diff options
Diffstat (limited to 'include/asm-powerpc/pgtable.h')
-rw-r--r-- | include/asm-powerpc/pgtable.h | 524 |
1 files changed, 524 insertions, 0 deletions
diff --git a/include/asm-powerpc/pgtable.h b/include/asm-powerpc/pgtable.h new file mode 100644 index 000000000000..0303f57366c1 --- /dev/null +++ b/include/asm-powerpc/pgtable.h | |||
@@ -0,0 +1,524 @@ | |||
1 | #ifndef _ASM_POWERPC_PGTABLE_H | ||
2 | #define _ASM_POWERPC_PGTABLE_H | ||
3 | |||
4 | #ifndef CONFIG_PPC64 | ||
5 | #include <asm-ppc/pgtable.h> | ||
6 | #else | ||
7 | |||
8 | /* | ||
9 | * This file contains the functions and defines necessary to modify and use | ||
10 | * the ppc64 hashed page table. | ||
11 | */ | ||
12 | |||
13 | #ifndef __ASSEMBLY__ | ||
14 | #include <linux/config.h> | ||
15 | #include <linux/stddef.h> | ||
16 | #include <asm/processor.h> /* For TASK_SIZE */ | ||
17 | #include <asm/mmu.h> | ||
18 | #include <asm/page.h> | ||
19 | #include <asm/tlbflush.h> | ||
20 | struct mm_struct; | ||
21 | #endif /* __ASSEMBLY__ */ | ||
22 | |||
23 | #ifdef CONFIG_PPC_64K_PAGES | ||
24 | #include <asm/pgtable-64k.h> | ||
25 | #else | ||
26 | #include <asm/pgtable-4k.h> | ||
27 | #endif | ||
28 | |||
29 | #define FIRST_USER_ADDRESS 0 | ||
30 | |||
31 | /* | ||
32 | * Size of EA range mapped by our pagetables. | ||
33 | */ | ||
34 | #define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \ | ||
35 | PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT) | ||
36 | #define PGTABLE_RANGE (1UL << PGTABLE_EADDR_SIZE) | ||
37 | |||
38 | #if TASK_SIZE_USER64 > PGTABLE_RANGE | ||
39 | #error TASK_SIZE_USER64 exceeds pagetable range | ||
40 | #endif | ||
41 | |||
42 | #if TASK_SIZE_USER64 > (1UL << (USER_ESID_BITS + SID_SHIFT)) | ||
43 | #error TASK_SIZE_USER64 exceeds user VSID range | ||
44 | #endif | ||
45 | |||
46 | /* | ||
47 | * Define the address range of the vmalloc VM area. | ||
48 | */ | ||
49 | #define VMALLOC_START (0xD000000000000000ul) | ||
50 | #define VMALLOC_SIZE (0x80000000000UL) | ||
51 | #define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE) | ||
52 | |||
53 | /* | ||
54 | * Define the address range of the imalloc VM area. | ||
55 | */ | ||
56 | #define PHBS_IO_BASE VMALLOC_END | ||
57 | #define IMALLOC_BASE (PHBS_IO_BASE + 0x80000000ul) /* Reserve 2 gigs for PHBs */ | ||
58 | #define IMALLOC_END (VMALLOC_START + PGTABLE_RANGE) | ||
59 | |||
60 | /* | ||
61 | * Common bits in a linux-style PTE. These match the bits in the | ||
62 | * (hardware-defined) PowerPC PTE as closely as possible. Additional | ||
63 | * bits may be defined in pgtable-*.h | ||
64 | */ | ||
65 | #define _PAGE_PRESENT 0x0001 /* software: pte contains a translation */ | ||
66 | #define _PAGE_USER 0x0002 /* matches one of the PP bits */ | ||
67 | #define _PAGE_FILE 0x0002 /* (!present only) software: pte holds file offset */ | ||
68 | #define _PAGE_EXEC 0x0004 /* No execute on POWER4 and newer (we invert) */ | ||
69 | #define _PAGE_GUARDED 0x0008 | ||
70 | #define _PAGE_COHERENT 0x0010 /* M: enforce memory coherence (SMP systems) */ | ||
71 | #define _PAGE_NO_CACHE 0x0020 /* I: cache inhibit */ | ||
72 | #define _PAGE_WRITETHRU 0x0040 /* W: cache write-through */ | ||
73 | #define _PAGE_DIRTY 0x0080 /* C: page changed */ | ||
74 | #define _PAGE_ACCESSED 0x0100 /* R: page referenced */ | ||
75 | #define _PAGE_RW 0x0200 /* software: user write access allowed */ | ||
76 | #define _PAGE_HASHPTE 0x0400 /* software: pte has an associated HPTE */ | ||
77 | #define _PAGE_BUSY 0x0800 /* software: PTE & hash are busy */ | ||
78 | |||
79 | #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT) | ||
80 | |||
