aboutsummaryrefslogtreecommitdiffstats
path: root/include/net
diff options
context:
space:
mode:
Diffstat (limited to 'include/net')
-rw-r--r--include/net/cipso_ipv4.h6
-rw-r--r--include/net/ndisc.h4
-rw-r--r--include/net/netlabel.h86
-rw-r--r--include/net/protocol.h3
-rw-r--r--include/net/wimax.h523
5 files changed, 612 insertions, 10 deletions
diff --git a/include/net/cipso_ipv4.h b/include/net/cipso_ipv4.h
index 9909774eb998..bedc7f62e35d 100644
--- a/include/net/cipso_ipv4.h
+++ b/include/net/cipso_ipv4.h
@@ -131,7 +131,8 @@ extern int cipso_v4_rbm_strictvalid;
131 */ 131 */
132 132
133#ifdef CONFIG_NETLABEL 133#ifdef CONFIG_NETLABEL
134int cipso_v4_doi_add(struct cipso_v4_doi *doi_def); 134int cipso_v4_doi_add(struct cipso_v4_doi *doi_def,
135 struct netlbl_audit *audit_info);
135void cipso_v4_doi_free(struct cipso_v4_doi *doi_def); 136void cipso_v4_doi_free(struct cipso_v4_doi *doi_def);
136int cipso_v4_doi_remove(u32 doi, struct netlbl_audit *audit_info); 137int cipso_v4_doi_remove(u32 doi, struct netlbl_audit *audit_info);
137struct cipso_v4_doi *cipso_v4_doi_getdef(u32 doi); 138struct cipso_v4_doi *cipso_v4_doi_getdef(u32 doi);
@@ -140,7 +141,8 @@ int cipso_v4_doi_walk(u32 *skip_cnt,
140 int (*callback) (struct cipso_v4_doi *doi_def, void *arg), 141 int (*callback) (struct cipso_v4_doi *doi_def, void *arg),
141 void *cb_arg); 142 void *cb_arg);
142#else 143#else
143static inline int cipso_v4_doi_add(struct cipso_v4_doi *doi_def) 144static inline int cipso_v4_doi_add(struct cipso_v4_doi *doi_def,
145 struct netlbl_audit *audit_info)
144{ 146{
145 return -ENOSYS; 147 return -ENOSYS;
146} 148}
diff --git a/include/net/ndisc.h b/include/net/ndisc.h
index ce532f2222ce..1459ed3e2697 100644
--- a/include/net/ndisc.h
+++ b/include/net/ndisc.h
@@ -155,9 +155,9 @@ static inline struct neighbour * ndisc_get_neigh(struct net_device *dev, const s
155{ 155{
156 156
157 if (dev) 157 if (dev)
158 return __neigh_lookup(&nd_tbl, addr, dev, 1); 158 return __neigh_lookup_errno(&nd_tbl, addr, dev);
159 159
160 return NULL; 160 return ERR_PTR(-ENODEV);
161} 161}
162 162
163 163
diff --git a/include/net/netlabel.h b/include/net/netlabel.h
index 17c442a4514e..749011eedc0b 100644
--- a/include/net/netlabel.h
+++ b/include/net/netlabel.h
@@ -33,6 +33,8 @@
33#include <linux/types.h> 33#include <linux/types.h>
34#include <linux/net.h> 34#include <linux/net.h>
35#include <linux/skbuff.h> 35#include <linux/skbuff.h>
36#include <linux/in.h>
37#include <linux/in6.h>
36#include <net/netlink.h> 38#include <net/netlink.h>
37#include <asm/atomic.h> 39#include <asm/atomic.h>
38 40
@@ -353,13 +355,37 @@ static inline void netlbl_secattr_free(struct netlbl_lsm_secattr *secattr)
353/* 355/*
354 * LSM configuration operations 356 * LSM configuration operations
355 */ 357 */
356int netlbl_cfg_map_del(const char *domain, struct netlbl_audit *audit_info); 358int netlbl_cfg_map_del(const char *domain,
357int netlbl_cfg_unlbl_add_map(const char *domain, 359 u16 family,
360 const void *addr,
361 const void *mask,
362 struct netlbl_audit *audit_info);
363int netlbl_cfg_unlbl_map_add(const char *domain,
364 u16 family,
365 const void *addr,
366 const void *mask,
358 struct netlbl_audit *audit_info); 367 struct netlbl_audit *audit_info);
359int netlbl_cfg_cipsov4_add_map(struct cipso_v4_doi *doi_def, 368int netlbl_cfg_unlbl_static_add(struct net *net,
369 const char *dev_name,
370 const void *addr,
371 const void *mask,
372 u16 family,
373 u32 secid,
374 struct netlbl_audit *audit_info);
375int netlbl_cfg_unlbl_static_del(struct net *net,
376 const char *dev_name,
377 const void *addr,
378 const void *mask,
379 u16 family,
380 struct netlbl_audit *audit_info);
381int netlbl_cfg_cipsov4_add(struct cipso_v4_doi *doi_def,
382 struct netlbl_audit *audit_info);
383void netlbl_cfg_cipsov4_del(u32 doi, struct netlbl_audit *audit_info);
384int netlbl_cfg_cipsov4_map_add(u32 doi,
360 const char *domain, 385 const char *domain,
386 const struct in_addr *addr,
