693 context->filterkey = NULL; 1709 context->type = 0;
1710 context->fds[0] = -1;
1711 if (context->state != AUDIT_RECORD_CONTEXT) {
1712 kfree(context->filterkey);
1713 context->filterkey = NULL;
1714 }
1694 tsk->audit_context = context; 1715 tsk->audit_context = context;
1695 } 1716 }
1696} 1717}
@@ -2081,7 +2102,10 @@ int auditsc_get_stamp(struct audit_context *ctx,
2081 t->tv_sec = ctx->ctime.tv_sec; 2102 t->tv_sec = ctx->ctime.tv_sec;
2082 t->tv_nsec = ctx->ctime.tv_nsec; 2103 t->tv_nsec = ctx->ctime.tv_nsec;
2083 *serial = ctx->serial; 2104 *serial = ctx->serial;
2084 ctx->auditable = 1; 2105 if (!ctx->prio) {
2106 ctx->prio = 1;
2107 ctx->current_state = AUDIT_RECORD_CONTEXT;
2108 }
2085 return 1; 2109 return 1;
2086} 2110}
2087 2111
@@ -2127,132 +2151,46 @@ int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
2127 * @mode: mode bits 2151 * @mode: mode bits
2128 * @u_attr: queue attributes 2152 * @u_attr: queue attributes
2129 * 2153 *
2130 * Returns 0 for success or NULL context or < 0 on error.
2131 */ 2154 */
2132int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr) 2155void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr)
2133{ 2156{
2134 struct audit_aux_data_mq_open *ax;
2135 struct audit_context *context = current->audit_context; 2157 struct audit_context *context = current->audit_context;
2136 2158
2137 if (!audit_enabled) 2159 if (attr)
2138 return 0; 2160 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2139 2161 else
2140 if (likely(!context)) 2162 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2141 return 0;
2142
2143 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2144 if (!ax)
2145 return -ENOMEM;
2146
2147 if (u_attr != NULL) {
2148 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
2149 kfree(ax);
2150 return -EFAULT;
2151 }
2152 } else
2153 memset(&ax->attr, 0, sizeof(ax->attr));
2154 2163
2155 ax->oflag = oflag; 2164 context->mq_open.oflag = oflag;
2156 ax->mode = mode; 2165 context->mq_open.mode = mode;
2157 2166
2158 ax->d.type = AUDIT_MQ_OPEN; 2167 context->type = AUDIT_MQ_OPEN;
2159 ax->d.next = context->aux;
2160 context->aux = (void *)ax;
2161 return 0;
2162} 2168}
2163 2169
2164/** 2170/**
2165 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send 2171 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2166 * @mqdes: MQ descriptor 2172 * @mqdes: MQ descriptor
2167 * @msg_len: Message length 2173 * @msg_len: Message length
2168 * @msg_prio: Message priority 2174 * @msg_prio: Message priority
2169 * @u_abs_timeout: Message timeout in absolute time 2175 * @abs_timeout: Message timeout in absolute time
2170 * 2176 *
2171 * Returns 0 for success or NULL context or < 0 on error.
2172 */ 2177 */
2173int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2178void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2174 const struct timespec __user *u_abs_timeout) 2179 const struct timespec *abs_timeout)
2175{ 2180{
2176 struct audit_aux_data_mq_sendrecv *ax;
2177 struct audit_context *context = current->audit_context; 2181 struct audit_context *context = current->audit_context;
2182 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2178 2183
2179 if (!audit_enabled) 2184 if (abs_timeout)
2180 return 0; 2185 memcpy(p, abs_timeout, sizeof(struct timespec));
2181 2186 else
2182 if (likely(!context)) 2187 memset(p, 0, sizeof(struct timespec));
2183 return 0;
2184
2185 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2186 if (!ax)
2187 return -ENOMEM;
2188
2189 if (u_abs_timeout != NULL) {
2190 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2191 kfree(ax);
2192 return -EFAULT;
2193 }
2194 } else
2195 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2196
2197 ax->mqdes = mqdes;
2198 ax->msg_len = msg_len;
2199 ax->msg_prio = msg_prio;
2200
2201 ax->d.type = AUDIT_MQ_SENDRECV;
2202 ax->d.next = context->aux;
2203 context->aux = (void *)ax;
2204 return 0;
2205}
2206
2207/**
2208 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
2209 * @mqdes: MQ descriptor
2210 * @msg_len: Message length
2211 * @u_msg_prio: Message priority
2212 * @u_abs_timeout: Message timeout in absolute time
2213 *
2214 * Returns 0 for success or NULL context or < 0 on error.
