diff options
Diffstat (limited to 'kernel/async.c')
-rw-r--r-- | kernel/async.c | 321 |
1 files changed, 321 insertions, 0 deletions
diff --git a/kernel/async.c b/kernel/async.c new file mode 100644 index 000000000000..97373380c9e7 --- /dev/null +++ b/kernel/async.c | |||
@@ -0,0 +1,321 @@ | |||
1 | /* | ||
2 | * async.c: Asynchronous function calls for boot performance | ||
3 | * | ||
4 | * (C) Copyright 2009 Intel Corporation | ||
5 | * Author: Arjan van de Ven <arjan@linux.intel.com> | ||
6 | * | ||
7 | * This program is free software; you can redistribute it and/or | ||
8 | * modify it under the terms of the GNU General Public License | ||
9 | * as published by the Free Software Foundation; version 2 | ||
10 | * of the License. | ||
11 | */ | ||
12 | |||
13 | |||
14 | /* | ||
15 | |||
16 | Goals and Theory of Operation | ||
17 | |||
18 | The primary goal of this feature is to reduce the kernel boot time, | ||
19 | by doing various independent hardware delays and discovery operations | ||
20 | decoupled and not strictly serialized. | ||
21 | |||
22 | More specifically, the asynchronous function call concept allows | ||
23 | certain operations (primarily during system boot) to happen | ||
24 | asynchronously, out of order, while these operations still | ||
25 | have their externally visible parts happen sequentially and in-order. | ||
26 | (not unlike how out-of-order CPUs retire their instructions in order) | ||
27 | |||
28 | Key to the asynchronous function call implementation is the concept of | ||
29 | a "sequence cookie" (which, although it has an abstracted type, can be | ||
30 | thought of as a monotonically incrementing number). | ||
31 | |||
32 | The async core will assign each scheduled event such a sequence cookie and | ||
33 | pass this to the called functions. | ||
34 | |||
35 | The asynchronously called function should before doing a globally visible | ||
36 | operation, such as registering device numbers, call the | ||
37 | async_synchronize_cookie() function and pass in its own cookie. The | ||
38 | async_synchronize_cookie() function will make sure that all asynchronous | ||
39 | operations that were scheduled prior to the operation corresponding with the | ||
40 | cookie have completed. | ||
41 | |||
42 | Subsystem/driver initialization code that scheduled asynchronous probe | ||
43 | functions, but which shares global resources with other drivers/subsystems | ||
44 | that do not use the asynchronous call feature, need to do a full | ||
45 | synchronization with the async_synchronize_full() function, before returning | ||
46 | from their init function. This is to maintain strict ordering between the | ||
47 | asynchronous and synchronous parts of the kernel. | ||
48 | |||
49 | */ | ||
50 | |||
51 | #include <linux/async.h> | ||
52 | #include <linux/module.h> | ||
53 | #include <linux/wait.h> | ||
54 | #include <linux/sched.h> | ||
55 | #include <linux/init.h> | ||
56 | #include <linux/kthread.h> | ||
57 | #include <asm/atomic.h> | ||
58 | |||
59 | static async_cookie_t next_cookie = 1; | ||
60 | |||
61 | #define MAX_THREADS 256 | ||
62 | #define MAX_WORK 32768 | ||
63 | |||
64 | static LIST_HEAD(async_pending); | ||
65 | static LIST_HEAD(async_running); | ||
66 | static DEFINE_SPINLOCK(async_lock); | ||
67 | |||
68 | struct async_entry { | ||
69 | struct list_head list; | ||
70 | async_cookie_t cookie; | ||
71 | async_func_ptr *func; | ||
72 | void *data; | ||
73 | struct list_head *running; | ||
74 | }; | ||
75 | |||
76 | static DECLARE_WAIT_QUEUE_HEAD(async_done); | ||
77 | static DECLARE_WAIT_QUEUE_HEAD(async_new); | ||
78 | |||
79 | static atomic_t entry_count; | ||
80 | static atomic_t thread_count; | ||
81 | |||
82 | extern int initcall_debug; | ||
83 | |||
84 | |||
85 | /* | ||
86 | * MUST be called with the lock held! | ||
87 | */ | ||
88 | static async_cookie_t __lowest_in_progress(struct list_head *running) | ||
89 | { | ||
90 | struct async_entry *entry; | ||
