diff options
Diffstat (limited to 'include/math-emu/op-1.h')
-rw-r--r-- | include/math-emu/op-1.h | 303 |
1 files changed, 303 insertions, 0 deletions
diff --git a/include/math-emu/op-1.h b/include/math-emu/op-1.h new file mode 100644 index 000000000000..3be3bb422cbe --- /dev/null +++ b/include/math-emu/op-1.h | |||
@@ -0,0 +1,303 @@ | |||
1 | /* Software floating-point emulation. | ||
2 | Basic one-word fraction declaration and manipulation. | ||
3 | Copyright (C) 1997,1998,1999 Free Software Foundation, Inc. | ||
4 | This file is part of the GNU C Library. | ||
5 | Contributed by Richard Henderson (rth@cygnus.com), | ||
6 | Jakub Jelinek (jj@ultra.linux.cz), | ||
7 | David S. Miller (davem@redhat.com) and | ||
8 | Peter Maydell (pmaydell@chiark.greenend.org.uk). | ||
9 | |||
10 | The GNU C Library is free software; you can redistribute it and/or | ||
11 | modify it under the terms of the GNU Library General Public License as | ||
12 | published by the Free Software Foundation; either version 2 of the | ||
13 | License, or (at your option) any later version. | ||
14 | |||
15 | The GNU C Library is distributed in the hope that it will be useful, | ||
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
18 | Library General Public License for more details. | ||
19 | |||
20 | You should have received a copy of the GNU Library General Public | ||
21 | License along with the GNU C Library; see the file COPYING.LIB. If | ||
22 | not, write to the Free Software Foundation, Inc., | ||
23 | 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | ||
24 | |||
25 | #ifndef __MATH_EMU_OP_1_H__ | ||
26 | #define __MATH_EMU_OP_1_H__ | ||
27 | |||
28 | #define _FP_FRAC_DECL_1(X) _FP_W_TYPE X##_f=0 | ||
29 | #define _FP_FRAC_COPY_1(D,S) (D##_f = S##_f) | ||
30 | #define _FP_FRAC_SET_1(X,I) (X##_f = I) | ||
31 | #define _FP_FRAC_HIGH_1(X) (X##_f) | ||
32 | #define _FP_FRAC_LOW_1(X) (X##_f) | ||
33 | #define _FP_FRAC_WORD_1(X,w) (X##_f) | ||
34 | |||
35 | #define _FP_FRAC_ADDI_1(X,I) (X##_f += I) | ||
36 | #define _FP_FRAC_SLL_1(X,N) \ | ||
37 | do { \ | ||
38 | if (__builtin_constant_p(N) && (N) == 1) \ | ||
39 | X##_f += X##_f; \ | ||
40 | else \ | ||
41 | X##_f <<= (N); \ | ||
42 | } while (0) | ||
43 | #define _FP_FRAC_SRL_1(X,N) (X##_f >>= N) | ||
44 | |||
45 | /* Right shift with sticky-lsb. */ | ||
46 | #define _FP_FRAC_SRS_1(X,N,sz) __FP_FRAC_SRS_1(X##_f, N, sz) | ||
47 | |||
48 | #define __FP_FRAC_SRS_1(X,N,sz) \ | ||
49 | (X = (X >> (N) | (__builtin_constant_p(N) && (N) == 1 \ | ||
50 | ? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0))) | ||
51 | |||
52 | #define _FP_FRAC_ADD_1(R,X,Y) (R##_f = X##_f + Y##_f) | ||
53 | #define _FP_FRAC_SUB_1(R,X,Y) (R##_f = X##_f - Y##_f) | ||
54 | #define _FP_FRAC_DEC_1(X,Y) (X##_f -= Y##_f) | ||
55 | #define _FP_FRAC_CLZ_1(z, X) __FP_CLZ(z, X##_f) | ||
56 | |||
57 | /* Predicates */ | ||
