aboutsummaryrefslogtreecommitdiffstats
path: root/include/asm-s390/pgtable.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/asm-s390/pgtable.h')
-rw-r--r--include/asm-s390/pgtable.h813
1 files changed, 813 insertions, 0 deletions
diff --git a/include/asm-s390/pgtable.h b/include/asm-s390/pgtable.h
new file mode 100644
index 000000000000..1633cb75f057
--- /dev/null
+++ b/include/asm-s390/pgtable.h
@@ -0,0 +1,813 @@
1/*
2 * include/asm-s390/pgtable.h
3 *
4 * S390 version
5 * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
6 * Author(s): Hartmut Penner (hp@de.ibm.com)
7 * Ulrich Weigand (weigand@de.ibm.com)
8 * Martin Schwidefsky (schwidefsky@de.ibm.com)
9 *
10 * Derived from "include/asm-i386/pgtable.h"
11 */
12
13#ifndef _ASM_S390_PGTABLE_H
14#define _ASM_S390_PGTABLE_H
15
16#include <asm-generic/4level-fixup.h>
17
18/*
19 * The Linux memory management assumes a three-level page table setup. For
20 * s390 31 bit we "fold" the mid level into the top-level page table, so
21 * that we physically have the same two-level page table as the s390 mmu
22 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
23 * the hardware provides (region first and region second tables are not
24 * used).
25 *
26 * The "pgd_xxx()" functions are trivial for a folded two-level
27 * setup: the pgd is never bad, and a pmd always exists (as it's folded
28 * into the pgd entry)
29 *
30 * This file contains the functions and defines necessary to modify and use
31 * the S390 page table tree.
32 */
33#ifndef __ASSEMBLY__
34#include <asm/bug.h>
35#include <asm/processor.h>
36#include <linux/threads.h>
37
38struct vm_area_struct; /* forward declaration (include/linux/mm.h) */
39
40extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
41extern void paging_init(void);
42
43/*
44 * The S390 doesn't have any external MMU info: the kernel page
45 * tables contain all the necessary information.
46 */
47#define update_mmu_cache(vma, address, pte) do { } while (0)
48
49/*
50 * ZERO_PAGE is a global shared page that is always zero: used
51 * for zero-mapped memory areas etc..
52 */
53extern char empty_zero_page[PAGE_SIZE];
54#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
55#endif /* !__ASSEMBLY__ */
56
57/*
58 * PMD_SHIFT determines the size of the area a second-level page
59 * table can map
60 * PGDIR_SHIFT determines what a third-level page table entry can map
61 */
62#ifndef __s390x__
63# define PMD_SHIFT 22
64# define PGDIR_SHIFT 22
65#else /* __s390x__ */
66# define PMD_SHIFT 21
67# define PGDIR_SHIFT 31
68#endif /* __s390x__ */
69
70#define PMD_SIZE (1UL << PMD_SHIFT)
71#define PMD_MASK (~(PMD_SIZE-1))
72#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
73#define PGDIR_MASK (~(PGDIR_SIZE-1))
74
75/*
76 * entries per page directory level: the S390 is two-level, so
77 * we don't really have any PMD directory physically.
78 * for S390 segment-table entries are combined to one PGD
79 * that leads to 1024 pte per pgd
80 */
81#ifndef __s390x__
82# define PTRS_PER_PTE 1024
83# define PTRS_PER_PMD 1
84# define PTRS_PER_PGD 512
85#else /* __s390x__ */
86# define PTRS_PER_PTE 512
87# define PTRS_PER_PMD 1024
88# define PTRS_PER_PGD 2048
89#endif /* __s390x__ */
90
91/*
92 * pgd entries used up by user/kernel:
93 */
94#ifndef __s390x__
95# define USER_PTRS_PER_PGD 512
96# define USER_PGD_PTRS 512
97# define KERNEL_PGD_PTRS 512
98# define FIRST_USER_PGD_NR 0
99#else /* __s390x__ */
100# define USER_PTRS_PER_PGD 2048
101# define USER_PGD_PTRS 2048
102# define KERNEL_PGD_PTRS 2048
103# define FIRST_USER_PGD_NR 0
104#endif /* __s390x__ */
105
106#define pte_ERROR(e) \
107 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
108#define pmd_ERROR(e) \
109 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
110#define pgd_ERROR(e) \
111 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
112
113#ifndef __ASSEMBLY__
114/*
115 * Just any arbitrary offset to the start of the vmalloc VM area: the
116 * current 8MB value just means that there will be a 8MB "hole" after the
117 * physical memory until the kernel virtual memory starts. That means that
118 * any out-of-bounds memory accesses will hopefully be caught.
