aboutsummaryrefslogtreecommitdiffstats
path: root/include/asm-ppc64/bitops.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/asm-ppc64/bitops.h')
-rw-r--r--include/asm-ppc64/bitops.h360
1 files changed, 0 insertions, 360 deletions
diff --git a/include/asm-ppc64/bitops.h b/include/asm-ppc64/bitops.h
deleted file mode 100644
index dbfa42ef4a99..000000000000
--- a/include/asm-ppc64/bitops.h
+++ /dev/null
@@ -1,360 +0,0 @@
1/*
2 * PowerPC64 atomic bit operations.
3 * Dave Engebretsen, Todd Inglett, Don Reed, Pat McCarthy, Peter Bergner,
4 * Anton Blanchard
5 *
6 * Originally taken from the 32b PPC code. Modified to use 64b values for
7 * the various counters & memory references.
8 *
9 * Bitops are odd when viewed on big-endian systems. They were designed
10 * on little endian so the size of the bitset doesn't matter (low order bytes
11 * come first) as long as the bit in question is valid.
12 *
13 * Bits are "tested" often using the C expression (val & (1<<nr)) so we do
14 * our best to stay compatible with that. The assumption is that val will
15 * be unsigned long for such tests. As such, we assume the bits are stored
16 * as an array of unsigned long (the usual case is a single unsigned long,
17 * of course). Here's an example bitset with bit numbering:
18 *
19 * |63..........0|127........64|195.......128|255.......196|
20 *
21 * This leads to a problem. If an int, short or char is passed as a bitset
22 * it will be a bad memory reference since we want to store in chunks
23 * of unsigned long (64 bits here) size.
24 *
25 * There are a few little-endian macros used mostly for filesystem bitmaps,
26 * these work on similar bit arrays layouts, but byte-oriented:
27 *
28 * |7...0|15...8|23...16|31...24|39...32|47...40|55...48|63...56|
29 *
30 * The main difference is that bit 3-5 in the bit number field needs to be
31 * reversed compared to the big-endian bit fields. This can be achieved
32 * by XOR with 0b111000 (0x38).
33 *
34 * This program is free software; you can redistribute it and/or
35 * modify it under the terms of the GNU General Public License
36 * as published by the Free Software Foundation; either version
37 * 2 of the License, or (at your option) any later version.
38 */
39
40#ifndef _PPC64_BITOPS_H
41#define _PPC64_BITOPS_H
42
43#ifdef __KERNEL__
44
45#include <asm/synch.h>
46
47/*
48 * clear_bit doesn't imply a memory barrier
49 */
50#define smp_mb__before_clear_bit() smp_mb()
51#define smp_mb__after_clear_bit() smp_mb()
52
53static __inline__ int test_bit(unsigned long nr, __const__ volatile unsigned long *addr)
54{
55 return (1UL & (addr[nr >> 6] >> (nr & 63)));
56}
57
58static __inline__ void set_bit(unsigned long nr, volatile unsigned long *addr)
59{
60 unsigned long old;
61 unsigned long mask = 1UL << (nr & 0x3f);
62 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
63
64 __asm__ __volatile__(
65"1: ldarx %0,0,%3 # set_bit\n\
66 or %0,%0,%2\n\
67 stdcx. %0,0,%3\n\
68 bne- 1b"
69 : "=&r" (old), "=m" (*p)
70 : "r" (mask), "r" (p), "m" (*p)
71 : "cc");
72}
73
74static __inline__ void clear_bit(unsigned long nr, volatile unsigned long *addr)
75{
76 unsigned long old;
77 unsigned long mask = 1UL << (nr & 0x3f);
78 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
79
80 __asm__ __volatile__(
81"1: ldarx %0,0,%3 # clear_bit\n\
82 andc %0,%0,%2\n\
83 stdcx. %0,0,%3\n\
84 bne- 1b"
85 : "=&r" (old), "=m" (*p)
86 : "r" (mask), "r" (p), "m" (*p)
87 : "cc");
88}
89
90static __inline__ void change_bit(unsigned long nr, volatile unsigned long *addr)
91{
92 unsigned long old;
93 unsigned long mask = 1UL << (nr & 0x3f);
94 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
95
96 __asm__ __volatile__(
97"1: ldarx %0,0,%3 # change_bit\n\
98 xor %0,%0,%2\n\
99 stdcx. %0,0,%3\n\
100 bne- 1b"
101 : "=&r" (old), "=m" (*p)
102 : "r" (mask), "r" (p), "m" (*p)
103 : "cc");
104}
105
