aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/percpu.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/linux/percpu.h')
-rw-r--r--include/linux/percpu.h481
1 files changed, 430 insertions, 51 deletions
diff --git a/include/linux/percpu.h b/include/linux/percpu.h
index 878836ca999c..d3a38d687104 100644
--- a/include/linux/percpu.h
+++ b/include/linux/percpu.h
@@ -2,10 +2,10 @@
2#define __LINUX_PERCPU_H 2#define __LINUX_PERCPU_H
3 3
4#include <linux/preempt.h> 4#include <linux/preempt.h>
5#include <linux/slab.h> /* For kmalloc() */
6#include <linux/smp.h> 5#include <linux/smp.h>
7#include <linux/cpumask.h> 6#include <linux/cpumask.h>
8#include <linux/pfn.h> 7#include <linux/pfn.h>
8#include <linux/init.h>
9 9
10#include <asm/percpu.h> 10#include <asm/percpu.h>
11 11
@@ -27,14 +27,19 @@
27 * we force a syntax error here if it isn't. 27 * we force a syntax error here if it isn't.
28 */ 28 */
29#define get_cpu_var(var) (*({ \ 29#define get_cpu_var(var) (*({ \
30 extern int simple_identifier_##var(void); \
31 preempt_disable(); \ 30 preempt_disable(); \
32 &__get_cpu_var(var); })) 31 &__get_cpu_var(var); }))
33#define put_cpu_var(var) preempt_enable()
34 32
35#ifdef CONFIG_SMP 33/*
34 * The weird & is necessary because sparse considers (void)(var) to be
35 * a direct dereference of percpu variable (var).
36 */
37#define put_cpu_var(var) do { \
38 (void)&(var); \
39 preempt_enable(); \
40} while (0)
36 41
37#ifndef CONFIG_HAVE_LEGACY_PER_CPU_AREA 42#ifdef CONFIG_SMP
38 43
39/* minimum unit size, also is the maximum supported allocation size */ 44/* minimum unit size, also is the maximum supported allocation size */
40#define PCPU_MIN_UNIT_SIZE PFN_ALIGN(64 << 10) 45#define PCPU_MIN_UNIT_SIZE PFN_ALIGN(64 << 10)
@@ -129,31 +134,8 @@ extern int __init pcpu_page_first_chunk(size_t reserved_size,
129 */ 134 */
130#define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu))) 135#define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
131 136
132extern void *__alloc_reserved_percpu(size_t size, size_t align); 137extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align);
133 138extern bool is_kernel_percpu_address(unsigned long addr);
134#else /* CONFIG_HAVE_LEGACY_PER_CPU_AREA */
135
136struct percpu_data {
137 void *ptrs[1];
138};
139
140/* pointer disguising messes up the kmemleak objects tracking */
141#ifndef CONFIG_DEBUG_KMEMLEAK
142#define __percpu_disguise(pdata) (struct percpu_data *)~(unsigned long)(pdata)
143#else
144#define __percpu_disguise(pdata) (struct percpu_data *)(pdata)
145#endif
146
147#define per_cpu_ptr(ptr, cpu) \
148({ \
149 struct percpu_data *__p = __percpu_disguise(ptr); \
150 (__typeof__(ptr))__p->ptrs[(cpu)]; \
151})
152
153#endif /* CONFIG_HAVE_LEGACY_PER_CPU_AREA */
154
155extern void *__alloc_percpu(size_t size, size_t align);
156extern void free_percpu(void *__pdata);
157 139
158#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 140#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
159extern void __init setup_per_cpu_areas(void); 141extern void __init setup_per_cpu_areas(void);
@@ -163,20 +145,10 @@ extern void __init setup_per_cpu_areas(void);
163 145
164#define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); (ptr); }) 146#define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); (ptr); })
165 147
166static inline void *__alloc_percpu(size_t size, size_t align) 148/* can't distinguish from other static vars, always false */
149static inline bool is_kernel_percpu_address(unsigned long addr)
167{ 150{
168 /* 151 return false;
169 * Can't easily make larger alignment work with kmalloc. WARN
170 * on it. Larger alignment should only be used for module
171 * percpu sections on SMP for which this path isn't used.
