diff options
Diffstat (limited to 'include/asm-ppc64/pgtable.h')
-rw-r--r-- | include/asm-ppc64/pgtable.h | 602 |
1 files changed, 602 insertions, 0 deletions
diff --git a/include/asm-ppc64/pgtable.h b/include/asm-ppc64/pgtable.h new file mode 100644 index 000000000000..4c4824653e80 --- /dev/null +++ b/include/asm-ppc64/pgtable.h | |||
@@ -0,0 +1,602 @@ | |||
1 | #ifndef _PPC64_PGTABLE_H | ||
2 | #define _PPC64_PGTABLE_H | ||
3 | |||
4 | #include <asm-generic/4level-fixup.h> | ||
5 | |||
6 | /* | ||
7 | * This file contains the functions and defines necessary to modify and use | ||
8 | * the ppc64 hashed page table. | ||
9 | */ | ||
10 | |||
11 | #ifndef __ASSEMBLY__ | ||
12 | #include <linux/config.h> | ||
13 | #include <linux/stddef.h> | ||
14 | #include <asm/processor.h> /* For TASK_SIZE */ | ||
15 | #include <asm/mmu.h> | ||
16 | #include <asm/page.h> | ||
17 | #include <asm/tlbflush.h> | ||
18 | #endif /* __ASSEMBLY__ */ | ||
19 | |||
20 | /* PMD_SHIFT determines what a second-level page table entry can map */ | ||
21 | #define PMD_SHIFT (PAGE_SHIFT + PAGE_SHIFT - 3) | ||
22 | #define PMD_SIZE (1UL << PMD_SHIFT) | ||
23 | #define PMD_MASK (~(PMD_SIZE-1)) | ||
24 | |||
25 | /* PGDIR_SHIFT determines what a third-level page table entry can map */ | ||
26 | #define PGDIR_SHIFT (PAGE_SHIFT + (PAGE_SHIFT - 3) + (PAGE_SHIFT - 2)) | ||
27 | #define PGDIR_SIZE (1UL << PGDIR_SHIFT) | ||
28 | #define PGDIR_MASK (~(PGDIR_SIZE-1)) | ||
29 | |||
30 | /* | ||
31 | * Entries per page directory level. The PTE level must use a 64b record | ||
32 | * for each page table entry. The PMD and PGD level use a 32b record for | ||
33 | * each entry by assuming that each entry is page aligned. | ||
34 | */ | ||
35 | #define PTE_INDEX_SIZE 9 | ||
36 | #define PMD_INDEX_SIZE 10 | ||
37 | #define PGD_INDEX_SIZE 10 | ||
38 | |||
39 | #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE) | ||
40 | #define PTRS_PER_PMD (1 << PMD_INDEX_SIZE) | ||
41 | #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE) | ||
42 | |||
43 | #define USER_PTRS_PER_PGD (1024) | ||
44 | #define FIRST_USER_PGD_NR 0 | ||
45 | |||
46 | #define EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \ | ||
47 | PGD_INDEX_SIZE + PAGE_SHIFT) | ||
48 | |||
49 | /* | ||
50 | * Size of EA range mapped by our pagetables. | ||
51 | */ | ||
52 | #define PGTABLE_EA_BITS 41 | ||
53 | #define PGTABLE_EA_MASK ((1UL<<PGTABLE_EA_BITS)-1) | ||
54 | |||
55 | /* | ||
56 | * Define the address range of the vmalloc VM area. | ||
57 | */ | ||
58 | #define VMALLOC_START (0xD000000000000000ul) | ||
59 | #define VMALLOC_END (VMALLOC_START + PGTABLE_EA_MASK) | ||
60 | |||
61 | /* | ||
62 | * Define the address range of the imalloc VM area. | ||
63 | * (used for ioremap) | ||
64 | */ | ||
65 | #define IMALLOC_START (ioremap_bot) | ||
66 | #define IMALLOC_VMADDR(x) ((unsigned long)(x)) | ||
67 | #define PHBS_IO_BASE (0xE000000000000000ul) /* Reserve 2 gigs for PHBs */ | ||
68 | #define IMALLOC_BASE (0xE000000080000000ul) | ||
69 | #define IMALLOC_END (IMALLOC_BASE + PGTABLE_EA_MASK) | ||
70 | |||
71 | /* | ||
72 | * Define the user address range | ||
73 | */ | ||
74 | #define USER_START (0UL) | ||
75 | #define USER_END (USER_START + PGTABLE_EA_MASK) | ||
76 | |||
77 | |||
78 | /* | ||
79 | * Bits in a linux-style PTE. These match the bits in the | ||
80 | * (hardware-defined) PowerPC PTE as closely as possible. | ||
81 | */ | ||
82 | #define _PAGE_PRESENT 0x0001 /* software: pte contains a translation */ | ||
83 | #define _PAGE_USER 0x0002 /* matches one of the PP bits */ | ||
84 | #define _PAGE_FILE 0x0002 /* (!present only) software: pte holds file offset */ | ||