91 | if (!list_empty(&async_pending)) { | ||
92 | entry = list_first_entry(&async_pending, | ||
93 | struct async_entry, list); | ||
94 | return entry->cookie; | ||
95 | } else if (!list_empty(running)) { | ||
96 | entry = list_first_entry(running, | ||
97 | struct async_entry, list); | ||
98 | return entry->cookie; | ||
99 | } else { | ||
100 | /* nothing in progress... next_cookie is "infinity" */ | ||
101 | return next_cookie; | ||
102 | } | ||
103 | |||
104 | } | ||
105 | /* | ||
106 | * pick the first pending entry and run it | ||
107 | */ | ||
108 | static void run_one_entry(void) | ||
109 | { | ||
110 | unsigned long flags; | ||
111 | struct async_entry *entry; | ||
112 | ktime_t calltime, delta, rettime; | ||
113 | |||
114 | /* 1) pick one task from the pending queue */ | ||
115 | |||
116 | spin_lock_irqsave(&async_lock, flags); | ||
117 | if (list_empty(&async_pending)) | ||
118 | goto out; | ||
119 | entry = list_first_entry(&async_pending, struct async_entry, list); | ||
120 | |||
121 | /* 2) move it to the running queue */ | ||
122 | list_del(&entry->list); | ||
123 | list_add_tail(&entry->list, &async_running); | ||
124 | spin_unlock_irqrestore(&async_lock, flags); | ||
125 | |||
126 | /* 3) run it (and print duration)*/ | ||
127 | if (initcall_debug && system_state == SYSTEM_BOOTING) { | ||
128 | printk("calling %lli_%pF @ %i\n", entry->cookie, entry->func, task_pid_nr(current)); | ||
129 | calltime = ktime_get(); | ||
130 | } | ||
131 | entry->func(entry->data, entry->cookie); | ||
132 | if (initcall_debug && system_state == SYSTEM_BOOTING) { | ||
133 | rettime = ktime_get(); | ||
134 | delta = ktime_sub(rettime, calltime); | ||
135 | printk("initcall %lli_%pF returned 0 after %lld usecs\n", entry->cookie, | ||
136 | entry->func, ktime_to_ns(delta) >> 10); | ||
137 | } | ||
138 | |||
139 | /* 4) remove it from the running queue */ | ||
140 | spin_lock_irqsave(&async_lock, flags); | ||
141 | list_del(&entry->list); | ||
142 | |||
143 | /* 5) free the entry */ | ||
144 | kfree(entry); | ||
145 | atomic_dec(&entry_count); | ||
146 | |||
147 | spin_unlock_irqrestore(&async_lock, flags); | ||
148 | |||
149 | /* 6) wake up any waiters. */ | ||
150 | wake_up(&async_done); | ||
151 | return; | ||
152 | |||
153 | out: | ||
154 | spin_unlock_irqrestore(&async_lock, flags); | ||
155 | } | ||
156 | |||
157 | |||
158 | static async_cookie_t __async_schedule(async_func_ptr *ptr, void *data, struct list_head *running) | ||
159 | { | ||
160 | struct async_entry *entry; | ||
161 | unsigned long flags; | ||
162 | async_cookie_t newcookie; | ||
163 | |||
164 | |||
165 | /* allow irq-off callers */ | ||
166 | entry = kzalloc(sizeof(struct async_entry), GFP_ATOMIC); | ||
167 | |||
168 | /* | ||
169 | * If we're out of memory or if there's too much work | ||
170 | * pending already, we execute synchronously. | ||
171 | */ | ||
172 | if (!entry || atomic_read(&entry_count) > MAX_WORK) { | ||
173 | kfree(entry); | ||
174 | spin_lock_irqsave(&async_lock, flags); | ||
175 | newcookie = next_cookie++; | ||
176 | spin_unlock_irqrestore(&async_lock, flags); | ||
177 | |||
178 | /* low on memory.. run synchronously */ | ||
179 | ptr(data, newcookie); | ||
180 | return newcookie; | ||
181 | } | ||
182 | entry->func = ptr; | ||
183 | entry->data = data; | ||
184 | entry->running = running; | ||
185 | |||
186 | spin_lock_irqsave(&async_lock, flags); | ||
187 | newcookie = entry->cookie = next_cookie++; | ||
188 | list_add_tail(&entry->list, &async_pending); | ||
189 | atomic_inc(&entry_count); | ||
190 | spin_unlock_irqrestore(&async_lock, flags); | ||
191 | wake_up(&async_new); | ||
192 | return newcookie; | ||
193 | } | ||
194 | |||
195 | async_cookie_t async_schedule(async_func_ptr *ptr, void *data) | ||
196 | { | ||
197 | return __async_schedule(ptr, data, &async_pending); | ||
198 | } | ||
199 | EXPORT_SYMBOL_GPL(async_schedule); | ||
200 | |||
201 | async_cookie_t async_schedule_special(async_func_ptr *ptr, void *data, struct list_head *running) | ||
