aboutsummaryrefslogtreecommitdiffstats
path: root/include
diff options
context:
space:
mode:
Diffstat (limited to 'include')
-rw-r--r--include/linux/mtd/ubi.h202
-rw-r--r--include/mtd/Kbuild2
-rw-r--r--include/mtd/mtd-abi.h1
-rw-r--r--include/mtd/ubi-header.h360
-rw-r--r--include/mtd/ubi-user.h161
5 files changed, 726 insertions, 0 deletions
diff --git a/include/linux/mtd/ubi.h b/include/linux/mtd/ubi.h
new file mode 100644
index 000000000000..3d967b6b120a
--- /dev/null
+++ b/include/linux/mtd/ubi.h
@@ -0,0 +1,202 @@
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Artem Bityutskiy (Битюцкий Артём)
19 */
20
21#ifndef __LINUX_UBI_H__
22#define __LINUX_UBI_H__
23
24#include <asm/ioctl.h>
25#include <linux/types.h>
26#include <mtd/ubi-user.h>
27
28/*
29 * UBI data type hint constants.
30 *
31 * UBI_LONGTERM: long-term data
32 * UBI_SHORTTERM: short-term data
33 * UBI_UNKNOWN: data persistence is unknown
34 *
35 * These constants are used when data is written to UBI volumes in order to
36 * help the UBI wear-leveling unit to find more appropriate physical
37 * eraseblocks.
38 */
39enum {
40 UBI_LONGTERM = 1,
41 UBI_SHORTTERM,
42 UBI_UNKNOWN
43};
44
45/*
46 * enum ubi_open_mode - UBI volume open mode constants.
47 *
48 * UBI_READONLY: read-only mode
49 * UBI_READWRITE: read-write mode
50 * UBI_EXCLUSIVE: exclusive mode
51 */
52enum {
53 UBI_READONLY = 1,
54 UBI_READWRITE,
55 UBI_EXCLUSIVE
56};
57
58/**
59 * struct ubi_volume_info - UBI volume description data structure.
60 * @vol_id: volume ID
61 * @ubi_num: UBI device number this volume belongs to
62 * @size: how many physical eraseblocks are reserved for this volume
63 * @used_bytes: how many bytes of data this volume contains
64 * @used_ebs: how many physical eraseblocks of this volume actually contain any
65 * data
66 * @vol_type: volume type (%UBI_DYNAMIC_VOLUME or %UBI_STATIC_VOLUME)
67 * @corrupted: non-zero if the volume is corrupted (static volumes only)
68 * @upd_marker: non-zero if the volume has update marker set
69 * @alignment: volume alignment
70 * @usable_leb_size: how many bytes are available in logical eraseblocks of
71 * this volume
72 * @name_len: volume name length
73 * @name: volume name
74 * @cdev: UBI volume character device major and minor numbers
75 *
76 * The @corrupted flag is only relevant to static volumes and is always zero
77 * for dynamic ones. This is because UBI does not care about dynamic volume
78 * data protection and only cares about protecting static volume data.
79 *
80 * The @upd_marker flag is set if the volume update operation was interrupted.
81 * Before touching the volume data during the update operation, UBI first sets
82 * the update marker flag for this volume. If the volume update operation was
83 * further interrupted, the update marker indicates this. If the update marker
84 * is set, the contents of the volume is certainly damaged and a new volume
85 * update operation has to be started.
86 *
87 * To put it differently, @corrupted and @upd_marker fields have different
88 * semantics:
89 * o the @corrupted flag means that this static volume is corrupted for some
90 * reasons, but not because an interrupted volume update
91 * o the @upd_marker field means that the volume is damaged because of an
92 * interrupted update operation.
93 *
94 * I.e., the @corrupted flag is never set if the @upd_marker flag is set.
95 *
96 * The @used_bytes and @used_ebs fields are only really needed for static
97 * volumes and contain the number of bytes stored in this static volume and how
98 * many eraseblock this data occupies. In case of dynamic volumes, the
99 * @used_bytes field is equivalent to @size*@usable_leb_size, and the @used_ebs
100 * field is equivalent to @size.