85 | #define _PAGE_EXEC 0x0004 /* No execute on POWER4 and newer (we invert) */ | ||
86 | #define _PAGE_GUARDED 0x0008 | ||
87 | #define _PAGE_COHERENT 0x0010 /* M: enforce memory coherence (SMP systems) */ | ||
88 | #define _PAGE_NO_CACHE 0x0020 /* I: cache inhibit */ | ||
89 | #define _PAGE_WRITETHRU 0x0040 /* W: cache write-through */ | ||
90 | #define _PAGE_DIRTY 0x0080 /* C: page changed */ | ||
91 | #define _PAGE_ACCESSED 0x0100 /* R: page referenced */ | ||
92 | #define _PAGE_RW 0x0200 /* software: user write access allowed */ | ||
93 | #define _PAGE_HASHPTE 0x0400 /* software: pte has an associated HPTE */ | ||
94 | #define _PAGE_BUSY 0x0800 /* software: PTE & hash are busy */ | ||
95 | #define _PAGE_SECONDARY 0x8000 /* software: HPTE is in secondary group */ | ||
96 | #define _PAGE_GROUP_IX 0x7000 /* software: HPTE index within group */ | ||
97 | #define _PAGE_HUGE 0x10000 /* 16MB page */ | ||
98 | /* Bits 0x7000 identify the index within an HPT Group */ | ||
99 | #define _PAGE_HPTEFLAGS (_PAGE_BUSY | _PAGE_HASHPTE | _PAGE_SECONDARY | _PAGE_GROUP_IX) | ||
100 | /* PAGE_MASK gives the right answer below, but only by accident */ | ||
101 | /* It should be preserving the high 48 bits and then specifically */ | ||
102 | /* preserving _PAGE_SECONDARY | _PAGE_GROUP_IX */ | ||
103 | #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_HPTEFLAGS) | ||
104 | |||
105 | #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT) | ||
106 | |||
107 | #define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY) | ||
108 | |||
109 | /* __pgprot defined in asm-ppc64/page.h */ | ||
110 | #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED) | ||
111 | |||
112 | #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER) | ||
113 | #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | _PAGE_EXEC) | ||
114 | #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER) | ||
115 | #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) | ||
116 | #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER) | ||
117 | #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) | ||
118 | #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_WRENABLE) | ||
119 | #define PAGE_KERNEL_CI __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \ | ||
120 | _PAGE_WRENABLE | _PAGE_NO_CACHE | _PAGE_GUARDED) | ||
121 | #define PAGE_KERNEL_EXEC __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_EXEC) | ||
122 | |||
123 | #define PAGE_AGP __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_NO_CACHE) | ||
124 | #define HAVE_PAGE_AGP | ||
125 | |||
126 | /* | ||
127 | * This bit in a hardware PTE indicates that the page is *not* executable. | ||
128 | */ | ||
129 | #define HW_NO_EXEC _PAGE_EXEC | ||
130 | |||
131 | /* | ||
132 | * POWER4 and newer have per page execute protection, older chips can only | ||
133 | * do this on a segment (256MB) basis. | ||
134 | * | ||
135 | * Also, write permissions imply read permissions. | ||
136 | * This is the closest we can get.. | ||
137 | * | ||
138 | * Note due to the way vm flags are laid out, the bits are XWR | ||
139 | */ | ||
140 | #define __P000 PAGE_NONE | ||
141 | #define __P001 PAGE_READONLY | ||
142 | #define __P010 PAGE_COPY | ||
143 | #define __P011 PAGE_COPY | ||
144 | #define __P100 PAGE_READONLY_X | ||
145 | #define __P101 PAGE_READONLY_X | ||
146 | #define __P110 PAGE_COPY_X | ||
147 | #define __P111 PAGE_COPY_X | ||
148 | |||
149 | #define __S000 PAGE_NONE | ||
150 | #define __S001 PAGE_READONLY | ||
151 | #define __S010 PAGE_SHARED | ||
152 | #define __S011 PAGE_SHARED | ||
153 | #define __S100 PAGE_READONLY_X | ||
154 | #define __S101 PAGE_READONLY_X | ||
155 | #define __S110 PAGE_SHARED_X | ||