119 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
120 * area for the same reason. ;)
121 */
122#define VMALLOC_OFFSET (8*1024*1024)
123#define VMALLOC_START (((unsigned long) high_memory + VMALLOC_OFFSET) \
124 & ~(VMALLOC_OFFSET-1))
125#ifndef __s390x__
126# define VMALLOC_END (0x7fffffffL)
127#else /* __s390x__ */
128# define VMALLOC_END (0x40000000000L)
129#endif /* __s390x__ */
130
131
132/*
133 * A 31 bit pagetable entry of S390 has following format:
134 * | PFRA | | OS |
135 * 0 0IP0
136 * 00000000001111111111222222222233
137 * 01234567890123456789012345678901
138 *
139 * I Page-Invalid Bit: Page is not available for address-translation
140 * P Page-Protection Bit: Store access not possible for page
141 *
142 * A 31 bit segmenttable entry of S390 has following format:
143 * | P-table origin | |PTL
144 * 0 IC
145 * 00000000001111111111222222222233
146 * 01234567890123456789012345678901
147 *
148 * I Segment-Invalid Bit: Segment is not available for address-translation
149 * C Common-Segment Bit: Segment is not private (PoP 3-30)
150 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
151 *
152 * The 31 bit segmenttable origin of S390 has following format:
153 *
154 * |S-table origin | | STL |
155 * X **GPS
156 * 00000000001111111111222222222233
157 * 01234567890123456789012345678901
158 *
159 * X Space-Switch event:
160 * G Segment-Invalid Bit: *
161 * P Private-Space Bit: Segment is not private (PoP 3-30)
162 * S Storage-Alteration:
163 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
164 *
165 * A 64 bit pagetable entry of S390 has following format:
166 * | PFRA |0IP0| OS |
167 * 0000000000111111111122222222223333333333444444444455555555556666
168 * 0123456789012345678901234567890123456789012345678901234567890123
169 *
170 * I Page-Invalid Bit: Page is not available for address-translation
171 * P Page-Protection Bit: Store access not possible for page
172 *
173 * A 64 bit segmenttable entry of S390 has following format:
174 * | P-table origin | TT
175 * 0000000000111111111122222222223333333333444444444455555555556666
176 * 0123456789012345678901234567890123456789012345678901234567890123
177 *
178 * I Segment-Invalid Bit: Segment is not available for address-translation
179 * C Common-Segment Bit: Segment is not private (PoP 3-30)
180 * P Page-Protection Bit: Store access not possible for page
181 * TT Type 00
182 *
183 * A 64 bit region table entry of S390 has following format:
184 * | S-table origin | TF TTTL
185 * 0000000000111111111122222222223333333333444444444455555555556666
186 * 0123456789012345678901234567890123456789012345678901234567890123
187 *
188 * I Segment-Invalid Bit: Segment is not available for address-translation
189 * TT Type 01
190 * TF
191 * TL Table lenght
192 *
193 * The 64 bit regiontable origin of S390 has following format:
194 * | region table origon | DTTL
195 * 0000000000111111111122222222223333333333444444444455555555556666
196 * 0123456789012345678901234567890123456789012345678901234567890123
197 *
198 * X Space-Switch event:
199 * G Segment-Invalid Bit:
200 * P Private-Space Bit:
201 * S Storage-Alteration:
202 * R Real space
203 * TL Table-Length:
204 *
205 * A storage key has the following format:
206 * | ACC |F|R|C|0|
207 * 0 3 4 5 6 7
208 * ACC: access key
209 * F : fetch protection bit
210 * R : referenced bit
211 * C : changed bit
212 */
213
