diff options
Diffstat (limited to 'include/asm-x86/pgtable_32.h')
-rw-r--r-- | include/asm-x86/pgtable_32.h | 512 |
1 files changed, 512 insertions, 0 deletions
diff --git a/include/asm-x86/pgtable_32.h b/include/asm-x86/pgtable_32.h new file mode 100644 index 000000000000..c7fefa6b12fd --- /dev/null +++ b/include/asm-x86/pgtable_32.h | |||
@@ -0,0 +1,512 @@ | |||
1 | #ifndef _I386_PGTABLE_H | ||
2 | #define _I386_PGTABLE_H | ||
3 | |||
4 | |||
5 | /* | ||
6 | * The Linux memory management assumes a three-level page table setup. On | ||
7 | * the i386, we use that, but "fold" the mid level into the top-level page | ||
8 | * table, so that we physically have the same two-level page table as the | ||
9 | * i386 mmu expects. | ||
10 | * | ||
11 | * This file contains the functions and defines necessary to modify and use | ||
12 | * the i386 page table tree. | ||
13 | */ | ||
14 | #ifndef __ASSEMBLY__ | ||
15 | #include <asm/processor.h> | ||
16 | #include <asm/fixmap.h> | ||
17 | #include <linux/threads.h> | ||
18 | #include <asm/paravirt.h> | ||
19 | |||
20 | #ifndef _I386_BITOPS_H | ||
21 | #include <asm/bitops.h> | ||
22 | #endif | ||
23 | |||
24 | #include <linux/slab.h> | ||
25 | #include <linux/list.h> | ||
26 | #include <linux/spinlock.h> | ||
27 | |||
28 | struct mm_struct; | ||
29 | struct vm_area_struct; | ||
30 | |||
31 | /* | ||
32 | * ZERO_PAGE is a global shared page that is always zero: used | ||
33 | * for zero-mapped memory areas etc.. | ||
34 | */ | ||
35 | #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) | ||
36 | extern unsigned long empty_zero_page[1024]; | ||
37 | extern pgd_t swapper_pg_dir[1024]; | ||
38 | extern struct kmem_cache *pmd_cache; | ||
39 | extern spinlock_t pgd_lock; | ||
40 | extern struct page *pgd_list; | ||
41 | void check_pgt_cache(void); | ||
42 | |||
43 | void pmd_ctor(void *, struct kmem_cache *, unsigned long); | ||
44 | void pgtable_cache_init(void); | ||
45 | void paging_init(void); | ||
46 | |||
47 | |||
48 | /* | ||
49 | * The Linux x86 paging architecture is 'compile-time dual-mode', it | ||
50 | * implements both the traditional 2-level x86 page tables and the | ||
51 | * newer 3-level PAE-mode page tables. | ||
52 | */ | ||
53 | #ifdef CONFIG_X86_PAE | ||
54 | # include <asm/pgtable-3level-defs.h> | ||
55 | # define PMD_SIZE (1UL << PMD_SHIFT) | ||
56 | # define PMD_MASK (~(PMD_SIZE-1)) | ||
57 | #else | ||
58 | # include <asm/pgtable-2level-defs.h> | ||
59 | #endif | ||
60 | |||
61 | #define PGDIR_SIZE (1UL << PGDIR_SHIFT) | ||
62 | #define PGDIR_MASK (~(PGDIR_SIZE-1)) | ||
63 | |||
64 | #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE) | ||
65 | #define FIRST_USER_ADDRESS 0 | ||
66 | |||
67 | #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) | ||
68 | #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS) | ||
69 | |||
70 | #define TWOLEVEL_PGDIR_SHIFT 22 | ||
71 | #define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT) | ||
72 | #define BOOT_KERNEL_PGD_PTRS (1024-BOOT_USER_PGD_PTRS) | ||
73 | |||
74 | /* Just any arbitrary offset to the start of the vmalloc VM area: the | ||
75 | * current 8MB value just means that there will be a 8MB "hole" after the | ||
76 | * physical memory until the kernel virtual memory starts. That means that | ||
77 | * any out-of-bounds memory accesses will hopefully be caught. | ||
78 | * The vmalloc() routines leaves a hole of 4kB between each vmalloced | ||
79 | * area for the same reason. ;) | ||
80 | */ | ||
81 | #define VMALLOC_OFFSET (8*1024*1024) | ||
82 | #define VMALLOC_START (((unsigned long) high_memory + \ | ||
83 | 2*VMALLOC_OFFSET-1) & ~(VMALLOC_OFFSET-1)) | ||
84 | #ifdef CONFIG_HIGHMEM | ||
