aboutsummaryrefslogtreecommitdiffstats
path: root/include/asm-s390/pgtable.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/asm-s390/pgtable.h')
-rw-r--r--include/asm-s390/pgtable.h1093
1 files changed, 0 insertions, 1093 deletions
diff --git a/include/asm-s390/pgtable.h b/include/asm-s390/pgtable.h
deleted file mode 100644
index 0bdb704ae051..000000000000
--- a/include/asm-s390/pgtable.h
+++ /dev/null
@@ -1,1093 +0,0 @@
1/*
2 * include/asm-s390/pgtable.h
3 *
4 * S390 version
5 * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
6 * Author(s): Hartmut Penner (hp@de.ibm.com)
7 * Ulrich Weigand (weigand@de.ibm.com)
8 * Martin Schwidefsky (schwidefsky@de.ibm.com)
9 *
10 * Derived from "include/asm-i386/pgtable.h"
11 */
12
13#ifndef _ASM_S390_PGTABLE_H
14#define _ASM_S390_PGTABLE_H
15
16/*
17 * The Linux memory management assumes a three-level page table setup. For
18 * s390 31 bit we "fold" the mid level into the top-level page table, so
19 * that we physically have the same two-level page table as the s390 mmu
20 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
21 * the hardware provides (region first and region second tables are not
22 * used).
23 *
24 * The "pgd_xxx()" functions are trivial for a folded two-level
25 * setup: the pgd is never bad, and a pmd always exists (as it's folded
26 * into the pgd entry)
27 *
28 * This file contains the functions and defines necessary to modify and use
29 * the S390 page table tree.
30 */
31#ifndef __ASSEMBLY__
32#include <linux/sched.h>
33#include <linux/mm_types.h>
34#include <asm/bitops.h>
35#include <asm/bug.h>
36#include <asm/processor.h>
37
38extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
39extern void paging_init(void);
40extern void vmem_map_init(void);
41
42/*
43 * The S390 doesn't have any external MMU info: the kernel page
44 * tables contain all the necessary information.
45 */
46#define update_mmu_cache(vma, address, pte) do { } while (0)
47
48/*
49 * ZERO_PAGE is a global shared page that is always zero: used
50 * for zero-mapped memory areas etc..
51 */
52extern char empty_zero_page[PAGE_SIZE];
53#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
54#endif /* !__ASSEMBLY__ */
55
56/*
57 * PMD_SHIFT determines the size of the area a second-level page
58 * table can map
59 * PGDIR_SHIFT determines what a third-level page table entry can map
60 */
61#ifndef __s390x__
62# define PMD_SHIFT 20
63# define PUD_SHIFT 20
64# define PGDIR_SHIFT 20
65#else /* __s390x__ */
66# define PMD_SHIFT 20
67# define PUD_SHIFT 31
68# define PGDIR_SHIFT 42
69#endif /* __s390x__ */
70
71#define PMD_SIZE (1UL << PMD_SHIFT)
72#define PMD_MASK (~(PMD_SIZE-1))
73#define PUD_SIZE (1UL << PUD_SHIFT)
74#define PUD_MASK (~(PUD_SIZE-1))
75#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
76#define PGDIR_MASK (~(PGDIR_SIZE-1))
77
78/*
79 * entries per page directory level: the S390 is two-level, so
80 * we don't really have any PMD directory physically.
81 * for S390 segment-table entries are combined to one PGD
82 * that leads to 1024 pte per pgd
83 */
84#define PTRS_PER_PTE 256
85#ifndef __s390x__
86#define PTRS_PER_PMD 1
87#define PTRS_PER_PUD 1
88#else /* __s390x__ */
89#define PTRS_PER_PMD 2048
90#define PTRS_PER_PUD 2048
91#endif /* __s390x__ */
92#define PTRS_PER_PGD 2048
93
94#define FIRST_USER_ADDRESS 0
95
96#define pte_ERROR(e) \
97 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
98#define pmd_ERROR(e) \
99 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
100#define pud_ERROR(e) \
101 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
102#define pgd_ERROR(e) \
103 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
104
105#ifndef __ASSEMBLY__
106/*
107 * The vmalloc area will always be on the topmost area of the kernel
108 * mapping. We reserve 96MB (31bit) / 1GB (64bit) for vmalloc,
109 * which should be enough for any sane case.