214/* Hardware bits in the page table entry */
215#define _PAGE_RO 0x200 /* HW read-only */
216#define _PAGE_INVALID 0x400 /* HW invalid */
217
218/* Mask and four different kinds of invalid pages. */
219#define _PAGE_INVALID_MASK 0x601
220#define _PAGE_INVALID_EMPTY 0x400
221#define _PAGE_INVALID_NONE 0x401
222#define _PAGE_INVALID_SWAP 0x600
223#define _PAGE_INVALID_FILE 0x601
224
225#ifndef __s390x__
226
227/* Bits in the segment table entry */
228#define _PAGE_TABLE_LEN 0xf /* only full page-tables */
229#define _PAGE_TABLE_COM 0x10 /* common page-table */
230#define _PAGE_TABLE_INV 0x20 /* invalid page-table */
231#define _SEG_PRESENT 0x001 /* Software (overlap with PTL) */
232
233/* Bits int the storage key */
234#define _PAGE_CHANGED 0x02 /* HW changed bit */
235#define _PAGE_REFERENCED 0x04 /* HW referenced bit */
236
237#define _USER_SEG_TABLE_LEN 0x7f /* user-segment-table up to 2 GB */
238#define _KERNEL_SEG_TABLE_LEN 0x7f /* kernel-segment-table up to 2 GB */
239
240/*
241 * User and Kernel pagetables are identical
242 */
243#define _PAGE_TABLE _PAGE_TABLE_LEN
244#define _KERNPG_TABLE _PAGE_TABLE_LEN
245
246/*
247 * The Kernel segment-tables includes the User segment-table
248 */
249
250#define _SEGMENT_TABLE (_USER_SEG_TABLE_LEN|0x80000000|0x100)
251#define _KERNSEG_TABLE _KERNEL_SEG_TABLE_LEN
252
253#define USER_STD_MASK 0x00000080UL
254
255#else /* __s390x__ */
256
257/* Bits in the segment table entry */
258#define _PMD_ENTRY_INV 0x20 /* invalid segment table entry */
259#define _PMD_ENTRY 0x00
260
261/* Bits in the region third table entry */
262#define _PGD_ENTRY_INV 0x20 /* invalid region table entry */
263#define _PGD_ENTRY 0x07
264
265/*
266 * User and kernel page directory
267 */
268#define _REGION_THIRD 0x4
269#define _REGION_THIRD_LEN 0x3
270#define _REGION_TABLE (_REGION_THIRD|_REGION_THIRD_LEN|0x40|0x100)
271#define _KERN_REGION_TABLE (_REGION_THIRD|_REGION_THIRD_LEN)
272
273#define USER_STD_MASK 0x0000000000000080UL
274
275/* Bits in the storage key */
276#define _PAGE_CHANGED 0x02 /* HW changed bit */
277#define _PAGE_REFERENCED 0x04 /* HW referenced bit */
278
279#endif /* __s390x__ */
280
281/*
282 * No mapping available
283 */
284#define PAGE_NONE_SHARED __pgprot(_PAGE_INVALID_NONE)
285#define PAGE_NONE_PRIVATE __pgprot(_PAGE_INVALID_NONE)
286#define PAGE_RO_SHARED __pgprot(_PAGE_RO)
287#define PAGE_RO_PRIVATE __pgprot(_PAGE_RO)
288#define PAGE_COPY __pgprot(_PAGE_RO)
289#define PAGE_SHARED __pgprot(0)
290#define PAGE_KERNEL __pgprot(0)
291
292/*
293 * The S390 can't do page protection for execute, and considers that the
294 * same are read. Also, write permissions imply read permissions. This is
295 * the closest we can get..
296 */
297 /*xwr*/
298#define __P000 PAGE_NONE_PRIVATE
299#define __P001 PAGE_RO_PRIVATE
300#define __P010 PAGE_COPY
301#define __P011 PAGE_COPY
302#define __P100 PAGE_RO_PRIVATE
303#define __P101 PAGE_RO_PRIVATE
304#define __P110 PAGE_COPY
305#define __P111 PAGE_COPY
306
307#define __S000 PAGE_NONE_SHARED
308#define __S001 PAGE_RO_SHARED
309#define __S010 PAGE_SHARED
310#define __S011 PAGE_SHARED
311#define __S100 PAGE_RO_SHARED
312#define __S101 PAGE_RO_SHARED
313#define __S110 PAGE_SHARED
314#define __S111 PAGE_SHARED
315
316/*
317 * Certain architectures need to do special things when PTEs
318 * within a page table are directly modified. Thus, the following
319 * hook is made available.