85 | # define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE) | ||
86 | #else | ||
87 | # define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE) | ||
88 | #endif | ||
89 | |||
90 | /* | ||
91 | * _PAGE_PSE set in the page directory entry just means that | ||
92 | * the page directory entry points directly to a 4MB-aligned block of | ||
93 | * memory. | ||
94 | */ | ||
95 | #define _PAGE_BIT_PRESENT 0 | ||
96 | #define _PAGE_BIT_RW 1 | ||
97 | #define _PAGE_BIT_USER 2 | ||
98 | #define _PAGE_BIT_PWT 3 | ||
99 | #define _PAGE_BIT_PCD 4 | ||
100 | #define _PAGE_BIT_ACCESSED 5 | ||
101 | #define _PAGE_BIT_DIRTY 6 | ||
102 | #define _PAGE_BIT_PSE 7 /* 4 MB (or 2MB) page, Pentium+, if present.. */ | ||
103 | #define _PAGE_BIT_GLOBAL 8 /* Global TLB entry PPro+ */ | ||
104 | #define _PAGE_BIT_UNUSED1 9 /* available for programmer */ | ||
105 | #define _PAGE_BIT_UNUSED2 10 | ||
106 | #define _PAGE_BIT_UNUSED3 11 | ||
107 | #define _PAGE_BIT_NX 63 | ||
108 | |||
109 | #define _PAGE_PRESENT 0x001 | ||
110 | #define _PAGE_RW 0x002 | ||
111 | #define _PAGE_USER 0x004 | ||
112 | #define _PAGE_PWT 0x008 | ||
113 | #define _PAGE_PCD 0x010 | ||
114 | #define _PAGE_ACCESSED 0x020 | ||
115 | #define _PAGE_DIRTY 0x040 | ||
116 | #define _PAGE_PSE 0x080 /* 4 MB (or 2MB) page, Pentium+, if present.. */ | ||
117 | #define _PAGE_GLOBAL 0x100 /* Global TLB entry PPro+ */ | ||
118 | #define _PAGE_UNUSED1 0x200 /* available for programmer */ | ||
119 | #define _PAGE_UNUSED2 0x400 | ||
120 | #define _PAGE_UNUSED3 0x800 | ||
121 | |||
122 | /* If _PAGE_PRESENT is clear, we use these: */ | ||
123 | #define _PAGE_FILE 0x040 /* nonlinear file mapping, saved PTE; unset:swap */ | ||
124 | #define _PAGE_PROTNONE 0x080 /* if the user mapped it with PROT_NONE; | ||
125 | pte_present gives true */ | ||
126 | #ifdef CONFIG_X86_PAE | ||
127 | #define _PAGE_NX (1ULL<<_PAGE_BIT_NX) | ||
128 | #else | ||
129 | #define _PAGE_NX 0 | ||
130 | #endif | ||
131 | |||
132 | #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY) | ||
133 | #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY) | ||
134 | #define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) | ||
135 | |||
136 | #define PAGE_NONE \ | ||
137 | __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED) | ||
138 | #define PAGE_SHARED \ | ||
139 | __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED) | ||
140 | |||
141 | #define PAGE_SHARED_EXEC \ | ||
142 | __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED) | ||
143 | #define PAGE_COPY_NOEXEC \ | ||
144 | __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX) | ||
145 | #define PAGE_COPY_EXEC \ | ||
146 | __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) | ||
147 | #define PAGE_COPY \ | ||
148 | PAGE_COPY_NOEXEC | ||
149 | #define PAGE_READONLY \ | ||
150 | __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX) | ||
151 | #define PAGE_READONLY_EXEC \ | ||
152 | __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) | ||
153 | |||
154 | #define _PAGE_KERNEL \ | ||
155 | (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_NX) | ||
156 | #define _PAGE_KERNEL_EXEC \ | ||
157 | (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED) | ||
158 | |||
159 | extern unsigned long long __PAGE_KERNEL, __PAGE_KERNEL_EXEC; | ||
160 | #define __PAGE_KERNEL_RO (__PAGE_KERNEL & ~_PAGE_RW) | ||
161 | #define __PAGE_KERNEL_RX (__PAGE_KERNEL_EXEC & ~_PAGE_RW) | ||
162 | #define __PAGE_KERNEL_NOCACHE (__PAGE_KERNEL | _PAGE_PCD) | ||
163 | #define __PAGE_KERNEL_LARGE (__PAGE_KERNEL | _PAGE_PSE) | ||
164 | #define __PAGE_KERNEL_LARGE_EXEC (__PAGE_KERNEL_EXEC | _PAGE_PSE) | ||
165 | |||
166 | #define PAGE_KERNEL __pgprot(__PAGE_KERNEL) | ||
