diff options
Diffstat (limited to 'include/asm-ppc/pgtable.h')
-rw-r--r-- | include/asm-ppc/pgtable.h | 776 |
1 files changed, 776 insertions, 0 deletions
diff --git a/include/asm-ppc/pgtable.h b/include/asm-ppc/pgtable.h new file mode 100644 index 000000000000..19dfb7abaa21 --- /dev/null +++ b/include/asm-ppc/pgtable.h | |||
@@ -0,0 +1,776 @@ | |||
1 | #ifdef __KERNEL__ | ||
2 | #ifndef _PPC_PGTABLE_H | ||
3 | #define _PPC_PGTABLE_H | ||
4 | |||
5 | #include <asm-generic/4level-fixup.h> | ||
6 | |||
7 | #include <linux/config.h> | ||
8 | |||
9 | #ifndef __ASSEMBLY__ | ||
10 | #include <linux/sched.h> | ||
11 | #include <linux/threads.h> | ||
12 | #include <asm/processor.h> /* For TASK_SIZE */ | ||
13 | #include <asm/mmu.h> | ||
14 | #include <asm/page.h> | ||
15 | |||
16 | extern unsigned long va_to_phys(unsigned long address); | ||
17 | extern pte_t *va_to_pte(unsigned long address); | ||
18 | extern unsigned long ioremap_bot, ioremap_base; | ||
19 | #endif /* __ASSEMBLY__ */ | ||
20 | |||
21 | /* | ||
22 | * The PowerPC MMU uses a hash table containing PTEs, together with | ||
23 | * a set of 16 segment registers (on 32-bit implementations), to define | ||
24 | * the virtual to physical address mapping. | ||
25 | * | ||
26 | * We use the hash table as an extended TLB, i.e. a cache of currently | ||
27 | * active mappings. We maintain a two-level page table tree, much | ||
28 | * like that used by the i386, for the sake of the Linux memory | ||
29 | * management code. Low-level assembler code in hashtable.S | ||
30 | * (procedure hash_page) is responsible for extracting ptes from the | ||
31 | * tree and putting them into the hash table when necessary, and | ||
32 | * updating the accessed and modified bits in the page table tree. | ||
33 | */ | ||
34 | |||
35 | /* | ||
36 | * The PowerPC MPC8xx uses a TLB with hardware assisted, software tablewalk. | ||
37 | * We also use the two level tables, but we can put the real bits in them | ||
38 | * needed for the TLB and tablewalk. These definitions require Mx_CTR.PPM = 0, | ||
39 | * Mx_CTR.PPCS = 0, and MD_CTR.TWAM = 1. The level 2 descriptor has | ||
40 | * additional page protection (when Mx_CTR.PPCS = 1) that allows TLB hit | ||
41 | * based upon user/super access. The TLB does not have accessed nor write | ||
42 | * protect. We assume that if the TLB get loaded with an entry it is | ||
43 | * accessed, and overload the changed bit for write protect. We use | ||
44 | * two bits in the software pte that are supposed to be set to zero in | ||
45 | * the TLB entry (24 and 25) for these indicators. Although the level 1 | ||
46 | * descriptor contains the guarded and writethrough/copyback bits, we can | ||
47 | * set these at the page level since they get copied from the Mx_TWC | ||
48 | * register when the TLB entry is loaded. We will use bit 27 for guard, since | ||
49 | * that is where it exists in the MD_TWC, and bit 26 for writethrough. | ||
50 | * These will get masked from the level 2 descriptor at TLB load time, and | ||
51 | * copied to the MD_TWC before it gets loaded. | ||
52 | * Large page sizes added. We currently support two sizes, 4K and 8M. | ||
53 | * This also allows a TLB hander optimization because we can directly | ||
54 | * load the PMD into MD_TWC. The 8M pages are only used for kernel | ||
55 | * mapping of well known areas. The PMD (PGD) entries contain control | ||
56 | * flags in addition to the address, so care must be taken that the | ||
57 | * software no longer assumes these are only pointers. | ||
58 | */ | ||
59 | |||
60 | /* | ||
61 | * At present, all PowerPC 400-class processors share a similar TLB | ||
62 | * architecture. The instruction and data sides share a unified, | ||
63 | * 64-entry, fully-associative TLB which is maintained totally under | ||
64 | * software control. In addition, the instruction side has a | ||
65 | * hardware-managed, 4-entry, fully-associative TLB which serves as a | ||
66 | * first level to the shared TLB. These two TLBs are known as the UTLB | ||
67 | * and ITLB, respectively (see "mmu.h" for definitions). | ||
68 | */ | ||
69 | |||
70 | /* | ||
71 | * The normal case is that PTEs are 32-bits and we have a 1-page | ||
72 | * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus | ||
73 | * | ||
74 | * For any >32-bit physical address platform, we can use the following | ||
75 | * two level page table layout where the pgdir is 8KB and the MS 13 bits | ||
76 | * are an index to the second level table. The combined pgdir/pmd first | ||
