aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/pm.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/linux/pm.h')
-rw-r--r--include/linux/pm.h314
1 files changed, 286 insertions, 28 deletions
diff --git a/include/linux/pm.h b/include/linux/pm.h
index 39a7ee859b67..4ad9de94449a 100644
--- a/include/linux/pm.h
+++ b/include/linux/pm.h
@@ -112,7 +112,9 @@ typedef struct pm_message {
112 int event; 112 int event;
113} pm_message_t; 113} pm_message_t;
114 114
115/* 115/**
116 * struct pm_ops - device PM callbacks
117 *
116 * Several driver power state transitions are externally visible, affecting 118 * Several driver power state transitions are externally visible, affecting
117 * the state of pending I/O queues and (for drivers that touch hardware) 119 * the state of pending I/O queues and (for drivers that touch hardware)
118 * interrupts, wakeups, DMA, and other hardware state. There may also be 120 * interrupts, wakeups, DMA, and other hardware state. There may also be
@@ -120,6 +122,284 @@ typedef struct pm_message {
120 * to the rest of the driver stack (such as a driver that's ON gating off 122 * to the rest of the driver stack (such as a driver that's ON gating off
121 * clocks which are not in active use). 123 * clocks which are not in active use).
122 * 124 *
125 * The externally visible transitions are handled with the help of the following
126 * callbacks included in this structure:
127 *
128 * @prepare: Prepare the device for the upcoming transition, but do NOT change
129 * its hardware state. Prevent new children of the device from being
130 * registered after @prepare() returns (the driver's subsystem and
131 * generally the rest of the kernel is supposed to prevent new calls to the
132 * probe method from being made too once @prepare() has succeeded). If
133 * @prepare() detects a situation it cannot handle (e.g. registration of a
134 * child already in progress), it may return -EAGAIN, so that the PM core
135 * can execute it once again (e.g. after the new child has been registered)
136 * to recover from the race condition. This method is executed for all
137 * kinds of suspend transitions and is followed by one of the suspend
138 * callbacks: @suspend(), @freeze(), or @poweroff().
139 * The PM core executes @prepare() for all devices before starting to
140 * execute suspend callbacks for any of them, so drivers may assume all of
141 * the other devices to be present and functional while @prepare() is being
142 * executed. In particular, it is safe to make GFP_KERNEL memory
143 * allocations from within @prepare(). However, drivers may NOT assume
144 * anything about the availability of the user space at that time and it
145 * is not correct to request firmware from within @prepare() (it's too
146 * late to do that). [To work around this limitation, drivers may
147 * register suspend and hibernation notifiers that are executed before the
148 * freezing of tasks.]
149 *
150 * @complete: Undo the changes made by @prepare(). This method is executed for
151 * all kinds of resume transitions, following one of the resume callbacks:
152 * @resume(), @thaw(), @restore(). Also called if the state transition
153 * fails before the driver's suspend callback (@suspend(), @freeze(),
154 * @poweroff()) can be executed (e.g. if the suspend callback fails for one
155 * of the other devices that the PM core has unsuccessfully attempted to
156 * suspend earlier).
157 * The PM core executes @complete() after it has executed the appropriate
158 * resume callback for all devices.
159 *
160 * @suspend: Executed before putting the system into a sleep state in which the
161 * contents of main memory are preserved. Quiesce the device, put it into
162 * a low power state appropriate for the upcoming system state (such as
163 * PCI_D3hot), and enable wakeup events as appropriate.
164 *
165 * @resume: Executed after waking the system up from a sleep state in which the
166 * contents of main memory were preserved. Put the device into the
167 * appropriate state, according to the information saved in memory by the
168 * preceding @suspend(). The driver starts working again, responding to
169 * hardware events and software requests. The hardware may have gone
170 * through a power-off reset, or it may have maintained state from the
171 * previous suspend() which the driver may rely on while resuming. On most
172 * platforms, there are no restrictions on availability of resources like
173 * clocks during @resume().
174 *
175 * @freeze: Hibernation-specific, executed before creating a hibernation image.