387 const struct in_addr *mask,
361 struct netlbl_audit *audit_info); 388 struct netlbl_audit *audit_info);
362
363/* 389/*
364 * LSM security attribute operations 390 * LSM security attribute operations
365 */ 391 */
@@ -401,19 +427,62 @@ void netlbl_skbuff_err(struct sk_buff *skb, int error, int gateway);
401void netlbl_cache_invalidate(void); 427void netlbl_cache_invalidate(void);
402int netlbl_cache_add(const struct sk_buff *skb, 428int netlbl_cache_add(const struct sk_buff *skb,
403 const struct netlbl_lsm_secattr *secattr); 429 const struct netlbl_lsm_secattr *secattr);
430
431/*
432 * Protocol engine operations
433 */
434struct audit_buffer *netlbl_audit_start(int type,
435 struct netlbl_audit *audit_info);
404#else 436#else
405static inline int netlbl_cfg_map_del(const char *domain, 437static inline int netlbl_cfg_map_del(const char *domain,
438 u16 family,
439 const void *addr,
440 const void *mask,
406 struct netlbl_audit *audit_info) 441 struct netlbl_audit *audit_info)
407{ 442{
408 return -ENOSYS; 443 return -ENOSYS;
409} 444}
410static inline int netlbl_cfg_unlbl_add_map(const char *domain, 445static inline int netlbl_cfg_unlbl_map_add(const char *domain,
446 u16 family,
447 void *addr,
448 void *mask,
411 struct netlbl_audit *audit_info) 449 struct netlbl_audit *audit_info)
412{ 450{
413 return -ENOSYS; 451 return -ENOSYS;
414} 452}
415static inline int netlbl_cfg_cipsov4_add_map(struct cipso_v4_doi *doi_def, 453static inline int netlbl_cfg_unlbl_static_add(struct net *net,
454 const char *dev_name,
455 const void *addr,
456 const void *mask,
457 u16 family,
458 u32 secid,
459 struct netlbl_audit *audit_info)
460{
461 return -ENOSYS;
462}
463static inline int netlbl_cfg_unlbl_static_del(struct net *net,
464 const char *dev_name,
465 const void *addr,
466 const void *mask,
467 u16 family,
468 struct netlbl_audit *audit_info)
469{
470 return -ENOSYS;
471}
472static inline int netlbl_cfg_cipsov4_add(struct cipso_v4_doi *doi_def,
473 struct netlbl_audit *audit_info)
474{
475 return -ENOSYS;
476}
477static inline void netlbl_cfg_cipsov4_del(u32 doi,
478 struct netlbl_audit *audit_info)
479{
480 return;
481}
482static inline int netlbl_cfg_cipsov4_map_add(u32 doi,
416 const char *domain, 483 const char *domain,
484 const struct in_addr *addr,
485 const struct in_addr *mask,
417 struct netlbl_audit *audit_info) 486 struct netlbl_audit *audit_info)
418{ 487{
419 return -ENOSYS; 488 return -ENOSYS;
@@ -495,6 +564,11 @@ static inline int netlbl_cache_add(const struct sk_buff *skb,
495{ 564{
496 return 0; 565 return 0;
497} 566}
567static inline struct audit_buffer *netlbl_audit_start(int type,
568 struct netlbl_audit *audit_info)
569{
570 return NULL;
571}
498#endif /* CONFIG_NETLABEL */ 572#endif /* CONFIG_NETLABEL */
499 573
500#endif /* _NETLABEL_H */ 574#endif /* _NETLABEL_H */
diff --git a/include/net/protocol.h b/include/net/protocol.h
index cb2965aa1b62..ffa5b8b1f1df 100644
--- a/include/net/protocol.h
+++ b/include/net/protocol.h
@@ -59,6 +59,9 @@ struct inet6_protocol
59 int (*gso_send_check)(struct sk_buff *skb); 59 int (*gso_send_check)(struct sk_buff *skb);
60 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 60 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
61 int features); 61 int features);
62 struct sk_buff **(*gro_receive)(struct sk_buff **head,
63 struct sk_buff *skb);
64 int (*gro_complete)(struct sk_buff *skb);
62 65
63 unsigned int flags; /* INET6_PROTO_xxx */ 66 unsigned int flags; /* INET6_PROTO_xxx */
64}; 67};
diff --git a/include/net/wimax.h b/include/net/wimax.h
new file mode 100644
index 000000000000..073809ce94f8
--- /dev/null
+++ b/include/net/wimax.h
@@ -0,0 +1,523 @@
1/*
2 * Linux WiMAX
3 * Kernel space API for accessing WiMAX devices
4 *
5 *
6 * Copyright (C) 2007-2008 Intel Corporation <linux-wimax@intel.com>
7 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License version
11 * 2 as published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 * 02110-1301, USA.