58 | #define _FP_FRAC_NEGP_1(X) ((_FP_WS_TYPE)X##_f < 0) | ||
59 | #define _FP_FRAC_ZEROP_1(X) (X##_f == 0) | ||
60 | #define _FP_FRAC_OVERP_1(fs,X) (X##_f & _FP_OVERFLOW_##fs) | ||
61 | #define _FP_FRAC_CLEAR_OVERP_1(fs,X) (X##_f &= ~_FP_OVERFLOW_##fs) | ||
62 | #define _FP_FRAC_EQ_1(X, Y) (X##_f == Y##_f) | ||
63 | #define _FP_FRAC_GE_1(X, Y) (X##_f >= Y##_f) | ||
64 | #define _FP_FRAC_GT_1(X, Y) (X##_f > Y##_f) | ||
65 | |||
66 | #define _FP_ZEROFRAC_1 0 | ||
67 | #define _FP_MINFRAC_1 1 | ||
68 | #define _FP_MAXFRAC_1 (~(_FP_WS_TYPE)0) | ||
69 | |||
70 | /* | ||
71 | * Unpack the raw bits of a native fp value. Do not classify or | ||
72 | * normalize the data. | ||
73 | */ | ||
74 | |||
75 | #define _FP_UNPACK_RAW_1(fs, X, val) \ | ||
76 | do { \ | ||
77 | union _FP_UNION_##fs _flo; _flo.flt = (val); \ | ||
78 | \ | ||
79 | X##_f = _flo.bits.frac; \ | ||
80 | X##_e = _flo.bits.exp; \ | ||
81 | X##_s = _flo.bits.sign; \ | ||
82 | } while (0) | ||
83 | |||
84 | #define _FP_UNPACK_RAW_1_P(fs, X, val) \ | ||
85 | do { \ | ||
86 | union _FP_UNION_##fs *_flo = \ | ||
87 | (union _FP_UNION_##fs *)(val); \ | ||
88 | \ | ||
89 | X##_f = _flo->bits.frac; \ | ||
90 | X##_e = _flo->bits.exp; \ | ||
91 | X##_s = _flo->bits.sign; \ | ||
92 | } while (0) | ||
93 | |||
94 | /* | ||
95 | * Repack the raw bits of a native fp value. | ||
96 | */ | ||
97 | |||
98 | #define _FP_PACK_RAW_1(fs, val, X) \ | ||
99 | do { \ | ||
100 | union _FP_UNION_##fs _flo; \ | ||
101 | \ | ||
102 | _flo.bits.frac = X##_f; \ | ||
103 | _flo.bits.exp = X##_e; \ | ||
104 | _flo.bits.sign = X##_s; \ | ||
105 | \ | ||
106 | (val) = _flo.flt; \ | ||
107 | } while (0) | ||
108 | |||
109 | #define _FP_PACK_RAW_1_P(fs, val, X) \ | ||
110 | do { \ | ||
111 | union _FP_UNION_##fs *_flo = \ | ||
112 | (union _FP_UNION_##fs *)(val); \ | ||
113 | \ | ||
114 | _flo->bits.frac = X##_f; \ | ||
115 | _flo->bits.exp = X##_e; \ | ||
116 | _flo->bits.sign = X##_s; \ | ||
117 | } while (0) | ||
118 | |||
119 | |||
120 | /* | ||
121 | * Multiplication algorithms: | ||
122 | */ | ||
123 | |||
124 | /* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the | ||
125 | multiplication immediately. */ | ||
126 | |||
127 | #define _FP_MUL_MEAT_1_imm(wfracbits, R, X, Y) \ | ||
128 | do { \ | ||
129 | R##_f = X##_f * Y##_f; \ | ||
130 | /* Normalize since we know where the msb of the multiplicands \ | ||
131 | were (bit B), we know that the msb of the of the product is \ | ||
132 | at either 2B or 2B-1. */ \ | ||
133 | _FP_FRAC_SRS_1(R, wfracbits-1, 2*wfracbits); \ | ||
134 | } while (0) | ||
135 | |||
136 | /* Given a 1W * 1W => 2W primitive, do the extended multiplication. */ | ||
137 | |||
138 | #define _FP_MUL_MEAT_1_wide(wfracbits, R, X, Y, doit) \ | ||
139 | do { \ | ||
140 | _FP_W_TYPE _Z_f0, _Z_f1; \ | ||
141 | doit(_Z_f1, _Z_f0, X##_f, Y##_f); \ | ||