101 *
102 * In general, logical eraseblock size is a property of the UBI device, not
103 * of the UBI volume. Indeed, the logical eraseblock size depends on the
104 * physical eraseblock size and on how much bytes UBI headers consume. But
105 * because of the volume alignment (@alignment), the usable size of logical
106 * eraseblocks if a volume may be less. The following equation is true:
107 * @usable_leb_size = LEB size - (LEB size mod @alignment),
108 * where LEB size is the logical eraseblock size defined by the UBI device.
109 *
110 * The alignment is multiple to the minimal flash input/output unit size or %1
111 * if all the available space is used.
112 *
113 * To put this differently, alignment may be considered is a way to change
114 * volume logical eraseblock sizes.
115 */
116struct ubi_volume_info {
117 int ubi_num;
118 int vol_id;
119 int size;
120 long long used_bytes;
121 int used_ebs;
122 int vol_type;
123 int corrupted;
124 int upd_marker;
125 int alignment;
126 int usable_leb_size;
127 int name_len;
128 const char *name;
129 dev_t cdev;
130};
131
132/**
133 * struct ubi_device_info - UBI device description data structure.
134 * @ubi_num: ubi device number
135 * @leb_size: logical eraseblock size on this UBI device
136 * @min_io_size: minimal I/O unit size
137 * @ro_mode: if this device is in read-only mode
138 * @cdev: UBI character device major and minor numbers
139 *
140 * Note, @leb_size is the logical eraseblock size offered by the UBI device.
141 * Volumes of this UBI device may have smaller logical eraseblock size if their
142 * alignment is not equivalent to %1.
143 */
144struct ubi_device_info {
145 int ubi_num;
146 int leb_size;
147 int min_io_size;
148 int ro_mode;
149 dev_t cdev;
150};
151
152/* UBI descriptor given to users when they open UBI volumes */
153struct ubi_volume_desc;
154
155int ubi_get_device_info(int ubi_num, struct ubi_device_info *di);
156void ubi_get_volume_info(struct ubi_volume_desc *desc,
157 struct ubi_volume_info *vi);
158struct ubi_volume_desc *ubi_open_volume(int ubi_num, int vol_id, int mode);
159struct ubi_volume_desc *ubi_open_volume_nm(int ubi_num, const char *name,
160 int mode);
161void ubi_close_volume(struct ubi_volume_desc *desc);
162int ubi_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
163 int len, int check);
164int ubi_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
165 int offset, int len, int dtype);
166int ubi_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
167 int len, int dtype);
168int ubi_leb_erase(struct ubi_volume_desc *desc, int lnum);
169int ubi_leb_unmap(struct ubi_volume_desc *desc, int lnum);
170int ubi_is_mapped(struct ubi_volume_desc *desc, int lnum);
171
172/*
173 * This function is the same as the 'ubi_leb_read()' function, but it does not
174 * provide the checking capability.
175 */
176static inline int ubi_read(struct ubi_volume_desc *desc, int lnum, char *buf,
177 int offset, int len)
178{
179 return ubi_leb_read(desc, lnum, buf, offset, len, 0);
180}
181
182/*
183 * This function is the same as the 'ubi_leb_write()' functions, but it does
184 * not have the data type argument.
185 */
186static inline int ubi_write(struct ubi_volume_desc *desc, int lnum,
187 const void *buf, int offset, int len)
188{
189 return ubi_leb_write(desc, lnum, buf, offset, len, UBI_UNKNOWN);
190}
191
192/*
193 * This function is the same as the 'ubi_leb_change()' functions, but it does
194 * not have the data type argument.