77 | * level has 2048 entries and the second level has 512 64-bit PTE entries. | ||
78 | * -Matt | ||
79 | */ | ||
80 | /* PMD_SHIFT determines the size of the area mapped by the PTE pages */ | ||
81 | #define PMD_SHIFT (PAGE_SHIFT + PTE_SHIFT) | ||
82 | #define PMD_SIZE (1UL << PMD_SHIFT) | ||
83 | #define PMD_MASK (~(PMD_SIZE-1)) | ||
84 | |||
85 | /* PGDIR_SHIFT determines what a top-level page table entry can map */ | ||
86 | #define PGDIR_SHIFT PMD_SHIFT | ||
87 | #define PGDIR_SIZE (1UL << PGDIR_SHIFT) | ||
88 | #define PGDIR_MASK (~(PGDIR_SIZE-1)) | ||
89 | |||
90 | /* | ||
91 | * entries per page directory level: our page-table tree is two-level, so | ||
92 | * we don't really have any PMD directory. | ||
93 | */ | ||
94 | #define PTRS_PER_PTE (1 << PTE_SHIFT) | ||
95 | #define PTRS_PER_PMD 1 | ||
96 | #define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT)) | ||
97 | |||
98 | #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) | ||
99 | #define FIRST_USER_PGD_NR 0 | ||
100 | |||
101 | #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) | ||
102 | #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS) | ||
103 | |||
104 | #define pte_ERROR(e) \ | ||
105 | printk("%s:%d: bad pte "PTE_FMT".\n", __FILE__, __LINE__, pte_val(e)) | ||
106 | #define pmd_ERROR(e) \ | ||
107 | printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) | ||
108 | #define pgd_ERROR(e) \ | ||
109 | printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) | ||
110 | |||
111 | /* | ||
112 | * Just any arbitrary offset to the start of the vmalloc VM area: the | ||
113 | * current 64MB value just means that there will be a 64MB "hole" after the | ||
114 | * physical memory until the kernel virtual memory starts. That means that | ||
115 | * any out-of-bounds memory accesses will hopefully be caught. | ||
116 | * The vmalloc() routines leaves a hole of 4kB between each vmalloced | ||
117 | * area for the same reason. ;) | ||
118 | * | ||
119 | * We no longer map larger than phys RAM with the BATs so we don't have | ||
120 | * to worry about the VMALLOC_OFFSET causing problems. We do have to worry | ||
121 | * about clashes between our early calls to ioremap() that start growing down | ||
122 | * from ioremap_base being run into the VM area allocations (growing upwards | ||
123 | * from VMALLOC_START). For this reason we have ioremap_bot to check when | ||
124 | * we actually run into our mappings setup in the early boot with the VM | ||
125 | * system. This really does become a problem for machines with good amounts | ||
126 | * of RAM. -- Cort | ||
127 | */ | ||
128 | #define VMALLOC_OFFSET (0x1000000) /* 16M */ | ||
129 | #ifdef CONFIG_44x | ||
130 | #include <asm/ibm44x.h> | ||
131 | #define VMALLOC_START (((_ALIGN((long)high_memory, PPC44x_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) | ||
132 | #else | ||
133 | #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) | ||
134 | #endif | ||
135 | #define VMALLOC_END ioremap_bot | ||
136 | |||
137 | /* | ||
138 | * Bits in a linux-style PTE. These match the bits in the | ||
139 | * (hardware-defined) PowerPC PTE as closely as possible. | ||
140 | */ | ||
141 | |||
142 | #if defined(CONFIG_40x) | ||
143 | |||
144 | /* There are several potential gotchas here. The 40x hardware TLBLO | ||
145 | field looks like this: | ||
146 | |||
147 | 0 1 2 3 4 ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | ||
148 | RPN..................... 0 0 EX WR ZSEL....... W I M G | ||
149 | |||
150 | Where possible we make the Linux PTE bits match up with this | ||
151 | |||
152 | - bits 20 and 21 must be cleared, because we use 4k pages (40x can | ||
153 | support down to 1k pages), this is done in the TLBMiss exception | ||
154 | handler. | ||
155 | - We use only zones 0 (for kernel pages) and 1 (for user pages) | ||
156 | of the 16 available. Bit 24-26 of the TLB are cleared in the TLB | ||
157 | miss handler. Bit 27 is PAGE_USER, thus selecting the correct | ||
158 | zone. | ||
159 | - PRESENT *must* be in the bottom two bits because swap cache | ||
160 | entries use the top 30 bits. Because 40x doesn't support SMP | ||
161 | anyway, M is irrelevant so we borrow it for PAGE_PRESENT. Bit 30 | ||
162 | is cleared in the TLB miss handler before the TLB entry is loaded. | ||
163 | - All other bits of the PTE are loaded into TLBLO without | ||
164 | modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for | ||
165 | software PTE bits. We actually use use bits 21, 24, 25, and | ||
166 | 30 respectively for the software bits: ACCESSED, DIRTY, RW, and | ||