110 * By putting vmalloc at the top, we maximise the gap between physical
111 * memory and vmalloc to catch misplaced memory accesses. As a side
112 * effect, this also makes sure that 64 bit module code cannot be used
113 * as system call address.
114 */
115#ifndef __s390x__
116#define VMALLOC_START 0x78000000UL
117#define VMALLOC_END 0x7e000000UL
118#define VMEM_MAP_END 0x80000000UL
119#else /* __s390x__ */
120#define VMALLOC_START 0x3e000000000UL
121#define VMALLOC_END 0x3e040000000UL
122#define VMEM_MAP_END 0x40000000000UL
123#endif /* __s390x__ */
124
125/*
126 * VMEM_MAX_PHYS is the highest physical address that can be added to the 1:1
127 * mapping. This needs to be calculated at compile time since the size of the
128 * VMEM_MAP is static but the size of struct page can change.
129 */
130#define VMEM_MAX_PAGES ((VMEM_MAP_END - VMALLOC_END) / sizeof(struct page))
131#define VMEM_MAX_PFN min(VMALLOC_START >> PAGE_SHIFT, VMEM_MAX_PAGES)
132#define VMEM_MAX_PHYS ((VMEM_MAX_PFN << PAGE_SHIFT) & ~((16 << 20) - 1))
133#define vmemmap ((struct page *) VMALLOC_END)
134
135/*
136 * A 31 bit pagetable entry of S390 has following format:
137 * | PFRA | | OS |
138 * 0 0IP0
139 * 00000000001111111111222222222233
140 * 01234567890123456789012345678901
141 *
142 * I Page-Invalid Bit: Page is not available for address-translation
143 * P Page-Protection Bit: Store access not possible for page
144 *
145 * A 31 bit segmenttable entry of S390 has following format:
146 * | P-table origin | |PTL
147 * 0 IC
148 * 00000000001111111111222222222233
149 * 01234567890123456789012345678901
150 *
151 * I Segment-Invalid Bit: Segment is not available for address-translation
152 * C Common-Segment Bit: Segment is not private (PoP 3-30)
153 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
154 *
155 * The 31 bit segmenttable origin of S390 has following format:
156 *
157 * |S-table origin | | STL |
158 * X **GPS
159 * 00000000001111111111222222222233
160 * 01234567890123456789012345678901
161 *
162 * X Space-Switch event:
163 * G Segment-Invalid Bit: *
164 * P Private-Space Bit: Segment is not private (PoP 3-30)
165 * S Storage-Alteration:
166 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
167 *
168 * A 64 bit pagetable entry of S390 has following format:
169 * | PFRA |0IP0| OS |
170 * 0000000000111111111122222222223333333333444444444455555555556666
171 * 0123456789012345678901234567890123456789012345678901234567890123
172 *
173 * I Page-Invalid Bit: Page is not available for address-translation
174 * P Page-Protection Bit: Store access not possible for page
175 *
176 * A 64 bit segmenttable entry of S390 has following format:
177 * | P-table origin | TT
178 * 0000000000111111111122222222223333333333444444444455555555556666
179 * 0123456789012345678901234567890123456789012345678901234567890123
180 *
181 * I Segment-Invalid Bit: Segment is not available for address-translation
182 * C Common-Segment Bit: Segment is not private (PoP 3-30)
183 * P Page-Protection Bit: Store access not possible for page
184 * TT Type 00
185 *
186 * A 64 bit region table entry of S390 has following format:
187 * | S-table origin | TF TTTL
188 * 0000000000111111111122222222223333333333444444444455555555556666
189 * 0123456789012345678901234567890123456789012345678901234567890123
190 *
191 * I Segment-Invalid Bit: Segment is not available for address-translation
192 * TT Type 01
193 * TF
194 * TL Table length
195 *
196 * The 64 bit regiontable origin of S390 has following format:
197 * | region table origon | DTTL
198 * 0000000000111111111122222222223333333333444444444455555555556666
199 * 0123456789012345678901234567890123456789012345678901234567890123
200 *
201 * X Space-Switch event:
202 * G Segment-Invalid Bit:
203 * P Private-Space Bit:
204 * S Storage-Alteration:
205 * R Real space
206 * TL Table-Length:
207 *
208 * A storage key has the following format:
209 * | ACC |F|R|C|0|
210 * 0 3 4 5 6 7
211 * ACC: access key
212 * F : fetch protection bit
213 * R : referenced bit
214 * C : changed bit
215 */
216
217/* Hardware bits in the page table entry */
218#define _PAGE_RO 0x200 /* HW read-only bit */
219#define _PAGE_INVALID 0x400 /* HW invalid bit */
220
221/* Software bits in the page table entry */
222#define _PAGE_SWT 0x001 /* SW pte type bit t */
223#define _PAGE_SWX 0x002 /* SW pte type bit x */
224#define _PAGE_SPECIAL 0x004 /* SW associated with special page */
225#define __HAVE_ARCH_PTE_SPECIAL
226
227/* Set of bits not changed in pte_modify */
228#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL)
229
230/* Six different types of pages. */
231#define _PAGE_TYPE_EMPTY 0x400
232#define _PAGE_TYPE_NONE 0x401
233#define _PAGE_TYPE_SWAP 0x403
234#define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */
235#define _PAGE_TYPE_RO 0x200
236#define _PAGE_TYPE_RW 0x000
237#define _PAGE_TYPE_EX_RO 0x202
238#define _PAGE_TYPE_EX_RW 0x002
239
240/*
241 * Only four types for huge pages, using the invalid bit and protection bit
242 * of a segment table entry.