172 */
173 WARN_ON_ONCE(align > SMP_CACHE_BYTES);
174 return kzalloc(size, GFP_KERNEL);
175}
176
177static inline void free_percpu(void *p)
178{
179 kfree(p);
180} 152}
181 153
182static inline void __init setup_per_cpu_areas(void) { } 154static inline void __init setup_per_cpu_areas(void) { }
@@ -188,8 +160,12 @@ static inline void *pcpu_lpage_remapped(void *kaddr)
188 160
189#endif /* CONFIG_SMP */ 161#endif /* CONFIG_SMP */
190 162
191#define alloc_percpu(type) (type *)__alloc_percpu(sizeof(type), \ 163extern void __percpu *__alloc_percpu(size_t size, size_t align);
192 __alignof__(type)) 164extern void free_percpu(void __percpu *__pdata);
165extern phys_addr_t per_cpu_ptr_to_phys(void *addr);
166
167#define alloc_percpu(type) \
168 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type))
193 169
194/* 170/*
195 * Optional methods for optimized non-lvalue per-cpu variable access. 171 * Optional methods for optimized non-lvalue per-cpu variable access.
@@ -206,17 +182,19 @@ static inline void *pcpu_lpage_remapped(void *kaddr)
206#ifndef percpu_read 182#ifndef percpu_read
207# define percpu_read(var) \ 183# define percpu_read(var) \
208 ({ \ 184 ({ \
209 typeof(per_cpu_var(var)) __tmp_var__; \ 185 typeof(var) *pr_ptr__ = &(var); \
210 __tmp_var__ = get_cpu_var(var); \ 186 typeof(var) pr_ret__; \
211 put_cpu_var(var); \ 187 pr_ret__ = get_cpu_var(*pr_ptr__); \
212 __tmp_var__; \ 188 put_cpu_var(*pr_ptr__); \
189 pr_ret__; \
213 }) 190 })
214#endif 191#endif
215 192
216#define __percpu_generic_to_op(var, val, op) \ 193#define __percpu_generic_to_op(var, val, op) \
217do { \ 194do { \
218 get_cpu_var(var) op val; \ 195 typeof(var) *pgto_ptr__ = &(var); \
219 put_cpu_var(var); \ 196 get_cpu_var(*pgto_ptr__) op val; \
197 put_cpu_var(*pgto_ptr__); \
220} while (0) 198} while (0)
221 199
222#ifndef percpu_write 200#ifndef percpu_write
@@ -243,4 +221,405 @@ do { \
243# define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=) 221# define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=)
244#endif 222#endif
245 223
224/*
225 * Branching function to split up a function into a set of functions that
226 * are called for different scalar sizes of the objects handled.
227 */
228
229extern void __bad_size_call_parameter(void);
230
231#define __pcpu_size_call_return(stem, variable) \
232({ typeof(variable) pscr_ret__; \
233 __verify_pcpu_ptr(&(variable)); \
234 switch(sizeof(variable)) { \
235 case 1: pscr_ret__ = stem##1(variable);break; \
236 case 2: pscr_ret__ = stem##2(variable);break; \
237 case 4: pscr_ret__ = stem##4(variable);break; \
238 case 8: pscr_ret__ = stem##8(variable);break; \
239 default: \
240 __bad_size_call_parameter();break; \
241 } \
242 pscr_ret__; \
243})
244
245#define __pcpu_size_call(stem, variable, ...) \
246do { \
247 __verify_pcpu_ptr(&(variable)); \
248 switch(sizeof(variable)) { \
249 case 1: stem##1(variable, __VA_ARGS__);break; \
250 case 2: stem##2(variable, __VA_ARGS__);break; \
251 case 4: stem##4(variable, __VA_ARGS__);break; \
252 case 8: stem##8(variable, __VA_ARGS__);break; \
253 default: \
254 __bad_size_call_parameter();break; \
255 } \
256} while (0)
257
258/*
259 * Optimized manipulation for memory allocated through the per cpu
260 * allocator or for addresses of per cpu variables.
261 *
262 * These operation guarantee exclusivity of access for other operations
263 * on the *same* processor. The assumption is that per cpu data is only
264 * accessed by a single processor instance (the current one).
265 *
266 * The first group is used for accesses that must be done in a
267 * preemption safe way since we know that the context is not preempt
268 * safe. Interrupts may occur. If the interrupt modifies the variable
269 * too then RMW actions will not be reliable.
270 *
271 * The arch code can provide optimized functions in two ways:
272 *
273 * 1. Override the function completely. F.e. define this_cpu_add().
274 * The arch must then ensure that the various scalar format passed
275 * are handled correctly.