22 *
23 *
24 * The WiMAX stack provides an API for controlling and managing the
25 * system's WiMAX devices. This API affects the control plane; the
26 * data plane is accessed via the network stack (netdev).
27 *
28 * Parts of the WiMAX stack API and notifications are exported to
29 * user space via Generic Netlink. In user space, libwimax (part of
30 * the wimax-tools package) provides a shim layer for accessing those
31 * calls.
32 *
33 * The API is standarized for all WiMAX devices and different drivers
34 * implement the backend support for it. However, device-specific
35 * messaging pipes are provided that can be used to issue commands and
36 * receive notifications in free form.
37 *
38 * Currently the messaging pipes are the only means of control as it
39 * is not known (due to the lack of more devices in the market) what
40 * will be a good abstraction layer. Expect this to change as more
41 * devices show in the market. This API is designed to be growable in
42 * order to address this problem.
43 *
44 * USAGE
45 *
46 * Embed a `struct wimax_dev` at the beginning of the the device's
47 * private structure, initialize and register it. For details, see
48 * `struct wimax_dev`s documentation.
49 *
50 * Once this is done, wimax-tools's libwimaxll can be used to
51 * communicate with the driver from user space. You user space
52 * application does not have to forcibily use libwimaxll and can talk
53 * the generic netlink protocol directly if desired.
54 *
55 * Remember this is a very low level API that will to provide all of
56 * WiMAX features. Other daemons and services running in user space
57 * are the expected clients of it. They offer a higher level API that
58 * applications should use (an example of this is the Intel's WiMAX
59 * Network Service for the i2400m).
60 *
61 * DESIGN
62 *
63 * Although not set on final stone, this very basic interface is
64 * mostly completed. Remember this is meant to grow as new common
65 * operations are decided upon. New operations will be added to the
66 * interface, intent being on keeping backwards compatibility as much
67 * as possible.
68 *
69 * This layer implements a set of calls to control a WiMAX device,
70 * exposing a frontend to the rest of the kernel and user space (via
71 * generic netlink) and a backend implementation in the driver through
72 * function pointers.
73 *
74 * WiMAX devices have a state, and a kernel-only API allows the
75 * drivers to manipulate that state. State transitions are atomic, and
76 * only some of them are allowed (see `enum wimax_st`).
77 *
78 * Most API calls will set the state automatically; in most cases
79 * drivers have to only report state changes due to external
80 * conditions.
81 *
82 * All API operations are 'atomic', serialized thorough a mutex in the
83 * `struct wimax_dev`.
84 *
85 * EXPORTING TO USER SPACE THROUGH GENERIC NETLINK
86 *
87 * The API is exported to user space using generic netlink (other
88 * methods can be added as needed).
89 *
90 * There is a Generic Netlink Family named "WiMAX", where interfaces
91 * supporting the WiMAX interface receive commands and broadcast their
92 * signals over a multicast group named "msg".
93 *
94 * Mapping to the source/destination interface is done by an interface
95 * index attribute.