106static __inline__ int test_and_set_bit(unsigned long nr, volatile unsigned long *addr)
107{
108 unsigned long old, t;
109 unsigned long mask = 1UL << (nr & 0x3f);
110 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
111
112 __asm__ __volatile__(
113 EIEIO_ON_SMP
114"1: ldarx %0,0,%3 # test_and_set_bit\n\
115 or %1,%0,%2 \n\
116 stdcx. %1,0,%3 \n\
117 bne- 1b"
118 ISYNC_ON_SMP
119 : "=&r" (old), "=&r" (t)
120 : "r" (mask), "r" (p)
121 : "cc", "memory");
122
123 return (old & mask) != 0;
124}
125
126static __inline__ int test_and_clear_bit(unsigned long nr, volatile unsigned long *addr)
127{
128 unsigned long old, t;
129 unsigned long mask = 1UL << (nr & 0x3f);
130 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
131
132 __asm__ __volatile__(
133 EIEIO_ON_SMP
134"1: ldarx %0,0,%3 # test_and_clear_bit\n\
135 andc %1,%0,%2\n\
136 stdcx. %1,0,%3\n\
137 bne- 1b"
138 ISYNC_ON_SMP
139 : "=&r" (old), "=&r" (t)
140 : "r" (mask), "r" (p)
141 : "cc", "memory");
142
143 return (old & mask) != 0;
144}
145
146static __inline__ int test_and_change_bit(unsigned long nr, volatile unsigned long *addr)
147{
148 unsigned long old, t;
149 unsigned long mask = 1UL << (nr & 0x3f);
150 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
151
152 __asm__ __volatile__(
153 EIEIO_ON_SMP
154"1: ldarx %0,0,%3 # test_and_change_bit\n\
155 xor %1,%0,%2\n\
156 stdcx. %1,0,%3\n\
157 bne- 1b"
158 ISYNC_ON_SMP
159 : "=&r" (old), "=&r" (t)
160 : "r" (mask), "r" (p)
161 : "cc", "memory");
162
163 return (old & mask) != 0;
164}
165
166static __inline__ void set_bits(unsigned long mask, unsigned long *addr)
167{
168 unsigned long old;
169
170 __asm__ __volatile__(
171"1: ldarx %0,0,%3 # set_bit\n\
172 or %0,%0,%2\n\
173 stdcx. %0,0,%3\n\
174 bne- 1b"
175 : "=&r" (old), "=m" (*addr)
176 : "r" (mask), "r" (addr), "m" (*addr)
177 : "cc");
178}
179
180/*
181 * non-atomic versions
182 */
183static __inline__ void __set_bit(unsigned long nr, volatile unsigned long *addr)
184{
185 unsigned long mask = 1UL << (nr & 0x3f);
186 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
187
188 *p |= mask;
189}
190
191static __inline__ void __clear_bit(unsigned long nr, volatile unsigned long *addr)
192{
193 unsigned long mask = 1UL << (nr & 0x3f);
194 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
195
196 *p &= ~mask;
197}
198
199static __inline__ void __change_bit(unsigned long nr, volatile unsigned long *addr)
200{
201 unsigned long mask = 1UL << (nr & 0x3f);
202 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
203
204 *p ^= mask;
205}
206
207static __inline__ int __test_and_set_bit(unsigned long nr, volatile unsigned long *addr)
208{
209 unsigned long mask = 1UL << (nr & 0x3f);
210 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
211 unsigned long old = *p;
212
213 *p = old | mask;
214 return (old & mask) != 0;
215}
216
217static __inline__ int __test_and_clear_bit(unsigned long nr, volatile unsigned long *addr)
218{
219 unsigned long mask = 1UL << (nr & 0x3f);
220 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
221 unsigned long old = *p;
222
223 *p = old & ~mask;
224 return (old & mask) != 0;
225}
226
227static __inline__ int __test_and_change_bit(unsigned long nr, volatile unsigned long *addr)
228{
229 unsigned long mask = 1UL << (nr & 0x3f);
230 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
231 unsigned long old = *p;
232
233 *p = old ^ mask;
234 return (old & mask) != 0;
235}
236
237/*
238 * Return the zero-based bit position (from RIGHT TO LEFT, 63 -> 0) of the
239 * most significant (left-most) 1-bit in a double word.
240 */
241static __inline__ int __ilog2(unsigned long x)
242{
243 int lz;
244
245 asm ("cntlzd %0,%1" : "=r" (lz) : "r" (x));
246 return 63 - lz;
247}
248
249/*
250 * Determines the bit position of the least significant (rightmost) 0 bit
251 * in the specified double word. The returned bit position will be zero-based,
252 * starting from the right side (63 - 0).