243 */
244#define _HPAGE_TYPE_EMPTY 0x020 /* _SEGMENT_ENTRY_INV */
245#define _HPAGE_TYPE_NONE 0x220
246#define _HPAGE_TYPE_RO 0x200 /* _SEGMENT_ENTRY_RO */
247#define _HPAGE_TYPE_RW 0x000
248
249/*
250 * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
251 * pte_none and pte_file to find out the pte type WITHOUT holding the page
252 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
253 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
254 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
255 * This change is done while holding the lock, but the intermediate step
256 * of a previously valid pte with the hw invalid bit set can be observed by
257 * handle_pte_fault. That makes it necessary that all valid pte types with
258 * the hw invalid bit set must be distinguishable from the four pte types
259 * empty, none, swap and file.
260 *
261 * irxt ipte irxt
262 * _PAGE_TYPE_EMPTY 1000 -> 1000
263 * _PAGE_TYPE_NONE 1001 -> 1001
264 * _PAGE_TYPE_SWAP 1011 -> 1011
265 * _PAGE_TYPE_FILE 11?1 -> 11?1
266 * _PAGE_TYPE_RO 0100 -> 1100
267 * _PAGE_TYPE_RW 0000 -> 1000
268 * _PAGE_TYPE_EX_RO 0110 -> 1110
269 * _PAGE_TYPE_EX_RW 0010 -> 1010
270 *
271 * pte_none is true for bits combinations 1000, 1010, 1100, 1110
272 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
273 * pte_file is true for bits combinations 1101, 1111
274 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
275 */
276
277/* Page status table bits for virtualization */
278#define RCP_PCL_BIT 55
279#define RCP_HR_BIT 54
280#define RCP_HC_BIT 53
281#define RCP_GR_BIT 50
282#define RCP_GC_BIT 49
283
284#ifndef __s390x__
285
286/* Bits in the segment table address-space-control-element */
287#define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
288#define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
289#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
290#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
291#define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
292
293/* Bits in the segment table entry */
294#define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
295#define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
296#define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
297#define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
298
299#define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
300#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
301
302#else /* __s390x__ */
303
304/* Bits in the segment/region table address-space-control-element */
305#define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
306#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
307#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
308#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
309#define _ASCE_REAL_SPACE 0x20 /* real space control */
310#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
311#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
312#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
313#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
314#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
315#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
316
317/* Bits in the region table entry */
318#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
319#define _REGION_ENTRY_INV 0x20 /* invalid region table entry */
320#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
321#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
322#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
323#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
324#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
325
326#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
327#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
328#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
329#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
330#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
331#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
332
333/* Bits in the segment table entry */
334#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
335#define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
336#define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
337
338#define _SEGMENT_ENTRY (0)
339#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
340
341#define _SEGMENT_ENTRY_LARGE 0x400 /* STE-format control, large page */
342#define _SEGMENT_ENTRY_CO 0x100 /* change-recording override */
343
344#endif /* __s390x__ */
345
346/*
347 * A user page table pointer has the space-switch-event bit, the
348 * private-space-control bit and the storage-alteration-event-control
349 * bit set. A kernel page table pointer doesn't need them.
