aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/pm.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/linux/pm.h')
-rw-r--r--include/linux/pm.h101
1 files changed, 98 insertions, 3 deletions
diff --git a/include/linux/pm.h b/include/linux/pm.h
index b3f74764a586..2b6e20df0e52 100644
--- a/include/linux/pm.h
+++ b/include/linux/pm.h
@@ -22,6 +22,10 @@
22#define _LINUX_PM_H 22#define _LINUX_PM_H
23 23
24#include <linux/list.h> 24#include <linux/list.h>
25#include <linux/workqueue.h>
26#include <linux/spinlock.h>
27#include <linux/wait.h>
28#include <linux/timer.h>
25 29
26/* 30/*
27 * Callbacks for platform drivers to implement. 31 * Callbacks for platform drivers to implement.
@@ -165,6 +169,28 @@ typedef struct pm_message {
165 * It is allowed to unregister devices while the above callbacks are being 169 * It is allowed to unregister devices while the above callbacks are being
166 * executed. However, it is not allowed to unregister a device from within any 170 * executed. However, it is not allowed to unregister a device from within any
167 * of its own callbacks. 171 * of its own callbacks.
172 *
173 * There also are the following callbacks related to run-time power management
174 * of devices:
175 *
176 * @runtime_suspend: Prepare the device for a condition in which it won't be
177 * able to communicate with the CPU(s) and RAM due to power management.
178 * This need not mean that the device should be put into a low power state.
179 * For example, if the device is behind a link which is about to be turned
180 * off, the device may remain at full power. If the device does go to low
181 * power and if device_may_wakeup(dev) is true, remote wake-up (i.e., a
182 * hardware mechanism allowing the device to request a change of its power
183 * state, such as PCI PME) should be enabled for it.
184 *
185 * @runtime_resume: Put the device into the fully active state in response to a
186 * wake-up event generated by hardware or at the request of software. If
187 * necessary, put the device into the full power state and restore its
188 * registers, so that it is fully operational.
189 *
190 * @runtime_idle: Device appears to be inactive and it might be put into a low
191 * power state if all of the necessary conditions are satisfied. Check
192 * these conditions and handle the device as appropriate, possibly queueing
193 * a suspend request for it. The return value is ignored by the PM core.
168 */ 194 */
169 195
170struct dev_pm_ops { 196struct dev_pm_ops {
@@ -182,6 +208,9 @@ struct dev_pm_ops {
182 int (*thaw_noirq)(struct device *dev); 208 int (*thaw_noirq)(struct device *dev);
183 int (*poweroff_noirq)(struct device *dev); 209 int (*poweroff_noirq)(struct device *dev);
184 int (*restore_noirq)(struct device *dev); 210 int (*restore_noirq)(struct device *dev);
211 int (*runtime_suspend)(struct device *dev);
212 int (*runtime_resume)(struct device *dev);
213 int (*runtime_idle)(struct device *dev);
185}; 214};
186 215
187/** 216/**
@@ -315,14 +344,80 @@ enum dpm_state {
315 DPM_OFF_IRQ, 344 DPM_OFF_IRQ,
316}; 345};
317 346
347/**
348 * Device run-time power management status.
349 *
350 * These status labels are used internally by the PM core to indicate the
351 * current status of a device with respect to the PM core operations. They do
352 * not reflect the actual power state of the device or its status as seen by the
353 * driver.
354 *
355 * RPM_ACTIVE Device is fully operational. Indicates that the device
356 * bus type's ->runtime_resume() callback has completed
357 * successfully.
358 *
359 * RPM_SUSPENDED Device bus type's ->runtime_suspend() callback has
360 * completed successfully. The device is regarded as
361 * suspended.
362 *
363 * RPM_RESUMING Device bus type's ->runtime_resume() callback is being
364 * executed.
365 *
366 * RPM_SUSPENDING Device bus type's ->runtime_suspend() callback is being
367 * executed.
368 */
369
370enum rpm_status {
371 RPM_ACTIVE = 0,
372 RPM_RESUMING,
373 RPM_SUSPENDED,
374 RPM_SUSPENDING,
375};
376
377/**
378 * Device run-time power management request types.
379 *
380 * RPM_REQ_NONE Do nothing.
381 *
382 * RPM_REQ_IDLE Run the device bus type's ->runtime_idle() callback
383 *
384 * RPM_REQ_SUSPEND Run the device bus type's ->runtime_suspend() callback
385 *
386 * RPM_REQ_RESUME Run the device bus type's ->runtime_resume() callback
387 */
388
389enum rpm_request {
390 RPM_REQ_NONE = 0,
391 RPM_REQ_IDLE,
392 RPM_REQ_SUSPEND,
393 RPM_REQ_RESUME,
394};
395
318struct dev_pm_info { 396struct dev_pm_info {
319 pm_message_t power_state; 397 pm_message_t power_state;
320 unsigned can_wakeup:1; 398 unsigned int can_wakeup:1;
321 unsigned should_wakeup:1; 399 unsigned int should_wakeup:1;
322 enum dpm_state status; /* Owned by the PM core */ 400 enum dpm_state status; /* Owned by the PM core */
323#ifdef CONFIG_PM_SLEEP 401#ifdef CONFIG_PM_SLEEP
324 struct list_head entry; 402 struct list_head entry;
325#endif 403#endif
404#ifdef CONFIG_PM_RUNTIME
405 struct timer_list suspend_timer;
406 unsigned long timer_expires;
407 struct work_struct work;
408 wait_queue_head_t wait_queue;
409 spinlock_t lock;
410 atomic_t usage_count;
411 atomic_t child_count;
412 unsigned int disable_depth:3;
413 unsigned int ignore_children:1;
414 unsigned int idle_notification:1;
415 unsigned int request_pending:1;
416 unsigned int deferred_resume:1;
417 enum rpm_request request;
418 enum rpm_status runtime_status;
419 int runtime_error;
420#endif
326}; 421};
327 422
328/* 423/*