96 *
97 * For user-to-kernel traffic (commands) we use a function call
98 * marshalling mechanism, where a message X with attributes A, B, C
99 * sent from user space to kernel space means executing the WiMAX API
100 * call wimax_X(A, B, C), sending the results back as a message.
101 *
102 * Kernel-to-user (notifications or signals) communication is sent
103 * over multicast groups. This allows to have multiple applications
104 * monitoring them.
105 *
106 * Each command/signal gets assigned it's own attribute policy. This
107 * way the validator will verify that all the attributes in there are
108 * only the ones that should be for each command/signal. Thing of an
109 * attribute mapping to a type+argumentname for each command/signal.
110 *
111 * If we had a single policy for *all* commands/signals, after running
112 * the validator we'd have to check "does this attribute belong in
113 * here"? for each one. It can be done manually, but it's just easier
114 * to have the validator do that job with multiple policies. As well,
115 * it makes it easier to later expand each command/signal signature
116 * without affecting others and keeping the namespace more or less
117 * sane. Not that it is too complicated, but it makes it even easier.
118 *
119 * No state information is maintained in the kernel for each user
120 * space connection (the connection is stateless).
121 *
122 * TESTING FOR THE INTERFACE AND VERSIONING
123 *
124 * If network interface X is a WiMAX device, there will be a Generic
125 * Netlink family named "WiMAX X" and the device will present a
126 * "wimax" directory in it's network sysfs directory
127 * (/sys/class/net/DEVICE/wimax) [used by HAL].
128 *
129 * The inexistence of any of these means the device does not support
130 * this WiMAX API.
131 *
132 * By querying the generic netlink controller, versioning information
133 * and the multicast groups available can be found. Applications using
134 * the interface can either rely on that or use the generic netlink
135 * controller to figure out which generic netlink commands/signals are
136 * supported.
137 *
138 * NOTE: this versioning is a last resort to avoid hard
139 * incompatibilities. It is the intention of the design of this
140 * stack not to introduce backward incompatible changes.
141 *
142 * The version code has to fit in one byte (restrictions imposed by
143 * generic netlink); we use `version / 10` for the major version and
144 * `version % 10` for the minor. This gives 9 minors for each major
145 * and 25 majors.
146 *
147 * The version change protocol is as follow:
148 *
149 * - Major versions: needs to be increased if an existing message/API
150 * call is changed or removed. Doesn't need to be changed if a new
151 * message is added.
152 *
153 * - Minor version: needs to be increased if new messages/API calls are
154 * being added or some other consideration that doesn't impact the
155 * user-kernel interface too much (like some kind of bug fix) and
156 * that is kind of left up in the air to common sense.
157 *
158 * User space code should not try to work if the major version it was
159 * compiled for differs from what the kernel offers. As well, if the
160 * minor version of the kernel interface is lower than the one user
161 * space is expecting (the one it was compiled for), the kernel
162 * might be missing API calls; user space shall be ready to handle
163 * said condition. Use the generic netlink controller operations to
164 * find which ones are supported and which not.
165 *
166 * libwimaxll:wimaxll_open() takes care of checking versions.
167 *
168 * THE OPERATIONS:
169 *
170 * Each operation is defined in its on file (drivers/net/wimax/op-*.c)
171 * for clarity. The parts needed for an operation are:
172 *
173 * - a function pointer in `struct wimax_dev`: optional, as the
174 * operation might be implemented by the stack and not by the
175 * driver.
176 *
177 * All function pointers are named wimax_dev->op_*(), and drivers
178 * must implement them except where noted otherwise.
179 *
180 * - When exported to user space, a `struct nla_policy` to define the
181 * attributes of the generic netlink command and a `struct genl_ops`
182 * to define the operation.
183 *
184 * All the declarations for the operation codes (WIMAX_GNL_OP_<NAME>)
185 * and generic netlink attributes (WIMAX_GNL_<NAME>_*) are declared in
186 * include/linux/wimax.h; this file is intended to be cloned by user
187 * space to gain access to those declarations.
188 *
189 * A few caveats to remember:
190 *
191 * - Need to define attribute numbers starting in 1; otherwise it
192 * fails.
193 *
194 * - the `struct genl_family` requires a maximum attribute id; when
195 * defining the `struct nla_policy` for each message, it has to have
196 * an array size of WIMAX_GNL_ATTR_MAX+1.
197 *
198 * THE PIPE INTERFACE:
199 *
200 * This interface is kept intentionally simple. The driver can send
201 * and receive free-form messages to/from user space through a
202 * pipe. See drivers/net/wimax/op-msg.c for details.