350 */
351#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
352 _ASCE_ALT_EVENT)
353
354/* Bits int the storage key */
355#define _PAGE_CHANGED 0x02 /* HW changed bit */
356#define _PAGE_REFERENCED 0x04 /* HW referenced bit */
357
358/*
359 * Page protection definitions.
360 */
361#define PAGE_NONE __pgprot(_PAGE_TYPE_NONE)
362#define PAGE_RO __pgprot(_PAGE_TYPE_RO)
363#define PAGE_RW __pgprot(_PAGE_TYPE_RW)
364#define PAGE_EX_RO __pgprot(_PAGE_TYPE_EX_RO)
365#define PAGE_EX_RW __pgprot(_PAGE_TYPE_EX_RW)
366
367#define PAGE_KERNEL PAGE_RW
368#define PAGE_COPY PAGE_RO
369
370/*
371 * Dependent on the EXEC_PROTECT option s390 can do execute protection.
372 * Write permission always implies read permission. In theory with a
373 * primary/secondary page table execute only can be implemented but
374 * it would cost an additional bit in the pte to distinguish all the
375 * different pte types. To avoid that execute permission currently
376 * implies read permission as well.
377 */
378 /*xwr*/
379#define __P000 PAGE_NONE
380#define __P001 PAGE_RO
381#define __P010 PAGE_RO
382#define __P011 PAGE_RO
383#define __P100 PAGE_EX_RO
384#define __P101 PAGE_EX_RO
385#define __P110 PAGE_EX_RO
386#define __P111 PAGE_EX_RO
387
388#define __S000 PAGE_NONE
389#define __S001 PAGE_RO
390#define __S010 PAGE_RW
391#define __S011 PAGE_RW
392#define __S100 PAGE_EX_RO
393#define __S101 PAGE_EX_RO
394#define __S110 PAGE_EX_RW
395#define __S111 PAGE_EX_RW
396
397#ifndef __s390x__
398# define PxD_SHADOW_SHIFT 1
399#else /* __s390x__ */
400# define PxD_SHADOW_SHIFT 2
401#endif /* __s390x__ */
402
403static inline void *get_shadow_table(void *table)
404{
405 unsigned long addr, offset;
406 struct page *page;
407
408 addr = (unsigned long) table;
409 offset = addr & ((PAGE_SIZE << PxD_SHADOW_SHIFT) - 1);
410 page = virt_to_page((void *)(addr ^ offset));
411 return (void *)(addr_t)(page->index ? (page->index | offset) : 0UL);
412}
413
414/*
415 * Certain architectures need to do special things when PTEs
416 * within a page table are directly modified. Thus, the following
417 * hook is made available.
418 */
419static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
420 pte_t *ptep, pte_t entry)
421{
422 *ptep = entry;
423 if (mm->context.noexec) {
424 if (!(pte_val(entry) & _PAGE_INVALID) &&
425 (pte_val(entry) & _PAGE_SWX))
426 pte_val(entry) |= _PAGE_RO;
427 else
428 pte_val(entry) = _PAGE_TYPE_EMPTY;
429 ptep[PTRS_PER_PTE] = entry;
430 }
431}
432
433/*
434 * pgd/pmd/pte query functions
435 */
436#ifndef __s390x__
437
438static inline int pgd_present(pgd_t pgd) { return 1; }
439static inline int pgd_none(pgd_t pgd) { return 0; }
440static inline int pgd_bad(pgd_t pgd) { return 0; }
441
442static inline int pud_present(pud_t pud) { return 1; }
443static inline int pud_none(pud_t pud) { return 0; }
444static inline int pud_bad(pud_t pud) { return 0; }
445
446#else /* __s390x__ */
447
448static inline int pgd_present(pgd_t pgd)
449{
450 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
451 return 1;
452 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
453}
454
455static inline int pgd_none(pgd_t pgd)
456{
457 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
458 return 0;
459 return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL;
460}
461
462static inline int pgd_bad(pgd_t pgd)
463{
464 /*
465 * With dynamic page table levels the pgd can be a region table
466 * entry or a segment table entry. Check for the bit that are
467 * invalid for either table entry.
468 */
469 unsigned long mask =
470 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
471 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
472 return (pgd_val(pgd) & mask) != 0;
473}
474
475static inline int pud_present(pud_t pud)
476{
477 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
478 return 1;
479 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
480}
481
482static inline int pud_none(pud_t pud)
483{
484 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
485 return 0;
486 return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
487}
488
489static inline int pud_bad(pud_t pud)
490{
491 /*
492 * With dynamic page table levels the pud can be a region table
493 * entry or a segment table entry. Check for the bit that are
494 * invalid for either table entry.