320 */
321extern inline void set_pte(pte_t *pteptr, pte_t pteval)
322{
323 *pteptr = pteval;
324}
325#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
326
327/*
328 * pgd/pmd/pte query functions
329 */
330#ifndef __s390x__
331
332extern inline int pgd_present(pgd_t pgd) { return 1; }
333extern inline int pgd_none(pgd_t pgd) { return 0; }
334extern inline int pgd_bad(pgd_t pgd) { return 0; }
335
336extern inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) & _SEG_PRESENT; }
337extern inline int pmd_none(pmd_t pmd) { return pmd_val(pmd) & _PAGE_TABLE_INV; }
338extern inline int pmd_bad(pmd_t pmd)
339{
340 return (pmd_val(pmd) & (~PAGE_MASK & ~_PAGE_TABLE_INV)) != _PAGE_TABLE;
341}
342
343#else /* __s390x__ */
344
345extern inline int pgd_present(pgd_t pgd)
346{
347 return (pgd_val(pgd) & ~PAGE_MASK) == _PGD_ENTRY;
348}
349
350extern inline int pgd_none(pgd_t pgd)
351{
352 return pgd_val(pgd) & _PGD_ENTRY_INV;
353}
354
355extern inline int pgd_bad(pgd_t pgd)
356{
357 return (pgd_val(pgd) & (~PAGE_MASK & ~_PGD_ENTRY_INV)) != _PGD_ENTRY;
358}
359
360extern inline int pmd_present(pmd_t pmd)
361{
362 return (pmd_val(pmd) & ~PAGE_MASK) == _PMD_ENTRY;
363}
364
365extern inline int pmd_none(pmd_t pmd)
366{
367 return pmd_val(pmd) & _PMD_ENTRY_INV;
368}
369
370extern inline int pmd_bad(pmd_t pmd)
371{
372 return (pmd_val(pmd) & (~PAGE_MASK & ~_PMD_ENTRY_INV)) != _PMD_ENTRY;
373}
374
375#endif /* __s390x__ */
376
377extern inline int pte_none(pte_t pte)
378{
379 return (pte_val(pte) & _PAGE_INVALID_MASK) == _PAGE_INVALID_EMPTY;
380}
381
382extern inline int pte_present(pte_t pte)
383{
384 return !(pte_val(pte) & _PAGE_INVALID) ||
385 (pte_val(pte) & _PAGE_INVALID_MASK) == _PAGE_INVALID_NONE;
386}
387
388extern inline int pte_file(pte_t pte)
389{
390 return (pte_val(pte) & _PAGE_INVALID_MASK) == _PAGE_INVALID_FILE;
391}
392
393#define pte_same(a,b) (pte_val(a) == pte_val(b))
394
395/*
396 * query functions pte_write/pte_dirty/pte_young only work if
397 * pte_present() is true. Undefined behaviour if not..
398 */
399extern inline int pte_write(pte_t pte)
400{
401 return (pte_val(pte) & _PAGE_RO) == 0;
402}
403
404extern inline int pte_dirty(pte_t pte)
405{
406 /* A pte is neither clean nor dirty on s/390. The dirty bit
407 * is in the storage key. See page_test_and_clear_dirty for
408 * details.
409 */
410 return 0;
411}
412
413extern inline int pte_young(pte_t pte)
414{
415 /* A pte is neither young nor old on s/390. The young bit
416 * is in the storage key. See page_test_and_clear_young for
417 * details.
418 */
419 return 0;
420}
421
422extern inline int pte_read(pte_t pte)
423{
424 /* All pages are readable since we don't use the fetch
425 * protection bit in the storage key.