142 | /* Normalize since we know where the msb of the multiplicands \ | ||
143 | were (bit B), we know that the msb of the of the product is \ | ||
144 | at either 2B or 2B-1. */ \ | ||
145 | _FP_FRAC_SRS_2(_Z, wfracbits-1, 2*wfracbits); \ | ||
146 | R##_f = _Z_f0; \ | ||
147 | } while (0) | ||
148 | |||
149 | /* Finally, a simple widening multiply algorithm. What fun! */ | ||
150 | |||
151 | #define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y) \ | ||
152 | do { \ | ||
153 | _FP_W_TYPE _xh, _xl, _yh, _yl, _z_f0, _z_f1, _a_f0, _a_f1; \ | ||
154 | \ | ||
155 | /* split the words in half */ \ | ||
156 | _xh = X##_f >> (_FP_W_TYPE_SIZE/2); \ | ||
157 | _xl = X##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1); \ | ||
158 | _yh = Y##_f >> (_FP_W_TYPE_SIZE/2); \ | ||
159 | _yl = Y##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1); \ | ||
160 | \ | ||
161 | /* multiply the pieces */ \ | ||
162 | _z_f0 = _xl * _yl; \ | ||
163 | _a_f0 = _xh * _yl; \ | ||
164 | _a_f1 = _xl * _yh; \ | ||
165 | _z_f1 = _xh * _yh; \ | ||
166 | \ | ||
167 | /* reassemble into two full words */ \ | ||
168 | if ((_a_f0 += _a_f1) < _a_f1) \ | ||
169 | _z_f1 += (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2); \ | ||
170 | _a_f1 = _a_f0 >> (_FP_W_TYPE_SIZE/2); \ | ||
171 | _a_f0 = _a_f0 << (_FP_W_TYPE_SIZE/2); \ | ||
172 | _FP_FRAC_ADD_2(_z, _z, _a); \ | ||
173 | \ | ||
174 | /* normalize */ \ | ||
175 | _FP_FRAC_SRS_2(_z, wfracbits - 1, 2*wfracbits); \ | ||
176 | R##_f = _z_f0; \ | ||
177 | } while (0) | ||
178 | |||
179 | |||
180 | /* | ||
181 | * Division algorithms: | ||
182 | */ | ||
183 | |||
184 | /* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the | ||
185 | division immediately. Give this macro either _FP_DIV_HELP_imm for | ||
186 | C primitives or _FP_DIV_HELP_ldiv for the ISO function. Which you | ||
187 | choose will depend on what the compiler does with divrem4. */ | ||
188 | |||
189 | #define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit) \ | ||
190 | do { \ | ||
191 | _FP_W_TYPE _q, _r; \ | ||
192 | X##_f <<= (X##_f < Y##_f \ | ||
193 | ? R##_e--, _FP_WFRACBITS_##fs \ | ||
194 | : _FP_WFRACBITS_##fs - 1); \ | ||
195 | doit(_q, _r, X##_f, Y##_f); \ | ||
196 | R##_f = _q | (_r != 0); \ | ||
197 | } while (0) | ||
198 | |||
199 | /* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd | ||
200 | that may be useful in this situation. This first is for a primitive | ||
201 | that requires normalization, the second for one that does not. Look | ||
202 | for UDIV_NEEDS_NORMALIZATION to tell which your machine needs. */ | ||
203 | |||
204 | #define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y) \ | ||
205 | do { \ | ||
206 | _FP_W_TYPE _nh, _nl, _q, _r, _y; \ | ||
207 | \ | ||
208 | /* Normalize Y -- i.e. make the most significant bit set. */ \ | ||
209 | _y = Y##_f << _FP_WFRACXBITS_##fs; \ | ||
210 | \ | ||