495 */
496 unsigned long mask =
497 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
498 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
499 return (pud_val(pud) & mask) != 0;
500}
501
502#endif /* __s390x__ */
503
504static inline int pmd_present(pmd_t pmd)
505{
506 return (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) != 0UL;
507}
508
509static inline int pmd_none(pmd_t pmd)
510{
511 return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) != 0UL;
512}
513
514static inline int pmd_bad(pmd_t pmd)
515{
516 unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
517 return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
518}
519
520static inline int pte_none(pte_t pte)
521{
522 return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
523}
524
525static inline int pte_present(pte_t pte)
526{
527 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
528 return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
529 (!(pte_val(pte) & _PAGE_INVALID) &&
530 !(pte_val(pte) & _PAGE_SWT));
531}
532
533static inline int pte_file(pte_t pte)
534{
535 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
536 return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
537}
538
539static inline int pte_special(pte_t pte)
540{
541 return (pte_val(pte) & _PAGE_SPECIAL);
542}
543
544#define __HAVE_ARCH_PTE_SAME
545#define pte_same(a,b) (pte_val(a) == pte_val(b))
546
547static inline void rcp_lock(pte_t *ptep)
548{
549#ifdef CONFIG_PGSTE
550 unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
551 preempt_disable();
552 while (test_and_set_bit(RCP_PCL_BIT, pgste))
553 ;
554#endif
555}
556
557static inline void rcp_unlock(pte_t *ptep)
558{
559#ifdef CONFIG_PGSTE
560 unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
561 clear_bit(RCP_PCL_BIT, pgste);
562 preempt_enable();
563#endif
564}
565
566/* forward declaration for SetPageUptodate in page-flags.h*/
567static inline void page_clear_dirty(struct page *page);
568#include <linux/page-flags.h>
569
570static inline void ptep_rcp_copy(pte_t *ptep)
571{
572#ifdef CONFIG_PGSTE
573 struct page *page = virt_to_page(pte_val(*ptep));
574 unsigned int skey;
575 unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
576
577 skey = page_get_storage_key(page_to_phys(page));
578 if (skey & _PAGE_CHANGED)
579 set_bit_simple(RCP_GC_BIT, pgste);
580 if (skey & _PAGE_REFERENCED)
581 set_bit_simple(RCP_GR_BIT, pgste);
582 if (test_and_clear_bit_simple(RCP_HC_BIT, pgste))
583 SetPageDirty(page);
584 if (test_and_clear_bit_simple(RCP_HR_BIT, pgste))
585 SetPageReferenced(page);
586#endif
587}
588
589/*
590 * query functions pte_write/pte_dirty/pte_young only work if
591 * pte_present() is true. Undefined behaviour if not..
592 */
593static inline int pte_write(pte_t pte)
594{
595 return (pte_val(pte) & _PAGE_RO) == 0;
596}
597
598static inline int pte_dirty(pte_t pte)
599{
600 /* A pte is neither clean nor dirty on s/390. The dirty bit
601 * is in the storage key. See page_test_and_clear_dirty for
602 * details.
603 */
604 return 0;
605}
606
607static inline int pte_young(pte_t pte)
608{
609 /* A pte is neither young nor old on s/390. The young bit
610 * is in the storage key. See page_test_and_clear_young for
611 * details.
612 */
613 return 0;
614}
615
616/*
617 * pgd/pmd/pte modification functions
618 */
619
620#ifndef __s390x__
621
622#define pgd_clear(pgd) do { } while (0)
623#define pud_clear(pud) do { } while (0)
624
625#else /* __s390x__ */
626
627static inline void pgd_clear_kernel(pgd_t * pgd)
628{
629 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
630 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
631}
632
633static inline void pgd_clear(pgd_t * pgd)
634{
635 pgd_t *shadow = get_shadow_table(pgd);
636
637 pgd_clear_kernel(pgd);
638 if (shadow)
639 pgd_clear_kernel(shadow);
640}
641
642static inline void pud_clear_kernel(pud_t *pud)
643{
644 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
645 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
646}
647
648static inline void pud_clear(pud_t *pud)
649{
650 pud_t *shadow = get_shadow_table(pud);
651
652 pud_clear_kernel(pud);
653 if (shadow)
654 pud_clear_kernel(shadow);
655}
656
657#endif /* __s390x__ */
658
659static inline void pmd_clear_kernel(pmd_t * pmdp)
660{
661 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
662}
663
664static inline void pmd_clear(pmd_t *pmd)
665{
666 pmd_t *shadow = get_shadow_table(pmd);
667
668 pmd_clear_kernel(pmd);
669 if (shadow)
670 pmd_clear_kernel(shadow);
671}
672
673static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
674{
675 if (mm->context.pgstes)
676 ptep_rcp_copy(ptep);
677 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
678 if (mm->context.noexec)
679 pte_val(ptep[PTRS_PER_PTE]) = _PAGE_TYPE_EMPTY;
680}
681
682/*
683 * The following pte modification functions only work if
684 * pte_present() is true. Undefined behaviour if not..