195 */
196static inline int ubi_change(struct ubi_volume_desc *desc, int lnum,
197 const void *buf, int len)
198{
199 return ubi_leb_change(desc, lnum, buf, len, UBI_UNKNOWN);
200}
201
202#endif /* !__LINUX_UBI_H__ */
diff --git a/include/mtd/Kbuild b/include/mtd/Kbuild
index e0fe92b03a4e..4d46b3bdebd8 100644
--- a/include/mtd/Kbuild
+++ b/include/mtd/Kbuild
@@ -3,3 +3,5 @@ header-y += jffs2-user.h
3header-y += mtd-abi.h 3header-y += mtd-abi.h
4header-y += mtd-user.h 4header-y += mtd-user.h
5header-y += nftl-user.h 5header-y += nftl-user.h
6header-y += ubi-header.h
7header-y += ubi-user.h
diff --git a/include/mtd/mtd-abi.h b/include/mtd/mtd-abi.h
index 8e501a75a764..f71dac420394 100644
--- a/include/mtd/mtd-abi.h
+++ b/include/mtd/mtd-abi.h
@@ -24,6 +24,7 @@ struct mtd_oob_buf {
24#define MTD_NORFLASH 3 24#define MTD_NORFLASH 3
25#define MTD_NANDFLASH 4 25#define MTD_NANDFLASH 4
26#define MTD_DATAFLASH 6 26#define MTD_DATAFLASH 6
27#define MTD_UBIVOLUME 7
27 28
28#define MTD_WRITEABLE 0x400 /* Device is writeable */ 29#define MTD_WRITEABLE 0x400 /* Device is writeable */
29#define MTD_BIT_WRITEABLE 0x800 /* Single bits can be flipped */ 30#define MTD_BIT_WRITEABLE 0x800 /* Single bits can be flipped */
diff --git a/include/mtd/ubi-header.h b/include/mtd/ubi-header.h
new file mode 100644
index 000000000000..fa479c71aa34
--- /dev/null
+++ b/include/mtd/ubi-header.h
@@ -0,0 +1,360 @@
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Authors: Artem Bityutskiy (Битюцкий Артём)
19 * Thomas Gleixner
20 * Frank Haverkamp
21 * Oliver Lohmann
22 * Andreas Arnez
23 */
24
25/*
26 * This file defines the layout of UBI headers and all the other UBI on-flash
27 * data structures. May be included by user-space.
28 */
29
30#ifndef __UBI_HEADER_H__
31#define __UBI_HEADER_H__
32
33#include <asm/byteorder.h>
34
35/* The version of UBI images supported by this implementation */
36#define UBI_VERSION 1
37
38/* The highest erase counter value supported by this implementation */
39#define UBI_MAX_ERASECOUNTER 0x7FFFFFFF
40
41/* The initial CRC32 value used when calculating CRC checksums */
42#define UBI_CRC32_INIT 0xFFFFFFFFU
43
44/* Erase counter header magic number (ASCII "UBI#") */
45#define UBI_EC_HDR_MAGIC 0x55424923
46/* Volume identifier header magic number (ASCII "UBI!") */
47#define UBI_VID_HDR_MAGIC 0x55424921
48
49/*
50 * Volume type constants used in the volume identifier header.
51 *
52 * @UBI_VID_DYNAMIC: dynamic volume
53 * @UBI_VID_STATIC: static volume
54 */
55enum {
56 UBI_VID_DYNAMIC = 1,
57 UBI_VID_STATIC = 2
58};
59
60/*
61 * Compatibility constants used by internal volumes.
62 *
63 * @UBI_COMPAT_DELETE: delete this internal volume before anything is written
64 * to the flash
65 * @UBI_COMPAT_RO: attach this device in read-only mode
66 * @UBI_COMPAT_PRESERVE: preserve this internal volume - do not touch its
67 * physical eraseblocks, don't allow the wear-leveling unit to move them
68 * @UBI_COMPAT_REJECT: reject this UBI image
69 */
70enum {
71 UBI_COMPAT_DELETE = 1,
72 UBI_COMPAT_RO = 2,
73 UBI_COMPAT_PRESERVE = 4,
74 UBI_COMPAT_REJECT = 5
75};
76
77/*
78 * ubi16_t/ubi32_t/ubi64_t - 16, 32, and 64-bit integers used in UBI on-flash
79 * data structures.