81 | #define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY) | ||
82 | |||
83 | /* __pgprot defined in asm-powerpc/page.h */ | ||
84 | #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED) | ||
85 | |||
86 | #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER) | ||
87 | #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | _PAGE_EXEC) | ||
88 | #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER) | ||
89 | #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) | ||
90 | #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER) | ||
91 | #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) | ||
92 | #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_WRENABLE) | ||
93 | #define PAGE_KERNEL_CI __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \ | ||
94 | _PAGE_WRENABLE | _PAGE_NO_CACHE | _PAGE_GUARDED) | ||
95 | #define PAGE_KERNEL_EXEC __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_EXEC) | ||
96 | |||
97 | #define PAGE_AGP __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_NO_CACHE) | ||
98 | #define HAVE_PAGE_AGP | ||
99 | |||
100 | /* PTEIDX nibble */ | ||
101 | #define _PTEIDX_SECONDARY 0x8 | ||
102 | #define _PTEIDX_GROUP_IX 0x7 | ||
103 | |||
104 | |||
105 | /* | ||
106 | * POWER4 and newer have per page execute protection, older chips can only | ||
107 | * do this on a segment (256MB) basis. | ||
108 | * | ||
109 | * Also, write permissions imply read permissions. | ||
110 | * This is the closest we can get.. | ||
111 | * | ||
112 | * Note due to the way vm flags are laid out, the bits are XWR | ||
113 | */ | ||
114 | #define __P000 PAGE_NONE | ||
115 | #define __P001 PAGE_READONLY | ||
116 | #define __P010 PAGE_COPY | ||
117 | #define __P011 PAGE_COPY | ||
118 | #define __P100 PAGE_READONLY_X | ||
119 | #define __P101 PAGE_READONLY_X | ||
120 | #define __P110 PAGE_COPY_X | ||
121 | #define __P111 PAGE_COPY_X | ||
122 | |||
123 | #define __S000 PAGE_NONE | ||
124 | #define __S001 PAGE_READONLY | ||
125 | #define __S010 PAGE_SHARED | ||
126 | #define __S011 PAGE_SHARED | ||
127 | #define __S100 PAGE_READONLY_X | ||
128 | #define __S101 PAGE_READONLY_X | ||
129 | #define __S110 PAGE_SHARED_X | ||
130 | #define __S111 PAGE_SHARED_X | ||
131 | |||
132 | #ifndef __ASSEMBLY__ | ||
133 | |||
134 | /* | ||
135 | * ZERO_PAGE is a global shared page that is always zero: used | ||
136 | * for zero-mapped memory areas etc.. | ||
137 | */ | ||
138 | extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)]; | ||
139 | #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) | ||
140 | #endif /* __ASSEMBLY__ */ | ||
141 | |||
142 | #ifdef CONFIG_HUGETLB_PAGE | ||
143 | |||
144 | #define HAVE_ARCH_UNMAPPED_AREA | ||
145 | #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN | ||
146 | |||
147 | #endif | ||
148 | |||
149 | #ifndef __ASSEMBLY__ | ||
150 | |||
151 | /* | ||
152 | * Conversion functions: convert a page and protection to a page entry, | ||
153 | * and a page entry and page directory to the page they refer to. | ||
154 | * | ||
155 | * mk_pte takes a (struct page *) as input | ||
156 | */ | ||
157 | #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) | ||
158 | |||
159 | static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) | ||
160 | { | ||
161 | pte_t pte; | ||
162 | |||
163 | |||
164 | pte_val(pte) = (pfn << PTE_RPN_SHIFT) | pgprot_val(pgprot); | ||
165 | return pte; | ||
166 | } | ||
167 | |||
168 | #define pte_modify(_pte, newprot) \ | ||
169 | (__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))) | ||
170 | |||
171 | #define pte_none(pte) ((pte_val(pte) & ~_PAGE_HPTEFLAGS) == 0) | ||
172 | #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT) | ||