167 | PRESENT. | ||
168 | */ | ||
169 | |||
170 | /* Definitions for 40x embedded chips. */ | ||
171 | #define _PAGE_GUARDED 0x001 /* G: page is guarded from prefetch */ | ||
172 | #define _PAGE_FILE 0x001 /* when !present: nonlinear file mapping */ | ||
173 | #define _PAGE_PRESENT 0x002 /* software: PTE contains a translation */ | ||
174 | #define _PAGE_NO_CACHE 0x004 /* I: caching is inhibited */ | ||
175 | #define _PAGE_WRITETHRU 0x008 /* W: caching is write-through */ | ||
176 | #define _PAGE_USER 0x010 /* matches one of the zone permission bits */ | ||
177 | #define _PAGE_RW 0x040 /* software: Writes permitted */ | ||
178 | #define _PAGE_DIRTY 0x080 /* software: dirty page */ | ||
179 | #define _PAGE_HWWRITE 0x100 /* hardware: Dirty & RW, set in exception */ | ||
180 | #define _PAGE_HWEXEC 0x200 /* hardware: EX permission */ | ||
181 | #define _PAGE_ACCESSED 0x400 /* software: R: page referenced */ | ||
182 | |||
183 | #define _PMD_PRESENT 0x400 /* PMD points to page of PTEs */ | ||
184 | #define _PMD_BAD 0x802 | ||
185 | #define _PMD_SIZE 0x0e0 /* size field, != 0 for large-page PMD entry */ | ||
186 | #define _PMD_SIZE_4M 0x0c0 | ||
187 | #define _PMD_SIZE_16M 0x0e0 | ||
188 | #define PMD_PAGE_SIZE(pmdval) (1024 << (((pmdval) & _PMD_SIZE) >> 4)) | ||
189 | |||
190 | #elif defined(CONFIG_44x) | ||
191 | /* | ||
192 | * Definitions for PPC440 | ||
193 | * | ||
194 | * Because of the 3 word TLB entries to support 36-bit addressing, | ||
195 | * the attribute are difficult to map in such a fashion that they | ||
196 | * are easily loaded during exception processing. I decided to | ||
197 | * organize the entry so the ERPN is the only portion in the | ||
198 | * upper word of the PTE and the attribute bits below are packed | ||
199 | * in as sensibly as they can be in the area below a 4KB page size | ||
200 | * oriented RPN. This at least makes it easy to load the RPN and | ||
201 | * ERPN fields in the TLB. -Matt | ||
202 | * | ||
203 | * Note that these bits preclude future use of a page size | ||
204 | * less than 4KB. | ||
205 | */ | ||
206 | #define _PAGE_PRESENT 0x00000001 /* S: PTE valid */ | ||
207 | #define _PAGE_RW 0x00000002 /* S: Write permission */ | ||
208 | #define _PAGE_DIRTY 0x00000004 /* S: Page dirty */ | ||
209 | #define _PAGE_ACCESSED 0x00000008 /* S: Page referenced */ | ||
210 | #define _PAGE_HWWRITE 0x00000010 /* H: Dirty & RW */ | ||
211 | #define _PAGE_HWEXEC 0x00000020 /* H: Execute permission */ | ||
212 | #define _PAGE_USER 0x00000040 /* S: User page */ | ||
213 | #define _PAGE_ENDIAN 0x00000080 /* H: E bit */ | ||
214 | #define _PAGE_GUARDED 0x00000100 /* H: G bit */ | ||
215 | #define _PAGE_COHERENT 0x00000200 /* H: M bit */ | ||
216 | #define _PAGE_FILE 0x00000400 /* S: nonlinear file mapping */ | ||
217 | #define _PAGE_NO_CACHE 0x00000400 /* H: I bit */ | ||
218 | #define _PAGE_WRITETHRU 0x00000800 /* H: W bit */ | ||
219 | |||
220 | /* TODO: Add large page lowmem mapping support */ | ||
221 | #define _PMD_PRESENT 0 | ||
222 | #define _PMD_PRESENT_MASK (PAGE_MASK) | ||
223 | #define _PMD_BAD (~PAGE_MASK) | ||
224 | |||
225 | /* ERPN in a PTE never gets cleared, ignore it */ | ||
226 | #define _PTE_NONE_MASK 0xffffffff00000000ULL | ||
227 | |||
228 | #elif defined(CONFIG_E500) | ||
229 | |||
230 | /* | ||
231 | MMU Assist Register 3: | ||
232 | |||
233 | 32 33 34 35 36 ... 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | ||
234 | RPN...................... 0 0 U0 U1 U2 U3 UX SX UW SW UR SR | ||
235 | |||
236 | - PRESENT *must* be in the bottom three bits because swap cache | ||
237 | entries use the top 29 bits. | ||
238 | |||
239 | - FILE *must* be in the bottom three bits because swap cache | ||
240 | entries use the top 29 bits. | ||
241 | */ | ||
242 | |||
243 | /* Definitions for e500 core */ | ||
244 | #define _PAGE_PRESENT 0x001 /* S: PTE contains a translation */ | ||
245 | #define _PAGE_USER 0x002 /* S: User page (maps to UR) */ | ||
246 | #define _PAGE_FILE 0x002 /* S: when !present: nonlinear file mapping */ | ||
247 | #define _PAGE_ACCESSED 0x004 /* S: Page referenced */ | ||
248 | #define _PAGE_HWWRITE 0x008 /* H: Dirty & RW, set in exception */ | ||
249 | #define _PAGE_RW 0x010 /* S: Write permission */ | ||
250 | #define _PAGE_HWEXEC 0x020 /* H: UX permission */ | ||
251 | |||
252 | #define _PAGE_ENDIAN 0x040 /* H: E bit */ | ||
253 | #define _PAGE_GUARDED 0x080 /* H: G bit */ | ||
254 | #define _PAGE_COHERENT 0x100 /* H: M bit */ | ||
255 | #define _PAGE_NO_CACHE 0x200 /* H: I bit */ | ||