80 */
81typedef struct {
82 uint16_t int16;
83} __attribute__ ((packed)) ubi16_t;
84
85typedef struct {
86 uint32_t int32;
87} __attribute__ ((packed)) ubi32_t;
88
89typedef struct {
90 uint64_t int64;
91} __attribute__ ((packed)) ubi64_t;
92
93/*
94 * In this implementation of UBI uses the big-endian format for on-flash
95 * integers. The below are the corresponding conversion macros.
96 */
97#define cpu_to_ubi16(x) ((ubi16_t){__cpu_to_be16(x)})
98#define ubi16_to_cpu(x) ((uint16_t)__be16_to_cpu((x).int16))
99
100#define cpu_to_ubi32(x) ((ubi32_t){__cpu_to_be32(x)})
101#define ubi32_to_cpu(x) ((uint32_t)__be32_to_cpu((x).int32))
102
103#define cpu_to_ubi64(x) ((ubi64_t){__cpu_to_be64(x)})
104#define ubi64_to_cpu(x) ((uint64_t)__be64_to_cpu((x).int64))
105
106/* Sizes of UBI headers */
107#define UBI_EC_HDR_SIZE sizeof(struct ubi_ec_hdr)
108#define UBI_VID_HDR_SIZE sizeof(struct ubi_vid_hdr)
109
110/* Sizes of UBI headers without the ending CRC */
111#define UBI_EC_HDR_SIZE_CRC (UBI_EC_HDR_SIZE - sizeof(ubi32_t))
112#define UBI_VID_HDR_SIZE_CRC (UBI_VID_HDR_SIZE - sizeof(ubi32_t))
113
114/**
115 * struct ubi_ec_hdr - UBI erase counter header.
116 * @magic: erase counter header magic number (%UBI_EC_HDR_MAGIC)
117 * @version: version of UBI implementation which is supposed to accept this
118 * UBI image
119 * @padding1: reserved for future, zeroes
120 * @ec: the erase counter
121 * @vid_hdr_offset: where the VID header starts
122 * @data_offset: where the user data start
123 * @padding2: reserved for future, zeroes
124 * @hdr_crc: erase counter header CRC checksum
125 *
126 * The erase counter header takes 64 bytes and has a plenty of unused space for
127 * future usage. The unused fields are zeroed. The @version field is used to
128 * indicate the version of UBI implementation which is supposed to be able to
129 * work with this UBI image. If @version is greater then the current UBI
130 * version, the image is rejected. This may be useful in future if something
131 * is changed radically. This field is duplicated in the volume identifier
132 * header.
133 *
134 * The @vid_hdr_offset and @data_offset fields contain the offset of the the
135 * volume identifier header and user data, relative to the beginning of the
136 * physical eraseblock. These values have to be the same for all physical
137 * eraseblocks.
138 */
139struct ubi_ec_hdr {
140 ubi32_t magic;
141 uint8_t version;
142 uint8_t padding1[3];
143 ubi64_t ec; /* Warning: the current limit is 31-bit anyway! */
144 ubi32_t vid_hdr_offset;
145 ubi32_t data_offset;
146 uint8_t padding2[36];
147 ubi32_t hdr_crc;
148} __attribute__ ((packed));
149
150/**
151 * struct ubi_vid_hdr - on-flash UBI volume identifier header.
152 * @magic: volume identifier header magic number (%UBI_VID_HDR_MAGIC)
153 * @version: UBI implementation version which is supposed to accept this UBI
154 * image (%UBI_VERSION)
155 * @vol_type: volume type (%UBI_VID_DYNAMIC or %UBI_VID_STATIC)
156 * @copy_flag: if this logical eraseblock was copied from another physical
157 * eraseblock (for wear-leveling reasons)
158 * @compat: compatibility of this volume (%0, %UBI_COMPAT_DELETE,
159 * %UBI_COMPAT_IGNORE, %UBI_COMPAT_PRESERVE, or %UBI_COMPAT_REJECT)
160 * @vol_id: ID of this volume
161 * @lnum: logical eraseblock number
162 * @leb_ver: version of this logical eraseblock (IMPORTANT: obsolete, to be
163 * removed, kept only for not breaking older UBI users)
164 * @data_size: how many bytes of data this logical eraseblock contains
165 * @used_ebs: total number of used logical eraseblocks in this volume
166 * @data_pad: how many bytes at the end of this physical eraseblock are not
167 * used
168 * @data_crc: CRC checksum of the data stored in this logical eraseblock
169 * @padding1: reserved for future, zeroes
170 * @sqnum: sequence number
171 * @padding2: reserved for future, zeroes
172 * @hdr_crc: volume identifier header CRC checksum
173 *
174 * The @sqnum is the value of the global sequence counter at the time when this
175 * VID header was created. The global sequence counter is incremented each time
176 * UBI writes a new VID header to the flash, i.e. when it maps a logical
177 * eraseblock to a new physical eraseblock. The global sequence counter is an
178 * unsigned 64-bit integer and we assume it never overflows. The @sqnum
179 * (sequence number) is used to distinguish between older and newer versions of
180 * logical eraseblocks.