156 | #define __S111 PAGE_SHARED_X | ||
157 | |||
158 | #ifndef __ASSEMBLY__ | ||
159 | |||
160 | /* | ||
161 | * ZERO_PAGE is a global shared page that is always zero: used | ||
162 | * for zero-mapped memory areas etc.. | ||
163 | */ | ||
164 | extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)]; | ||
165 | #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) | ||
166 | #endif /* __ASSEMBLY__ */ | ||
167 | |||
168 | /* shift to put page number into pte */ | ||
169 | #define PTE_SHIFT (17) | ||
170 | |||
171 | /* We allow 2^41 bytes of real memory, so we need 29 bits in the PMD | ||
172 | * to give the PTE page number. The bottom two bits are for flags. */ | ||
173 | #define PMD_TO_PTEPAGE_SHIFT (2) | ||
174 | |||
175 | #ifdef CONFIG_HUGETLB_PAGE | ||
176 | |||
177 | #ifndef __ASSEMBLY__ | ||
178 | int hash_huge_page(struct mm_struct *mm, unsigned long access, | ||
179 | unsigned long ea, unsigned long vsid, int local); | ||
180 | |||
181 | void hugetlb_mm_free_pgd(struct mm_struct *mm); | ||
182 | #endif /* __ASSEMBLY__ */ | ||
183 | |||
184 | #define HAVE_ARCH_UNMAPPED_AREA | ||
185 | #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN | ||
186 | #else | ||
187 | |||
188 | #define hash_huge_page(mm,a,ea,vsid,local) -1 | ||
189 | #define hugetlb_mm_free_pgd(mm) do {} while (0) | ||
190 | |||
191 | #endif | ||
192 | |||
193 | #ifndef __ASSEMBLY__ | ||
194 | |||
195 | /* | ||
196 | * Conversion functions: convert a page and protection to a page entry, | ||
197 | * and a page entry and page directory to the page they refer to. | ||
198 | * | ||
199 | * mk_pte takes a (struct page *) as input | ||
200 | */ | ||
201 | #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) | ||
202 | |||
203 | #define pfn_pte(pfn,pgprot) \ | ||
204 | ({ \ | ||
205 | pte_t pte; \ | ||
206 | pte_val(pte) = ((unsigned long)(pfn) << PTE_SHIFT) | \ | ||
207 | pgprot_val(pgprot); \ | ||
208 | pte; \ | ||
209 | }) | ||
210 | |||
211 | #define pte_modify(_pte, newprot) \ | ||
212 | (__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))) | ||
213 | |||
214 | #define pte_none(pte) ((pte_val(pte) & ~_PAGE_HPTEFLAGS) == 0) | ||
215 | #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT) | ||
216 | |||
217 | /* pte_clear moved to later in this file */ | ||
218 | |||
219 | #define pte_pfn(x) ((unsigned long)((pte_val(x) >> PTE_SHIFT))) | ||
220 | #define pte_page(x) pfn_to_page(pte_pfn(x)) | ||
221 | |||
222 | #define pmd_set(pmdp, ptep) \ | ||
223 | (pmd_val(*(pmdp)) = (__ba_to_bpn(ptep) << PMD_TO_PTEPAGE_SHIFT)) | ||
224 | #define pmd_none(pmd) (!pmd_val(pmd)) | ||
225 | #define pmd_bad(pmd) (pmd_val(pmd) == 0) | ||
226 | #define pmd_present(pmd) (pmd_val(pmd) != 0) | ||
227 | #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0) | ||
228 | #define pmd_page_kernel(pmd) \ | ||
229 | (__bpn_to_ba(pmd_val(pmd) >> PMD_TO_PTEPAGE_SHIFT)) | ||
230 | #define pmd_page(pmd) virt_to_page(pmd_page_kernel(pmd)) | ||
231 | #define pgd_set(pgdp, pmdp) (pgd_val(*(pgdp)) = (__ba_to_bpn(pmdp))) | ||
232 | #define pgd_none(pgd) (!pgd_val(pgd)) | ||
233 | #define pgd_bad(pgd) ((pgd_val(pgd)) == 0) | ||
234 | #define pgd_present(pgd) (pgd_val(pgd) != 0UL) | ||
235 | #define pgd_clear(pgdp) (pgd_val(*(pgdp)) = 0UL) | ||
236 | #define pgd_page(pgd) (__bpn_to_ba(pgd_val(pgd))) | ||
237 | |||
238 | /* | ||
239 | * Find an entry in a page-table-directory. We combine the address region | ||
240 | * (the high order N bits) and the pgd portion of the address. | ||
241 | */ | ||
242 | /* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */ | ||
243 | #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x7ff) | ||
244 | |||
245 | #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) | ||
