diff options
Diffstat (limited to 'include/asm-ppc/mmu_context.h')
-rw-r--r-- | include/asm-ppc/mmu_context.h | 197 |
1 files changed, 197 insertions, 0 deletions
diff --git a/include/asm-ppc/mmu_context.h b/include/asm-ppc/mmu_context.h new file mode 100644 index 000000000000..9222fa6ca172 --- /dev/null +++ b/include/asm-ppc/mmu_context.h | |||
@@ -0,0 +1,197 @@ | |||
1 | #ifdef __KERNEL__ | ||
2 | #ifndef __PPC_MMU_CONTEXT_H | ||
3 | #define __PPC_MMU_CONTEXT_H | ||
4 | |||
5 | #include <linux/config.h> | ||
6 | #include <asm/atomic.h> | ||
7 | #include <asm/bitops.h> | ||
8 | #include <asm/mmu.h> | ||
9 | #include <asm/cputable.h> | ||
10 | |||
11 | /* | ||
12 | * On 32-bit PowerPC 6xx/7xx/7xxx CPUs, we use a set of 16 VSIDs | ||
13 | * (virtual segment identifiers) for each context. Although the | ||
14 | * hardware supports 24-bit VSIDs, and thus >1 million contexts, | ||
15 | * we only use 32,768 of them. That is ample, since there can be | ||
16 | * at most around 30,000 tasks in the system anyway, and it means | ||
17 | * that we can use a bitmap to indicate which contexts are in use. | ||
18 | * Using a bitmap means that we entirely avoid all of the problems | ||
19 | * that we used to have when the context number overflowed, | ||
20 | * particularly on SMP systems. | ||
21 | * -- paulus. | ||
22 | */ | ||
23 | |||
24 | /* | ||
25 | * This function defines the mapping from contexts to VSIDs (virtual | ||
26 | * segment IDs). We use a skew on both the context and the high 4 bits | ||
27 | * of the 32-bit virtual address (the "effective segment ID") in order | ||
28 | * to spread out the entries in the MMU hash table. Note, if this | ||
29 | * function is changed then arch/ppc/mm/hashtable.S will have to be | ||
30 | * changed to correspond. | ||
31 | */ | ||
32 | #define CTX_TO_VSID(ctx, va) (((ctx) * (897 * 16) + ((va) >> 28) * 0x111) \ | ||
33 | & 0xffffff) | ||
34 | |||
35 | /* | ||
36 | The MPC8xx has only 16 contexts. We rotate through them on each | ||
37 | task switch. A better way would be to keep track of tasks that | ||
38 | own contexts, and implement an LRU usage. That way very active | ||
39 | tasks don't always have to pay the TLB reload overhead. The | ||
40 | kernel pages are mapped shared, so the kernel can run on behalf | ||
41 | of any task that makes a kernel entry. Shared does not mean they | ||
42 | are not protected, just that the ASID comparison is not performed. | ||
43 | -- Dan | ||
44 | |||
45 | The IBM4xx has 256 contexts, so we can just rotate through these | ||
46 | as a way of "switching" contexts. If the TID of the TLB is zero, | ||
47 | the PID/TID comparison is disabled, so we can use a TID of zero | ||
48 | to represent all kernel pages as shared among all contexts. | ||
49 | -- Dan | ||
50 | */ | ||
51 | |||
52 | static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) | ||
53 | { | ||
54 | } | ||
55 | |||
56 | #ifdef CONFIG_8xx | ||
57 | #define NO_CONTEXT 16 | ||
58 | #define LAST_CONTEXT 15 | ||
59 | #define FIRST_CONTEXT 0 | ||
60 | |||
61 | #elif defined(CONFIG_4xx) | ||
62 | #define NO_CONTEXT 256 | ||
63 | #define LAST_CONTEXT 255 | ||
64 | #define FIRST_CONTEXT 1 | ||
65 | |||
66 | #elif defined(CONFIG_E500) | ||
67 | #define NO_CONTEXT 256 | ||
68 | #define LAST_CONTEXT 255 | ||
69 | #define FIRST_CONTEXT 1 | ||
70 | |||
71 | #else | ||
72 | |||
73 | /* PPC 6xx, 7xx CPUs */ | ||
74 | #define NO_CONTEXT ((mm_context_t) -1) | ||
75 | #define LAST_CONTEXT 32767 | ||
76 | #define FIRST_CONTEXT 1 | ||
77 | #endif | ||
78 | |||
79 | /* | ||
80 | * Set the current MMU context. | ||
81 | * On 32-bit PowerPCs (other than the 8xx embedded chips), this is done by | ||
82 | * loading up the segment registers for the user part of the address space. | ||
83 | * | ||
84 | * Since the PGD is immediately available, it is much faster to simply | ||
85 | * pass this along as a second parameter, which is required for 8xx and | ||