173 | |||
174 | /* pte_clear moved to later in this file */ | ||
175 | |||
176 | #define pte_pfn(x) ((unsigned long)((pte_val(x)>>PTE_RPN_SHIFT))) | ||
177 | #define pte_page(x) pfn_to_page(pte_pfn(x)) | ||
178 | |||
179 | #define pmd_set(pmdp, pmdval) (pmd_val(*(pmdp)) = (pmdval)) | ||
180 | #define pmd_none(pmd) (!pmd_val(pmd)) | ||
181 | #define pmd_bad(pmd) (pmd_val(pmd) == 0) | ||
182 | #define pmd_present(pmd) (pmd_val(pmd) != 0) | ||
183 | #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0) | ||
184 | #define pmd_page_kernel(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS) | ||
185 | #define pmd_page(pmd) virt_to_page(pmd_page_kernel(pmd)) | ||
186 | |||
187 | #define pud_set(pudp, pudval) (pud_val(*(pudp)) = (pudval)) | ||
188 | #define pud_none(pud) (!pud_val(pud)) | ||
189 | #define pud_bad(pud) ((pud_val(pud)) == 0) | ||
190 | #define pud_present(pud) (pud_val(pud) != 0) | ||
191 | #define pud_clear(pudp) (pud_val(*(pudp)) = 0) | ||
192 | #define pud_page(pud) (pud_val(pud) & ~PUD_MASKED_BITS) | ||
193 | |||
194 | #define pgd_set(pgdp, pudp) ({pgd_val(*(pgdp)) = (unsigned long)(pudp);}) | ||
195 | |||
196 | /* | ||
197 | * Find an entry in a page-table-directory. We combine the address region | ||
198 | * (the high order N bits) and the pgd portion of the address. | ||
199 | */ | ||
200 | /* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */ | ||
201 | #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x1ff) | ||
202 | |||
203 | #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) | ||
204 | |||
205 | #define pmd_offset(pudp,addr) \ | ||
206 | (((pmd_t *) pud_page(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))) | ||
207 | |||
208 | #define pte_offset_kernel(dir,addr) \ | ||
209 | (((pte_t *) pmd_page_kernel(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))) | ||
210 | |||
211 | #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr)) | ||
212 | #define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr)) | ||
213 | #define pte_unmap(pte) do { } while(0) | ||
214 | #define pte_unmap_nested(pte) do { } while(0) | ||
215 | |||
216 | /* to find an entry in a kernel page-table-directory */ | ||
217 | /* This now only contains the vmalloc pages */ | ||
218 | #define pgd_offset_k(address) pgd_offset(&init_mm, address) | ||
219 | |||
220 | /* | ||
221 | * The following only work if pte_present() is true. | ||
222 | * Undefined behaviour if not.. | ||
223 | */ | ||
224 | static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER;} | ||
225 | static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW;} | ||
226 | static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC;} | ||
227 | static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY;} | ||
228 | static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED;} | ||
229 | static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE;} | ||
230 | |||
231 | static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; } | ||
232 | static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; } | ||
233 | |||
234 | static inline pte_t pte_rdprotect(pte_t pte) { | ||
235 | pte_val(pte) &= ~_PAGE_USER; return pte; } | ||
236 | static inline pte_t pte_exprotect(pte_t pte) { | ||
237 | pte_val(pte) &= ~_PAGE_EXEC; return pte; } | ||
238 | static inline pte_t pte_wrprotect(pte_t pte) { | ||
239 | pte_val(pte) &= ~(_PAGE_RW); return pte; } | ||
240 | static inline pte_t pte_mkclean(pte_t pte) { | ||
241 | pte_val(pte) &= ~(_PAGE_DIRTY); return pte; } | ||
242 | static inline pte_t pte_mkold(pte_t pte) { | ||
243 | pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } | ||