246 | |||
247 | /* Find an entry in the second-level page table.. */ | ||
248 | #define pmd_offset(dir,addr) \ | ||
249 | ((pmd_t *) pgd_page(*(dir)) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))) | ||
250 | |||
251 | /* Find an entry in the third-level page table.. */ | ||
252 | #define pte_offset_kernel(dir,addr) \ | ||
253 | ((pte_t *) pmd_page_kernel(*(dir)) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))) | ||
254 | |||
255 | #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr)) | ||
256 | #define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr)) | ||
257 | #define pte_unmap(pte) do { } while(0) | ||
258 | #define pte_unmap_nested(pte) do { } while(0) | ||
259 | |||
260 | /* to find an entry in a kernel page-table-directory */ | ||
261 | /* This now only contains the vmalloc pages */ | ||
262 | #define pgd_offset_k(address) pgd_offset(&init_mm, address) | ||
263 | |||
264 | /* to find an entry in the ioremap page-table-directory */ | ||
265 | #define pgd_offset_i(address) (ioremap_pgd + pgd_index(address)) | ||
266 | |||
267 | #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT)) | ||
268 | |||
269 | /* | ||
270 | * The following only work if pte_present() is true. | ||
271 | * Undefined behaviour if not.. | ||
272 | */ | ||
273 | static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER;} | ||
274 | static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW;} | ||
275 | static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC;} | ||
276 | static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY;} | ||
277 | static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED;} | ||
278 | static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE;} | ||
279 | static inline int pte_huge(pte_t pte) { return pte_val(pte) & _PAGE_HUGE;} | ||
280 | |||
281 | static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; } | ||
282 | static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; } | ||
283 | |||
284 | static inline pte_t pte_rdprotect(pte_t pte) { | ||
285 | pte_val(pte) &= ~_PAGE_USER; return pte; } | ||
286 | static inline pte_t pte_exprotect(pte_t pte) { | ||
287 | pte_val(pte) &= ~_PAGE_EXEC; return pte; } | ||
288 | static inline pte_t pte_wrprotect(pte_t pte) { | ||
289 | pte_val(pte) &= ~(_PAGE_RW); return pte; } | ||
290 | static inline pte_t pte_mkclean(pte_t pte) { | ||
291 | pte_val(pte) &= ~(_PAGE_DIRTY); return pte; } | ||
292 | static inline pte_t pte_mkold(pte_t pte) { | ||
293 | pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } | ||
294 | |||
295 | static inline pte_t pte_mkread(pte_t pte) { | ||
296 | pte_val(pte) |= _PAGE_USER; return pte; } | ||
297 | static inline pte_t pte_mkexec(pte_t pte) { | ||
298 | pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; } | ||
299 | static inline pte_t pte_mkwrite(pte_t pte) { | ||
300 | pte_val(pte) |= _PAGE_RW; return pte; } | ||
301 | static inline pte_t pte_mkdirty(pte_t pte) { | ||
302 | pte_val(pte) |= _PAGE_DIRTY; return pte; } | ||
303 | static inline pte_t pte_mkyoung(pte_t pte) { | ||
304 | pte_val(pte) |= _PAGE_ACCESSED; return pte; } | ||
305 | static inline pte_t pte_mkhuge(pte_t pte) { | ||
306 | pte_val(pte) |= _PAGE_HUGE; return pte; } | ||
307 | |||
308 | /* Atomic PTE updates */ | ||
309 | static inline unsigned long pte_update(pte_t *p, unsigned long clr) | ||
310 | { | ||
311 | unsigned long old, tmp; | ||
312 | |||
313 | __asm__ __volatile__( | ||
314 | "1: ldarx %0,0,%3 # pte_update\n\ | ||
315 | andi. %1,%0,%6\n\ | ||
316 | bne- 1b \n\ | ||
317 | andc %1,%0,%4 \n\ | ||
318 | stdcx. %1,0,%3 \n\ | ||
319 | bne- 1b" | ||
320 | : "=&r" (old), "=&r" (tmp), "=m" (*p) | ||
