aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/mmzone.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/linux/mmzone.h')
-rw-r--r--include/linux/mmzone.h426
1 files changed, 426 insertions, 0 deletions
diff --git a/include/linux/mmzone.h b/include/linux/mmzone.h
new file mode 100644
index 000000000000..e530c6c092f1
--- /dev/null
+++ b/include/linux/mmzone.h
@@ -0,0 +1,426 @@
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
4#ifdef __KERNEL__
5#ifndef __ASSEMBLY__
6
7#include <linux/config.h>
8#include <linux/spinlock.h>
9#include <linux/list.h>
10#include <linux/wait.h>
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
15#include <asm/atomic.h>
16
17/* Free memory management - zoned buddy allocator. */
18#ifndef CONFIG_FORCE_MAX_ZONEORDER
19#define MAX_ORDER 11
20#else
21#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
22#endif
23
24struct free_area {
25 struct list_head free_list;
26 unsigned long nr_free;
27};
28
29struct pglist_data;
30
31/*
32 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
33 * So add a wild amount of padding here to ensure that they fall into separate
34 * cachelines. There are very few zone structures in the machine, so space
35 * consumption is not a concern here.
36 */
37#if defined(CONFIG_SMP)
38struct zone_padding {
39 char x[0];
40} ____cacheline_maxaligned_in_smp;
41#define ZONE_PADDING(name) struct zone_padding name;
42#else
43#define ZONE_PADDING(name)
44#endif
45
46struct per_cpu_pages {
47 int count; /* number of pages in the list */
48 int low; /* low watermark, refill needed */
49 int high; /* high watermark, emptying needed */
50 int batch; /* chunk size for buddy add/remove */
51 struct list_head list; /* the list of pages */
52};
53
54struct per_cpu_pageset {
55 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
56#ifdef CONFIG_NUMA
57 unsigned long numa_hit; /* allocated in intended node */
58 unsigned long numa_miss; /* allocated in non intended node */
59 unsigned long numa_foreign; /* was intended here, hit elsewhere */
60 unsigned long interleave_hit; /* interleaver prefered this zone */
61 unsigned long local_node; /* allocation from local node */
62 unsigned long other_node; /* allocation from other node */
63#endif
64} ____cacheline_aligned_in_smp;
65
66#define ZONE_DMA 0
67#define ZONE_NORMAL 1
68#define ZONE_HIGHMEM 2
69
70#define MAX_NR_ZONES 3 /* Sync this with ZONES_SHIFT */
71#define ZONES_SHIFT 2 /* ceil(log2(MAX_NR_ZONES)) */
72
73
74/*
75 * When a memory allocation must conform to specific limitations (such
76 * as being suitable for DMA) the caller will pass in hints to the
77 * allocator in the gfp_mask, in the zone modifier bits. These bits
78 * are used to select a priority ordered list of memory zones which
79 * match the requested limits. GFP_ZONEMASK defines which bits within
80 * the gfp_mask should be considered as zone modifiers. Each valid
81 * combination of the zone modifier bits has a corresponding list
82 * of zones (in node_zonelists). Thus for two zone modifiers there
83 * will be a maximum of 4 (2 ** 2) zonelists, for 3 modifiers there will
84 * be 8 (2 ** 3) zonelists. GFP_ZONETYPES defines the number of possible
85 * combinations of zone modifiers in "zone modifier space".
86 */
87#define GFP_ZONEMASK 0x03
88/*
89 * As an optimisation any zone modifier bits which are only valid when
90 * no other zone modifier bits are set (loners) should be placed in
91 * the highest order bits of this field. This allows us to reduce the
92 * extent of the zonelists thus saving space. For example in the case
93 * of three zone modifier bits, we could require up to eight zonelists.
94 * If the left most zone modifier is a "loner" then the highest valid
95 * zonelist would be four allowing us to allocate only five zonelists.
96 * Use the first form when the left most bit is not a "loner", otherwise
97 * use the second.
98 */
99/* #define GFP_ZONETYPES (GFP_ZONEMASK + 1) */ /* Non-loner */
100#define GFP_ZONETYPES ((GFP_ZONEMASK + 1) / 2 + 1) /* Loner */
101
102/*
103 * On machines where it is needed (eg PCs) we divide physical memory
104 * into multiple physical zones. On a PC we have 3 zones:
105 *
106 * ZONE_DMA < 16 MB ISA DMA capable memory
107 * ZONE_NORMAL 16-896 MB direct mapped by the kernel
108 * ZONE_HIGHMEM > 896 MB only page cache and user processes
109 */
110
111struct zone {
112 /* Fields commonly accessed by the page allocator */
113 unsigned long free_pages;
114 unsigned long pages_min, pages_low, pages_high;
115 /*
116 * We don't know if the memory that we're going to allocate will be freeable
117 * or/and it will be released eventually, so to avoid totally wasting several
118 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
119 * to run OOM on the lower zones despite there's tons of freeable ram
120 * on the higher zones). This array is recalculated at runtime if the
121 * sysctl_lowmem_reserve_ratio sysctl changes.