203 *
204 * The kernel-to-user messages are sent with
205 * wimax_msg(). user-to-kernel messages are delivered via
206 * wimax_dev->op_msg_from_user().
207 *
208 * RFKILL:
209 *
210 * RFKILL support is built into the wimax_dev layer; the driver just
211 * needs to call wimax_report_rfkill_{hw,sw}() to inform of changes in
212 * the hardware or software RF kill switches. When the stack wants to
213 * turn the radio off, it will call wimax_dev->op_rfkill_sw_toggle(),
214 * which the driver implements.
215 *
216 * User space can set the software RF Kill switch by calling
217 * wimax_rfkill().
218 *
219 * The code for now only supports devices that don't require polling;
220 * If the device needs to be polled, create a self-rearming delayed
221 * work struct for polling or look into adding polled support to the
222 * WiMAX stack.
223 *
224 * When initializing the hardware (_probe), after calling
225 * wimax_dev_add(), query the device for it's RF Kill switches status
226 * and feed it back to the WiMAX stack using
227 * wimax_report_rfkill_{hw,sw}(). If any switch is missing, always
228 * report it as ON.
229 *
230 * NOTE: the wimax stack uses an inverted terminology to that of the
231 * RFKILL subsystem:
232 *
233 * - ON: radio is ON, RFKILL is DISABLED or OFF.
234 * - OFF: radio is OFF, RFKILL is ENABLED or ON.
235 *
236 * MISCELLANEOUS OPS:
237 *
238 * wimax_reset() can be used to reset the device to power on state; by
239 * default it issues a warm reset that maintains the same device
240 * node. If that is not possible, it falls back to a cold reset
241 * (device reconnect). The driver implements the backend to this
242 * through wimax_dev->op_reset().
243 */
244
245#ifndef __NET__WIMAX_H__
246#define __NET__WIMAX_H__
247#ifdef __KERNEL__
248
249#include <linux/wimax.h>
250#include <net/genetlink.h>
251#include <linux/netdevice.h>
252
253struct net_device;
254struct genl_info;
255struct wimax_dev;
256struct input_dev;
257
258/**
259 * struct wimax_dev - Generic WiMAX device
260 *
261 * @net_dev: [fill] Pointer to the &struct net_device this WiMAX
262 * device implements.
263 *
264 * @op_msg_from_user: [fill] Driver-specific operation to
265 * handle a raw message from user space to the driver. The
266 * driver can send messages to user space using with
267 * wimax_msg_to_user().
268 *
269 * @op_rfkill_sw_toggle: [fill] Driver-specific operation to act on
270 * userspace (or any other agent) requesting the WiMAX device to
271 * change the RF Kill software switch (WIMAX_RF_ON or
272 * WIMAX_RF_OFF).
273 * If such hardware support is not present, it is assumed the
274 * radio cannot be switched off and it is always on (and the stack
275 * will error out when trying to switch it off). In such case,
276 * this function pointer can be left as NULL.
277 *
278 * @op_reset: [fill] Driver specific operation to reset the
279 * device.
280 * This operation should always attempt first a warm reset that
281 * does not disconnect the device from the bus and return 0.
282 * If that fails, it should resort to some sort of cold or bus
283 * reset (even if it implies a bus disconnection and device
284 * dissapearance). In that case, -ENODEV should be returned to
285 * indicate the device is gone.
286 * This operation has to be synchronous, and return only when the
287 * reset is complete. In case of having had to resort to bus/cold
288 * reset implying a device disconnection, the call is allowed to
289 * return inmediately.
290 * NOTE: wimax_dev->mutex is NOT locked when this op is being
291 * called; however, wimax_dev->mutex_reset IS locked to ensure
292 * serialization of calls to wimax_reset().
293 * See wimax_reset()'s documentation.
294 *
295 * @name: [fill] A way to identify this device. We need to register a
296 * name with many subsystems (input for RFKILL, workqueue
297 * creation, etc). We can't use the network device name as that
298 * might change and in some instances we don't know it yet (until
299 * we don't call register_netdev()). So we generate an unique one
300 * using the driver name and device bus id, place it here and use
301 * it across the board. Recommended naming:
302 * DRIVERNAME-BUSNAME:BUSID (dev->bus->name, dev->bus_id).
303 *
304 * @id_table_node: [private] link to the list of wimax devices kept by
305 * id-table.c. Protected by it's own spinlock.