685 */
686static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
687{
688 pte_val(pte) &= _PAGE_CHG_MASK;
689 pte_val(pte) |= pgprot_val(newprot);
690 return pte;
691}
692
693static inline pte_t pte_wrprotect(pte_t pte)
694{
695 /* Do not clobber _PAGE_TYPE_NONE pages! */
696 if (!(pte_val(pte) & _PAGE_INVALID))
697 pte_val(pte) |= _PAGE_RO;
698 return pte;
699}
700
701static inline pte_t pte_mkwrite(pte_t pte)
702{
703 pte_val(pte) &= ~_PAGE_RO;
704 return pte;
705}
706
707static inline pte_t pte_mkclean(pte_t pte)
708{
709 /* The only user of pte_mkclean is the fork() code.
710 We must *not* clear the *physical* page dirty bit
711 just because fork() wants to clear the dirty bit in
712 *one* of the page's mappings. So we just do nothing. */
713 return pte;
714}
715
716static inline pte_t pte_mkdirty(pte_t pte)
717{
718 /* We do not explicitly set the dirty bit because the
719 * sske instruction is slow. It is faster to let the
720 * next instruction set the dirty bit.
721 */
722 return pte;
723}
724
725static inline pte_t pte_mkold(pte_t pte)
726{
727 /* S/390 doesn't keep its dirty/referenced bit in the pte.
728 * There is no point in clearing the real referenced bit.
729 */
730 return pte;
731}
732
733static inline pte_t pte_mkyoung(pte_t pte)
734{
735 /* S/390 doesn't keep its dirty/referenced bit in the pte.
736 * There is no point in setting the real referenced bit.
737 */
738 return pte;
739}
740
741static inline pte_t pte_mkspecial(pte_t pte)
742{
743 pte_val(pte) |= _PAGE_SPECIAL;
744 return pte;
745}
746
747#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
748static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
749 unsigned long addr, pte_t *ptep)
750{
751#ifdef CONFIG_PGSTE
752 unsigned long physpage;
753 int young;
754 unsigned long *pgste;
755
756 if (!vma->vm_mm->context.pgstes)
757 return 0;
758 physpage = pte_val(*ptep) & PAGE_MASK;
759 pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
760
761 young = ((page_get_storage_key(physpage) & _PAGE_REFERENCED) != 0);
762 rcp_lock(ptep);
763 if (young)
764 set_bit_simple(RCP_GR_BIT, pgste);
765 young |= test_and_clear_bit_simple(RCP_HR_BIT, pgste);
766 rcp_unlock(ptep);
767 return young;
768#endif
769 return 0;
770}
771
772#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
773static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
774 unsigned long address, pte_t *ptep)
775{
776 /* No need to flush TLB
777 * On s390 reference bits are in storage key and never in TLB
778 * With virtualization we handle the reference bit, without we
779 * we can simply return */
780#ifdef CONFIG_PGSTE
781 return ptep_test_and_clear_young(vma, address, ptep);
782#endif
783 return 0;
784}
785
786static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
787{
788 if (!(pte_val(*ptep) & _PAGE_INVALID)) {
789#ifndef __s390x__
790 /* pto must point to the start of the segment table */
791 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
792#else
793 /* ipte in zarch mode can do the math */
794 pte_t *pto = ptep;
795#endif
796 asm volatile(
797 " ipte %2,%3"
798 : "=m" (*ptep) : "m" (*ptep),
799 "a" (pto), "a" (address));
800 }
801}
802
803static inline void ptep_invalidate(struct mm_struct *mm,
804 unsigned long address, pte_t *ptep)
805{
806 if (mm->context.pgstes) {
807 rcp_lock(ptep);
808 __ptep_ipte(address, ptep);
809 ptep_rcp_copy(ptep);
810 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
811 rcp_unlock(ptep);
812 return;
813 }
814 __ptep_ipte(address, ptep);
815 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
816 if (mm->context.noexec) {
817 __ptep_ipte(address, ptep + PTRS_PER_PTE);
818 pte_val(*(ptep + PTRS_PER_PTE)) = _PAGE_TYPE_EMPTY;
819 }
820}
821
822/*
823 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
824 * both clear the TLB for the unmapped pte. The reason is that
825 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
826 * to modify an active pte. The sequence is
827 * 1) ptep_get_and_clear
828 * 2) set_pte_at
829 * 3) flush_tlb_range
830 * On s390 the tlb needs to get flushed with the modification of the pte
831 * if the pte is active. The only way how this can be implemented is to
832 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
833 * is a nop.