167 | #define PAGE_KERNEL_RO __pgprot(__PAGE_KERNEL_RO) | ||
168 | #define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC) | ||
169 | #define PAGE_KERNEL_RX __pgprot(__PAGE_KERNEL_RX) | ||
170 | #define PAGE_KERNEL_NOCACHE __pgprot(__PAGE_KERNEL_NOCACHE) | ||
171 | #define PAGE_KERNEL_LARGE __pgprot(__PAGE_KERNEL_LARGE) | ||
172 | #define PAGE_KERNEL_LARGE_EXEC __pgprot(__PAGE_KERNEL_LARGE_EXEC) | ||
173 | |||
174 | /* | ||
175 | * The i386 can't do page protection for execute, and considers that | ||
176 | * the same are read. Also, write permissions imply read permissions. | ||
177 | * This is the closest we can get.. | ||
178 | */ | ||
179 | #define __P000 PAGE_NONE | ||
180 | #define __P001 PAGE_READONLY | ||
181 | #define __P010 PAGE_COPY | ||
182 | #define __P011 PAGE_COPY | ||
183 | #define __P100 PAGE_READONLY_EXEC | ||
184 | #define __P101 PAGE_READONLY_EXEC | ||
185 | #define __P110 PAGE_COPY_EXEC | ||
186 | #define __P111 PAGE_COPY_EXEC | ||
187 | |||
188 | #define __S000 PAGE_NONE | ||
189 | #define __S001 PAGE_READONLY | ||
190 | #define __S010 PAGE_SHARED | ||
191 | #define __S011 PAGE_SHARED | ||
192 | #define __S100 PAGE_READONLY_EXEC | ||
193 | #define __S101 PAGE_READONLY_EXEC | ||
194 | #define __S110 PAGE_SHARED_EXEC | ||
195 | #define __S111 PAGE_SHARED_EXEC | ||
196 | |||
197 | /* | ||
198 | * Define this if things work differently on an i386 and an i486: | ||
199 | * it will (on an i486) warn about kernel memory accesses that are | ||
200 | * done without a 'access_ok(VERIFY_WRITE,..)' | ||
201 | */ | ||
202 | #undef TEST_ACCESS_OK | ||
203 | |||
204 | /* The boot page tables (all created as a single array) */ | ||
205 | extern unsigned long pg0[]; | ||
206 | |||
207 | #define pte_present(x) ((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE)) | ||
208 | |||
209 | /* To avoid harmful races, pmd_none(x) should check only the lower when PAE */ | ||
210 | #define pmd_none(x) (!(unsigned long)pmd_val(x)) | ||
211 | #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) | ||
212 | #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE) | ||
213 | |||
214 | |||
215 | #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT)) | ||
216 | |||
217 | /* | ||
218 | * The following only work if pte_present() is true. | ||
219 | * Undefined behaviour if not.. | ||
220 | */ | ||
221 | static inline int pte_dirty(pte_t pte) { return (pte).pte_low & _PAGE_DIRTY; } | ||
222 | static inline int pte_young(pte_t pte) { return (pte).pte_low & _PAGE_ACCESSED; } | ||
223 | static inline int pte_write(pte_t pte) { return (pte).pte_low & _PAGE_RW; } | ||
224 | static inline int pte_huge(pte_t pte) { return (pte).pte_low & _PAGE_PSE; } | ||
225 | |||
226 | /* | ||
227 | * The following only works if pte_present() is not true. | ||
228 | */ | ||
229 | static inline int pte_file(pte_t pte) { return (pte).pte_low & _PAGE_FILE; } | ||
230 | |||
231 | static inline pte_t pte_mkclean(pte_t pte) { (pte).pte_low &= ~_PAGE_DIRTY; return pte; } | ||
232 | static inline pte_t pte_mkold(pte_t pte) { (pte).pte_low &= ~_PAGE_ACCESSED; return pte; } | ||
233 | static inline pte_t pte_wrprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_RW; return pte; } | ||
234 | static inline pte_t pte_mkdirty(pte_t pte) { (pte).pte_low |= _PAGE_DIRTY; return pte; } | ||
235 | static inline pte_t pte_mkyoung(pte_t pte) { (pte).pte_low |= _PAGE_ACCESSED; return pte; } | ||
236 | static inline pte_t pte_mkwrite(pte_t pte) { (pte).pte_low |= _PAGE_RW; return pte; } | ||
237 | static inline pte_t pte_mkhuge(pte_t pte) { (pte).pte_low |= _PAGE_PSE; return pte; } | ||
238 | |||
239 | #ifdef CONFIG_X86_PAE | ||
240 | # include <asm/pgtable-3level.h> | ||