256 | #define _PAGE_WRITETHRU 0x400 /* H: W bit */ | ||
257 | #define _PAGE_DIRTY 0x800 /* S: Page dirty */ | ||
258 | |||
259 | #define _PMD_PRESENT 0 | ||
260 | #define _PMD_PRESENT_MASK (PAGE_MASK) | ||
261 | #define _PMD_BAD (~PAGE_MASK) | ||
262 | |||
263 | #define NUM_TLBCAMS (16) | ||
264 | |||
265 | #elif defined(CONFIG_8xx) | ||
266 | /* Definitions for 8xx embedded chips. */ | ||
267 | #define _PAGE_PRESENT 0x0001 /* Page is valid */ | ||
268 | #define _PAGE_FILE 0x0002 /* when !present: nonlinear file mapping */ | ||
269 | #define _PAGE_NO_CACHE 0x0002 /* I: cache inhibit */ | ||
270 | #define _PAGE_SHARED 0x0004 /* No ASID (context) compare */ | ||
271 | |||
272 | /* These five software bits must be masked out when the entry is loaded | ||
273 | * into the TLB. | ||
274 | */ | ||
275 | #define _PAGE_EXEC 0x0008 /* software: i-cache coherency required */ | ||
276 | #define _PAGE_GUARDED 0x0010 /* software: guarded access */ | ||
277 | #define _PAGE_DIRTY 0x0020 /* software: page changed */ | ||
278 | #define _PAGE_RW 0x0040 /* software: user write access allowed */ | ||
279 | #define _PAGE_ACCESSED 0x0080 /* software: page referenced */ | ||
280 | |||
281 | /* Setting any bits in the nibble with the follow two controls will | ||
282 | * require a TLB exception handler change. It is assumed unused bits | ||
283 | * are always zero. | ||
284 | */ | ||
285 | #define _PAGE_HWWRITE 0x0100 /* h/w write enable: never set in Linux PTE */ | ||
286 | #define _PAGE_USER 0x0800 /* One of the PP bits, the other is USER&~RW */ | ||
287 | |||
288 | #define _PMD_PRESENT 0x0001 | ||
289 | #define _PMD_BAD 0x0ff0 | ||
290 | #define _PMD_PAGE_MASK 0x000c | ||
291 | #define _PMD_PAGE_8M 0x000c | ||
292 | |||
293 | /* | ||
294 | * The 8xx TLB miss handler allegedly sets _PAGE_ACCESSED in the PTE | ||
295 | * for an address even if _PAGE_PRESENT is not set, as a performance | ||
296 | * optimization. This is a bug if you ever want to use swap unless | ||
297 | * _PAGE_ACCESSED is 2, which it isn't, or unless you have 8xx-specific | ||
298 | * definitions for __swp_entry etc. below, which would be gross. | ||
299 | * -- paulus | ||
300 | */ | ||
301 | #define _PTE_NONE_MASK _PAGE_ACCESSED | ||
302 | |||
303 | #else /* CONFIG_6xx */ | ||
304 | /* Definitions for 60x, 740/750, etc. */ | ||
305 | #define _PAGE_PRESENT 0x001 /* software: pte contains a translation */ | ||
306 | #define _PAGE_HASHPTE 0x002 /* hash_page has made an HPTE for this pte */ | ||
307 | #define _PAGE_FILE 0x004 /* when !present: nonlinear file mapping */ | ||
308 | #define _PAGE_USER 0x004 /* usermode access allowed */ | ||
309 | #define _PAGE_GUARDED 0x008 /* G: prohibit speculative access */ | ||
310 | #define _PAGE_COHERENT 0x010 /* M: enforce memory coherence (SMP systems) */ | ||
311 | #define _PAGE_NO_CACHE 0x020 /* I: cache inhibit */ | ||
312 | #define _PAGE_WRITETHRU 0x040 /* W: cache write-through */ | ||
313 | #define _PAGE_DIRTY 0x080 /* C: page changed */ | ||
314 | #define _PAGE_ACCESSED 0x100 /* R: page referenced */ | ||
315 | #define _PAGE_EXEC 0x200 /* software: i-cache coherency required */ | ||
316 | #define _PAGE_RW 0x400 /* software: user write access allowed */ | ||
317 | |||
318 | #define _PTE_NONE_MASK _PAGE_HASHPTE | ||
319 | |||
320 | #define _PMD_PRESENT 0 | ||
321 | #define _PMD_PRESENT_MASK (PAGE_MASK) | ||
322 | #define _PMD_BAD (~PAGE_MASK) | ||
323 | #endif | ||
324 | |||
325 | /* | ||
326 | * Some bits are only used on some cpu families... | ||
327 | */ | ||
328 | #ifndef _PAGE_HASHPTE | ||
329 | #define _PAGE_HASHPTE 0 | ||
330 | #endif | ||
331 | #ifndef _PTE_NONE_MASK | ||
332 | #define _PTE_NONE_MASK 0 | ||
333 | #endif | ||
334 | #ifndef _PAGE_SHARED | ||
335 | #define _PAGE_SHARED 0 | ||
336 | #endif | ||
337 | #ifndef _PAGE_HWWRITE | ||
338 | #define _PAGE_HWWRITE 0 | ||
339 | #endif | ||
340 | #ifndef _PAGE_HWEXEC | ||
341 | #define _PAGE_HWEXEC 0 | ||
342 | #endif | ||
343 | #ifndef _PAGE_EXEC | ||
344 | #define _PAGE_EXEC 0 | ||
345 | #endif | ||
346 | #ifndef _PMD_PRESENT_MASK | ||
347 | #define _PMD_PRESENT_MASK _PMD_PRESENT | ||
348 | #endif | ||
349 | #ifndef _PMD_SIZE | ||
350 | #define _PMD_SIZE 0 | ||
351 | #define PMD_PAGE_SIZE(pmd) bad_call_to_PMD_PAGE_SIZE() | ||
352 | #endif | ||
353 | |||
354 | #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) | ||
355 | |||
356 | /* | ||
357 | * Note: the _PAGE_COHERENT bit automatically gets set in the hardware | ||
358 | * PTE if CONFIG_SMP is defined (hash_page does this); there is no need | ||