834 */
835#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
836#define ptep_get_and_clear(__mm, __address, __ptep) \
837({ \
838 pte_t __pte = *(__ptep); \
839 if (atomic_read(&(__mm)->mm_users) > 1 || \
840 (__mm) != current->active_mm) \
841 ptep_invalidate(__mm, __address, __ptep); \
842 else \
843 pte_clear((__mm), (__address), (__ptep)); \
844 __pte; \
845})
846
847#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
848static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
849 unsigned long address, pte_t *ptep)
850{
851 pte_t pte = *ptep;
852 ptep_invalidate(vma->vm_mm, address, ptep);
853 return pte;
854}
855
856/*
857 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
858 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
859 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
860 * cannot be accessed while the batched unmap is running. In this case
861 * full==1 and a simple pte_clear is enough. See tlb.h.
862 */
863#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
864static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
865 unsigned long addr,
866 pte_t *ptep, int full)
867{
868 pte_t pte = *ptep;
869
870 if (full)
871 pte_clear(mm, addr, ptep);
872 else
873 ptep_invalidate(mm, addr, ptep);
874 return pte;
875}
876
877#define __HAVE_ARCH_PTEP_SET_WRPROTECT
878#define ptep_set_wrprotect(__mm, __addr, __ptep) \
879({ \
880 pte_t __pte = *(__ptep); \
881 if (pte_write(__pte)) { \
882 if (atomic_read(&(__mm)->mm_users) > 1 || \
883 (__mm) != current->active_mm) \
884 ptep_invalidate(__mm, __addr, __ptep); \
885 set_pte_at(__mm, __addr, __ptep, pte_wrprotect(__pte)); \
886 } \
887})
888
889#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
890#define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __dirty) \
891({ \
892 int __changed = !pte_same(*(__ptep), __entry); \
893 if (__changed) { \
894 ptep_invalidate((__vma)->vm_mm, __addr, __ptep); \
895 set_pte_at((__vma)->vm_mm, __addr, __ptep, __entry); \
896 } \
897 __changed; \
898})
899
900/*
901 * Test and clear dirty bit in storage key.
902 * We can't clear the changed bit atomically. This is a potential
903 * race against modification of the referenced bit. This function
904 * should therefore only be called if it is not mapped in any
905 * address space.
906 */
907#define __HAVE_ARCH_PAGE_TEST_DIRTY
908static inline int page_test_dirty(struct page *page)
909{
910 return (page_get_storage_key(page_to_phys(page)) & _PAGE_CHANGED) != 0;
911}
912
913#define __HAVE_ARCH_PAGE_CLEAR_DIRTY
914static inline void page_clear_dirty(struct page *page)
915{
916 page_set_storage_key(page_to_phys(page), PAGE_DEFAULT_KEY);
917}
918
919/*
920 * Test and clear referenced bit in storage key.
921 */
922#define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
923static inline int page_test_and_clear_young(struct page *page)
924{
925 unsigned long physpage = page_to_phys(page);
926 int ccode;
927
928 asm volatile(
929 " rrbe 0,%1\n"
930 " ipm %0\n"
931 " srl %0,28\n"
932 : "=d" (ccode) : "a" (physpage) : "cc" );
933 return ccode & 2;
934}
935
936/*
937 * Conversion functions: convert a page and protection to a page entry,
938 * and a page entry and page directory to the page they refer to.