244 | static inline pte_t pte_mkread(pte_t pte) { | ||
245 | pte_val(pte) |= _PAGE_USER; return pte; } | ||
246 | static inline pte_t pte_mkexec(pte_t pte) { | ||
247 | pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; } | ||
248 | static inline pte_t pte_mkwrite(pte_t pte) { | ||
249 | pte_val(pte) |= _PAGE_RW; return pte; } | ||
250 | static inline pte_t pte_mkdirty(pte_t pte) { | ||
251 | pte_val(pte) |= _PAGE_DIRTY; return pte; } | ||
252 | static inline pte_t pte_mkyoung(pte_t pte) { | ||
253 | pte_val(pte) |= _PAGE_ACCESSED; return pte; } | ||
254 | static inline pte_t pte_mkhuge(pte_t pte) { | ||
255 | return pte; } | ||
256 | |||
257 | /* Atomic PTE updates */ | ||
258 | static inline unsigned long pte_update(pte_t *p, unsigned long clr) | ||
259 | { | ||
260 | unsigned long old, tmp; | ||
261 | |||
262 | __asm__ __volatile__( | ||
263 | "1: ldarx %0,0,%3 # pte_update\n\ | ||
264 | andi. %1,%0,%6\n\ | ||
265 | bne- 1b \n\ | ||
266 | andc %1,%0,%4 \n\ | ||
267 | stdcx. %1,0,%3 \n\ | ||
268 | bne- 1b" | ||
269 | : "=&r" (old), "=&r" (tmp), "=m" (*p) | ||
270 | : "r" (p), "r" (clr), "m" (*p), "i" (_PAGE_BUSY) | ||
271 | : "cc" ); | ||
272 | return old; | ||
273 | } | ||
274 | |||
275 | /* PTE updating functions, this function puts the PTE in the | ||
276 | * batch, doesn't actually triggers the hash flush immediately, | ||
277 | * you need to call flush_tlb_pending() to do that. | ||
278 | * Pass -1 for "normal" size (4K or 64K) | ||
279 | */ | ||
280 | extern void hpte_update(struct mm_struct *mm, unsigned long addr, | ||
281 | pte_t *ptep, unsigned long pte, int huge); | ||
282 | |||
283 | static inline int __ptep_test_and_clear_young(struct mm_struct *mm, | ||
284 | unsigned long addr, pte_t *ptep) | ||
285 | { | ||
286 | unsigned long old; | ||
287 | |||
288 | if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0) | ||
289 | return 0; | ||
290 | old = pte_update(ptep, _PAGE_ACCESSED); | ||
291 | if (old & _PAGE_HASHPTE) { | ||
292 | hpte_update(mm, addr, ptep, old, 0); | ||
293 | flush_tlb_pending(); | ||
294 | } | ||
295 | return (old & _PAGE_ACCESSED) != 0; | ||
296 | } | ||
297 | #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG | ||
298 | #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ | ||
299 | ({ \ | ||
300 | int __r; \ | ||
301 | __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \ | ||
302 | __r; \ | ||
303 | }) | ||
304 | |||
305 | /* | ||
306 | * On RW/DIRTY bit transitions we can avoid flushing the hpte. For the | ||
307 | * moment we always flush but we need to fix hpte_update and test if the | ||
308 | * optimisation is worth it. | ||
309 | */ | ||
310 | static inline int __ptep_test_and_clear_dirty(struct mm_struct *mm, | ||
311 | unsigned long addr, pte_t *ptep) | ||
312 | { | ||
313 | unsigned long old; | ||
314 | |||
315 | if ((pte_val(*ptep) & _PAGE_DIRTY) == 0) | ||
316 | return 0; | ||
317 | old = pte_update(ptep, _PAGE_DIRTY); | ||
318 | if (old & _PAGE_HASHPTE) | ||
319 | hpte_update(mm, addr, ptep, old, 0); | ||
320 | return (old & _PAGE_DIRTY) != 0; | ||
321 | } | ||
322 | #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY | ||
323 | #define ptep_test_and_clear_dirty(__vma, __addr, __ptep) \ | ||
324 | ({ \ | ||
325 | int __r; \ | ||
326 | __r = __ptep_test_and_clear_dirty((__vma)->vm_mm, __addr, __ptep); \ | ||
327 | __r; \ | ||
328 | }) | ||
329 | |||
330 | #define __HAVE_ARCH_PTEP_SET_WRPROTECT | ||
331 | static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, | ||
332 | pte_t *ptep) | ||
333 | { | ||
334 | unsigned long old; | ||
335 | |||
336 | if ((pte_val(*ptep) & _PAGE_RW) == 0) | ||
337 | return; | ||