276 *
277 * 2. Provide functions for certain scalar sizes. F.e. provide
278 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte
279 * sized RMW actions. If arch code does not provide operations for
280 * a scalar size then the fallback in the generic code will be
281 * used.
282 */
283
284#define _this_cpu_generic_read(pcp) \
285({ typeof(pcp) ret__; \
286 preempt_disable(); \
287 ret__ = *this_cpu_ptr(&(pcp)); \
288 preempt_enable(); \
289 ret__; \
290})
291
292#ifndef this_cpu_read
293# ifndef this_cpu_read_1
294# define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp)
295# endif
296# ifndef this_cpu_read_2
297# define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp)
298# endif
299# ifndef this_cpu_read_4
300# define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp)
301# endif
302# ifndef this_cpu_read_8
303# define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp)
304# endif
305# define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp))
306#endif
307
308#define _this_cpu_generic_to_op(pcp, val, op) \
309do { \
310 preempt_disable(); \
311 *__this_cpu_ptr(&(pcp)) op val; \
312 preempt_enable(); \
313} while (0)
314
315#ifndef this_cpu_write
316# ifndef this_cpu_write_1
317# define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
318# endif
319# ifndef this_cpu_write_2
320# define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
321# endif
322# ifndef this_cpu_write_4
323# define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
324# endif
325# ifndef this_cpu_write_8
326# define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
327# endif
328# define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val))
329#endif
330
331#ifndef this_cpu_add
332# ifndef this_cpu_add_1
333# define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
334# endif
335# ifndef this_cpu_add_2
336# define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
337# endif
338# ifndef this_cpu_add_4
339# define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
340# endif
341# ifndef this_cpu_add_8
342# define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
343# endif
344# define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val))
345#endif
346
347#ifndef this_cpu_sub
348# define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val))
349#endif
350
351#ifndef this_cpu_inc
352# define this_cpu_inc(pcp) this_cpu_add((pcp), 1)
353#endif
354
355#ifndef this_cpu_dec
356# define this_cpu_dec(pcp) this_cpu_sub((pcp), 1)
357#endif
358
359#ifndef this_cpu_and
360# ifndef this_cpu_and_1
361# define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
362# endif
363# ifndef this_cpu_and_2
364# define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
365# endif
366# ifndef this_cpu_and_4
367# define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
368# endif
369# ifndef this_cpu_and_8
370# define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
371# endif
372# define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val))
373#endif
374
375#ifndef this_cpu_or
376# ifndef this_cpu_or_1
377# define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
378# endif
379# ifndef this_cpu_or_2
380# define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
381# endif
382# ifndef this_cpu_or_4
383# define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
384# endif
385# ifndef this_cpu_or_8
386# define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
387# endif
388# define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
389#endif
390
391#ifndef this_cpu_xor
392# ifndef this_cpu_xor_1
393# define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
394# endif
395# ifndef this_cpu_xor_2
396# define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
397# endif
398# ifndef this_cpu_xor_4
399# define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
400# endif
401# ifndef this_cpu_xor_8
402# define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
403# endif
404# define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
405#endif
406
407/*
408 * Generic percpu operations that do not require preemption handling.
409 * Either we do not care about races or the caller has the
410 * responsibility of handling preemptions issues. Arch code can still
411 * override these instructions since the arch per cpu code may be more
412 * efficient and may actually get race freeness for free (that is the
413 * case for x86 for example).
414 *
415 * If there is no other protection through preempt disable and/or
416 * disabling interupts then one of these RMW operations can show unexpected
417 * behavior because the execution thread was rescheduled on another processor
418 * or an interrupt occurred and the same percpu variable was modified from
419 * the interrupt context.