939 */
940static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
941{
942 pte_t __pte;
943 pte_val(__pte) = physpage + pgprot_val(pgprot);
944 return __pte;
945}
946
947static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
948{
949 unsigned long physpage = page_to_phys(page);
950
951 return mk_pte_phys(physpage, pgprot);
952}
953
954#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
955#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
956#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
957#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
958
959#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
960#define pgd_offset_k(address) pgd_offset(&init_mm, address)
961
962#ifndef __s390x__
963
964#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
965#define pud_deref(pmd) ({ BUG(); 0UL; })
966#define pgd_deref(pmd) ({ BUG(); 0UL; })
967
968#define pud_offset(pgd, address) ((pud_t *) pgd)
969#define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
970
971#else /* __s390x__ */
972
973#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
974#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
975#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
976
977static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
978{
979 pud_t *pud = (pud_t *) pgd;
980 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
981 pud = (pud_t *) pgd_deref(*pgd);
982 return pud + pud_index(address);
983}
984
985static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
986{
987 pmd_t *pmd = (pmd_t *) pud;
988 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
989 pmd = (pmd_t *) pud_deref(*pud);
990 return pmd + pmd_index(address);
991}
992
993#endif /* __s390x__ */
994
995#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
996#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
997#define pte_page(x) pfn_to_page(pte_pfn(x))
998
999#define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
1000
1001/* Find an entry in the lowest level page table.. */
1002#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1003#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1004#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1005#define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address)
1006#define pte_unmap(pte) do { } while (0)
1007#define pte_unmap_nested(pte) do { } while (0)
1008
1009/*
1010 * 31 bit swap entry format:
1011 * A page-table entry has some bits we have to treat in a special way.
1012 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1013 * exception will occur instead of a page translation exception. The
1014 * specifiation exception has the bad habit not to store necessary
1015 * information in the lowcore.
1016 * Bit 21 and bit 22 are the page invalid bit and the page protection
1017 * bit. We set both to indicate a swapped page.
1018 * Bit 30 and 31 are used to distinguish the different page types. For
1019 * a swapped page these bits need to be zero.
1020 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1021 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1022 * plus 24 for the offset.
1023 * 0| offset |0110|o|type |00|
1024 * 0 0000000001111111111 2222 2 22222 33
1025 * 0 1234567890123456789 0123 4 56789 01
1026 *
1027 * 64 bit swap entry format:
1028 * A page-table entry has some bits we have to treat in a special way.
1029 * Bits 52 and bit 55 have to be zero, otherwise an specification
1030 * exception will occur instead of a page translation exception. The
1031 * specifiation exception has the bad habit not to store necessary
1032 * information in the lowcore.
1033 * Bit 53 and bit 54 are the page invalid bit and the page protection
1034 * bit. We set both to indicate a swapped page.
1035 * Bit 62 and 63 are used to distinguish the different page types. For
1036 * a swapped page these bits need to be zero.
1037 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1038 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1039 * plus 56 for the offset.
1040 * | offset |0110|o|type |00|
1041 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1042 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1043 */
1044#ifndef __s390x__
1045#define __SWP_OFFSET_MASK (~0UL >> 12)
1046#else
1047#define __SWP_OFFSET_MASK (~0UL >> 11)
1048#endif
1049static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1050{
1051 pte_t pte;
1052 offset &= __SWP_OFFSET_MASK;
1053 pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
1054 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1055 return pte;
1056}
1057
1058#define __swp_type(entry) (((entry).val >> 2) & 0x1f)
1059#define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
1060#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1061
1062#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1063#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1064
1065#ifndef __s390x__
1066# define PTE_FILE_MAX_BITS 26
1067#else /* __s390x__ */
1068# define PTE_FILE_MAX_BITS 59
1069#endif /* __s390x__ */
1070
1071#define pte_to_pgoff(__pte) \
1072 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1073
1074#define pgoff_to_pte(__off) \
1075 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
1076 | _PAGE_TYPE_FILE })
1077
1078#endif /* !__ASSEMBLY__ */
1079
1080#define kern_addr_valid(addr) (1)
1081
1082extern int vmem_add_mapping(unsigned long start, unsigned long size);
1083extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1084extern int s390_enable_sie(void);
1085
1086/*
1087 * No page table caches to initialise
1088 */
1089#define pgtable_cache_init() do { } while (0)
1090
1091#include <asm-generic/pgtable.h>
1092
1093#endif /* _S390_PAGE_H */