202 | { | ||
203 | return __async_schedule(ptr, data, running); | ||
204 | } | ||
205 | EXPORT_SYMBOL_GPL(async_schedule_special); | ||
206 | |||
207 | void async_synchronize_full(void) | ||
208 | { | ||
209 | async_synchronize_cookie(next_cookie); | ||
210 | } | ||
211 | EXPORT_SYMBOL_GPL(async_synchronize_full); | ||
212 | |||
213 | void async_synchronize_full_special(struct list_head *list) | ||
214 | { | ||
215 | async_synchronize_cookie_special(next_cookie, list); | ||
216 | } | ||
217 | EXPORT_SYMBOL_GPL(async_synchronize_full_special); | ||
218 | |||
219 | void async_synchronize_cookie_special(async_cookie_t cookie, struct list_head *running) | ||
220 | { | ||
221 | ktime_t starttime, delta, endtime; | ||
222 | |||
223 | if (initcall_debug && system_state == SYSTEM_BOOTING) { | ||
224 | printk("async_waiting @ %i\n", task_pid_nr(current)); | ||
225 | starttime = ktime_get(); | ||
226 | } | ||
227 | |||
228 | wait_event(async_done, __lowest_in_progress(running) >= cookie); | ||
229 | |||
230 | if (initcall_debug && system_state == SYSTEM_BOOTING) { | ||
231 | endtime = ktime_get(); | ||
232 | delta = ktime_sub(endtime, starttime); | ||
233 | |||
234 | printk("async_continuing @ %i after %lli usec\n", | ||
235 | task_pid_nr(current), ktime_to_ns(delta) >> 10); | ||
236 | } | ||
237 | } | ||
238 | EXPORT_SYMBOL_GPL(async_synchronize_cookie_special); | ||
239 | |||
240 | void async_synchronize_cookie(async_cookie_t cookie) | ||
241 | { | ||
242 | async_synchronize_cookie_special(cookie, &async_running); | ||
243 | } | ||
244 | EXPORT_SYMBOL_GPL(async_synchronize_cookie); | ||
245 | |||
246 | |||
247 | static int async_thread(void *unused) | ||
248 | { | ||
249 | DECLARE_WAITQUEUE(wq, current); | ||
250 | add_wait_queue(&async_new, &wq); | ||
251 | |||
252 | while (!kthread_should_stop()) { | ||
253 | int ret = HZ; | ||
254 | set_current_state(TASK_INTERRUPTIBLE); | ||
255 | /* | ||
256 | * check the list head without lock.. false positives | ||
257 | * are dealt with inside run_one_entry() while holding | ||
258 | * the lock. | ||
259 | */ | ||
260 | rmb(); | ||
261 | if (!list_empty(&async_pending)) | ||
262 | run_one_entry(); | ||
263 | else | ||
264 | ret = schedule_timeout(HZ); | ||
265 | |||
266 | if (ret == 0) { | ||
267 | /* | ||
268 | * we timed out, this means we as thread are redundant. | ||
269 | * we sign off and die, but we to avoid any races there | ||
270 | * is a last-straw check to see if work snuck in. | ||
271 | */ | ||
272 | atomic_dec(&thread_count); | ||
273 | wmb(); /* manager must see our departure first */ | ||
274 | if (list_empty(&async_pending)) | ||
275 | break; | ||
276 | /* | ||
277 | * woops work came in between us timing out and us | ||
278 | * signing off; we need to stay alive and keep working. | ||
279 | */ | ||
280 | atomic_inc(&thread_count); | ||
281 | } | ||
282 | } | ||
283 | remove_wait_queue(&async_new, &wq); | ||
284 | |||
285 | return 0; | ||
286 | } | ||
287 | |||
288 | static int async_manager_thread(void *unused) | ||
289 | { | ||
290 | DECLARE_WAITQUEUE(wq, current); | ||
291 | add_wait_queue(&async_new, &wq); | ||
292 | |||
293 | while (!kthread_should_stop()) { | ||
294 | int tc, ec; | ||
295 | |||
296 | set_current_state(TASK_INTERRUPTIBLE); | ||
297 | |||
298 | tc = atomic_read(&thread_count); | ||
299 | rmb(); | ||
300 | ec = atomic_read(&entry_count); | ||
301 | |||
302 | while (tc < ec && tc < MAX_THREADS) { | ||
303 | kthread_run(async_thread, NULL, "async/%i", tc); | ||
304 | atomic_inc(&thread_count); | ||
305 | tc++; | ||
306 | } | ||
307 | |||
308 | schedule(); | ||
309 | } | ||
310 | remove_wait_queue(&async_new, &wq); | ||
311 | |||
312 | return 0; | ||
313 | } | ||
314 | |||
315 | static int __init async_init(void) | ||
316 | { | ||
317 | kthread_run(async_manager_thread, NULL, "async/mgr"); | ||
318 | return 0; | ||
319 | } | ||
320 | |||
321 | core_initcall(async_init); | ||