241 | #else | ||
242 | # include <asm/pgtable-2level.h> | ||
243 | #endif | ||
244 | |||
245 | #ifndef CONFIG_PARAVIRT | ||
246 | /* | ||
247 | * Rules for using pte_update - it must be called after any PTE update which | ||
248 | * has not been done using the set_pte / clear_pte interfaces. It is used by | ||
249 | * shadow mode hypervisors to resynchronize the shadow page tables. Kernel PTE | ||
250 | * updates should either be sets, clears, or set_pte_atomic for P->P | ||
251 | * transitions, which means this hook should only be called for user PTEs. | ||
252 | * This hook implies a P->P protection or access change has taken place, which | ||
253 | * requires a subsequent TLB flush. The notification can optionally be delayed | ||
254 | * until the TLB flush event by using the pte_update_defer form of the | ||
255 | * interface, but care must be taken to assure that the flush happens while | ||
256 | * still holding the same page table lock so that the shadow and primary pages | ||
257 | * do not become out of sync on SMP. | ||
258 | */ | ||
259 | #define pte_update(mm, addr, ptep) do { } while (0) | ||
260 | #define pte_update_defer(mm, addr, ptep) do { } while (0) | ||
261 | #endif | ||
262 | |||
263 | /* local pte updates need not use xchg for locking */ | ||
264 | static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep) | ||
265 | { | ||
266 | pte_t res = *ptep; | ||
267 | |||
268 | /* Pure native function needs no input for mm, addr */ | ||
269 | native_pte_clear(NULL, 0, ptep); | ||
270 | return res; | ||
271 | } | ||
272 | |||
273 | /* | ||
274 | * We only update the dirty/accessed state if we set | ||
275 | * the dirty bit by hand in the kernel, since the hardware | ||
276 | * will do the accessed bit for us, and we don't want to | ||
277 | * race with other CPU's that might be updating the dirty | ||
278 | * bit at the same time. | ||
279 | */ | ||
280 | #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS | ||
281 | #define ptep_set_access_flags(vma, address, ptep, entry, dirty) \ | ||
282 | ({ \ | ||
283 | int __changed = !pte_same(*(ptep), entry); \ | ||
284 | if (__changed && dirty) { \ | ||
285 | (ptep)->pte_low = (entry).pte_low; \ | ||
286 | pte_update_defer((vma)->vm_mm, (address), (ptep)); \ | ||
287 | flush_tlb_page(vma, address); \ | ||
288 | } \ | ||
289 | __changed; \ | ||
290 | }) | ||
291 | |||
292 | #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG | ||
293 | #define ptep_test_and_clear_young(vma, addr, ptep) ({ \ | ||
294 | int __ret = 0; \ | ||
295 | if (pte_young(*(ptep))) \ | ||
296 | __ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, \ | ||
297 | &(ptep)->pte_low); \ | ||
298 | if (__ret) \ | ||
299 | pte_update((vma)->vm_mm, addr, ptep); \ | ||
300 | __ret; \ | ||
301 | }) | ||
302 | |||
303 | #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH | ||
304 | #define ptep_clear_flush_young(vma, address, ptep) \ | ||
305 | ({ \ | ||
306 | int __young; \ | ||
307 | __young = ptep_test_and_clear_young((vma), (address), (ptep)); \ | ||
308 | if (__young) \ | ||
309 | flush_tlb_page(vma, address); \ | ||
310 | __young; \ | ||
311 | }) | ||
312 | |||
313 | #define __HAVE_ARCH_PTEP_GET_AND_CLEAR | ||
314 | static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) | ||
315 | { | ||
316 | pte_t pte = native_ptep_get_and_clear(ptep); | ||
317 | pte_update(mm, addr, ptep); | ||
318 | return pte; | ||
319 | } | ||
320 | |||
321 | #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL | ||
322 | static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full) | ||
323 | { | ||
324 | pte_t pte; | ||
325 | if (full) { | ||
326 | /* | ||
327 | * Full address destruction in progress; paravirt does not | ||