253 */
254static __inline__ unsigned long ffz(unsigned long x)
255{
256 /* no zero exists anywhere in the 8 byte area. */
257 if ((x = ~x) == 0)
258 return 64;
259
260 /*
261 * Calculate the bit position of the least signficant '1' bit in x
262 * (since x has been changed this will actually be the least signficant
263 * '0' bit in * the original x). Note: (x & -x) gives us a mask that
264 * is the least significant * (RIGHT-most) 1-bit of the value in x.
265 */
266 return __ilog2(x & -x);
267}
268
269static __inline__ int __ffs(unsigned long x)
270{
271 return __ilog2(x & -x);
272}
273
274/*
275 * ffs: find first bit set. This is defined the same way as
276 * the libc and compiler builtin ffs routines, therefore
277 * differs in spirit from the above ffz (man ffs).
278 */
279static __inline__ int ffs(int x)
280{
281 unsigned long i = (unsigned long)x;
282 return __ilog2(i & -i) + 1;
283}
284
285/*
286 * fls: find last (most-significant) bit set.
287 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
288 */
289#define fls(x) generic_fls(x)
290
291/*
292 * hweightN: returns the hamming weight (i.e. the number
293 * of bits set) of a N-bit word
294 */
295#define hweight64(x) generic_hweight64(x)
296#define hweight32(x) generic_hweight32(x)
297#define hweight16(x) generic_hweight16(x)
298#define hweight8(x) generic_hweight8(x)
299
300extern unsigned long find_next_zero_bit(const unsigned long *addr, unsigned long size, unsigned long offset);
301#define find_first_zero_bit(addr, size) \
302 find_next_zero_bit((addr), (size), 0)
303
304extern unsigned long find_next_bit(const unsigned long *addr, unsigned long size, unsigned long offset);
305#define find_first_bit(addr, size) \
306 find_next_bit((addr), (size), 0)
307
308extern unsigned long find_next_zero_le_bit(const unsigned long *addr, unsigned long size, unsigned long offset);
309#define find_first_zero_le_bit(addr, size) \
310 find_next_zero_le_bit((addr), (size), 0)
311
312static __inline__ int test_le_bit(unsigned long nr, __const__ unsigned long * addr)
313{
314 __const__ unsigned char *ADDR = (__const__ unsigned char *) addr;
315 return (ADDR[nr >> 3] >> (nr & 7)) & 1;
316}
317
318#define test_and_clear_le_bit(nr, addr) \
319 test_and_clear_bit((nr) ^ 0x38, (addr))
320#define test_and_set_le_bit(nr, addr) \
321 test_and_set_bit((nr) ^ 0x38, (addr))
322
323/*
324 * non-atomic versions
325 */
326
327#define __set_le_bit(nr, addr) \
328 __set_bit((nr) ^ 0x38, (addr))
329#define __clear_le_bit(nr, addr) \
330 __clear_bit((nr) ^ 0x38, (addr))
331#define __test_and_clear_le_bit(nr, addr) \
332 __test_and_clear_bit((nr) ^ 0x38, (addr))
333#define __test_and_set_le_bit(nr, addr) \
334 __test_and_set_bit((nr) ^ 0x38, (addr))
335
336#define ext2_set_bit(nr,addr) \
337 __test_and_set_le_bit((nr), (unsigned long*)addr)
338#define ext2_clear_bit(nr, addr) \
339 __test_and_clear_le_bit((nr), (unsigned long*)addr)
340
341#define ext2_set_bit_atomic(lock, nr, addr) \
342 test_and_set_le_bit((nr), (unsigned long*)addr)
343#define ext2_clear_bit_atomic(lock, nr, addr) \
344 test_and_clear_le_bit((nr), (unsigned long*)addr)
345
346
347#define ext2_test_bit(nr, addr) test_le_bit((nr),(unsigned long*)addr)
348#define ext2_find_first_zero_bit(addr, size) \
349 find_first_zero_le_bit((unsigned long*)addr, size)
350#define ext2_find_next_zero_bit(addr, size, off) \
351 find_next_zero_le_bit((unsigned long*)addr, size, off)
352
353#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
354#define minix_set_bit(nr,addr) set_bit(nr,addr)
355#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
356#define minix_test_bit(nr,addr) test_bit(nr,addr)
357#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
358
359#endif /* __KERNEL__ */
360#endif /* _PPC64_BITOPS_H */