181 *
182 * There are 2 situations when there may be more then one physical eraseblock
183 * corresponding to the same logical eraseblock, i.e., having the same @vol_id
184 * and @lnum values in the volume identifier header. Suppose we have a logical
185 * eraseblock L and it is mapped to the physical eraseblock P.
186 *
187 * 1. Because UBI may erase physical eraseblocks asynchronously, the following
188 * situation is possible: L is asynchronously erased, so P is scheduled for
189 * erasure, then L is written to,i.e. mapped to another physical eraseblock P1,
190 * so P1 is written to, then an unclean reboot happens. Result - there are 2
191 * physical eraseblocks P and P1 corresponding to the same logical eraseblock
192 * L. But P1 has greater sequence number, so UBI picks P1 when it attaches the
193 * flash.
194 *
195 * 2. From time to time UBI moves logical eraseblocks to other physical
196 * eraseblocks for wear-leveling reasons. If, for example, UBI moves L from P
197 * to P1, and an unclean reboot happens before P is physically erased, there
198 * are two physical eraseblocks P and P1 corresponding to L and UBI has to
199 * select one of them when the flash is attached. The @sqnum field says which
200 * PEB is the original (obviously P will have lower @sqnum) and the copy. But
201 * it is not enough to select the physical eraseblock with the higher sequence
202 * number, because the unclean reboot could have happen in the middle of the
203 * copying process, so the data in P is corrupted. It is also not enough to
204 * just select the physical eraseblock with lower sequence number, because the
205 * data there may be old (consider a case if more data was added to P1 after
206 * the copying). Moreover, the unclean reboot may happen when the erasure of P
207 * was just started, so it result in unstable P, which is "mostly" OK, but
208 * still has unstable bits.
209 *
210 * UBI uses the @copy_flag field to indicate that this logical eraseblock is a
211 * copy. UBI also calculates data CRC when the data is moved and stores it at
212 * the @data_crc field of the copy (P1). So when UBI needs to pick one physical
213 * eraseblock of two (P or P1), the @copy_flag of the newer one (P1) is
214 * examined. If it is cleared, the situation* is simple and the newer one is
215 * picked. If it is set, the data CRC of the copy (P1) is examined. If the CRC
216 * checksum is correct, this physical eraseblock is selected (P1). Otherwise
217 * the older one (P) is selected.
218 *
219 * Note, there is an obsolete @leb_ver field which was used instead of @sqnum
220 * in the past. But it is not used anymore and we keep it in order to be able
221 * to deal with old UBI images. It will be removed at some point.
222 *
223 * There are 2 sorts of volumes in UBI: user volumes and internal volumes.
224 * Internal volumes are not seen from outside and are used for various internal
225 * UBI purposes. In this implementation there is only one internal volume - the
226 * layout volume. Internal volumes are the main mechanism of UBI extensions.
227 * For example, in future one may introduce a journal internal volume. Internal
228 * volumes have their own reserved range of IDs.
229 *
230 * The @compat field is only used for internal volumes and contains the "degree
231 * of their compatibility". It is always zero for user volumes. This field
232 * provides a mechanism to introduce UBI extensions and to be still compatible
233 * with older UBI binaries. For example, if someone introduced a journal in
234 * future, he would probably use %UBI_COMPAT_DELETE compatibility for the
235 * journal volume. And in this case, older UBI binaries, which know nothing
236 * about the journal volume, would just delete this volume and work perfectly
237 * fine. This is similar to what Ext2fs does when it is fed by an Ext3fs image
238 * - it just ignores the Ext3fs journal.