359 | * to have it in the Linux PTE, and in fact the bit could be reused for | ||
360 | * another purpose. -- paulus. | ||
361 | */ | ||
362 | |||
363 | #ifdef CONFIG_44x | ||
364 | #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_GUARDED) | ||
365 | #else | ||
366 | #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED) | ||
367 | #endif | ||
368 | #define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE) | ||
369 | #define _PAGE_KERNEL (_PAGE_BASE | _PAGE_SHARED | _PAGE_WRENABLE) | ||
370 | |||
371 | #ifdef CONFIG_PPC_STD_MMU | ||
372 | /* On standard PPC MMU, no user access implies kernel read/write access, | ||
373 | * so to write-protect kernel memory we must turn on user access */ | ||
374 | #define _PAGE_KERNEL_RO (_PAGE_BASE | _PAGE_SHARED | _PAGE_USER) | ||
375 | #else | ||
376 | #define _PAGE_KERNEL_RO (_PAGE_BASE | _PAGE_SHARED) | ||
377 | #endif | ||
378 | |||
379 | #define _PAGE_IO (_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED) | ||
380 | #define _PAGE_RAM (_PAGE_KERNEL | _PAGE_HWEXEC) | ||
381 | |||
382 | #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) | ||
383 | /* We want the debuggers to be able to set breakpoints anywhere, so | ||
384 | * don't write protect the kernel text */ | ||
385 | #define _PAGE_RAM_TEXT _PAGE_RAM | ||
386 | #else | ||
387 | #define _PAGE_RAM_TEXT (_PAGE_KERNEL_RO | _PAGE_HWEXEC) | ||
388 | #endif | ||
389 | |||
390 | #define PAGE_NONE __pgprot(_PAGE_BASE) | ||
391 | #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER) | ||
392 | #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) | ||
393 | #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW) | ||
394 | #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC) | ||
395 | #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER) | ||
396 | #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) | ||
397 | |||
398 | #define PAGE_KERNEL __pgprot(_PAGE_RAM) | ||
399 | #define PAGE_KERNEL_NOCACHE __pgprot(_PAGE_IO) | ||
400 | |||
401 | /* | ||
402 | * The PowerPC can only do execute protection on a segment (256MB) basis, | ||
403 | * not on a page basis. So we consider execute permission the same as read. | ||
404 | * Also, write permissions imply read permissions. | ||
405 | * This is the closest we can get.. | ||
406 | */ | ||
407 | #define __P000 PAGE_NONE | ||
408 | #define __P001 PAGE_READONLY_X | ||
409 | #define __P010 PAGE_COPY | ||
410 | #define __P011 PAGE_COPY_X | ||
411 | #define __P100 PAGE_READONLY | ||
412 | #define __P101 PAGE_READONLY_X | ||
413 | #define __P110 PAGE_COPY | ||
414 | #define __P111 PAGE_COPY_X | ||
415 | |||
416 | #define __S000 PAGE_NONE | ||
417 | #define __S001 PAGE_READONLY_X | ||
418 | #define __S010 PAGE_SHARED | ||
419 | #define __S011 PAGE_SHARED_X | ||
420 | #define __S100 PAGE_READONLY | ||
421 | #define __S101 PAGE_READONLY_X | ||
422 | #define __S110 PAGE_SHARED | ||
423 | #define __S111 PAGE_SHARED_X | ||
424 | |||
425 | #ifndef __ASSEMBLY__ | ||
426 | /* Make sure we get a link error if PMD_PAGE_SIZE is ever called on a | ||
427 | * kernel without large page PMD support */ | ||
428 | extern unsigned long bad_call_to_PMD_PAGE_SIZE(void); | ||
429 | |||
430 | /* | ||
431 | * Conversions between PTE values and page frame numbers. | ||
432 | */ | ||
433 | |||
434 | #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) | ||
435 | #define pte_page(x) pfn_to_page(pte_pfn(x)) | ||
436 | |||
437 | #define pfn_pte(pfn, prot) __pte(((pte_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) | ||
438 | #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) | ||
439 | |||
440 | /* | ||
441 | * ZERO_PAGE is a global shared page that is always zero: used | ||
442 | * for zero-mapped memory areas etc.. | ||
443 | */ | ||
444 | extern unsigned long empty_zero_page[1024]; | ||
445 | #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) | ||
446 | |||
447 | #endif /* __ASSEMBLY__ */ | ||
448 | |||
449 | #define pte_none(pte) ((pte_val(pte) & ~_PTE_NONE_MASK) == 0) | ||
450 | #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT) | ||
451 | #define pte_clear(mm,addr,ptep) do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0) | ||
452 | |||
453 | #define pmd_none(pmd) (!pmd_val(pmd)) | ||
454 | #define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD) | ||
455 | #define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK) | ||
456 | #define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0) | ||
457 | |||
458 | #ifndef __ASSEMBLY__ | ||
459 | /* | ||