176 * Quiesce operations so that a consistent image can be created, but do NOT
177 * otherwise put the device into a low power device state and do NOT emit
178 * system wakeup events. Save in main memory the device settings to be
179 * used by @restore() during the subsequent resume from hibernation or by
180 * the subsequent @thaw(), if the creation of the image or the restoration
181 * of main memory contents from it fails.
182 *
183 * @thaw: Hibernation-specific, executed after creating a hibernation image OR
184 * if the creation of the image fails. Also executed after a failing
185 * attempt to restore the contents of main memory from such an image.
186 * Undo the changes made by the preceding @freeze(), so the device can be
187 * operated in the same way as immediately before the call to @freeze().
188 *
189 * @poweroff: Hibernation-specific, executed after saving a hibernation image.
190 * Quiesce the device, put it into a low power state appropriate for the
191 * upcoming system state (such as PCI_D3hot), and enable wakeup events as
192 * appropriate.
193 *
194 * @restore: Hibernation-specific, executed after restoring the contents of main
195 * memory from a hibernation image. Driver starts working again,
196 * responding to hardware events and software requests. Drivers may NOT
197 * make ANY assumptions about the hardware state right prior to @restore().
198 * On most platforms, there are no restrictions on availability of
199 * resources like clocks during @restore().
200 *
201 * All of the above callbacks, except for @complete(), return error codes.
202 * However, the error codes returned by the resume operations, @resume(),
203 * @thaw(), and @restore(), do not cause the PM core to abort the resume
204 * transition during which they are returned. The error codes returned in
205 * that cases are only printed by the PM core to the system logs for debugging
206 * purposes. Still, it is recommended that drivers only return error codes
207 * from their resume methods in case of an unrecoverable failure (i.e. when the
208 * device being handled refuses to resume and becomes unusable) to allow us to
209 * modify the PM core in the future, so that it can avoid attempting to handle
210 * devices that failed to resume and their children.
211 *
212 * It is allowed to unregister devices while the above callbacks are being
213 * executed. However, it is not allowed to unregister a device from within any
214 * of its own callbacks.
215 */
216
217struct pm_ops {
218 int (*prepare)(struct device *dev);
219 void (*complete)(struct device *dev);
220 int (*suspend)(struct device *dev);
221 int (*resume)(struct device *dev);
222 int (*freeze)(struct device *dev);
223 int (*thaw)(struct device *dev);
224 int (*poweroff)(struct device *dev);
225 int (*restore)(struct device *dev);
226};
227
228/**
229 * struct pm_ext_ops - extended device PM callbacks
230 *
231 * Some devices require certain operations related to suspend and hibernation
232 * to be carried out with interrupts disabled. Thus, 'struct pm_ext_ops' below
233 * is defined, adding callbacks to be executed with interrupts disabled to
234 * 'struct pm_ops'.
235 *
236 * The following callbacks included in 'struct pm_ext_ops' are executed with
237 * the nonboot CPUs switched off and with interrupts disabled on the only
238 * functional CPU. They also are executed with the PM core list of devices
239 * locked, so they must NOT unregister any devices.
240 *
241 * @suspend_noirq: Complete the operations of ->suspend() by carrying out any
242 * actions required for suspending the device that need interrupts to be
243 * disabled
244 *
245 * @resume_noirq: Prepare for the execution of ->resume() by carrying out any
246 * actions required for resuming the device that need interrupts to be
247 * disabled
248 *
249 * @freeze_noirq: Complete the operations of ->freeze() by carrying out any
250 * actions required for freezing the device that need interrupts to be
251 * disabled
252 *
253 * @thaw_noirq: Prepare for the execution of ->thaw() by carrying out any
254 * actions required for thawing the device that need interrupts to be
255 * disabled
256 *
257 * @poweroff_noirq: Complete the operations of ->poweroff() by carrying out any
258 * actions required for handling the device that need interrupts to be
259 * disabled
260 *
261 * @restore_noirq: Prepare for the execution of ->restore() by carrying out any
262 * actions required for restoring the operations of the device that need
263 * interrupts to be disabled
264 *
265 * All of the above callbacks return error codes, but the error codes returned
266 * by the resume operations, @resume_noirq(), @thaw_noirq(), and
267 * @restore_noirq(), do not cause the PM core to abort the resume transition
268 * during which they are returned. The error codes returned in that cases are
269 * only printed by the PM core to the system logs for debugging purposes.