321 | : "r" (p), "r" (clr), "m" (*p), "i" (_PAGE_BUSY) | ||
322 | : "cc" ); | ||
323 | return old; | ||
324 | } | ||
325 | |||
326 | /* PTE updating functions, this function puts the PTE in the | ||
327 | * batch, doesn't actually triggers the hash flush immediately, | ||
328 | * you need to call flush_tlb_pending() to do that. | ||
329 | */ | ||
330 | extern void hpte_update(struct mm_struct *mm, unsigned long addr, unsigned long pte, | ||
331 | int wrprot); | ||
332 | |||
333 | static inline int __ptep_test_and_clear_young(struct mm_struct *mm, unsigned long addr, pte_t *ptep) | ||
334 | { | ||
335 | unsigned long old; | ||
336 | |||
337 | if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0) | ||
338 | return 0; | ||
339 | old = pte_update(ptep, _PAGE_ACCESSED); | ||
340 | if (old & _PAGE_HASHPTE) { | ||
341 | hpte_update(mm, addr, old, 0); | ||
342 | flush_tlb_pending(); | ||
343 | } | ||
344 | return (old & _PAGE_ACCESSED) != 0; | ||
345 | } | ||
346 | #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG | ||
347 | #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ | ||
348 | ({ \ | ||
349 | int __r; \ | ||
350 | __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \ | ||
351 | __r; \ | ||
352 | }) | ||
353 | |||
354 | /* | ||
355 | * On RW/DIRTY bit transitions we can avoid flushing the hpte. For the | ||
356 | * moment we always flush but we need to fix hpte_update and test if the | ||
357 | * optimisation is worth it. | ||
358 | */ | ||
359 | static inline int __ptep_test_and_clear_dirty(struct mm_struct *mm, unsigned long addr, pte_t *ptep) | ||
360 | { | ||
361 | unsigned long old; | ||
362 | |||
363 | if ((pte_val(*ptep) & _PAGE_DIRTY) == 0) | ||
364 | return 0; | ||
365 | old = pte_update(ptep, _PAGE_DIRTY); | ||
366 | if (old & _PAGE_HASHPTE) | ||
367 | hpte_update(mm, addr, old, 0); | ||
368 | return (old & _PAGE_DIRTY) != 0; | ||
369 | } | ||
370 | #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY | ||
371 | #define ptep_test_and_clear_dirty(__vma, __addr, __ptep) \ | ||
372 | ({ \ | ||
373 | int __r; \ | ||
374 | __r = __ptep_test_and_clear_dirty((__vma)->vm_mm, __addr, __ptep); \ | ||
375 | __r; \ | ||
376 | }) | ||
377 | |||
378 | #define __HAVE_ARCH_PTEP_SET_WRPROTECT | ||
379 | static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) | ||
380 | { | ||
381 | unsigned long old; | ||
382 | |||
383 | if ((pte_val(*ptep) & _PAGE_RW) == 0) | ||
384 | return; | ||
385 | old = pte_update(ptep, _PAGE_RW); | ||
386 | if (old & _PAGE_HASHPTE) | ||
387 | hpte_update(mm, addr, old, 0); | ||
388 | } | ||
389 | |||
390 | /* | ||
391 | * We currently remove entries from the hashtable regardless of whether | ||
392 | * the entry was young or dirty. The generic routines only flush if the | ||
393 | * entry was young or dirty which is not good enough. | ||
394 | * | ||
395 | * We should be more intelligent about this but for the moment we override | ||
396 | * these functions and force a tlb flush unconditionally | ||
397 | */ | ||
398 | #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH | ||
399 | #define ptep_clear_flush_young(__vma, __address, __ptep) \ | ||
400 | ({ \ | ||
401 | int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \ | ||
402 | __ptep); \ | ||
403 | __young; \ | ||
404 | }) | ||
405 | |||
406 | #define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH | ||
407 | #define ptep_clear_flush_dirty(__vma, __address, __ptep) \ | ||
408 | ({ \ | ||
409 | int __dirty = __ptep_test_and_clear_dirty((__vma)->vm_mm, __address, \ | ||
410 | __ptep); \ | ||
411 | flush_tlb_page(__vma, __address); \ | ||
412 | __dirty; \ | ||
413 | }) | ||
414 | |||