2215 */
2216int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
2217 unsigned int __user *u_msg_prio,
2218 const struct timespec __user *u_abs_timeout)
2219{
2220 struct audit_aux_data_mq_sendrecv *ax;
2221 struct audit_context *context = current->audit_context;
2222
2223 if (!audit_enabled)
2224 return 0;
2225
2226 if (likely(!context))
2227 return 0;
2228
2229 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2230 if (!ax)
2231 return -ENOMEM;
2232
2233 if (u_msg_prio != NULL) {
2234 if (get_user(ax->msg_prio, u_msg_prio)) {
2235 kfree(ax);
2236 return -EFAULT;
2237 }
2238 } else
2239 ax->msg_prio = 0;
2240
2241 if (u_abs_timeout != NULL) {
2242 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2243 kfree(ax);
2244 return -EFAULT;
2245 }
2246 } else
2247 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2248 2188
2249 ax->mqdes = mqdes; 2189 context->mq_sendrecv.mqdes = mqdes;
2250 ax->msg_len = msg_len; 2190 context->mq_sendrecv.msg_len = msg_len;
2191 context->mq_sendrecv.msg_prio = msg_prio;
2251 2192
2252 ax->d.type = AUDIT_MQ_SENDRECV; 2193 context->type = AUDIT_MQ_SENDRECV;
2253 ax->d.next = context->aux;
2254 context->aux = (void *)ax;
2255 return 0;
2256} 2194}
2257 2195
2258/** 2196/**
@@ -2260,38 +2198,19 @@ int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
2260 * @mqdes: MQ descriptor 2198 * @mqdes: MQ descriptor
2261 * @u_notification: Notification event 2199 * @u_notification: Notification event
2262 * 2200 *
2263 * Returns 0 for success or NULL context or < 0 on error.
2264 */ 2201 */
2265 2202
2266int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification) 2203void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2267{ 2204{
2268 struct audit_aux_data_mq_notify *ax;
2269 struct audit_context *context = current->audit_context; 2205 struct audit_context *context = current->audit_context;
2270 2206
2271 if (!audit_enabled) 2207 if (notification)
2272 return 0; 2208 context->mq_notify.sigev_signo = notification->sigev_signo;
2273 2209 else
2274 if (likely(!context)) 2210 context->mq_notify.sigev_signo = 0;
2275 return 0;
2276
2277 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2278 if (!ax)
2279 return -ENOMEM;
2280
2281 if (u_notification != NULL) {
2282 if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
2283 kfree(ax);
2284 return -EFAULT;
2285 }
2286 } else
2287 memset(&ax->notification, 0, sizeof(ax->notification));
2288
2289 ax->mqdes = mqdes;
2290 2211
2291 ax->d.type = AUDIT_MQ_NOTIFY; 2212 context->mq_notify.mqdes = mqdes;
2292 ax->d.next = context->aux; 2213 context->type = AUDIT_MQ_NOTIFY;
2293 context->aux = (void *)ax;
2294 return 0;
2295} 2214}
2296 2215
2297/** 2216/**
@@ -2299,55 +2218,29 @@ int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
2299 * @mqdes: MQ descriptor 2218 * @mqdes: MQ descriptor
2300 * @mqstat: MQ flags 2219 * @mqstat: MQ flags
2301 * 2220 *
2302 * Returns 0 for success or NULL context or < 0 on error.
2303 */ 2221 */
2304int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2222void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2305{ 2223{
2306 struct audit_aux_data_mq_getsetattr *ax;
2307 struct audit_context *context = current->audit_context; 2224 struct audit_context *context = current->audit_context;
2308 2225 context->mq_getsetattr.mqdes = mqdes;
2309 if (!audit_enabled) 2226 context->mq_getsetattr.mqstat = *mqstat;
2310 return 0; 2227 context->type = AUDIT_MQ_GETSETATTR;
2311
2312 if (likely(!context))
2313 return 0;
2314
2315 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2316 if (!ax)
2317 return -ENOMEM;
2318
2319 ax->mqdes = mqdes;
2320 ax->mqstat = *mqstat;
2321
2322 ax->d.type = AUDIT_MQ_GETSETATTR;
2323 ax->d.next = context->aux;
2324 context->aux = (void *)ax;
2325 return 0;
2326} 2228}
2327 2229
2328/** 2230/**
2329 * audit_ipc_obj - record audit data for ipc object 2231 * audit_ipc_obj - record audit data for ipc object
2330 * @ipcp: ipc permissions 2232 * @ipcp: ipc permissions
2331 * 2233 *
2332 * Returns 0 for success or NULL context or < 0 on error.