338 | old = pte_update(ptep, _PAGE_RW); | ||
339 | if (old & _PAGE_HASHPTE) | ||
340 | hpte_update(mm, addr, ptep, old, 0); | ||
341 | } | ||
342 | |||
343 | /* | ||
344 | * We currently remove entries from the hashtable regardless of whether | ||
345 | * the entry was young or dirty. The generic routines only flush if the | ||
346 | * entry was young or dirty which is not good enough. | ||
347 | * | ||
348 | * We should be more intelligent about this but for the moment we override | ||
349 | * these functions and force a tlb flush unconditionally | ||
350 | */ | ||
351 | #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH | ||
352 | #define ptep_clear_flush_young(__vma, __address, __ptep) \ | ||
353 | ({ \ | ||
354 | int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \ | ||
355 | __ptep); \ | ||
356 | __young; \ | ||
357 | }) | ||
358 | |||
359 | #define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH | ||
360 | #define ptep_clear_flush_dirty(__vma, __address, __ptep) \ | ||
361 | ({ \ | ||
362 | int __dirty = __ptep_test_and_clear_dirty((__vma)->vm_mm, __address, \ | ||
363 | __ptep); \ | ||
364 | flush_tlb_page(__vma, __address); \ | ||
365 | __dirty; \ | ||
366 | }) | ||
367 | |||
368 | #define __HAVE_ARCH_PTEP_GET_AND_CLEAR | ||
369 | static inline pte_t ptep_get_and_clear(struct mm_struct *mm, | ||
370 | unsigned long addr, pte_t *ptep) | ||
371 | { | ||
372 | unsigned long old = pte_update(ptep, ~0UL); | ||
373 | |||
374 | if (old & _PAGE_HASHPTE) | ||
375 | hpte_update(mm, addr, ptep, old, 0); | ||
376 | return __pte(old); | ||
377 | } | ||
378 | |||
379 | static inline void pte_clear(struct mm_struct *mm, unsigned long addr, | ||
380 | pte_t * ptep) | ||
381 | { | ||
382 | unsigned long old = pte_update(ptep, ~0UL); | ||
383 | |||
384 | if (old & _PAGE_HASHPTE) | ||
385 | hpte_update(mm, addr, ptep, old, 0); | ||
386 | } | ||
387 | |||
388 | /* | ||
389 | * set_pte stores a linux PTE into the linux page table. | ||
390 | */ | ||
391 | static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, | ||
392 | pte_t *ptep, pte_t pte) | ||
393 | { | ||
394 | if (pte_present(*ptep)) { | ||
395 | pte_clear(mm, addr, ptep); | ||
396 | flush_tlb_pending(); | ||
397 | } | ||
398 | pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS); | ||
399 | |||
400 | #ifdef CONFIG_PPC_64K_PAGES | ||
401 | if (mmu_virtual_psize != MMU_PAGE_64K) | ||
402 | pte = __pte(pte_val(pte) | _PAGE_COMBO); | ||
403 | #endif /* CONFIG_PPC_64K_PAGES */ | ||
404 | |||
405 | *ptep = pte; | ||
406 | } | ||
407 | |||
408 | /* Set the dirty and/or accessed bits atomically in a linux PTE, this | ||
409 | * function doesn't need to flush the hash entry | ||
410 | */ | ||
411 | #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS | ||
412 | static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty) | ||
413 | { | ||
414 | unsigned long bits = pte_val(entry) & | ||
415 | (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC); | ||
416 | unsigned long old, tmp; | ||
417 | |||
418 | __asm__ __volatile__( | ||
419 | "1: ldarx %0,0,%4\n\ | ||
420 | andi. %1,%0,%6\n\ | ||
421 | bne- 1b \n\ | ||
422 | or %0,%3,%0\n\ | ||
423 | stdcx. %0,0,%4\n\ | ||
424 | bne- 1b" | ||
425 | :"=&r" (old), "=&r" (tmp), "=m" (*ptep) | ||
426 | :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY) | ||
427 | :"cc"); | ||
428 | } | ||
429 | #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \ | ||
430 | do { \ | ||
431 | __ptep_set_access_flags(__ptep, __entry, __dirty); \ | ||
432 | flush_tlb_page_nohash(__vma, __address); \ | ||
433 | } while(0) | ||
434 | |||
435 | /* | ||
436 | * Macro to mark a page protection value as "uncacheable". | ||