415 | #define __HAVE_ARCH_PTEP_GET_AND_CLEAR | ||
416 | static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) | ||
417 | { | ||
418 | unsigned long old = pte_update(ptep, ~0UL); | ||
419 | |||
420 | if (old & _PAGE_HASHPTE) | ||
421 | hpte_update(mm, addr, old, 0); | ||
422 | return __pte(old); | ||
423 | } | ||
424 | |||
425 | static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t * ptep) | ||
426 | { | ||
427 | unsigned long old = pte_update(ptep, ~0UL); | ||
428 | |||
429 | if (old & _PAGE_HASHPTE) | ||
430 | hpte_update(mm, addr, old, 0); | ||
431 | } | ||
432 | |||
433 | /* | ||
434 | * set_pte stores a linux PTE into the linux page table. | ||
435 | */ | ||
436 | static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, | ||
437 | pte_t *ptep, pte_t pte) | ||
438 | { | ||
439 | if (pte_present(*ptep)) { | ||
440 | pte_clear(mm, addr, ptep); | ||
441 | flush_tlb_pending(); | ||
442 | } | ||
443 | *ptep = __pte(pte_val(pte)) & ~_PAGE_HPTEFLAGS; | ||
444 | } | ||
445 | |||
446 | /* Set the dirty and/or accessed bits atomically in a linux PTE, this | ||
447 | * function doesn't need to flush the hash entry | ||
448 | */ | ||
449 | #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS | ||
450 | static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty) | ||
451 | { | ||
452 | unsigned long bits = pte_val(entry) & | ||
453 | (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC); | ||
454 | unsigned long old, tmp; | ||
455 | |||
456 | __asm__ __volatile__( | ||
457 | "1: ldarx %0,0,%4\n\ | ||
458 | andi. %1,%0,%6\n\ | ||
459 | bne- 1b \n\ | ||
460 | or %0,%3,%0\n\ | ||
461 | stdcx. %0,0,%4\n\ | ||
462 | bne- 1b" | ||
463 | :"=&r" (old), "=&r" (tmp), "=m" (*ptep) | ||
464 | :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY) | ||
465 | :"cc"); | ||
466 | } | ||
467 | #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \ | ||
468 | do { \ | ||
469 | __ptep_set_access_flags(__ptep, __entry, __dirty); \ | ||
470 | flush_tlb_page_nohash(__vma, __address); \ | ||
471 | } while(0) | ||
472 | |||
473 | /* | ||
474 | * Macro to mark a page protection value as "uncacheable". | ||
475 | */ | ||
476 | #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED)) | ||
477 | |||
478 | struct file; | ||
479 | extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long addr, | ||
480 | unsigned long size, pgprot_t vma_prot); | ||
481 | #define __HAVE_PHYS_MEM_ACCESS_PROT | ||
482 | |||
483 | #define __HAVE_ARCH_PTE_SAME | ||
484 | #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0) | ||
485 | |||
486 | extern unsigned long ioremap_bot, ioremap_base; | ||
487 | |||
488 | #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) | ||
489 | #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS) | ||
490 | |||
491 | #define pte_ERROR(e) \ | ||
492 | printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e)) | ||
493 | #define pmd_ERROR(e) \ | ||
494 | printk("%s:%d: bad pmd %08x.\n", __FILE__, __LINE__, pmd_val(e)) | ||
495 | #define pgd_ERROR(e) \ | ||
496 | printk("%s:%d: bad pgd %08x.\n", __FILE__, __LINE__, pgd_val(e)) | ||
497 | |||
498 | extern pgd_t swapper_pg_dir[1024]; | ||
499 | extern pgd_t ioremap_dir[1024]; | ||
500 | |||
501 | extern void paging_init(void); | ||
502 | |||
503 | struct mmu_gather; | ||
504 | void hugetlb_free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *prev, | ||
505 | unsigned long start, unsigned long end); | ||
506 | |||
507 | /* | ||
508 | * This gets called at the end of handling a page fault, when | ||
509 | * the kernel has put a new PTE into the page table for the process. | ||
510 | * We use it to put a corresponding HPTE into the hash table | ||