2333 */ 2234 */
2334int __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2235void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2335{ 2236{
2336 struct audit_aux_data_ipcctl *ax;
2337 struct audit_context *context = current->audit_context; 2237 struct audit_context *context = current->audit_context;
2338 2238 context->ipc.uid = ipcp->uid;
2339 ax = kmalloc(sizeof(*ax), GFP_ATOMIC); 2239 context->ipc.gid = ipcp->gid;
2340 if (!ax) 2240 context->ipc.mode = ipcp->mode;
2341 return -ENOMEM; 2241 context->ipc.has_perm = 0;
2342 2242 security_ipc_getsecid(ipcp, &context->ipc.osid);
2343 ax->uid = ipcp->uid; 2243 context->type = AUDIT_IPC;
2344 ax->gid = ipcp->gid;
2345 ax->mode = ipcp->mode;
2346 security_ipc_getsecid(ipcp, &ax->osid);
2347 ax->d.type = AUDIT_IPC;
2348 ax->d.next = context->aux;
2349 context->aux = (void *)ax;
2350 return 0;
2351} 2244}
2352 2245
2353/** 2246/**
@@ -2357,26 +2250,17 @@ int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2357 * @gid: msgq group id 2250 * @gid: msgq group id
2358 * @mode: msgq mode (permissions) 2251 * @mode: msgq mode (permissions)
2359 * 2252 *
2360 * Returns 0 for success or NULL context or < 0 on error. 2253 * Called only after audit_ipc_obj().
2361 */ 2254 */
2362int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode) 2255void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2363{ 2256{
2364 struct audit_aux_data_ipcctl *ax;
2365 struct audit_context *context = current->audit_context; 2257 struct audit_context *context = current->audit_context;
2366 2258
2367 ax = kmalloc(sizeof(*ax), GFP_ATOMIC); 2259 context->ipc.qbytes = qbytes;
2368 if (!ax) 2260 context->ipc.perm_uid = uid;
2369 return -ENOMEM; 2261 context->ipc.perm_gid = gid;
2370 2262 context->ipc.perm_mode = mode;
2371 ax->qbytes = qbytes; 2263 context->ipc.has_perm = 1;
2372 ax->uid = uid;
2373 ax->gid = gid;
2374 ax->mode = mode;
2375
2376 ax->d.type = AUDIT_IPC_SET_PERM;
2377 ax->d.next = context->aux;
2378 context->aux = (void *)ax;
2379 return 0;
2380} 2264}
2381 2265
2382int audit_bprm(struct linux_binprm *bprm) 2266int audit_bprm(struct linux_binprm *bprm)
@@ -2406,27 +2290,17 @@ int audit_bprm(struct linux_binprm *bprm)
2406 * @nargs: number of args 2290 * @nargs: number of args
2407 * @args: args array 2291 * @args: args array
2408 * 2292 *
2409 * Returns 0 for success or NULL context or < 0 on error.
2410 */ 2293 */
2411int audit_socketcall(int nargs, unsigned long *args) 2294void audit_socketcall(int nargs, unsigned long *args)
2412{ 2295{
2413 struct audit_aux_data_socketcall *ax;
2414 struct audit_context *context = current->audit_context; 2296 struct audit_context *context = current->audit_context;
2415 2297
2416 if (likely(!context || context->dummy)) 2298 if (likely(!context || context->dummy))
2417 return 0; 2299 return;
2418
2419 ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
2420 if (!ax)
2421 return -ENOMEM;
2422
2423 ax->nargs = nargs;
2424 memcpy(ax->args, args, nargs * sizeof(unsigned long));
2425 2300
2426 ax->d.type = AUDIT_SOCKETCALL; 2301 context->type = AUDIT_SOCKETCALL;
2427 ax->d.next = context->aux; 2302 context->socketcall.nargs = nargs;
2428 context->aux = (void *)ax; 2303 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2429 return 0;
2430} 2304}
2431 2305
2432/** 2306/**
@@ -2434,29 +2308,12 @@ int audit_socketcall(int nargs, unsigned long *args)
2434 * @fd1: the first file descriptor 2308 * @fd1: the first file descriptor
2435 * @fd2: the second file descriptor 2309 * @fd2: the second file descriptor
2436 * 2310 *
2437 * Returns 0 for success or NULL context or < 0 on error.