270 * Still, as stated above, it is recommended that drivers only return error
271 * codes from their resume methods if the device being handled fails to resume
272 * and is not usable any more.
273 */
274
275struct pm_ext_ops {
276 struct pm_ops base;
277 int (*suspend_noirq)(struct device *dev);
278 int (*resume_noirq)(struct device *dev);
279 int (*freeze_noirq)(struct device *dev);
280 int (*thaw_noirq)(struct device *dev);
281 int (*poweroff_noirq)(struct device *dev);
282 int (*restore_noirq)(struct device *dev);
283};
284
285/**
286 * PM_EVENT_ messages
287 *
288 * The following PM_EVENT_ messages are defined for the internal use of the PM
289 * core, in order to provide a mechanism allowing the high level suspend and
290 * hibernation code to convey the necessary information to the device PM core
291 * code:
292 *
293 * ON No transition.
294 *
295 * FREEZE System is going to hibernate, call ->prepare() and ->freeze()
296 * for all devices.
297 *
298 * SUSPEND System is going to suspend, call ->prepare() and ->suspend()
299 * for all devices.
300 *
301 * HIBERNATE Hibernation image has been saved, call ->prepare() and
302 * ->poweroff() for all devices.
303 *
304 * QUIESCE Contents of main memory are going to be restored from a (loaded)
305 * hibernation image, call ->prepare() and ->freeze() for all
306 * devices.
307 *
308 * RESUME System is resuming, call ->resume() and ->complete() for all
309 * devices.
310 *
311 * THAW Hibernation image has been created, call ->thaw() and
312 * ->complete() for all devices.
313 *
314 * RESTORE Contents of main memory have been restored from a hibernation
315 * image, call ->restore() and ->complete() for all devices.
316 *
317 * RECOVER Creation of a hibernation image or restoration of the main
318 * memory contents from a hibernation image has failed, call
319 * ->thaw() and ->complete() for all devices.
320 */
321
322#define PM_EVENT_ON 0x0000
323#define PM_EVENT_FREEZE 0x0001
324#define PM_EVENT_SUSPEND 0x0002
325#define PM_EVENT_HIBERNATE 0x0004
326#define PM_EVENT_QUIESCE 0x0008
327#define PM_EVENT_RESUME 0x0010
328#define PM_EVENT_THAW 0x0020
329#define PM_EVENT_RESTORE 0x0040
330#define PM_EVENT_RECOVER 0x0080
331
332#define PM_EVENT_SLEEP (PM_EVENT_SUSPEND | PM_EVENT_HIBERNATE)
333
334#define PMSG_FREEZE ((struct pm_message){ .event = PM_EVENT_FREEZE, })
335#define PMSG_QUIESCE ((struct pm_message){ .event = PM_EVENT_QUIESCE, })
336#define PMSG_SUSPEND ((struct pm_message){ .event = PM_EVENT_SUSPEND, })
337#define PMSG_HIBERNATE ((struct pm_message){ .event = PM_EVENT_HIBERNATE, })
338#define PMSG_RESUME ((struct pm_message){ .event = PM_EVENT_RESUME, })
339#define PMSG_THAW ((struct pm_message){ .event = PM_EVENT_THAW, })
340#define PMSG_RESTORE ((struct pm_message){ .event = PM_EVENT_RESTORE, })
341#define PMSG_RECOVER ((struct pm_message){ .event = PM_EVENT_RECOVER, })
342#define PMSG_ON ((struct pm_message){ .event = PM_EVENT_ON, })
343
344/**
345 * Device power management states
346 *
347 * These state labels are used internally by the PM core to indicate the current
348 * status of a device with respect to the PM core operations.
349 *
350 * DPM_ON Device is regarded as operational. Set this way
351 * initially and when ->complete() is about to be called.
352 * Also set when ->prepare() fails.
353 *
354 * DPM_PREPARING Device is going to be prepared for a PM transition. Set
355 * when ->prepare() is about to be called.