328 | * care about updates and native needs no locking | ||
329 | */ | ||
330 | pte = native_local_ptep_get_and_clear(ptep); | ||
331 | } else { | ||
332 | pte = ptep_get_and_clear(mm, addr, ptep); | ||
333 | } | ||
334 | return pte; | ||
335 | } | ||
336 | |||
337 | #define __HAVE_ARCH_PTEP_SET_WRPROTECT | ||
338 | static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) | ||
339 | { | ||
340 | clear_bit(_PAGE_BIT_RW, &ptep->pte_low); | ||
341 | pte_update(mm, addr, ptep); | ||
342 | } | ||
343 | |||
344 | /* | ||
345 | * clone_pgd_range(pgd_t *dst, pgd_t *src, int count); | ||
346 | * | ||
347 | * dst - pointer to pgd range anwhere on a pgd page | ||
348 | * src - "" | ||
349 | * count - the number of pgds to copy. | ||
350 | * | ||
351 | * dst and src can be on the same page, but the range must not overlap, | ||
352 | * and must not cross a page boundary. | ||
353 | */ | ||
354 | static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count) | ||
355 | { | ||
356 | memcpy(dst, src, count * sizeof(pgd_t)); | ||
357 | } | ||
358 | |||
359 | /* | ||
360 | * Macro to mark a page protection value as "uncacheable". On processors which do not support | ||
361 | * it, this is a no-op. | ||
362 | */ | ||
363 | #define pgprot_noncached(prot) ((boot_cpu_data.x86 > 3) \ | ||
364 | ? (__pgprot(pgprot_val(prot) | _PAGE_PCD | _PAGE_PWT)) : (prot)) | ||
365 | |||
366 | /* | ||
367 | * Conversion functions: convert a page and protection to a page entry, | ||
368 | * and a page entry and page directory to the page they refer to. | ||
369 | */ | ||
370 | |||
371 | #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) | ||
372 | |||
373 | static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) | ||
374 | { | ||
375 | pte.pte_low &= _PAGE_CHG_MASK; | ||
376 | pte.pte_low |= pgprot_val(newprot); | ||
377 | #ifdef CONFIG_X86_PAE | ||
378 | /* | ||
379 | * Chop off the NX bit (if present), and add the NX portion of | ||
380 | * the newprot (if present): | ||
381 | */ | ||
382 | pte.pte_high &= ~(1 << (_PAGE_BIT_NX - 32)); | ||
383 | pte.pte_high |= (pgprot_val(newprot) >> 32) & \ | ||
384 | (__supported_pte_mask >> 32); | ||
385 | #endif | ||
386 | return pte; | ||
387 | } | ||
388 | |||
389 | #define pmd_large(pmd) \ | ||
390 | ((pmd_val(pmd) & (_PAGE_PSE|_PAGE_PRESENT)) == (_PAGE_PSE|_PAGE_PRESENT)) | ||
391 | |||
392 | /* | ||
393 | * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] | ||
394 | * | ||
395 | * this macro returns the index of the entry in the pgd page which would | ||
396 | * control the given virtual address | ||
397 | */ | ||
398 | #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) | ||
399 | #define pgd_index_k(addr) pgd_index(addr) | ||
400 | |||
401 | /* | ||
402 | * pgd_offset() returns a (pgd_t *) | ||
403 | * pgd_index() is used get the offset into the pgd page's array of pgd_t's; | ||
404 | */ | ||
405 | #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) | ||
406 | |||
407 | /* | ||
408 | * a shortcut which implies the use of the kernel's pgd, instead | ||
409 | * of a process's | ||
410 | */ | ||
411 | #define pgd_offset_k(address) pgd_offset(&init_mm, address) | ||
412 | |||
413 | /* | ||
414 | * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD] | ||
415 | * | ||
416 | * this macro returns the index of the entry in the pmd page which would | ||
417 | * control the given virtual address | ||
418 | */ | ||
419 | #define pmd_index(address) \ | ||
420 | (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) | ||
421 | |||
422 | /* | ||
423 | * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] | ||
424 | * | ||
425 | * this macro returns the index of the entry in the pte page which would | ||