426 */
427 return 1;
428}
429
430/*
431 * pgd/pmd/pte modification functions
432 */
433
434#ifndef __s390x__
435
436extern inline void pgd_clear(pgd_t * pgdp) { }
437
438extern inline void pmd_clear(pmd_t * pmdp)
439{
440 pmd_val(pmdp[0]) = _PAGE_TABLE_INV;
441 pmd_val(pmdp[1]) = _PAGE_TABLE_INV;
442 pmd_val(pmdp[2]) = _PAGE_TABLE_INV;
443 pmd_val(pmdp[3]) = _PAGE_TABLE_INV;
444}
445
446#else /* __s390x__ */
447
448extern inline void pgd_clear(pgd_t * pgdp)
449{
450 pgd_val(*pgdp) = _PGD_ENTRY_INV | _PGD_ENTRY;
451}
452
453extern inline void pmd_clear(pmd_t * pmdp)
454{
455 pmd_val(*pmdp) = _PMD_ENTRY_INV | _PMD_ENTRY;
456 pmd_val1(*pmdp) = _PMD_ENTRY_INV | _PMD_ENTRY;
457}
458
459#endif /* __s390x__ */
460
461extern inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
462{
463 pte_val(*ptep) = _PAGE_INVALID_EMPTY;
464}
465
466/*
467 * The following pte modification functions only work if
468 * pte_present() is true. Undefined behaviour if not..
469 */
470extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
471{
472 pte_val(pte) &= PAGE_MASK;
473 pte_val(pte) |= pgprot_val(newprot);
474 return pte;
475}
476
477extern inline pte_t pte_wrprotect(pte_t pte)
478{
479 /* Do not clobber _PAGE_INVALID_NONE pages! */
480 if (!(pte_val(pte) & _PAGE_INVALID))
481 pte_val(pte) |= _PAGE_RO;
482 return pte;
483}
484
485extern inline pte_t pte_mkwrite(pte_t pte)
486{
487 pte_val(pte) &= ~_PAGE_RO;
488 return pte;
489}
490
491extern inline pte_t pte_mkclean(pte_t pte)
492{
493 /* The only user of pte_mkclean is the fork() code.
494 We must *not* clear the *physical* page dirty bit
495 just because fork() wants to clear the dirty bit in
496 *one* of the page's mappings. So we just do nothing. */
497 return pte;
498}
499
500extern inline pte_t pte_mkdirty(pte_t pte)
501{
502 /* We do not explicitly set the dirty bit because the
503 * sske instruction is slow. It is faster to let the
504 * next instruction set the dirty bit.
505 */
506 return pte;
507}
508
509extern inline pte_t pte_mkold(pte_t pte)
510{
511 /* S/390 doesn't keep its dirty/referenced bit in the pte.
512 * There is no point in clearing the real referenced bit.
513 */
514 return pte;
515}
516
517extern inline pte_t pte_mkyoung(pte_t pte)
518{
519 /* S/390 doesn't keep its dirty/referenced bit in the pte.
520 * There is no point in setting the real referenced bit.
521 */
522 return pte;
523}
524
525static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
526{
527 return 0;
528}
529
530static inline int
531ptep_clear_flush_young(struct vm_area_struct *vma,
532 unsigned long address, pte_t *ptep)
533{
534 /* No need to flush TLB; bits are in storage key */
535 return ptep_test_and_clear_young(vma, address, ptep);
536}
537
538static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
539{
540 return 0;
541}
542
543static inline int
544ptep_clear_flush_dirty(struct vm_area_struct *vma,
545 unsigned long address, pte_t *ptep)
546{
547 /* No need to flush TLB; bits are in storage key */
548 return ptep_test_and_clear_dirty(vma, address, ptep);
549}
550
551static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
552{
553 pte_t pte = *ptep;
554 pte_clear(mm, addr, ptep);
555 return pte;
556}
557
558static inline pte_t
559ptep_clear_flush(struct vm_area_struct *vma,
560 unsigned long address, pte_t *ptep)
561{
562 pte_t pte = *ptep;
563#ifndef __s390x__
564 if (!(pte_val(pte) & _PAGE_INVALID)) {
565 /* S390 has 1mb segments, we are emulating 4MB segments */
566 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
567 __asm__ __volatile__ ("ipte %2,%3"
568 : "=m" (*ptep) : "m" (*ptep),
569 "a" (pto), "a" (address) );
570 }
571#else /* __s390x__ */
572 if (!(pte_val(pte) & _PAGE_INVALID))
573 __asm__ __volatile__ ("ipte %2,%3"
574 : "=m" (*ptep) : "m" (*ptep),
575 "a" (ptep), "a" (address) );
576#endif /* __s390x__ */
577 pte_val(*ptep) = _PAGE_INVALID_EMPTY;
578 return pte;
579}
580
581static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
582{
583 pte_t old_pte = *ptep;
584 set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte));
585}
586
587static inline void
588ptep_establish(struct vm_area_struct *vma,
589 unsigned long address, pte_t *ptep,
590 pte_t entry)
591{
592 ptep_clear_flush(vma, address, ptep);
593 set_pte(ptep, entry);
594}
595
596#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
597 ptep_establish(__vma, __address, __ptep, __entry)
598
599/*
600 * Test and clear dirty bit in storage key.