2438 */ 2311 */
2439int __audit_fd_pair(int fd1, int fd2) 2312void __audit_fd_pair(int fd1, int fd2)
2440{ 2313{
2441 struct audit_context *context = current->audit_context; 2314 struct audit_context *context = current->audit_context;
2442 struct audit_aux_data_fd_pair *ax; 2315 context->fds[0] = fd1;
2443 2316 context->fds[1] = fd2;
2444 if (likely(!context)) {
2445 return 0;
2446 }
2447
2448 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2449 if (!ax) {
2450 return -ENOMEM;
2451 }
2452
2453 ax->fd[0] = fd1;
2454 ax->fd[1] = fd2;
2455
2456 ax->d.type = AUDIT_FD_PAIR;
2457 ax->d.next = context->aux;
2458 context->aux = (void *)ax;
2459 return 0;
2460} 2317}
2461 2318
2462/** 2319/**
@@ -2468,22 +2325,20 @@ int __audit_fd_pair(int fd1, int fd2)
2468 */ 2325 */
2469int audit_sockaddr(int len, void *a) 2326int audit_sockaddr(int len, void *a)
2470{ 2327{
2471 struct audit_aux_data_sockaddr *ax;
2472 struct audit_context *context = current->audit_context; 2328 struct audit_context *context = current->audit_context;
2473 2329
2474 if (likely(!context || context->dummy)) 2330 if (likely(!context || context->dummy))
2475 return 0; 2331 return 0;
2476 2332
2477 ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL); 2333 if (!context->sockaddr) {
2478 if (!ax) 2334 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2479 return -ENOMEM; 2335 if (!p)
2480 2336 return -ENOMEM;
2481 ax->len = len; 2337 context->sockaddr = p;
2482 memcpy(ax->a, a, len); 2338 }
2483 2339
2484 ax->d.type = AUDIT_SOCKADDR; 2340 context->sockaddr_len = len;
2485 ax->d.next = context->aux; 2341 memcpy(context->sockaddr, a, len);
2486 context->aux = (void *)ax;
2487 return 0; 2342 return 0;
2488} 2343}
2489 2344
@@ -2617,29 +2472,15 @@ int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2617 * Record the aguments userspace sent to sys_capset for later printing by the 2472 * Record the aguments userspace sent to sys_capset for later printing by the
2618 * audit system if applicable 2473 * audit system if applicable
2619 */ 2474 */
2620int __audit_log_capset(pid_t pid, 2475void __audit_log_capset(pid_t pid,
2621 const struct cred *new, const struct cred *old) 2476 const struct cred *new, const struct cred *old)
2622{ 2477{
2623 struct audit_aux_data_capset *ax;
2624 struct audit_context *context = current->audit_context; 2478 struct audit_context *context = current->audit_context;
2625 2479 context->capset.pid = pid;
2626 if (likely(!audit_enabled || !context || context->dummy)) 2480 context->capset.cap.effective = new->cap_effective;
2627 return 0; 2481 context->capset.cap.inheritable = new->cap_effective;
2628 2482 context->capset.cap.permitted = new->cap_permitted;
2629 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2483 context->type = AUDIT_CAPSET;
2630 if (!ax)
2631 return -ENOMEM;
2632
2633 ax->d.type = AUDIT_CAPSET;
2634 ax->d.next = context->aux;
2635 context->aux = (void *)ax;
2636
2637 ax->pid = pid;
2638 ax->cap.effective = new->cap_effective;
2639 ax->cap.inheritable = new->cap_effective;
2640 ax->cap.permitted = new->cap_permitted;
2641
2642 return 0;
2643} 2484}
2644 2485
2645/** 2486/**