460 | * The "pgd_xxx()" functions here are trivial for a folded two-level | ||
461 | * setup: the pgd is never bad, and a pmd always exists (as it's folded | ||
462 | * into the pgd entry) | ||
463 | */ | ||
464 | static inline int pgd_none(pgd_t pgd) { return 0; } | ||
465 | static inline int pgd_bad(pgd_t pgd) { return 0; } | ||
466 | static inline int pgd_present(pgd_t pgd) { return 1; } | ||
467 | #define pgd_clear(xp) do { } while (0) | ||
468 | |||
469 | #define pgd_page(pgd) \ | ||
470 | ((unsigned long) __va(pgd_val(pgd) & PAGE_MASK)) | ||
471 | |||
472 | /* | ||
473 | * The following only work if pte_present() is true. | ||
474 | * Undefined behaviour if not.. | ||
475 | */ | ||
476 | static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; } | ||
477 | static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; } | ||
478 | static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; } | ||
479 | static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } | ||
480 | static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } | ||
481 | static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } | ||
482 | |||
483 | static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; } | ||
484 | static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; } | ||
485 | |||
486 | static inline pte_t pte_rdprotect(pte_t pte) { | ||
487 | pte_val(pte) &= ~_PAGE_USER; return pte; } | ||
488 | static inline pte_t pte_wrprotect(pte_t pte) { | ||
489 | pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; } | ||
490 | static inline pte_t pte_exprotect(pte_t pte) { | ||
491 | pte_val(pte) &= ~_PAGE_EXEC; return pte; } | ||
492 | static inline pte_t pte_mkclean(pte_t pte) { | ||
493 | pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; } | ||
494 | static inline pte_t pte_mkold(pte_t pte) { | ||
495 | pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } | ||
496 | |||
497 | static inline pte_t pte_mkread(pte_t pte) { | ||
498 | pte_val(pte) |= _PAGE_USER; return pte; } | ||
499 | static inline pte_t pte_mkexec(pte_t pte) { | ||
500 | pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; } | ||
501 | static inline pte_t pte_mkwrite(pte_t pte) { | ||
502 | pte_val(pte) |= _PAGE_RW; return pte; } | ||
503 | static inline pte_t pte_mkdirty(pte_t pte) { | ||
504 | pte_val(pte) |= _PAGE_DIRTY; return pte; } | ||
505 | static inline pte_t pte_mkyoung(pte_t pte) { | ||
506 | pte_val(pte) |= _PAGE_ACCESSED; return pte; } | ||
507 | |||
508 | static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) | ||
509 | { | ||
510 | pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); | ||
511 | return pte; | ||
512 | } | ||
513 | |||
514 | /* | ||
515 | * When flushing the tlb entry for a page, we also need to flush the hash | ||
516 | * table entry. flush_hash_pages is assembler (for speed) in hashtable.S. | ||
517 | */ | ||
518 | extern int flush_hash_pages(unsigned context, unsigned long va, | ||
519 | unsigned long pmdval, int count); | ||
520 | |||
521 | /* Add an HPTE to the hash table */ | ||
522 | extern void add_hash_page(unsigned context, unsigned long va, | ||
523 | unsigned long pmdval); | ||
524 | |||
525 | /* | ||
526 | * Atomic PTE updates. | ||
527 | * | ||
528 | * pte_update clears and sets bit atomically, and returns | ||
529 | * the old pte value. | ||
530 | * The ((unsigned long)(p+1) - 4) hack is to get to the least-significant | ||
531 | * 32 bits of the PTE regardless of whether PTEs are 32 or 64 bits. | ||
532 | */ | ||
533 | static inline unsigned long pte_update(pte_t *p, unsigned long clr, | ||
534 | unsigned long set) | ||
535 | { | ||
536 | unsigned long old, tmp; | ||
537 | |||
538 | __asm__ __volatile__("\ | ||
539 | 1: lwarx %0,0,%3\n\ | ||
540 | andc %1,%0,%4\n\ | ||
541 | or %1,%1,%5\n" | ||
542 | PPC405_ERR77(0,%3) | ||
543 | " stwcx. %1,0,%3\n\ | ||
544 | bne- 1b" | ||
545 | : "=&r" (old), "=&r" (tmp), "=m" (*p) | ||
546 | : "r" ((unsigned long)(p+1) - 4), "r" (clr), "r" (set), "m" (*p) | ||
547 | : "cc" ); | ||
548 | return old; | ||
549 | } | ||
550 | |||
551 | /* | ||
552 | * set_pte stores a linux PTE into the linux page table. | ||
553 | * On machines which use an MMU hash table we avoid changing the | ||
554 | * _PAGE_HASHPTE bit. | ||
555 | */ | ||
556 | static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, | ||
557 | pte_t *ptep, pte_t pte) | ||
558 | { | ||
559 | #if _PAGE_HASHPTE != 0 | ||
560 | pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte) & ~_PAGE_HASHPTE); | ||
561 | #else | ||
562 | *ptep = pte; | ||
563 | #endif | ||
564 | } | ||