437 | */ | ||
438 | #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED)) | ||
439 | |||
440 | struct file; | ||
441 | extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, | ||
442 | unsigned long size, pgprot_t vma_prot); | ||
443 | #define __HAVE_PHYS_MEM_ACCESS_PROT | ||
444 | |||
445 | #define __HAVE_ARCH_PTE_SAME | ||
446 | #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0) | ||
447 | |||
448 | #define pte_ERROR(e) \ | ||
449 | printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) | ||
450 | #define pmd_ERROR(e) \ | ||
451 | printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) | ||
452 | #define pgd_ERROR(e) \ | ||
453 | printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) | ||
454 | |||
455 | extern pgd_t swapper_pg_dir[]; | ||
456 | |||
457 | extern void paging_init(void); | ||
458 | |||
459 | #ifdef CONFIG_HUGETLB_PAGE | ||
460 | #define hugetlb_free_pgd_range(tlb, addr, end, floor, ceiling) \ | ||
461 | free_pgd_range(tlb, addr, end, floor, ceiling) | ||
462 | #endif | ||
463 | |||
464 | /* | ||
465 | * This gets called at the end of handling a page fault, when | ||
466 | * the kernel has put a new PTE into the page table for the process. | ||
467 | * We use it to put a corresponding HPTE into the hash table | ||
468 | * ahead of time, instead of waiting for the inevitable extra | ||
469 | * hash-table miss exception. | ||
470 | */ | ||
471 | struct vm_area_struct; | ||
472 | extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t); | ||
473 | |||
474 | /* Encode and de-code a swap entry */ | ||
475 | #define __swp_type(entry) (((entry).val >> 1) & 0x3f) | ||
476 | #define __swp_offset(entry) ((entry).val >> 8) | ||
477 | #define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)}) | ||
478 | #define __pte_to_swp_entry(pte) ((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT}) | ||
479 | #define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_RPN_SHIFT }) | ||
480 | #define pte_to_pgoff(pte) (pte_val(pte) >> PTE_RPN_SHIFT) | ||
481 | #define pgoff_to_pte(off) ((pte_t) {((off) << PTE_RPN_SHIFT)|_PAGE_FILE}) | ||
482 | #define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_RPN_SHIFT) | ||
483 | |||
484 | /* | ||
485 | * kern_addr_valid is intended to indicate whether an address is a valid | ||
486 | * kernel address. Most 32-bit archs define it as always true (like this) | ||
487 | * but most 64-bit archs actually perform a test. What should we do here? | ||
488 | * The only use is in fs/ncpfs/dir.c | ||
489 | */ | ||
490 | #define kern_addr_valid(addr) (1) | ||
491 | |||
492 | #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ | ||
493 | remap_pfn_range(vma, vaddr, pfn, size, prot) | ||
494 | |||
495 | void pgtable_cache_init(void); | ||
496 | |||
497 | /* | ||
498 | * find_linux_pte returns the address of a linux pte for a given | ||
499 | * effective address and directory. If not found, it returns zero. | ||
500 | */static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea) | ||
501 | { | ||
502 | pgd_t *pg; | ||
503 | pud_t *pu; | ||
504 | pmd_t *pm; | ||
505 | pte_t *pt = NULL; | ||
506 | |||
507 | pg = pgdir + pgd_index(ea); | ||
508 | if (!pgd_none(*pg)) { | ||
509 | pu = pud_offset(pg, ea); | ||
510 | if (!pud_none(*pu)) { | ||
511 | pm = pmd_offset(pu, ea); | ||
512 | if (pmd_present(*pm)) | ||
513 | pt = pte_offset_kernel(pm, ea); | ||
514 | } | ||
515 | } | ||
516 | return pt; | ||
517 | } | ||
518 | |||
519 | #include <asm-generic/pgtable.h> | ||
520 | |||
521 | #endif /* __ASSEMBLY__ */ | ||
522 | |||
523 | #endif /* CONFIG_PPC64 */ | ||
524 | #endif /* _ASM_POWERPC_PGTABLE_H */ | ||