aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/pid.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/linux/pid.h')
-rw-r--r--include/linux/pid.h96
1 files changed, 81 insertions, 15 deletions
diff --git a/include/linux/pid.h b/include/linux/pid.h
index 5b9082cc600f..29960b03bef7 100644
--- a/include/linux/pid.h
+++ b/include/linux/pid.h
@@ -1,6 +1,8 @@
1#ifndef _LINUX_PID_H 1#ifndef _LINUX_PID_H
2#define _LINUX_PID_H 2#define _LINUX_PID_H
3 3
4#include <linux/rcupdate.h>
5
4enum pid_type 6enum pid_type
5{ 7{
6 PIDTYPE_PID, 8 PIDTYPE_PID,
@@ -9,45 +11,109 @@ enum pid_type
9 PIDTYPE_MAX 11 PIDTYPE_MAX
10}; 12};
11 13
14/*
15 * What is struct pid?
16 *
17 * A struct pid is the kernel's internal notion of a process identifier.
18 * It refers to individual tasks, process groups, and sessions. While
19 * there are processes attached to it the struct pid lives in a hash
20 * table, so it and then the processes that it refers to can be found
21 * quickly from the numeric pid value. The attached processes may be
22 * quickly accessed by following pointers from struct pid.
23 *
24 * Storing pid_t values in the kernel and refering to them later has a
25 * problem. The process originally with that pid may have exited and the
26 * pid allocator wrapped, and another process could have come along
27 * and been assigned that pid.
28 *
29 * Referring to user space processes by holding a reference to struct
30 * task_struct has a problem. When the user space process exits
31 * the now useless task_struct is still kept. A task_struct plus a
32 * stack consumes around 10K of low kernel memory. More precisely
33 * this is THREAD_SIZE + sizeof(struct task_struct). By comparison
34 * a struct pid is about 64 bytes.
35 *
36 * Holding a reference to struct pid solves both of these problems.
37 * It is small so holding a reference does not consume a lot of
38 * resources, and since a new struct pid is allocated when the numeric
39 * pid value is reused we don't mistakenly refer to new processes.
40 */
41
12struct pid 42struct pid
13{ 43{
44 atomic_t count;
14 /* Try to keep pid_chain in the same cacheline as nr for find_pid */ 45 /* Try to keep pid_chain in the same cacheline as nr for find_pid */
15 int nr; 46 int nr;
16 struct hlist_node pid_chain; 47 struct hlist_node pid_chain;
17 /* list of pids with the same nr, only one of them is in the hash */ 48 /* lists of tasks that use this pid */
18 struct list_head pid_list; 49 struct hlist_head tasks[PIDTYPE_MAX];
50 struct rcu_head rcu;
19}; 51};
20 52
21#define pid_task(elem, type) \ 53struct pid_link
22 list_entry(elem, struct task_struct, pids[type].pid_list) 54{
55 struct hlist_node node;
56 struct pid *pid;
57};
58
59static inline struct pid *get_pid(struct pid *pid)
60{
61 if (pid)
62 atomic_inc(&pid->count);
63 return pid;
64}
65
66extern void FASTCALL(put_pid(struct pid *pid));
67extern struct task_struct *FASTCALL(pid_task(struct pid *pid, enum pid_type));
68extern struct task_struct *FASTCALL(get_pid_task(struct pid *pid,
69 enum pid_type));
23 70
24/* 71/*
25 * attach_pid() and detach_pid() must be called with the tasklist_lock 72 * attach_pid() and detach_pid() must be called with the tasklist_lock
26 * write-held. 73 * write-held.
27 */ 74 */
28extern int FASTCALL(attach_pid(struct task_struct *task, enum pid_type type, int nr)); 75extern int FASTCALL(attach_pid(struct task_struct *task,
76 enum pid_type type, int nr));
29 77
30extern void FASTCALL(detach_pid(struct task_struct *task, enum pid_type)); 78extern void FASTCALL(detach_pid(struct task_struct *task, enum pid_type));
31 79
32/* 80/*
33 * look up a PID in the hash table. Must be called with the tasklist_lock 81 * look up a PID in the hash table. Must be called with the tasklist_lock
34 * held. 82 * or rcu_read_lock() held.
83 */
84extern struct pid *FASTCALL(find_pid(int nr));
85
86/*
87 * Lookup a PID in the hash table, and return with it's count elevated.
35 */ 88 */
36extern struct pid *FASTCALL(find_pid(enum pid_type, int)); 89extern struct pid *find_get_pid(int nr);
37 90
38extern int alloc_pidmap(void); 91extern struct pid *alloc_pid(void);
39extern void FASTCALL(free_pidmap(int)); 92extern void FASTCALL(free_pid(struct pid *pid));
40 93
94#define pid_next(task, type) \
95 ((task)->pids[(type)].node.next)
96
97#define pid_next_task(task, type) \
98 hlist_entry(pid_next(task, type), struct task_struct, \
99 pids[(type)].node)
100
101
102/* We could use hlist_for_each_entry_rcu here but it takes more arguments
103 * than the do_each_task_pid/while_each_task_pid. So we roll our own
104 * to preserve the existing interface.
105 */
41#define do_each_task_pid(who, type, task) \ 106#define do_each_task_pid(who, type, task) \
42 if ((task = find_task_by_pid_type(type, who))) { \ 107 if ((task = find_task_by_pid_type(type, who))) { \
43 prefetch((task)->pids[type].pid_list.next); \ 108 prefetch(pid_next(task, type)); \
44 do { 109 do {
45 110
46#define while_each_task_pid(who, type, task) \ 111#define while_each_task_pid(who, type, task) \
47 } while (task = pid_task((task)->pids[type].pid_list.next,\ 112 } while (pid_next(task, type) && ({ \
48 type), \ 113 task = pid_next_task(task, type); \
49 prefetch((task)->pids[type].pid_list.next), \ 114 rcu_dereference(task); \
50 hlist_unhashed(&(task)->pids[type].pid_chain)); \ 115 prefetch(pid_next(task, type)); \
51 } \ 116 1; }) ); \
117 }
52 118
53#endif /* _LINUX_PID_H */ 119#endif /* _LINUX_PID_H */