aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/ktime.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/linux/ktime.h')
-rw-r--r--include/linux/ktime.h284
1 files changed, 284 insertions, 0 deletions
diff --git a/include/linux/ktime.h b/include/linux/ktime.h
new file mode 100644
index 000000000000..1bd6552cc341
--- /dev/null
+++ b/include/linux/ktime.h
@@ -0,0 +1,284 @@
1/*
2 * include/linux/ktime.h
3 *
4 * ktime_t - nanosecond-resolution time format.
5 *
6 * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
7 * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
8 *
9 * data type definitions, declarations, prototypes and macros.
10 *
11 * Started by: Thomas Gleixner and Ingo Molnar
12 *
13 * For licencing details see kernel-base/COPYING
14 */
15#ifndef _LINUX_KTIME_H
16#define _LINUX_KTIME_H
17
18#include <linux/time.h>
19#include <linux/jiffies.h>
20
21/*
22 * ktime_t:
23 *
24 * On 64-bit CPUs a single 64-bit variable is used to store the hrtimers
25 * internal representation of time values in scalar nanoseconds. The
26 * design plays out best on 64-bit CPUs, where most conversions are
27 * NOPs and most arithmetic ktime_t operations are plain arithmetic
28 * operations.
29 *
30 * On 32-bit CPUs an optimized representation of the timespec structure
31 * is used to avoid expensive conversions from and to timespecs. The
32 * endian-aware order of the tv struct members is choosen to allow
33 * mathematical operations on the tv64 member of the union too, which
34 * for certain operations produces better code.
35 *
36 * For architectures with efficient support for 64/32-bit conversions the
37 * plain scalar nanosecond based representation can be selected by the
38 * config switch CONFIG_KTIME_SCALAR.
39 */
40typedef union {
41 s64 tv64;
42#if BITS_PER_LONG != 64 && !defined(CONFIG_KTIME_SCALAR)
43 struct {
44# ifdef __BIG_ENDIAN
45 s32 sec, nsec;
46# else
47 s32 nsec, sec;
48# endif
49 } tv;
50#endif
51} ktime_t;
52
53#define KTIME_MAX (~((u64)1 << 63))
54
55/*
56 * ktime_t definitions when using the 64-bit scalar representation:
57 */
58
59#if (BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)
60
61/* Define a ktime_t variable and initialize it to zero: */
62#define DEFINE_KTIME(kt) ktime_t kt = { .tv64 = 0 }
63
64/**
65 * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
66 *
67 * @secs: seconds to set
68 * @nsecs: nanoseconds to set
69 *
70 * Return the ktime_t representation of the value
71 */
72static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
73{
74 return (ktime_t) { .tv64 = (s64)secs * NSEC_PER_SEC + (s64)nsecs };
75}
76
77/* Subtract two ktime_t variables. rem = lhs -rhs: */
78#define ktime_sub(lhs, rhs) \
79 ({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; })
80
81/* Add two ktime_t variables. res = lhs + rhs: */
82#define ktime_add(lhs, rhs) \
83 ({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; })
84
85/*
86 * Add a ktime_t variable and a scalar nanosecond value.
87 * res = kt + nsval:
88 */
89#define ktime_add_ns(kt, nsval) \
90 ({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; })
91
92/* convert a timespec to ktime_t format: */
93#define timespec_to_ktime(ts) ktime_set((ts).tv_sec, (ts).tv_nsec)
94
95/* convert a timeval to ktime_t format: */
96#define timeval_to_ktime(tv) ktime_set((tv).tv_sec, (tv).tv_usec * 1000)
97
98/* Map the ktime_t to timespec conversion to ns_to_timespec function */
99#define ktime_to_timespec(kt) ns_to_timespec((kt).tv64)
100
101/* Map the ktime_t to timeval conversion to ns_to_timeval function */
102#define ktime_to_timeval(kt) ns_to_timeval((kt).tv64)
103
104/* Map the ktime_t to clock_t conversion to the inline in jiffies.h: */
105#define ktime_to_clock_t(kt) nsec_to_clock_t((kt).tv64)
106
107/* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
108#define ktime_to_ns(kt) ((kt).tv64)
109
110#else
111
112/*
113 * Helper macros/inlines to get the ktime_t math right in the timespec
114 * representation. The macros are sometimes ugly - their actual use is
115 * pretty okay-ish, given the circumstances. We do all this for
116 * performance reasons. The pure scalar nsec_t based code was nice and
117 * simple, but created too many 64-bit / 32-bit conversions and divisions.
118 *
119 * Be especially aware that negative values are represented in a way
120 * that the tv.sec field is negative and the tv.nsec field is greater
121 * or equal to zero but less than nanoseconds per second. This is the
122 * same representation which is used by timespecs.