239 *
240 * The @data_crc field contains the CRC checksum of the contents of the logical
241 * eraseblock if this is a static volume. In case of dynamic volumes, it does
242 * not contain the CRC checksum as a rule. The only exception is when the
243 * data of the physical eraseblock was moved by the wear-leveling unit, then
244 * the wear-leveling unit calculates the data CRC and stores it in the
245 * @data_crc field. And of course, the @copy_flag is %in this case.
246 *
247 * The @data_size field is used only for static volumes because UBI has to know
248 * how many bytes of data are stored in this eraseblock. For dynamic volumes,
249 * this field usually contains zero. The only exception is when the data of the
250 * physical eraseblock was moved to another physical eraseblock for
251 * wear-leveling reasons. In this case, UBI calculates CRC checksum of the
252 * contents and uses both @data_crc and @data_size fields. In this case, the
253 * @data_size field contains data size.
254 *
255 * The @used_ebs field is used only for static volumes and indicates how many
256 * eraseblocks the data of the volume takes. For dynamic volumes this field is
257 * not used and always contains zero.
258 *
259 * The @data_pad is calculated when volumes are created using the alignment
260 * parameter. So, effectively, the @data_pad field reduces the size of logical
261 * eraseblocks of this volume. This is very handy when one uses block-oriented
262 * software (say, cramfs) on top of the UBI volume.
263 */
264struct ubi_vid_hdr {
265 ubi32_t magic;
266 uint8_t version;
267 uint8_t vol_type;
268 uint8_t copy_flag;
269 uint8_t compat;
270 ubi32_t vol_id;
271 ubi32_t lnum;
272 ubi32_t leb_ver; /* obsolete, to be removed, don't use */
273 ubi32_t data_size;
274 ubi32_t used_ebs;
275 ubi32_t data_pad;
276 ubi32_t data_crc;
277 uint8_t padding1[4];
278 ubi64_t sqnum;
279 uint8_t padding2[12];
280 ubi32_t hdr_crc;
281} __attribute__ ((packed));
282
283/* Internal UBI volumes count */
284#define UBI_INT_VOL_COUNT 1
285
286/*
287 * Starting ID of internal volumes. There is reserved room for 4096 internal
288 * volumes.
289 */
290#define UBI_INTERNAL_VOL_START (0x7FFFFFFF - 4096)
291
292/* The layout volume contains the volume table */
293
294#define UBI_LAYOUT_VOL_ID UBI_INTERNAL_VOL_START
295#define UBI_LAYOUT_VOLUME_EBS 2
296#define UBI_LAYOUT_VOLUME_NAME "layout volume"
297#define UBI_LAYOUT_VOLUME_COMPAT UBI_COMPAT_REJECT
298
299/* The maximum number of volumes per one UBI device */
300#define UBI_MAX_VOLUMES 128
301
302/* The maximum volume name length */
303#define UBI_VOL_NAME_MAX 127
304
305/* Size of the volume table record */
306#define UBI_VTBL_RECORD_SIZE sizeof(struct ubi_vtbl_record)
307
308/* Size of the volume table record without the ending CRC */
309#define UBI_VTBL_RECORD_SIZE_CRC (UBI_VTBL_RECORD_SIZE - sizeof(ubi32_t))
310
311/**
312 * struct ubi_vtbl_record - a record in the volume table.
313 * @reserved_pebs: how many physical eraseblocks are reserved for this volume
314 * @alignment: volume alignment
315 * @data_pad: how many bytes are unused at the end of the each physical
316 * eraseblock to satisfy the requested alignment
317 * @vol_type: volume type (%UBI_DYNAMIC_VOLUME or %UBI_STATIC_VOLUME)
318 * @upd_marker: if volume update was started but not finished
319 * @name_len: volume name length
320 * @name: the volume name
321 * @padding2: reserved, zeroes
322 * @crc: a CRC32 checksum of the record
323 *
324 * The volume table records are stored in the volume table, which is stored in
325 * the layout volume. The layout volume consists of 2 logical eraseblock, each
326 * of which contains a copy of the volume table (i.e., the volume table is
327 * duplicated). The volume table is an array of &struct ubi_vtbl_record
328 * objects indexed by the volume ID.