122 */
123 unsigned long lowmem_reserve[MAX_NR_ZONES];
124
125 struct per_cpu_pageset pageset[NR_CPUS];
126
127 /*
128 * free areas of different sizes
129 */
130 spinlock_t lock;
131 struct free_area free_area[MAX_ORDER];
132
133
134 ZONE_PADDING(_pad1_)
135
136 /* Fields commonly accessed by the page reclaim scanner */
137 spinlock_t lru_lock;
138 struct list_head active_list;
139 struct list_head inactive_list;
140 unsigned long nr_scan_active;
141 unsigned long nr_scan_inactive;
142 unsigned long nr_active;
143 unsigned long nr_inactive;
144 unsigned long pages_scanned; /* since last reclaim */
145 int all_unreclaimable; /* All pages pinned */
146
147 /*
148 * prev_priority holds the scanning priority for this zone. It is
149 * defined as the scanning priority at which we achieved our reclaim
150 * target at the previous try_to_free_pages() or balance_pgdat()
151 * invokation.
152 *
153 * We use prev_priority as a measure of how much stress page reclaim is
154 * under - it drives the swappiness decision: whether to unmap mapped
155 * pages.
156 *
157 * temp_priority is used to remember the scanning priority at which
158 * this zone was successfully refilled to free_pages == pages_high.
159 *
160 * Access to both these fields is quite racy even on uniprocessor. But
161 * it is expected to average out OK.
162 */
163 int temp_priority;
164 int prev_priority;
165
166
167 ZONE_PADDING(_pad2_)
168 /* Rarely used or read-mostly fields */
169
170 /*
171 * wait_table -- the array holding the hash table
172 * wait_table_size -- the size of the hash table array
173 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
174 *
175 * The purpose of all these is to keep track of the people
176 * waiting for a page to become available and make them
177 * runnable again when possible. The trouble is that this
178 * consumes a lot of space, especially when so few things
179 * wait on pages at a given time. So instead of using
180 * per-page waitqueues, we use a waitqueue hash table.
181 *
182 * The bucket discipline is to sleep on the same queue when
183 * colliding and wake all in that wait queue when removing.
184 * When something wakes, it must check to be sure its page is
185 * truly available, a la thundering herd. The cost of a
186 * collision is great, but given the expected load of the
187 * table, they should be so rare as to be outweighed by the
188 * benefits from the saved space.
189 *
190 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
191 * primary users of these fields, and in mm/page_alloc.c
192 * free_area_init_core() performs the initialization of them.
193 */
194 wait_queue_head_t * wait_table;
195 unsigned long wait_table_size;
196 unsigned long wait_table_bits;
197
198 /*
199 * Discontig memory support fields.
200 */
201 struct pglist_data *zone_pgdat;
202 struct page *zone_mem_map;
203 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
204 unsigned long zone_start_pfn;
205
206 unsigned long spanned_pages; /* total size, including holes */
207 unsigned long present_pages; /* amount of memory (excluding holes) */
208
209 /*
210 * rarely used fields:
211 */
212 char *name;
213} ____cacheline_maxaligned_in_smp;
214
215
216/*
217 * The "priority" of VM scanning is how much of the queues we will scan in one
218 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
219 * queues ("queue_length >> 12") during an aging round.
220 */
221#define DEF_PRIORITY 12
222
223/*
224 * One allocation request operates on a zonelist. A zonelist
225 * is a list of zones, the first one is the 'goal' of the
226 * allocation, the other zones are fallback zones, in decreasing
227 * priority.
228 *
229 * Right now a zonelist takes up less than a cacheline. We never
230 * modify it apart from boot-up, and only a few indices are used,
231 * so despite the zonelist table being relatively big, the cache
232 * footprint of this construct is very small.
233 */
234struct zonelist {
235 struct zone *zones[MAX_NUMNODES * MAX_NR_ZONES + 1]; // NULL delimited
236};
237
238
239/*
240 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
241 * (mostly NUMA machines?) to denote a higher-level memory zone than the
242 * zone denotes.
243 *
244 * On NUMA machines, each NUMA node would have a pg_data_t to describe
245 * it's memory layout.
246 *
247 * Memory statistics and page replacement data structures are maintained on a
248 * per-zone basis.