306 *
307 * @mutex: [private] Serializes all concurrent access and execution of
308 * operations.
309 *
310 * @mutex_reset: [private] Serializes reset operations. Needs to be a
311 * different mutex because as part of the reset operation, the
312 * driver has to call back into the stack to do things such as
313 * state change, that require wimax_dev->mutex.
314 *
315 * @state: [private] Current state of the WiMAX device.
316 *
317 * @rfkill: [private] integration into the RF-Kill infrastructure.
318 *
319 * @rfkill_input: [private] virtual input device to process the
320 * hardware RF Kill switches.
321 *
322 * @rf_sw: [private] State of the software radio switch (OFF/ON)
323 *
324 * @rf_hw: [private] State of the hardware radio switch (OFF/ON)
325 *
326 * @debufs_dentry: [private] Used to hook up a debugfs entry. This
327 * shows up in the debugfs root as wimax:DEVICENAME.
328 *
329 * Description:
330 * This structure defines a common interface to access all WiMAX
331 * devices from different vendors and provides a common API as well as
332 * a free-form device-specific messaging channel.
333 *
334 * Usage:
335 * 1. Embed a &struct wimax_dev at *the beginning* the network
336 * device structure so that netdev_priv() points to it.
337 *
338 * 2. memset() it to zero
339 *
340 * 3. Initialize with wimax_dev_init(). This will leave the WiMAX
341 * device in the %__WIMAX_ST_NULL state.
342 *
343 * 4. Fill all the fields marked with [fill]; once called
344 * wimax_dev_add(), those fields CANNOT be modified.
345 *
346 * 5. Call wimax_dev_add() *after* registering the network
347 * device. This will leave the WiMAX device in the %WIMAX_ST_DOWN
348 * state.
349 * Protect the driver's net_device->open() against succeeding if
350 * the wimax device state is lower than %WIMAX_ST_DOWN.
351 *
352 * 6. Select when the device is going to be turned on/initialized;
353 * for example, it could be initialized on 'ifconfig up' (when the
354 * netdev op 'open()' is called on the driver).
355 *
356 * When the device is initialized (at `ifconfig up` time, or right
357 * after calling wimax_dev_add() from _probe(), make sure the
358 * following steps are taken
359 *
360 * a. Move the device to %WIMAX_ST_UNINITIALIZED. This is needed so
361 * some API calls that shouldn't work until the device is ready
362 * can be blocked.
363 *
364 * b. Initialize the device. Make sure to turn the SW radio switch
365 * off and move the device to state %WIMAX_ST_RADIO_OFF when
366 * done. When just initialized, a device should be left in RADIO
367 * OFF state until user space devices to turn it on.
368 *
369 * c. Query the device for the state of the hardware rfkill switch
370 * and call wimax_rfkill_report_hw() and wimax_rfkill_report_sw()
371 * as needed. See below.
372 *
373 * wimax_dev_rm() undoes before unregistering the network device. Once
374 * wimax_dev_add() is called, the driver can get called on the
375 * wimax_dev->op_* function pointers
376 *
377 * CONCURRENCY:
378 *
379 * The stack provides a mutex for each device that will disallow API
380 * calls happening concurrently; thus, op calls into the driver
381 * through the wimax_dev->op*() function pointers will always be
382 * serialized and *never* concurrent.
383 *
384 * For locking, take wimax_dev->mutex is taken; (most) operations in
385 * the API have to check for wimax_dev_is_ready() to return 0 before
386 * continuing (this is done internally).
387 *
388 * REFERENCE COUNTING:
389 *
390 * The WiMAX device is reference counted by the associated network
391 * device. The only operation that can be used to reference the device
392 * is wimax_dev_get_by_genl_info(), and the reference it acquires has
393 * to be released with dev_put(wimax_dev->net_dev).
394 *
395 * RFKILL:
396 *
397 * At startup, both HW and SW radio switchess are assumed to be off.
398 *
399 * At initialization time [after calling wimax_dev_add()], have the
400 * driver query the device for the status of the software and hardware
401 * RF kill switches and call wimax_report_rfkill_hw() and
402 * wimax_rfkill_report_sw() to indicate their state. If any is
403 * missing, just call it to indicate it is ON (radio always on).
404 *
405 * Whenever the driver detects a change in the state of the RF kill
406 * switches, it should call wimax_report_rfkill_hw() or
407 * wimax_report_rfkill_sw() to report it to the stack.