601 * We can't clear the changed bit atomically. This is a potential
602 * race against modification of the referenced bit. This function
603 * should therefore only be called if it is not mapped in any
604 * address space.
605 */
606#define page_test_and_clear_dirty(_page) \
607({ \
608 struct page *__page = (_page); \
609 unsigned long __physpage = __pa((__page-mem_map) << PAGE_SHIFT); \
610 int __skey = page_get_storage_key(__physpage); \
611 if (__skey & _PAGE_CHANGED) \
612 page_set_storage_key(__physpage, __skey & ~_PAGE_CHANGED);\
613 (__skey & _PAGE_CHANGED); \
614})
615
616/*
617 * Test and clear referenced bit in storage key.
618 */
619#define page_test_and_clear_young(page) \
620({ \
621 struct page *__page = (page); \
622 unsigned long __physpage = __pa((__page-mem_map) << PAGE_SHIFT); \
623 int __ccode; \
624 asm volatile ("rrbe 0,%1\n\t" \
625 "ipm %0\n\t" \
626 "srl %0,28\n\t" \
627 : "=d" (__ccode) : "a" (__physpage) : "cc" ); \
628 (__ccode & 2); \
629})
630
631/*
632 * Conversion functions: convert a page and protection to a page entry,
633 * and a page entry and page directory to the page they refer to.
634 */
635static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
636{
637 pte_t __pte;
638 pte_val(__pte) = physpage + pgprot_val(pgprot);
639 return __pte;
640}
641
642#define mk_pte(pg, pgprot) \
643({ \
644 struct page *__page = (pg); \
645 pgprot_t __pgprot = (pgprot); \
646 unsigned long __physpage = __pa((__page-mem_map) << PAGE_SHIFT); \
647 pte_t __pte = mk_pte_phys(__physpage, __pgprot); \
648 __pte; \
649})
650
651#define pfn_pte(pfn, pgprot) \
652({ \
653 pgprot_t __pgprot = (pgprot); \
654 unsigned long __physpage = __pa((pfn) << PAGE_SHIFT); \
655 pte_t __pte = mk_pte_phys(__physpage, __pgprot); \
656 __pte; \
657})
658
659#define SetPageUptodate(_page) \
660 do { \
661 struct page *__page = (_page); \
662 if (!test_and_set_bit(PG_uptodate, &__page->flags)) \
663 page_test_and_clear_dirty(_page); \
664 } while (0)
665
666#ifdef __s390x__
667
668#define pfn_pmd(pfn, pgprot) \
669({ \
670 pgprot_t __pgprot = (pgprot); \
671 unsigned long __physpage = __pa((pfn) << PAGE_SHIFT); \
672 pmd_t __pmd = __pmd(__physpage + pgprot_val(__pgprot)); \
673 __pmd; \
674})
675
676#endif /* __s390x__ */
677
678#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
679#define pte_page(x) pfn_to_page(pte_pfn(x))
680
681#define pmd_page_kernel(pmd) (pmd_val(pmd) & PAGE_MASK)
682
683#define pmd_page(pmd) (mem_map+(pmd_val(pmd) >> PAGE_SHIFT))
684
685#define pgd_page_kernel(pgd) (pgd_val(pgd) & PAGE_MASK)
686
687/* to find an entry in a page-table-directory */
688#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
689#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
690
691/* to find an entry in a kernel page-table-directory */
692#define pgd_offset_k(address) pgd_offset(&init_mm, address)
693
694#ifndef __s390x__
695
696/* Find an entry in the second-level page table.. */
697extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
698{
699 return (pmd_t *) dir;
700}
701
702#else /* __s390x__ */
703
704/* Find an entry in the second-level page table.. */
705#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
706#define pmd_offset(dir,addr) \
707 ((pmd_t *) pgd_page_kernel(*(dir)) + pmd_index(addr))
708
709#endif /* __s390x__ */
710
711/* Find an entry in the third-level page table.. */
712#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
713#define pte_offset_kernel(pmd, address) \
714 ((pte_t *) pmd_page_kernel(*(pmd)) + pte_index(address))
715#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
716#define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address)
717#define pte_unmap(pte) do { } while (0)
718#define pte_unmap_nested(pte) do { } while (0)