511 | * ahead of time, instead of waiting for the inevitable extra | ||
512 | * hash-table miss exception. | ||
513 | */ | ||
514 | struct vm_area_struct; | ||
515 | extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t); | ||
516 | |||
517 | /* Encode and de-code a swap entry */ | ||
518 | #define __swp_type(entry) (((entry).val >> 1) & 0x3f) | ||
519 | #define __swp_offset(entry) ((entry).val >> 8) | ||
520 | #define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 1) | ((offset) << 8) }) | ||
521 | #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> PTE_SHIFT }) | ||
522 | #define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_SHIFT }) | ||
523 | #define pte_to_pgoff(pte) (pte_val(pte) >> PTE_SHIFT) | ||
524 | #define pgoff_to_pte(off) ((pte_t) {((off) << PTE_SHIFT)|_PAGE_FILE}) | ||
525 | #define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_SHIFT) | ||
526 | |||
527 | /* | ||
528 | * kern_addr_valid is intended to indicate whether an address is a valid | ||
529 | * kernel address. Most 32-bit archs define it as always true (like this) | ||
530 | * but most 64-bit archs actually perform a test. What should we do here? | ||
531 | * The only use is in fs/ncpfs/dir.c | ||
532 | */ | ||
533 | #define kern_addr_valid(addr) (1) | ||
534 | |||
535 | #define io_remap_page_range(vma, vaddr, paddr, size, prot) \ | ||
536 | remap_pfn_range(vma, vaddr, (paddr) >> PAGE_SHIFT, size, prot) | ||
537 | |||
538 | #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ | ||
539 | remap_pfn_range(vma, vaddr, pfn, size, prot) | ||
540 | |||
541 | #define MK_IOSPACE_PFN(space, pfn) (pfn) | ||
542 | #define GET_IOSPACE(pfn) 0 | ||
543 | #define GET_PFN(pfn) (pfn) | ||
544 | |||
545 | void pgtable_cache_init(void); | ||
546 | |||
547 | extern void hpte_init_native(void); | ||
548 | extern void hpte_init_lpar(void); | ||
549 | extern void hpte_init_iSeries(void); | ||
550 | |||
551 | /* imalloc region types */ | ||
552 | #define IM_REGION_UNUSED 0x1 | ||
553 | #define IM_REGION_SUBSET 0x2 | ||
554 | #define IM_REGION_EXISTS 0x4 | ||
555 | #define IM_REGION_OVERLAP 0x8 | ||
556 | #define IM_REGION_SUPERSET 0x10 | ||
557 | |||
558 | extern struct vm_struct * im_get_free_area(unsigned long size); | ||
559 | extern struct vm_struct * im_get_area(unsigned long v_addr, unsigned long size, | ||
560 | int region_type); | ||
561 | unsigned long im_free(void *addr); | ||
562 | |||
563 | extern long pSeries_lpar_hpte_insert(unsigned long hpte_group, | ||
564 | unsigned long va, unsigned long prpn, | ||
565 | int secondary, unsigned long hpteflags, | ||
566 | int bolted, int large); | ||
567 | |||
568 | extern long native_hpte_insert(unsigned long hpte_group, unsigned long va, | ||
569 | unsigned long prpn, int secondary, | ||
570 | unsigned long hpteflags, int bolted, int large); | ||
571 | |||
572 | /* | ||
573 | * find_linux_pte returns the address of a linux pte for a given | ||
574 | * effective address and directory. If not found, it returns zero. | ||
575 | */ | ||
576 | static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea) | ||
577 | { | ||
578 | pgd_t *pg; | ||
579 | pmd_t *pm; | ||
580 | pte_t *pt = NULL; | ||
581 | pte_t pte; | ||
582 | |||
583 | pg = pgdir + pgd_index(ea); | ||
584 | if (!pgd_none(*pg)) { | ||
585 | |||
586 | pm = pmd_offset(pg, ea); | ||
587 | if (pmd_present(*pm)) { | ||
588 | pt = pte_offset_kernel(pm, ea); | ||
589 | pte = *pt; | ||
590 | if (!pte_present(pte)) | ||
591 | pt = NULL; | ||
592 | } | ||
593 | } | ||
594 | |||
595 | return pt; | ||
596 | } | ||
597 | |||
598 | #include <asm-generic/pgtable.h> | ||
599 | |||
600 | #endif /* __ASSEMBLY__ */ | ||
601 | |||
602 | #endif /* _PPC64_PGTABLE_H */ | ||