211 | /* Shift X op correspondingly high, that is, up one full word. */ \ | ||
212 | if (X##_f < Y##_f) \ | ||
213 | { \ | ||
214 | R##_e--; \ | ||
215 | _nl = 0; \ | ||
216 | _nh = X##_f; \ | ||
217 | } \ | ||
218 | else \ | ||
219 | { \ | ||
220 | _nl = X##_f << (_FP_W_TYPE_SIZE - 1); \ | ||
221 | _nh = X##_f >> 1; \ | ||
222 | } \ | ||
223 | \ | ||
224 | udiv_qrnnd(_q, _r, _nh, _nl, _y); \ | ||
225 | R##_f = _q | (_r != 0); \ | ||
226 | } while (0) | ||
227 | |||
228 | #define _FP_DIV_MEAT_1_udiv(fs, R, X, Y) \ | ||
229 | do { \ | ||
230 | _FP_W_TYPE _nh, _nl, _q, _r; \ | ||
231 | if (X##_f < Y##_f) \ | ||
232 | { \ | ||
233 | R##_e--; \ | ||
234 | _nl = X##_f << _FP_WFRACBITS_##fs; \ | ||
235 | _nh = X##_f >> _FP_WFRACXBITS_##fs; \ | ||
236 | } \ | ||
237 | else \ | ||
238 | { \ | ||
239 | _nl = X##_f << (_FP_WFRACBITS_##fs - 1); \ | ||
240 | _nh = X##_f >> (_FP_WFRACXBITS_##fs + 1); \ | ||
241 | } \ | ||
242 | udiv_qrnnd(_q, _r, _nh, _nl, Y##_f); \ | ||
243 | R##_f = _q | (_r != 0); \ | ||
244 | } while (0) | ||
245 | |||
246 | |||
247 | /* | ||
248 | * Square root algorithms: | ||
249 | * We have just one right now, maybe Newton approximation | ||
250 | * should be added for those machines where division is fast. | ||
251 | */ | ||
252 | |||
253 | #define _FP_SQRT_MEAT_1(R, S, T, X, q) \ | ||
254 | do { \ | ||
255 | while (q != _FP_WORK_ROUND) \ | ||
256 | { \ | ||
257 | T##_f = S##_f + q; \ | ||
258 | if (T##_f <= X##_f) \ | ||
259 | { \ | ||
260 | S##_f = T##_f + q; \ | ||
261 | X##_f -= T##_f; \ | ||
262 | R##_f += q; \ | ||
263 | } \ | ||
264 | _FP_FRAC_SLL_1(X, 1); \ | ||
265 | q >>= 1; \ | ||
266 | } \ | ||
267 | if (X##_f) \ | ||
268 | { \ | ||
269 | if (S##_f < X##_f) \ | ||
270 | R##_f |= _FP_WORK_ROUND; \ | ||
271 | R##_f |= _FP_WORK_STICKY; \ | ||
272 | } \ | ||
273 | } while (0) | ||
274 | |||
275 | /* | ||
276 | * Assembly/disassembly for converting to/from integral types. | ||
277 | * No shifting or overflow handled here. | ||
278 | */ | ||
279 | |||
280 | #define _FP_FRAC_ASSEMBLE_1(r, X, rsize) (r = X##_f) | ||
281 | #define _FP_FRAC_DISASSEMBLE_1(X, r, rsize) (X##_f = r) | ||
282 | |||
283 | |||
284 | /* | ||
285 | * Convert FP values between word sizes | ||
286 | */ | ||
287 | |||
288 | #define _FP_FRAC_CONV_1_1(dfs, sfs, D, S) \ | ||
289 | do { \ | ||
290 | D##_f = S##_f; \ | ||
291 | if (_FP_WFRACBITS_##sfs > _FP_WFRACBITS_##dfs) \ | ||
292 | { \ | ||
293 | if (S##_c != FP_CLS_NAN) \ | ||
294 | _FP_FRAC_SRS_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs), \ | ||
295 | _FP_WFRACBITS_##sfs); \ | ||
296 | else \ | ||
297 | _FP_FRAC_SRL_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs)); \ | ||
298 | } \ | ||
299 | else \ | ||
300 | D##_f <<= _FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs; \ | ||
301 | } while (0) | ||
302 | |||
303 | #endif /* __MATH_EMU_OP_1_H__ */ | ||