249 */
250struct bootmem_data;
251typedef struct pglist_data {
252 struct zone node_zones[MAX_NR_ZONES];
253 struct zonelist node_zonelists[GFP_ZONETYPES];
254 int nr_zones;
255 struct page *node_mem_map;
256 struct bootmem_data *bdata;
257 unsigned long node_start_pfn;
258 unsigned long node_present_pages; /* total number of physical pages */
259 unsigned long node_spanned_pages; /* total size of physical page
260 range, including holes */
261 int node_id;
262 struct pglist_data *pgdat_next;
263 wait_queue_head_t kswapd_wait;
264 struct task_struct *kswapd;
265 int kswapd_max_order;
266} pg_data_t;
267
268#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
269#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
270
271extern struct pglist_data *pgdat_list;
272
273void __get_zone_counts(unsigned long *active, unsigned long *inactive,
274 unsigned long *free, struct pglist_data *pgdat);
275void get_zone_counts(unsigned long *active, unsigned long *inactive,
276 unsigned long *free);
277void build_all_zonelists(void);
278void wakeup_kswapd(struct zone *zone, int order);
279int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
280 int alloc_type, int can_try_harder, int gfp_high);
281
282#ifdef CONFIG_HAVE_MEMORY_PRESENT
283void memory_present(int nid, unsigned long start, unsigned long end);
284#else
285static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
286#endif
287
288#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
289unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
290#endif
291
292/*
293 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
294 */
295#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
296
297/**
298 * for_each_pgdat - helper macro to iterate over all nodes
299 * @pgdat - pointer to a pg_data_t variable
300 *
301 * Meant to help with common loops of the form
302 * pgdat = pgdat_list;
303 * while(pgdat) {
304 * ...
305 * pgdat = pgdat->pgdat_next;
306 * }
307 */
308#define for_each_pgdat(pgdat) \
309 for (pgdat = pgdat_list; pgdat; pgdat = pgdat->pgdat_next)
310
311/*
312 * next_zone - helper magic for for_each_zone()
313 * Thanks to William Lee Irwin III for this piece of ingenuity.
314 */
315static inline struct zone *next_zone(struct zone *zone)
316{
317 pg_data_t *pgdat = zone->zone_pgdat;
318
319 if (zone < pgdat->node_zones + MAX_NR_ZONES - 1)
320 zone++;
321 else if (pgdat->pgdat_next) {
322 pgdat = pgdat->pgdat_next;
323 zone = pgdat->node_zones;
324 } else
325 zone = NULL;
326
327 return zone;
328}
329
330/**
331 * for_each_zone - helper macro to iterate over all memory zones
332 * @zone - pointer to struct zone variable
333 *
334 * The user only needs to declare the zone variable, for_each_zone
335 * fills it in. This basically means for_each_zone() is an
336 * easier to read version of this piece of code:
337 *
338 * for (pgdat = pgdat_list; pgdat; pgdat = pgdat->node_next)
339 * for (i = 0; i < MAX_NR_ZONES; ++i) {
340 * struct zone * z = pgdat->node_zones + i;
341 * ...
342 * }
343 * }
344 */
345#define for_each_zone(zone) \
346 for (zone = pgdat_list->node_zones; zone; zone = next_zone(zone))
347
348static inline int is_highmem_idx(int idx)
349{
350 return (idx == ZONE_HIGHMEM);
351}
352
353static inline int is_normal_idx(int idx)
354{
355 return (idx == ZONE_NORMAL);
356}
357/**
358 * is_highmem - helper function to quickly check if a struct zone is a
359 * highmem zone or not. This is an attempt to keep references
360 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
361 * @zone - pointer to struct zone variable
362 */
363static inline int is_highmem(struct zone *zone)
364{
365 return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM;
366}
367
368static inline int is_normal(struct zone *zone)
369{
370 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
371}
372
373/* These two functions are used to setup the per zone pages min values */
374struct ctl_table;
375struct file;
376int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
377 void __user *, size_t *, loff_t *);
378extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
379int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
380 void __user *, size_t *, loff_t *);
381
382#include <linux/topology.h>
383/* Returns the number of the current Node. */
384#define numa_node_id() (cpu_to_node(_smp_processor_id()))
385
386#ifndef CONFIG_DISCONTIGMEM
387
388extern struct pglist_data contig_page_data;
389#define NODE_DATA(nid) (&contig_page_data)
390#define NODE_MEM_MAP(nid) mem_map
391#define MAX_NODES_SHIFT 1
392#define pfn_to_nid(pfn) (0)
393
394#else /* CONFIG_DISCONTIGMEM */
395
396#include <asm/mmzone.h>
397
398#if BITS_PER_LONG == 32 || defined(ARCH_HAS_ATOMIC_UNSIGNED)
399/*
400 * with 32 bit page->flags field, we reserve 8 bits for node/zone info.
401 * there are 3 zones (2 bits) and this leaves 8-2=6 bits for nodes.
402 */
403#define MAX_NODES_SHIFT 6
404#elif BITS_PER_LONG == 64
405/*
406 * with 64 bit flags field, there's plenty of room.
407 */
408#define MAX_NODES_SHIFT 10
409#endif
410
411#endif /* !CONFIG_DISCONTIGMEM */
412
413#if NODES_SHIFT > MAX_NODES_SHIFT
414#error NODES_SHIFT > MAX_NODES_SHIFT
415#endif
416
417/* There are currently 3 zones: DMA, Normal & Highmem, thus we need 2 bits */
418#define MAX_ZONES_SHIFT 2
419
420#if ZONES_SHIFT > MAX_ZONES_SHIFT
421#error ZONES_SHIFT > MAX_ZONES_SHIFT
422#endif
423
424#endif /* !__ASSEMBLY__ */
425#endif /* __KERNEL__ */
426#endif /* _LINUX_MMZONE_H */