356 *
357 * DPM_RESUMING Device is going to be resumed. Set when ->resume(),
358 * ->thaw(), or ->restore() is about to be called.
359 *
360 * DPM_SUSPENDING Device has been prepared for a power transition. Set
361 * when ->prepare() has just succeeded.
362 *
363 * DPM_OFF Device is regarded as inactive. Set immediately after
364 * ->suspend(), ->freeze(), or ->poweroff() has succeeded.
365 * Also set when ->resume()_noirq, ->thaw_noirq(), or
366 * ->restore_noirq() is about to be called.
367 *
368 * DPM_OFF_IRQ Device is in a "deep sleep". Set immediately after
369 * ->suspend_noirq(), ->freeze_noirq(), or
370 * ->poweroff_noirq() has just succeeded.
371 */
372
373enum dpm_state {
374 DPM_INVALID,
375 DPM_ON,
376 DPM_PREPARING,
377 DPM_RESUMING,
378 DPM_SUSPENDING,
379 DPM_OFF,
380 DPM_OFF_IRQ,
381};
382
383struct dev_pm_info {
384 pm_message_t power_state;
385 unsigned can_wakeup:1;
386 unsigned should_wakeup:1;
387 enum dpm_state status; /* Owned by the PM core */
388#ifdef CONFIG_PM_SLEEP
389 struct list_head entry;
390#endif
391};
392
393/*
394 * The PM_EVENT_ messages are also used by drivers implementing the legacy
395 * suspend framework, based on the ->suspend() and ->resume() callbacks common
396 * for suspend and hibernation transitions, according to the rules below.
397 */
398
399/* Necessary, because several drivers use PM_EVENT_PRETHAW */
400#define PM_EVENT_PRETHAW PM_EVENT_QUIESCE
401
402/*
123 * One transition is triggered by resume(), after a suspend() call; the 403 * One transition is triggered by resume(), after a suspend() call; the
124 * message is implicit: 404 * message is implicit:
125 * 405 *
@@ -164,35 +444,13 @@ typedef struct pm_message {
164 * or from system low-power states such as standby or suspend-to-RAM. 444 * or from system low-power states such as standby or suspend-to-RAM.
165 */ 445 */
166 446
167#define PM_EVENT_ON 0 447#ifdef CONFIG_PM_SLEEP
168#define PM_EVENT_FREEZE 1 448extern void device_pm_lock(void);
169#define PM_EVENT_SUSPEND 2 449extern void device_power_up(pm_message_t state);
170#define PM_EVENT_HIBERNATE 4 450extern void device_resume(pm_message_t state);
171#define PM_EVENT_PRETHAW 8
172
173#define PM_EVENT_SLEEP (PM_EVENT_SUSPEND | PM_EVENT_HIBERNATE)
174
175#define PMSG_FREEZE ((struct pm_message){ .event = PM_EVENT_FREEZE, })
176#define PMSG_PRETHAW ((struct pm_message){ .event = PM_EVENT_PRETHAW, })
177#define PMSG_SUSPEND ((struct pm_message){ .event = PM_EVENT_SUSPEND, })
178#define PMSG_HIBERNATE ((struct pm_message){ .event = PM_EVENT_HIBERNATE, })
179#define PMSG_ON ((struct pm_message){ .event = PM_EVENT_ON, })
180
181struct dev_pm_info {
182 pm_message_t power_state;
183 unsigned can_wakeup:1;
184 unsigned should_wakeup:1;
185 bool sleeping:1; /* Owned by the PM core */
186#ifdef CONFIG_PM_SLEEP
187 struct list_head entry;
188#endif
189};
190 451
452extern void device_pm_unlock(void);
191extern int device_power_down(pm_message_t state); 453extern int device_power_down(pm_message_t state);
192extern void device_power_up(void);
193extern void device_resume(void);
194
195#ifdef CONFIG_PM_SLEEP
196extern int device_suspend(pm_message_t state); 454extern int device_suspend(pm_message_t state);
197extern int device_prepare_suspend(pm_message_t state); 455extern int device_prepare_suspend(pm_message_t state);
198 456