diff options
Diffstat (limited to 'include/linux/ktime.h')
-rw-r--r-- | include/linux/ktime.h | 284 |
1 files changed, 284 insertions, 0 deletions
diff --git a/include/linux/ktime.h b/include/linux/ktime.h new file mode 100644 index 000000000000..1bd6552cc341 --- /dev/null +++ b/include/linux/ktime.h | |||
@@ -0,0 +1,284 @@ | |||
1 | /* | ||
2 | * include/linux/ktime.h | ||
3 | * | ||
4 | * ktime_t - nanosecond-resolution time format. | ||
5 | * | ||
6 | * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de> | ||
7 | * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar | ||
8 | * | ||
9 | * data type definitions, declarations, prototypes and macros. | ||
10 | * | ||
11 | * Started by: Thomas Gleixner and Ingo Molnar | ||
12 | * | ||
13 | * For licencing details see kernel-base/COPYING | ||
14 | */ | ||
15 | #ifndef _LINUX_KTIME_H | ||
16 | #define _LINUX_KTIME_H | ||
17 | |||
18 | #include <linux/time.h> | ||
19 | #include <linux/jiffies.h> | ||
20 | |||
21 | /* | ||
22 | * ktime_t: | ||
23 | * | ||
24 | * On 64-bit CPUs a single 64-bit variable is used to store the hrtimers | ||
25 | * internal representation of time values in scalar nanoseconds. The | ||
26 | * design plays out best on 64-bit CPUs, where most conversions are | ||
27 | * NOPs and most arithmetic ktime_t operations are plain arithmetic | ||
28 | * operations. | ||
29 | * | ||
30 | * On 32-bit CPUs an optimized representation of the timespec structure | ||
31 | * is used to avoid expensive conversions from and to timespecs. The | ||
32 | * endian-aware order of the tv struct members is choosen to allow | ||
33 | * mathematical operations on the tv64 member of the union too, which | ||
34 | * for certain operations produces better code. | ||
35 | * | ||
36 | * For architectures with efficient support for 64/32-bit conversions the | ||
37 | * plain scalar nanosecond based representation can be selected by the | ||
38 | * config switch CONFIG_KTIME_SCALAR. | ||
39 | */ | ||
40 | typedef union { | ||
41 | s64 tv64; | ||
42 | #if BITS_PER_LONG != 64 && !defined(CONFIG_KTIME_SCALAR) | ||
43 | struct { | ||
44 | # ifdef __BIG_ENDIAN | ||
45 | s32 sec, nsec; | ||
46 | # else | ||
47 | s32 nsec, sec; | ||
48 | # endif | ||
49 | } tv; | ||
50 | #endif | ||
51 | } ktime_t; | ||
52 | |||
53 | #define KTIME_MAX (~((u64)1 << 63)) | ||
54 | |||
55 | /* | ||
56 | * ktime_t definitions when using the 64-bit scalar representation: | ||
57 | */ | ||
58 | |||
59 | #if (BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR) | ||
60 | |||
61 | /* Define a ktime_t variable and initialize it to zero: */ | ||
62 | #define DEFINE_KTIME(kt) ktime_t kt = { .tv64 = 0 } | ||
63 | |||
64 | /** | ||
65 | * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value | ||
66 | * | ||
67 | * @secs: seconds to set | ||
68 | * @nsecs: nanoseconds to set | ||
69 | * | ||
70 | * Return the ktime_t representation of the value | ||
71 | */ | ||
72 | static inline ktime_t ktime_set(const long secs, const unsigned long nsecs) | ||
73 | { | ||
74 | return (ktime_t) { .tv64 = (s64)secs * NSEC_PER_SEC + (s64)nsecs }; | ||
75 | } | ||
76 | |||
77 | /* Subtract two ktime_t variables. rem = lhs -rhs: */ | ||
78 | #define ktime_sub(lhs, rhs) \ | ||
79 | ({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; }) | ||
80 | |||
81 | /* Add two ktime_t variables. res = lhs + rhs: */ | ||
82 | #define ktime_add(lhs, rhs) \ | ||
83 | ({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; }) | ||
84 | |||
85 | /* | ||
86 | * Add a ktime_t variable and a scalar nanosecond value. | ||
87 | * res = kt + nsval: | ||
88 | */ | ||
89 | #define ktime_add_ns(kt, nsval) \ | ||