329 *
330 * If the size of the logical eraseblock is large enough to fit
331 * %UBI_MAX_VOLUMES records, the volume table contains %UBI_MAX_VOLUMES
332 * records. Otherwise, it contains as many records as it can fit (i.e., size of
333 * logical eraseblock divided by sizeof(struct ubi_vtbl_record)).
334 *
335 * The @upd_marker flag is used to implement volume update. It is set to %1
336 * before update and set to %0 after the update. So if the update operation was
337 * interrupted, UBI knows that the volume is corrupted.
338 *
339 * The @alignment field is specified when the volume is created and cannot be
340 * later changed. It may be useful, for example, when a block-oriented file
341 * system works on top of UBI. The @data_pad field is calculated using the
342 * logical eraseblock size and @alignment. The alignment must be multiple to the
343 * minimal flash I/O unit. If @alignment is 1, all the available space of
344 * the physical eraseblocks is used.
345 *
346 * Empty records contain all zeroes and the CRC checksum of those zeroes.
347 */
348struct ubi_vtbl_record {
349 ubi32_t reserved_pebs;
350 ubi32_t alignment;
351 ubi32_t data_pad;
352 uint8_t vol_type;
353 uint8_t upd_marker;
354 ubi16_t name_len;
355 uint8_t name[UBI_VOL_NAME_MAX+1];
356 uint8_t padding2[24];
357 ubi32_t crc;
358} __attribute__ ((packed));
359
360#endif /* !__UBI_HEADER_H__ */
diff --git a/include/mtd/ubi-user.h b/include/mtd/ubi-user.h
new file mode 100644
index 000000000000..fe06ded0e6b8
--- /dev/null
+++ b/include/mtd/ubi-user.h
@@ -0,0 +1,161 @@
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Artem Bityutskiy (Битюцкий Артём)
19 */
20
21#ifndef __UBI_USER_H__
22#define __UBI_USER_H__
23
24/*
25 * UBI volume creation
26 * ~~~~~~~~~~~~~~~~~~~
27 *
28 * UBI volumes are created via the %UBI_IOCMKVOL IOCTL command of UBI character
29 * device. A &struct ubi_mkvol_req object has to be properly filled and a
30 * pointer to it has to be passed to the IOCTL.
31 *
32 * UBI volume deletion
33 * ~~~~~~~~~~~~~~~~~~~
34 *
35 * To delete a volume, the %UBI_IOCRMVOL IOCTL command of the UBI character
36 * device should be used. A pointer to the 32-bit volume ID hast to be passed
37 * to the IOCTL.
38 *
39 * UBI volume re-size
40 * ~~~~~~~~~~~~~~~~~~
41 *
42 * To re-size a volume, the %UBI_IOCRSVOL IOCTL command of the UBI character
43 * device should be used. A &struct ubi_rsvol_req object has to be properly
44 * filled and a pointer to it has to be passed to the IOCTL.
45 *
46 * UBI volume update
47 * ~~~~~~~~~~~~~~~~~
48 *
49 * Volume update should be done via the %UBI_IOCVOLUP IOCTL command of the
50 * corresponding UBI volume character device. A pointer to a 64-bit update
51 * size should be passed to the IOCTL. After then, UBI expects user to write
52 * this number of bytes to the volume character device. The update is finished
53 * when the claimed number of bytes is passed. So, the volume update sequence
54 * is something like:
55 *
56 * fd = open("/dev/my_volume");
57 * ioctl(fd, UBI_IOCVOLUP, &image_size);
58 * write(fd, buf, image_size);
59 * close(fd);
60 */
61
62/*
63 * When a new volume is created, users may either specify the volume number they
64 * want to create or to let UBI automatically assign a volume number using this
65 * constant.