420 */
421#ifndef __this_cpu_read
422# ifndef __this_cpu_read_1
423# define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp)))
424# endif
425# ifndef __this_cpu_read_2
426# define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp)))
427# endif
428# ifndef __this_cpu_read_4
429# define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp)))
430# endif
431# ifndef __this_cpu_read_8
432# define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp)))
433# endif
434# define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp))
435#endif
436
437#define __this_cpu_generic_to_op(pcp, val, op) \
438do { \
439 *__this_cpu_ptr(&(pcp)) op val; \
440} while (0)
441
442#ifndef __this_cpu_write
443# ifndef __this_cpu_write_1
444# define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
445# endif
446# ifndef __this_cpu_write_2
447# define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
448# endif
449# ifndef __this_cpu_write_4
450# define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
451# endif
452# ifndef __this_cpu_write_8
453# define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
454# endif
455# define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val))
456#endif
457
458#ifndef __this_cpu_add
459# ifndef __this_cpu_add_1
460# define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
461# endif
462# ifndef __this_cpu_add_2
463# define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
464# endif
465# ifndef __this_cpu_add_4
466# define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
467# endif
468# ifndef __this_cpu_add_8
469# define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
470# endif
471# define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val))
472#endif
473
474#ifndef __this_cpu_sub
475# define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val))
476#endif
477
478#ifndef __this_cpu_inc
479# define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1)
480#endif
481
482#ifndef __this_cpu_dec
483# define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1)
484#endif
485
486#ifndef __this_cpu_and
487# ifndef __this_cpu_and_1
488# define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
489# endif
490# ifndef __this_cpu_and_2
491# define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
492# endif
493# ifndef __this_cpu_and_4
494# define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
495# endif
496# ifndef __this_cpu_and_8
497# define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
498# endif
499# define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val))
500#endif
501
502#ifndef __this_cpu_or
503# ifndef __this_cpu_or_1
504# define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
505# endif
506# ifndef __this_cpu_or_2
507# define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
508# endif
509# ifndef __this_cpu_or_4
510# define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
511# endif
512# ifndef __this_cpu_or_8
513# define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
514# endif
515# define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val))
516#endif
517
518#ifndef __this_cpu_xor
519# ifndef __this_cpu_xor_1
520# define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
521# endif
522# ifndef __this_cpu_xor_2
523# define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
524# endif
525# ifndef __this_cpu_xor_4
526# define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
527# endif
528# ifndef __this_cpu_xor_8
529# define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
530# endif
531# define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val))
532#endif
533
534/*
535 * IRQ safe versions of the per cpu RMW operations. Note that these operations
536 * are *not* safe against modification of the same variable from another
537 * processors (which one gets when using regular atomic operations)
538 . They are guaranteed to be atomic vs. local interrupts and
539 * preemption only.
540 */
541#define irqsafe_cpu_generic_to_op(pcp, val, op) \
542do { \
543 unsigned long flags; \
544 local_irq_save(flags); \
545 *__this_cpu_ptr(&(pcp)) op val; \
546 local_irq_restore(flags); \
547} while (0)
548
549#ifndef irqsafe_cpu_add
550# ifndef irqsafe_cpu_add_1
551# define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
552# endif
553# ifndef irqsafe_cpu_add_2
554# define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
555# endif
556# ifndef irqsafe_cpu_add_4
557# define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
558# endif
559# ifndef irqsafe_cpu_add_8
560# define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
561# endif
562# define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val))
563#endif
564
565#ifndef irqsafe_cpu_sub
566# define irqsafe_cpu_sub(pcp, val) irqsafe_cpu_add((pcp), -(val))
567#endif
568
569#ifndef irqsafe_cpu_inc
570# define irqsafe_cpu_inc(pcp) irqsafe_cpu_add((pcp), 1)
571#endif
572
573#ifndef irqsafe_cpu_dec
574# define irqsafe_cpu_dec(pcp) irqsafe_cpu_sub((pcp), 1)
575#endif
576
577#ifndef irqsafe_cpu_and
578# ifndef irqsafe_cpu_and_1
579# define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
580# endif
581# ifndef irqsafe_cpu_and_2
582# define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
583# endif
584# ifndef irqsafe_cpu_and_4
585# define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
586# endif
587# ifndef irqsafe_cpu_and_8
588# define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
589# endif
590# define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val))
591#endif
592
593#ifndef irqsafe_cpu_or
594# ifndef irqsafe_cpu_or_1
595# define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
596# endif
597# ifndef irqsafe_cpu_or_2
598# define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
599# endif
600# ifndef irqsafe_cpu_or_4
601# define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
602# endif
603# ifndef irqsafe_cpu_or_8
604# define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
605# endif
606# define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val))
607#endif
608
609#ifndef irqsafe_cpu_xor
610# ifndef irqsafe_cpu_xor_1
611# define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
612# endif
613# ifndef irqsafe_cpu_xor_2
614# define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
615# endif
616# ifndef irqsafe_cpu_xor_4
617# define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
618# endif
619# ifndef irqsafe_cpu_xor_8
620# define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
621# endif
622# define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val))
623#endif
624
246#endif /* __LINUX_PERCPU_H */ 625#endif /* __LINUX_PERCPU_H */