90 | ({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; }) | ||
91 | |||
92 | /* convert a timespec to ktime_t format: */ | ||
93 | #define timespec_to_ktime(ts) ktime_set((ts).tv_sec, (ts).tv_nsec) | ||
94 | |||
95 | /* convert a timeval to ktime_t format: */ | ||
96 | #define timeval_to_ktime(tv) ktime_set((tv).tv_sec, (tv).tv_usec * 1000) | ||
97 | |||
98 | /* Map the ktime_t to timespec conversion to ns_to_timespec function */ | ||
99 | #define ktime_to_timespec(kt) ns_to_timespec((kt).tv64) | ||
100 | |||
101 | /* Map the ktime_t to timeval conversion to ns_to_timeval function */ | ||
102 | #define ktime_to_timeval(kt) ns_to_timeval((kt).tv64) | ||
103 | |||
104 | /* Map the ktime_t to clock_t conversion to the inline in jiffies.h: */ | ||
105 | #define ktime_to_clock_t(kt) nsec_to_clock_t((kt).tv64) | ||
106 | |||
107 | /* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */ | ||
108 | #define ktime_to_ns(kt) ((kt).tv64) | ||
109 | |||
110 | #else | ||
111 | |||
112 | /* | ||
113 | * Helper macros/inlines to get the ktime_t math right in the timespec | ||
114 | * representation. The macros are sometimes ugly - their actual use is | ||
115 | * pretty okay-ish, given the circumstances. We do all this for | ||
116 | * performance reasons. The pure scalar nsec_t based code was nice and | ||
117 | * simple, but created too many 64-bit / 32-bit conversions and divisions. | ||
118 | * | ||
119 | * Be especially aware that negative values are represented in a way | ||
120 | * that the tv.sec field is negative and the tv.nsec field is greater | ||
121 | * or equal to zero but less than nanoseconds per second. This is the | ||
122 | * same representation which is used by timespecs. | ||
123 | * | ||
124 | * tv.sec < 0 and 0 >= tv.nsec < NSEC_PER_SEC | ||
125 | */ | ||
126 | |||
127 | /* Define a ktime_t variable and initialize it to zero: */ | ||
128 | #define DEFINE_KTIME(kt) ktime_t kt = { .tv64 = 0 } | ||
129 | |||
130 | /* Set a ktime_t variable to a value in sec/nsec representation: */ | ||
131 | static inline ktime_t ktime_set(const long secs, const unsigned long nsecs) | ||
132 | { | ||
133 | return (ktime_t) { .tv = { .sec = secs, .nsec = nsecs } }; | ||
134 | } | ||
135 | |||
136 | /** | ||
137 | * ktime_sub - subtract two ktime_t variables | ||
138 | * | ||
139 | * @lhs: minuend | ||
140 | * @rhs: subtrahend | ||
141 | * | ||
142 | * Returns the remainder of the substraction | ||
143 | */ | ||
144 | static inline ktime_t ktime_sub(const ktime_t lhs, const ktime_t rhs) | ||
145 | { | ||
146 | ktime_t res; | ||
147 | |||
148 | res.tv64 = lhs.tv64 - rhs.tv64; | ||
149 | if (res.tv.nsec < 0) | ||
150 | res.tv.nsec += NSEC_PER_SEC; | ||
151 | |||
152 | return res; | ||
153 | } | ||
154 | |||
155 | /** | ||
156 | * ktime_add - add two ktime_t variables | ||
157 | * | ||
158 | * @add1: addend1 | ||
159 | * @add2: addend2 | ||
160 | * | ||
161 | * Returns the sum of addend1 and addend2 | ||
162 | */ | ||
163 | static inline ktime_t ktime_add(const ktime_t add1, const ktime_t add2) | ||
164 | { | ||
165 | ktime_t res; | ||
166 | |||
167 | res.tv64 = add1.tv64 + add2.tv64; | ||
168 | /* | ||
169 | * performance trick: the (u32) -NSEC gives 0x00000000Fxxxxxxx | ||
170 | * so we subtract NSEC_PER_SEC and add 1 to the upper 32 bit. | ||
171 | * | ||
172 | * it's equivalent to: | ||
173 | * tv.nsec -= NSEC_PER_SEC | ||
174 | * tv.sec ++; | ||
175 | */ | ||
176 | if (res.tv.nsec >= NSEC_PER_SEC) | ||
177 | res.tv64 += (u32)-NSEC_PER_SEC; | ||
178 | |||
179 | return res; | ||
180 | } | ||
181 | |||
182 | /** | ||
183 | * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable | ||
184 | * | ||
185 | * @kt: addend | ||