719
720/*
721 * 31 bit swap entry format:
722 * A page-table entry has some bits we have to treat in a special way.
723 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
724 * exception will occur instead of a page translation exception. The
725 * specifiation exception has the bad habit not to store necessary
726 * information in the lowcore.
727 * Bit 21 and bit 22 are the page invalid bit and the page protection
728 * bit. We set both to indicate a swapped page.
729 * Bit 30 and 31 are used to distinguish the different page types. For
730 * a swapped page these bits need to be zero.
731 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
732 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
733 * plus 24 for the offset.
734 * 0| offset |0110|o|type |00|
735 * 0 0000000001111111111 2222 2 22222 33
736 * 0 1234567890123456789 0123 4 56789 01
737 *
738 * 64 bit swap entry format:
739 * A page-table entry has some bits we have to treat in a special way.
740 * Bits 52 and bit 55 have to be zero, otherwise an specification
741 * exception will occur instead of a page translation exception. The
742 * specifiation exception has the bad habit not to store necessary
743 * information in the lowcore.
744 * Bit 53 and bit 54 are the page invalid bit and the page protection
745 * bit. We set both to indicate a swapped page.
746 * Bit 62 and 63 are used to distinguish the different page types. For
747 * a swapped page these bits need to be zero.
748 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
749 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
750 * plus 56 for the offset.
751 * | offset |0110|o|type |00|
752 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
753 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
754 */
755#ifndef __s390x__
756#define __SWP_OFFSET_MASK (~0UL >> 12)
757#else
758#define __SWP_OFFSET_MASK (~0UL >> 11)
759#endif
760extern inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
761{
762 pte_t pte;
763 offset &= __SWP_OFFSET_MASK;
764 pte_val(pte) = _PAGE_INVALID_SWAP | ((type & 0x1f) << 2) |
765 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
766 return pte;
767}
768
769#define __swp_type(entry) (((entry).val >> 2) & 0x1f)
770#define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
771#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
772
773#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
774#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
775
776#ifndef __s390x__
777# define PTE_FILE_MAX_BITS 26
778#else /* __s390x__ */
779# define PTE_FILE_MAX_BITS 59
780#endif /* __s390x__ */
781
782#define pte_to_pgoff(__pte) \
783 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
784
785#define pgoff_to_pte(__off) \
786 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
787 | _PAGE_INVALID_FILE })
788
789#endif /* !__ASSEMBLY__ */
790
791#define kern_addr_valid(addr) (1)
792
793/*
794 * No page table caches to initialise
795 */
796#define pgtable_cache_init() do { } while (0)
797
798#define __HAVE_ARCH_PTEP_ESTABLISH
799#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
800#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
801#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
802#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
803#define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH
804#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
805#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
806#define __HAVE_ARCH_PTEP_SET_WRPROTECT
807#define __HAVE_ARCH_PTE_SAME
808#define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
809#define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
810#include <asm-generic/pgtable.h>
811
812#endif /* _S390_PAGE_H */
813