aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/pm.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/linux/pm.h')
-rw-r--r--include/linux/pm.h63
1 files changed, 48 insertions, 15 deletions
diff --git a/include/linux/pm.h b/include/linux/pm.h
index 658c1b93d5bb..6b27e07aef19 100644
--- a/include/linux/pm.h
+++ b/include/linux/pm.h
@@ -142,29 +142,61 @@ typedef struct pm_message {
142} pm_message_t; 142} pm_message_t;
143 143
144/* 144/*
145 * There are 4 important states driver can be in: 145 * Several driver power state transitions are externally visible, affecting
146 * ON -- driver is working 146 * the state of pending I/O queues and (for drivers that touch hardware)
147 * FREEZE -- stop operations and apply whatever policy is applicable to a 147 * interrupts, wakeups, DMA, and other hardware state. There may also be
148 * suspended driver of that class, freeze queues for block like IDE 148 * internal transitions to various low power modes, which are transparent
149 * does, drop packets for ethernet, etc... stop DMA engine too etc... 149 * to the rest of the driver stack (such as a driver that's ON gating off
150 * so a consistent image can be saved; but do not power any hardware 150 * clocks which are not in active use).
151 * down.
152 * SUSPEND - like FREEZE, but hardware is doing as much powersaving as
153 * possible. Roughly pci D3.
154 * 151 *
155 * Unfortunately, current drivers only recognize numeric values 0 (ON) and 3 152 * One transition is triggered by resume(), after a suspend() call; the
156 * (SUSPEND). We'll need to fix the drivers. So yes, putting 3 to all different 153 * message is implicit:
157 * defines is intentional, and will go away as soon as drivers are fixed. Also 154 *
158 * note that typedef is neccessary, we'll probably want to switch to 155 * ON Driver starts working again, responding to hardware events
159 * typedef struct pm_message_t { int event; int flags; } pm_message_t 156 * and software requests. The hardware may have gone through
160 * or something similar soon. 157 * a power-off reset, or it may have maintained state from the
158 * previous suspend() which the driver will rely on while
159 * resuming. On most platforms, there are no restrictions on
160 * availability of resources like clocks during resume().
161 *
162 * Other transitions are triggered by messages sent using suspend(). All
163 * these transitions quiesce the driver, so that I/O queues are inactive.
164 * That commonly entails turning off IRQs and DMA; there may be rules
165 * about how to quiesce that are specific to the bus or the device's type.
166 * (For example, network drivers mark the link state.) Other details may
167 * differ according to the message:
168 *
169 * SUSPEND Quiesce, enter a low power device state appropriate for
170 * the upcoming system state (such as PCI_D3hot), and enable
171 * wakeup events as appropriate.
172 *
173 * FREEZE Quiesce operations so that a consistent image can be saved;
174 * but do NOT otherwise enter a low power device state, and do
175 * NOT emit system wakeup events.
176 *
177 * PRETHAW Quiesce as if for FREEZE; additionally, prepare for restoring
178 * the system from a snapshot taken after an earlier FREEZE.
179 * Some drivers will need to reset their hardware state instead
180 * of preserving it, to ensure that it's never mistaken for the
181 * state which that earlier snapshot had set up.
182 *
183 * A minimally power-aware driver treats all messages as SUSPEND, fully
184 * reinitializes its device during resume() -- whether or not it was reset
185 * during the suspend/resume cycle -- and can't issue wakeup events.
186 *
187 * More power-aware drivers may also use low power states at runtime as
188 * well as during system sleep states like PM_SUSPEND_STANDBY. They may
189 * be able to use wakeup events to exit from runtime low-power states,
190 * or from system low-power states such as standby or suspend-to-RAM.
161 */ 191 */
162 192
163#define PM_EVENT_ON 0 193#define PM_EVENT_ON 0
164#define PM_EVENT_FREEZE 1 194#define PM_EVENT_FREEZE 1
165#define PM_EVENT_SUSPEND 2 195#define PM_EVENT_SUSPEND 2
196#define PM_EVENT_PRETHAW 3
166 197
167#define PMSG_FREEZE ((struct pm_message){ .event = PM_EVENT_FREEZE, }) 198#define PMSG_FREEZE ((struct pm_message){ .event = PM_EVENT_FREEZE, })
199#define PMSG_PRETHAW ((struct pm_message){ .event = PM_EVENT_PRETHAW, })
168#define PMSG_SUSPEND ((struct pm_message){ .event = PM_EVENT_SUSPEND, }) 200#define PMSG_SUSPEND ((struct pm_message){ .event = PM_EVENT_SUSPEND, })
169#define PMSG_ON ((struct pm_message){ .event = PM_EVENT_ON, }) 201#define PMSG_ON ((struct pm_message){ .event = PM_EVENT_ON, })
170 202
@@ -190,6 +222,7 @@ extern void device_resume(void);
190extern suspend_disk_method_t pm_disk_mode; 222extern suspend_disk_method_t pm_disk_mode;
191 223
192extern int device_suspend(pm_message_t state); 224extern int device_suspend(pm_message_t state);
225extern int device_prepare_suspend(pm_message_t state);
193 226
194#define device_set_wakeup_enable(dev,val) \ 227#define device_set_wakeup_enable(dev,val) \
195 ((dev)->power.should_wakeup = !!(val)) 228 ((dev)->power.should_wakeup = !!(val))