186 | * @nsec: the scalar nsec value to add | ||
187 | * | ||
188 | * Returns the sum of kt and nsec in ktime_t format | ||
189 | */ | ||
190 | extern ktime_t ktime_add_ns(const ktime_t kt, u64 nsec); | ||
191 | |||
192 | /** | ||
193 | * timespec_to_ktime - convert a timespec to ktime_t format | ||
194 | * | ||
195 | * @ts: the timespec variable to convert | ||
196 | * | ||
197 | * Returns a ktime_t variable with the converted timespec value | ||
198 | */ | ||
199 | static inline ktime_t timespec_to_ktime(const struct timespec ts) | ||
200 | { | ||
201 | return (ktime_t) { .tv = { .sec = (s32)ts.tv_sec, | ||
202 | .nsec = (s32)ts.tv_nsec } }; | ||
203 | } | ||
204 | |||
205 | /** | ||
206 | * timeval_to_ktime - convert a timeval to ktime_t format | ||
207 | * | ||
208 | * @tv: the timeval variable to convert | ||
209 | * | ||
210 | * Returns a ktime_t variable with the converted timeval value | ||
211 | */ | ||
212 | static inline ktime_t timeval_to_ktime(const struct timeval tv) | ||
213 | { | ||
214 | return (ktime_t) { .tv = { .sec = (s32)tv.tv_sec, | ||
215 | .nsec = (s32)tv.tv_usec * 1000 } }; | ||
216 | } | ||
217 | |||
218 | /** | ||
219 | * ktime_to_timespec - convert a ktime_t variable to timespec format | ||
220 | * | ||
221 | * @kt: the ktime_t variable to convert | ||
222 | * | ||
223 | * Returns the timespec representation of the ktime value | ||
224 | */ | ||
225 | static inline struct timespec ktime_to_timespec(const ktime_t kt) | ||
226 | { | ||
227 | return (struct timespec) { .tv_sec = (time_t) kt.tv.sec, | ||
228 | .tv_nsec = (long) kt.tv.nsec }; | ||
229 | } | ||
230 | |||
231 | /** | ||
232 | * ktime_to_timeval - convert a ktime_t variable to timeval format | ||
233 | * | ||
234 | * @kt: the ktime_t variable to convert | ||
235 | * | ||
236 | * Returns the timeval representation of the ktime value | ||
237 | */ | ||
238 | static inline struct timeval ktime_to_timeval(const ktime_t kt) | ||
239 | { | ||
240 | return (struct timeval) { | ||
241 | .tv_sec = (time_t) kt.tv.sec, | ||
242 | .tv_usec = (suseconds_t) (kt.tv.nsec / NSEC_PER_USEC) }; | ||
243 | } | ||
244 | |||
245 | /** | ||
246 | * ktime_to_clock_t - convert a ktime_t variable to clock_t format | ||
247 | * @kt: the ktime_t variable to convert | ||
248 | * | ||
249 | * Returns a clock_t variable with the converted value | ||
250 | */ | ||
251 | static inline clock_t ktime_to_clock_t(const ktime_t kt) | ||
252 | { | ||
253 | return nsec_to_clock_t( (u64) kt.tv.sec * NSEC_PER_SEC + kt.tv.nsec); | ||
254 | } | ||
255 | |||
256 | /** | ||
257 | * ktime_to_ns - convert a ktime_t variable to scalar nanoseconds | ||
258 | * @kt: the ktime_t variable to convert | ||
259 | * | ||
260 | * Returns the scalar nanoseconds representation of kt | ||
261 | */ | ||
262 | static inline u64 ktime_to_ns(const ktime_t kt) | ||
263 | { | ||
264 | return (u64) kt.tv.sec * NSEC_PER_SEC + kt.tv.nsec; | ||
265 | } | ||
266 | |||
267 | #endif | ||
268 | |||
269 | /* | ||
270 | * The resolution of the clocks. The resolution value is returned in | ||
271 | * the clock_getres() system call to give application programmers an | ||
272 | * idea of the (in)accuracy of timers. Timer values are rounded up to | ||
273 | * this resolution values. | ||
274 | */ | ||
275 | #define KTIME_REALTIME_RES (ktime_t){ .tv64 = TICK_NSEC } | ||
276 | #define KTIME_MONOTONIC_RES (ktime_t){ .tv64 = TICK_NSEC } | ||
277 | |||
278 | /* Get the monotonic time in timespec format: */ | ||
279 | extern void ktime_get_ts(struct timespec *ts); | ||
280 | |||
281 | /* Get the real (wall-) time in timespec format: */ | ||
282 | #define ktime_get_real_ts(ts) getnstimeofday(ts) | ||
283 | |||
284 | #endif | ||