426 | * control the given virtual address | ||
427 | */ | ||
428 | #define pte_index(address) \ | ||
429 | (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) | ||
430 | #define pte_offset_kernel(dir, address) \ | ||
431 | ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address)) | ||
432 | |||
433 | #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) | ||
434 | |||
435 | #define pmd_page_vaddr(pmd) \ | ||
436 | ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) | ||
437 | |||
438 | /* | ||
439 | * Helper function that returns the kernel pagetable entry controlling | ||
440 | * the virtual address 'address'. NULL means no pagetable entry present. | ||
441 | * NOTE: the return type is pte_t but if the pmd is PSE then we return it | ||
442 | * as a pte too. | ||
443 | */ | ||
444 | extern pte_t *lookup_address(unsigned long address); | ||
445 | |||
446 | /* | ||
447 | * Make a given kernel text page executable/non-executable. | ||
448 | * Returns the previous executability setting of that page (which | ||
449 | * is used to restore the previous state). Used by the SMP bootup code. | ||
450 | * NOTE: this is an __init function for security reasons. | ||
451 | */ | ||
452 | #ifdef CONFIG_X86_PAE | ||
453 | extern int set_kernel_exec(unsigned long vaddr, int enable); | ||
454 | #else | ||
455 | static inline int set_kernel_exec(unsigned long vaddr, int enable) { return 0;} | ||
456 | #endif | ||
457 | |||
458 | #if defined(CONFIG_HIGHPTE) | ||
459 | #define pte_offset_map(dir, address) \ | ||
460 | ((pte_t *)kmap_atomic_pte(pmd_page(*(dir)),KM_PTE0) + pte_index(address)) | ||
461 | #define pte_offset_map_nested(dir, address) \ | ||
462 | ((pte_t *)kmap_atomic_pte(pmd_page(*(dir)),KM_PTE1) + pte_index(address)) | ||
463 | #define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0) | ||
464 | #define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1) | ||
465 | #else | ||
466 | #define pte_offset_map(dir, address) \ | ||
467 | ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address)) | ||
468 | #define pte_offset_map_nested(dir, address) pte_offset_map(dir, address) | ||
469 | #define pte_unmap(pte) do { } while (0) | ||
470 | #define pte_unmap_nested(pte) do { } while (0) | ||
471 | #endif | ||
472 | |||
473 | /* Clear a kernel PTE and flush it from the TLB */ | ||
474 | #define kpte_clear_flush(ptep, vaddr) \ | ||
475 | do { \ | ||
476 | pte_clear(&init_mm, vaddr, ptep); \ | ||
477 | __flush_tlb_one(vaddr); \ | ||
478 | } while (0) | ||
479 | |||
480 | /* | ||
481 | * The i386 doesn't have any external MMU info: the kernel page | ||
482 | * tables contain all the necessary information. | ||
483 | */ | ||
484 | #define update_mmu_cache(vma,address,pte) do { } while (0) | ||
485 | |||
486 | void native_pagetable_setup_start(pgd_t *base); | ||
487 | void native_pagetable_setup_done(pgd_t *base); | ||
488 | |||
489 | #ifndef CONFIG_PARAVIRT | ||
490 | static inline void paravirt_pagetable_setup_start(pgd_t *base) | ||
491 | { | ||
492 | native_pagetable_setup_start(base); | ||
493 | } | ||
494 | |||
495 | static inline void paravirt_pagetable_setup_done(pgd_t *base) | ||
496 | { | ||
497 | native_pagetable_setup_done(base); | ||
498 | } | ||
499 | #endif /* !CONFIG_PARAVIRT */ | ||
500 | |||
501 | #endif /* !__ASSEMBLY__ */ | ||
502 | |||
503 | #ifdef CONFIG_FLATMEM | ||
504 | #define kern_addr_valid(addr) (1) | ||
505 | #endif /* CONFIG_FLATMEM */ | ||
506 | |||
507 | #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ | ||
508 | remap_pfn_range(vma, vaddr, pfn, size, prot) | ||
509 | |||
510 | #include <asm-generic/pgtable.h> | ||
511 | |||
512 | #endif /* _I386_PGTABLE_H */ | ||