408 */
409struct wimax_dev {
410 struct net_device *net_dev;
411 struct list_head id_table_node;
412 struct mutex mutex; /* Protects all members and API calls */
413 struct mutex mutex_reset;
414 enum wimax_st state;
415
416 int (*op_msg_from_user)(struct wimax_dev *wimax_dev,
417 const char *,
418 const void *, size_t,
419 const struct genl_info *info);
420 int (*op_rfkill_sw_toggle)(struct wimax_dev *wimax_dev,
421 enum wimax_rf_state);
422 int (*op_reset)(struct wimax_dev *wimax_dev);
423
424 struct rfkill *rfkill;
425 struct input_dev *rfkill_input;
426 unsigned rf_hw;
427 unsigned rf_sw;
428 char name[32];
429
430 struct dentry *debugfs_dentry;
431};
432
433
434
435/*
436 * WiMAX stack public API for device drivers
437 * -----------------------------------------
438 *
439 * These functions are not exported to user space.
440 */
441extern void wimax_dev_init(struct wimax_dev *);
442extern int wimax_dev_add(struct wimax_dev *, struct net_device *);
443extern void wimax_dev_rm(struct wimax_dev *);
444
445static inline
446struct wimax_dev *net_dev_to_wimax(struct net_device *net_dev)
447{
448 return netdev_priv(net_dev);
449}
450
451static inline
452struct device *wimax_dev_to_dev(struct wimax_dev *wimax_dev)
453{
454 return wimax_dev->net_dev->dev.parent;
455}
456
457extern void wimax_state_change(struct wimax_dev *, enum wimax_st);
458extern enum wimax_st wimax_state_get(struct wimax_dev *);
459
460/*
461 * Radio Switch state reporting.
462 *
463 * enum wimax_rf_state is declared in linux/wimax.h so the exports
464 * to user space can use it.
465 */
466extern void wimax_report_rfkill_hw(struct wimax_dev *, enum wimax_rf_state);
467extern void wimax_report_rfkill_sw(struct wimax_dev *, enum wimax_rf_state);
468
469
470/*
471 * Free-form messaging to/from user space
472 *
473 * Sending a message:
474 *
475 * wimax_msg(wimax_dev, pipe_name, buf, buf_size, GFP_KERNEL);
476 *
477 * Broken up:
478 *
479 * skb = wimax_msg_alloc(wimax_dev, pipe_name, buf_size, GFP_KERNEL);
480 * ...fill up skb...
481 * wimax_msg_send(wimax_dev, pipe_name, skb);
482 *
483 * Be sure not to modify skb->data in the middle (ie: don't use
484 * skb_push()/skb_pull()/skb_reserve() on the skb).
485 *
486 * "pipe_name" is any string, than can be interpreted as the name of
487 * the pipe or destinatary; the interpretation of it is driver
488 * specific, so the recipient can multiplex it as wished. It can be
489 * NULL, it won't be used - an example is using a "diagnostics" tag to
490 * send diagnostics information that a device-specific diagnostics
491 * tool would be interested in.
492 */
493extern struct sk_buff *wimax_msg_alloc(struct wimax_dev *, const char *,
494 const void *, size_t, gfp_t);
495extern int wimax_msg_send(struct wimax_dev *, struct sk_buff *);
496extern int wimax_msg(struct wimax_dev *, const char *,
497 const void *, size_t, gfp_t);
498
499extern const void *wimax_msg_data_len(struct sk_buff *, size_t *);
500extern const void *wimax_msg_data(struct sk_buff *);
501extern ssize_t wimax_msg_len(struct sk_buff *);
502
503
504/*
505 * WiMAX stack user space API
506 * --------------------------
507 *
508 * This API is what gets exported to user space for general
509 * operations. As well, they can be called from within the kernel,
510 * (with a properly referenced `struct wimax_dev`).
511 *
512 * Properly referenced means: the 'struct net_device' that embeds the
513 * device's control structure and (as such) the 'struct wimax_dev' is
514 * referenced by the caller.
515 */
516extern int wimax_rfkill(struct wimax_dev *, enum wimax_rf_state);
517extern int wimax_reset(struct wimax_dev *);
518
519#else
520/* You might be looking for linux/wimax.h */
521#error This file should not be included from user space.
522#endif /* #ifdef __KERNEL__ */
523#endif /* #ifndef __NET__WIMAX_H__ */