123 *
124 * tv.sec < 0 and 0 >= tv.nsec < NSEC_PER_SEC
125 */
126
127/* Define a ktime_t variable and initialize it to zero: */
128#define DEFINE_KTIME(kt) ktime_t kt = { .tv64 = 0 }
129
130/* Set a ktime_t variable to a value in sec/nsec representation: */
131static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
132{
133 return (ktime_t) { .tv = { .sec = secs, .nsec = nsecs } };
134}
135
136/**
137 * ktime_sub - subtract two ktime_t variables
138 *
139 * @lhs: minuend
140 * @rhs: subtrahend
141 *
142 * Returns the remainder of the substraction
143 */
144static inline ktime_t ktime_sub(const ktime_t lhs, const ktime_t rhs)
145{
146 ktime_t res;
147
148 res.tv64 = lhs.tv64 - rhs.tv64;
149 if (res.tv.nsec < 0)
150 res.tv.nsec += NSEC_PER_SEC;
151
152 return res;
153}
154
155/**
156 * ktime_add - add two ktime_t variables
157 *
158 * @add1: addend1
159 * @add2: addend2
160 *
161 * Returns the sum of addend1 and addend2
162 */
163static inline ktime_t ktime_add(const ktime_t add1, const ktime_t add2)
164{
165 ktime_t res;
166
167 res.tv64 = add1.tv64 + add2.tv64;
168 /*
169 * performance trick: the (u32) -NSEC gives 0x00000000Fxxxxxxx
170 * so we subtract NSEC_PER_SEC and add 1 to the upper 32 bit.
171 *
172 * it's equivalent to:
173 * tv.nsec -= NSEC_PER_SEC
174 * tv.sec ++;
175 */
176 if (res.tv.nsec >= NSEC_PER_SEC)
177 res.tv64 += (u32)-NSEC_PER_SEC;
178
179 return res;
180}
181
182/**
183 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
184 *
185 * @kt: addend
186 * @nsec: the scalar nsec value to add
187 *
188 * Returns the sum of kt and nsec in ktime_t format
189 */
190extern ktime_t ktime_add_ns(const ktime_t kt, u64 nsec);
191
192/**
193 * timespec_to_ktime - convert a timespec to ktime_t format
194 *
195 * @ts: the timespec variable to convert
196 *
197 * Returns a ktime_t variable with the converted timespec value
198 */
199static inline ktime_t timespec_to_ktime(const struct timespec ts)
200{
201 return (ktime_t) { .tv = { .sec = (s32)ts.tv_sec,
202 .nsec = (s32)ts.tv_nsec } };
203}
204
205/**
206 * timeval_to_ktime - convert a timeval to ktime_t format
207 *
208 * @tv: the timeval variable to convert
209 *
210 * Returns a ktime_t variable with the converted timeval value
211 */
212static inline ktime_t timeval_to_ktime(const struct timeval tv)
213{
214 return (ktime_t) { .tv = { .sec = (s32)tv.tv_sec,
215 .nsec = (s32)tv.tv_usec * 1000 } };
216}
217
218/**
219 * ktime_to_timespec - convert a ktime_t variable to timespec format
220 *
221 * @kt: the ktime_t variable to convert
222 *
223 * Returns the timespec representation of the ktime value
224 */
225static inline struct timespec ktime_to_timespec(const ktime_t kt)
226{
227 return (struct timespec) { .tv_sec = (time_t) kt.tv.sec,
228 .tv_nsec = (long) kt.tv.nsec };
229}
230
231/**
232 * ktime_to_timeval - convert a ktime_t variable to timeval format
233 *
234 * @kt: the ktime_t variable to convert
235 *
236 * Returns the timeval representation of the ktime value
237 */
238static inline struct timeval ktime_to_timeval(const ktime_t kt)
239{
240 return (struct timeval) {
241 .tv_sec = (time_t) kt.tv.sec,
242 .tv_usec = (suseconds_t) (kt.tv.nsec / NSEC_PER_USEC) };
243}
244
245/**
246 * ktime_to_clock_t - convert a ktime_t variable to clock_t format
247 * @kt: the ktime_t variable to convert
248 *
249 * Returns a clock_t variable with the converted value
250 */
251static inline clock_t ktime_to_clock_t(const ktime_t kt)
252{
253 return nsec_to_clock_t( (u64) kt.tv.sec * NSEC_PER_SEC + kt.tv.nsec);
254}
255
256/**
257 * ktime_to_ns - convert a ktime_t variable to scalar nanoseconds
258 * @kt: the ktime_t variable to convert
259 *
260 * Returns the scalar nanoseconds representation of kt
261 */
262static inline u64 ktime_to_ns(const ktime_t kt)
263{
264 return (u64) kt.tv.sec * NSEC_PER_SEC + kt.tv.nsec;
265}
266
267#endif
268
269/*
270 * The resolution of the clocks. The resolution value is returned in
271 * the clock_getres() system call to give application programmers an
272 * idea of the (in)accuracy of timers. Timer values are rounded up to
273 * this resolution values.
274 */
275#define KTIME_REALTIME_RES (ktime_t){ .tv64 = TICK_NSEC }
276#define KTIME_MONOTONIC_RES (ktime_t){ .tv64 = TICK_NSEC }
277
278/* Get the monotonic time in timespec format: */
279extern void ktime_get_ts(struct timespec *ts);
280
281/* Get the real (wall-) time in timespec format: */
282#define ktime_get_real_ts(ts) getnstimeofday(ts)
283
284#endif