565 | |||
566 | /* | ||
567 | * 2.6 calles this without flushing the TLB entry, this is wrong | ||
568 | * for our hash-based implementation, we fix that up here | ||
569 | */ | ||
570 | #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG | ||
571 | static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep) | ||
572 | { | ||
573 | unsigned long old; | ||
574 | old = pte_update(ptep, _PAGE_ACCESSED, 0); | ||
575 | #if _PAGE_HASHPTE != 0 | ||
576 | if (old & _PAGE_HASHPTE) { | ||
577 | unsigned long ptephys = __pa(ptep) & PAGE_MASK; | ||
578 | flush_hash_pages(context, addr, ptephys, 1); | ||
579 | } | ||
580 | #endif | ||
581 | return (old & _PAGE_ACCESSED) != 0; | ||
582 | } | ||
583 | #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ | ||
584 | __ptep_test_and_clear_young((__vma)->vm_mm->context, __addr, __ptep) | ||
585 | |||
586 | #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY | ||
587 | static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, | ||
588 | unsigned long addr, pte_t *ptep) | ||
589 | { | ||
590 | return (pte_update(ptep, (_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0; | ||
591 | } | ||
592 | |||
593 | #define __HAVE_ARCH_PTEP_GET_AND_CLEAR | ||
594 | static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, | ||
595 | pte_t *ptep) | ||
596 | { | ||
597 | return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0)); | ||
598 | } | ||
599 | |||
600 | #define __HAVE_ARCH_PTEP_SET_WRPROTECT | ||
601 | static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, | ||
602 | pte_t *ptep) | ||
603 | { | ||
604 | pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0); | ||
605 | } | ||
606 | |||
607 | #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS | ||
608 | static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty) | ||
609 | { | ||
610 | unsigned long bits = pte_val(entry) & | ||
611 | (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW); | ||
612 | pte_update(ptep, 0, bits); | ||
613 | } | ||
614 | |||
615 | #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \ | ||
616 | do { \ | ||
617 | __ptep_set_access_flags(__ptep, __entry, __dirty); \ | ||
618 | flush_tlb_page_nohash(__vma, __address); \ | ||
619 | } while(0) | ||
620 | |||
621 | /* | ||
622 | * Macro to mark a page protection value as "uncacheable". | ||
623 | */ | ||
624 | #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED)) | ||
625 | |||
626 | struct file; | ||
627 | extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long addr, | ||
628 | unsigned long size, pgprot_t vma_prot); | ||
629 | #define __HAVE_PHYS_MEM_ACCESS_PROT | ||
630 | |||
631 | #define __HAVE_ARCH_PTE_SAME | ||
632 | #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0) | ||
633 | |||
634 | /* | ||
635 | * Note that on Book E processors, the pmd contains the kernel virtual | ||
636 | * (lowmem) address of the pte page. The physical address is less useful | ||
637 | * because everything runs with translation enabled (even the TLB miss | ||
638 | * handler). On everything else the pmd contains the physical address | ||
639 | * of the pte page. -- paulus | ||
640 | */ | ||
641 | #ifndef CONFIG_BOOKE | ||
642 | #define pmd_page_kernel(pmd) \ | ||
643 | ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) | ||
644 | #define pmd_page(pmd) \ | ||
645 | (mem_map + (pmd_val(pmd) >> PAGE_SHIFT)) | ||
646 | #else | ||
647 | #define pmd_page_kernel(pmd) \ | ||
648 | ((unsigned long) (pmd_val(pmd) & PAGE_MASK)) | ||
649 | #define pmd_page(pmd) \ | ||
650 | (mem_map + (__pa(pmd_val(pmd)) >> PAGE_SHIFT)) | ||
651 | #endif | ||
652 | |||
653 | /* to find an entry in a kernel page-table-directory */ | ||
654 | #define pgd_offset_k(address) pgd_offset(&init_mm, address) | ||
655 | |||
656 | /* to find an entry in a page-table-directory */ | ||
657 | #define pgd_index(address) ((address) >> PGDIR_SHIFT) | ||
658 | #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) | ||
659 | |||
660 | /* Find an entry in the second-level page table.. */ | ||
661 | static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) | ||
662 | { | ||
663 | return (pmd_t *) dir; | ||
664 | } | ||
665 | |||
666 | /* Find an entry in the third-level page table.. */ | ||
667 | #define pte_index(address) \ | ||
668 | (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) | ||
669 | #define pte_offset_kernel(dir, addr) \ | ||
670 | ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(addr)) | ||
671 | #define pte_offset_map(dir, addr) \ | ||
672 | ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE0) + pte_index(addr)) | ||