66 */
67#define UBI_VOL_NUM_AUTO (-1)
68
69/* Maximum volume name length */
70#define UBI_MAX_VOLUME_NAME 127
71
72/* IOCTL commands of UBI character devices */
73
74#define UBI_IOC_MAGIC 'o'
75
76/* Create an UBI volume */
77#define UBI_IOCMKVOL _IOW(UBI_IOC_MAGIC, 0, struct ubi_mkvol_req)
78/* Remove an UBI volume */
79#define UBI_IOCRMVOL _IOW(UBI_IOC_MAGIC, 1, int32_t)
80/* Re-size an UBI volume */
81#define UBI_IOCRSVOL _IOW(UBI_IOC_MAGIC, 2, struct ubi_rsvol_req)
82
83/* IOCTL commands of UBI volume character devices */
84
85#define UBI_VOL_IOC_MAGIC 'O'
86
87/* Start UBI volume update */
88#define UBI_IOCVOLUP _IOW(UBI_VOL_IOC_MAGIC, 0, int64_t)
89/* An eraseblock erasure command, used for debugging, disabled by default */
90#define UBI_IOCEBER _IOW(UBI_VOL_IOC_MAGIC, 1, int32_t)
91
92/*
93 * UBI volume type constants.
94 *
95 * @UBI_DYNAMIC_VOLUME: dynamic volume
96 * @UBI_STATIC_VOLUME: static volume
97 */
98enum {
99 UBI_DYNAMIC_VOLUME = 3,
100 UBI_STATIC_VOLUME = 4
101};
102
103/**
104 * struct ubi_mkvol_req - volume description data structure used in
105 * volume creation requests.
106 * @vol_id: volume number
107 * @alignment: volume alignment
108 * @bytes: volume size in bytes
109 * @vol_type: volume type (%UBI_DYNAMIC_VOLUME or %UBI_STATIC_VOLUME)
110 * @padding1: reserved for future, not used
111 * @name_len: volume name length
112 * @padding2: reserved for future, not used
113 * @name: volume name
114 *
115 * This structure is used by userspace programs when creating new volumes. The
116 * @used_bytes field is only necessary when creating static volumes.
117 *
118 * The @alignment field specifies the required alignment of the volume logical
119 * eraseblock. This means, that the size of logical eraseblocks will be aligned
120 * to this number, i.e.,
121 * (UBI device logical eraseblock size) mod (@alignment) = 0.
122 *
123 * To put it differently, the logical eraseblock of this volume may be slightly
124 * shortened in order to make it properly aligned. The alignment has to be
125 * multiple of the flash minimal input/output unit, or %1 to utilize the entire
126 * available space of logical eraseblocks.
127 *
128 * The @alignment field may be useful, for example, when one wants to maintain
129 * a block device on top of an UBI volume. In this case, it is desirable to fit
130 * an integer number of blocks in logical eraseblocks of this UBI volume. With
131 * alignment it is possible to update this volume using plane UBI volume image
132 * BLOBs, without caring about how to properly align them.
133 */
134struct ubi_mkvol_req {
135 int32_t vol_id;
136 int32_t alignment;
137 int64_t bytes;
138 int8_t vol_type;
139 int8_t padding1;
140 int16_t name_len;
141 int8_t padding2[4];
142 char name[UBI_MAX_VOLUME_NAME+1];
143} __attribute__ ((packed));
144
145/**
146 * struct ubi_rsvol_req - a data structure used in volume re-size requests.
147 * @vol_id: ID of the volume to re-size
148 * @bytes: new size of the volume in bytes
149 *
150 * Re-sizing is possible for both dynamic and static volumes. But while dynamic
151 * volumes may be re-sized arbitrarily, static volumes cannot be made to be
152 * smaller then the number of bytes they bear. To arbitrarily shrink a static
153 * volume, it must be wiped out first (by means of volume update operation with
154 * zero number of bytes).
155 */
156struct ubi_rsvol_req {
157 int64_t bytes;
158 int32_t vol_id;
159} __attribute__ ((packed));
160
161#endif /* __UBI_USER_H__ */