86 | * can be used for debugging on all processors (if you happen to have | ||
87 | * an Abatron). | ||
88 | */ | ||
89 | extern void set_context(mm_context_t context, pgd_t *pgd); | ||
90 | |||
91 | /* | ||
92 | * Bitmap of contexts in use. | ||
93 | * The size of this bitmap is LAST_CONTEXT + 1 bits. | ||
94 | */ | ||
95 | extern unsigned long context_map[]; | ||
96 | |||
97 | /* | ||
98 | * This caches the next context number that we expect to be free. | ||
99 | * Its use is an optimization only, we can't rely on this context | ||
100 | * number to be free, but it usually will be. | ||
101 | */ | ||
102 | extern mm_context_t next_mmu_context; | ||
103 | |||
104 | /* | ||
105 | * If we don't have sufficient contexts to give one to every task | ||
106 | * that could be in the system, we need to be able to steal contexts. | ||
107 | * These variables support that. | ||
108 | */ | ||
109 | #if LAST_CONTEXT < 30000 | ||
110 | #define FEW_CONTEXTS 1 | ||
111 | extern atomic_t nr_free_contexts; | ||
112 | extern struct mm_struct *context_mm[LAST_CONTEXT+1]; | ||
113 | extern void steal_context(void); | ||
114 | #endif | ||
115 | |||
116 | /* | ||
117 | * Get a new mmu context for the address space described by `mm'. | ||
118 | */ | ||
119 | static inline void get_mmu_context(struct mm_struct *mm) | ||
120 | { | ||
121 | mm_context_t ctx; | ||
122 | |||
123 | if (mm->context != NO_CONTEXT) | ||
124 | return; | ||
125 | #ifdef FEW_CONTEXTS | ||
126 | while (atomic_dec_if_positive(&nr_free_contexts) < 0) | ||
127 | steal_context(); | ||
128 | #endif | ||
129 | ctx = next_mmu_context; | ||
130 | while (test_and_set_bit(ctx, context_map)) { | ||
131 | ctx = find_next_zero_bit(context_map, LAST_CONTEXT+1, ctx); | ||
132 | if (ctx > LAST_CONTEXT) | ||
133 | ctx = 0; | ||
134 | } | ||
135 | next_mmu_context = (ctx + 1) & LAST_CONTEXT; | ||
136 | mm->context = ctx; | ||
137 | #ifdef FEW_CONTEXTS | ||
138 | context_mm[ctx] = mm; | ||
139 | #endif | ||
140 | } | ||
141 | |||
142 | /* | ||
143 | * Set up the context for a new address space. | ||
144 | */ | ||
145 | #define init_new_context(tsk,mm) (((mm)->context = NO_CONTEXT), 0) | ||
146 | |||
147 | /* | ||
148 | * We're finished using the context for an address space. | ||
149 | */ | ||
150 | static inline void destroy_context(struct mm_struct *mm) | ||
151 | { | ||
152 | if (mm->context != NO_CONTEXT) { | ||
153 | clear_bit(mm->context, context_map); | ||
154 | mm->context = NO_CONTEXT; | ||
155 | #ifdef FEW_CONTEXTS | ||
156 | atomic_inc(&nr_free_contexts); | ||
157 | #endif | ||
158 | } | ||
159 | } | ||
160 | |||
161 | static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next, | ||
162 | struct task_struct *tsk) | ||
163 | { | ||
164 | #ifdef CONFIG_ALTIVEC | ||
165 | asm volatile ( | ||
166 | BEGIN_FTR_SECTION | ||
167 | "dssall;\n" | ||
168 | #ifndef CONFIG_POWER4 | ||
169 | "sync;\n" /* G4 needs a sync here, G5 apparently not */ | ||
170 | #endif | ||
171 | END_FTR_SECTION_IFSET(CPU_FTR_ALTIVEC) | ||
172 | : : ); | ||
173 | #endif /* CONFIG_ALTIVEC */ | ||
174 | |||
175 | tsk->thread.pgdir = next->pgd; | ||
176 | |||
177 | /* No need to flush userspace segments if the mm doesnt change */ | ||
178 | if (prev == next) | ||
179 | return; | ||
180 | |||
181 | /* Setup new userspace context */ | ||
182 | get_mmu_context(next); | ||
183 | set_context(next->context, next->pgd); | ||
184 | } | ||
185 | |||
186 | #define deactivate_mm(tsk,mm) do { } while (0) | ||
187 | |||
188 | /* | ||
189 | * After we have set current->mm to a new value, this activates | ||
190 | * the context for the new mm so we see the new mappings. | ||
191 | */ | ||
192 | #define activate_mm(active_mm, mm) switch_mm(active_mm, mm, current) | ||
193 | |||
194 | extern void mmu_context_init(void); | ||
195 | |||
196 | #endif /* __PPC_MMU_CONTEXT_H */ | ||
197 | #endif /* __KERNEL__ */ | ||