673 | #define pte_offset_map_nested(dir, addr) \ | ||
674 | ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE1) + pte_index(addr)) | ||
675 | |||
676 | #define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0) | ||
677 | #define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1) | ||
678 | |||
679 | extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; | ||
680 | |||
681 | extern void paging_init(void); | ||
682 | |||
683 | /* | ||
684 | * Encode and decode a swap entry. | ||
685 | * Note that the bits we use in a PTE for representing a swap entry | ||
686 | * must not include the _PAGE_PRESENT bit, the _PAGE_FILE bit, or the | ||
687 | *_PAGE_HASHPTE bit (if used). -- paulus | ||
688 | */ | ||
689 | #define __swp_type(entry) ((entry).val & 0x1f) | ||
690 | #define __swp_offset(entry) ((entry).val >> 5) | ||
691 | #define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) }) | ||
692 | #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 }) | ||
693 | #define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 }) | ||
694 | |||
695 | /* Encode and decode a nonlinear file mapping entry */ | ||
696 | #define PTE_FILE_MAX_BITS 29 | ||
697 | #define pte_to_pgoff(pte) (pte_val(pte) >> 3) | ||
698 | #define pgoff_to_pte(off) ((pte_t) { ((off) << 3) | _PAGE_FILE }) | ||
699 | |||
700 | /* CONFIG_APUS */ | ||
701 | /* For virtual address to physical address conversion */ | ||
702 | extern void cache_clear(__u32 addr, int length); | ||
703 | extern void cache_push(__u32 addr, int length); | ||
704 | extern int mm_end_of_chunk (unsigned long addr, int len); | ||
705 | extern unsigned long iopa(unsigned long addr); | ||
706 | extern unsigned long mm_ptov(unsigned long addr) __attribute_const__; | ||
707 | |||
708 | /* Values for nocacheflag and cmode */ | ||
709 | /* These are not used by the APUS kernel_map, but prevents | ||
710 | compilation errors. */ | ||
711 | #define KERNELMAP_FULL_CACHING 0 | ||
712 | #define KERNELMAP_NOCACHE_SER 1 | ||
713 | #define KERNELMAP_NOCACHE_NONSER 2 | ||
714 | #define KERNELMAP_NO_COPYBACK 3 | ||
715 | |||
716 | /* | ||
717 | * Map some physical address range into the kernel address space. | ||
718 | */ | ||
719 | extern unsigned long kernel_map(unsigned long paddr, unsigned long size, | ||
720 | int nocacheflag, unsigned long *memavailp ); | ||
721 | |||
722 | /* | ||
723 | * Set cache mode of (kernel space) address range. | ||
724 | */ | ||
725 | extern void kernel_set_cachemode (unsigned long address, unsigned long size, | ||
726 | unsigned int cmode); | ||
727 | |||
728 | /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ | ||
729 | #define kern_addr_valid(addr) (1) | ||
730 | |||
731 | #ifdef CONFIG_PHYS_64BIT | ||
732 | extern int remap_pfn_range(struct vm_area_struct *vma, unsigned long from, | ||
733 | unsigned long paddr, unsigned long size, pgprot_t prot); | ||
734 | static inline int io_remap_page_range(struct vm_area_struct *vma, | ||
735 | unsigned long vaddr, | ||
736 | unsigned long paddr, | ||
737 | unsigned long size, | ||
738 | pgprot_t prot) | ||
739 | { | ||
740 | phys_addr_t paddr64 = fixup_bigphys_addr(paddr, size); | ||
741 | return remap_pfn_range(vma, vaddr, paddr64 >> PAGE_SHIFT, size, prot); | ||
742 | } | ||
743 | |||
744 | static inline int io_remap_pfn_range(struct vm_area_struct *vma, | ||
745 | unsigned long vaddr, | ||
746 | unsigned long pfn, | ||
747 | unsigned long size, | ||
748 | pgprot_t prot) | ||
749 | { | ||
750 | phys_addr_t paddr64 = fixup_bigphys_addr(pfn << PAGE_SHIFT, size); | ||
751 | return remap_pfn_range(vma, vaddr, paddr64 >> PAGE_SHIFT, size, prot); | ||
752 | } | ||
753 | #else | ||
754 | #define io_remap_page_range(vma, vaddr, paddr, size, prot) \ | ||
755 | remap_pfn_range(vma, vaddr, (paddr) >> PAGE_SHIFT, size, prot) | ||
756 | #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ | ||
757 | remap_pfn_range(vma, vaddr, pfn, size, prot) | ||
758 | #endif | ||
759 | |||
760 | #define MK_IOSPACE_PFN(space, pfn) (pfn) | ||
761 | #define GET_IOSPACE(pfn) 0 | ||
762 | #define GET_PFN(pfn) (pfn) | ||
763 | |||
764 | /* | ||
765 | * No page table caches to initialise | ||
766 | */ | ||
767 | #define pgtable_cache_init() do { } while (0) | ||
768 | |||
769 | extern int get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep); | ||
770 | |||
771 | #include <asm-generic/pgtable.h> | ||
772 | |||
773 | #endif /* !__ASSEMBLY__ */ | ||
774 | |||
775 | #endif /* _PPC_PGTABLE_H */ | ||
776 | #endif /* __KERNEL__ */ | ||