diff options
Diffstat (limited to 'include/asm-powerpc/mmu-hash64.h')
| -rw-r--r-- | include/asm-powerpc/mmu-hash64.h | 400 |
1 files changed, 400 insertions, 0 deletions
diff --git a/include/asm-powerpc/mmu-hash64.h b/include/asm-powerpc/mmu-hash64.h new file mode 100644 index 000000000000..6739457d8bc0 --- /dev/null +++ b/include/asm-powerpc/mmu-hash64.h | |||
| @@ -0,0 +1,400 @@ | |||
| 1 | #ifndef _ASM_POWERPC_MMU_HASH64_H_ | ||
| 2 | #define _ASM_POWERPC_MMU_HASH64_H_ | ||
| 3 | /* | ||
| 4 | * PowerPC64 memory management structures | ||
| 5 | * | ||
| 6 | * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com> | ||
| 7 | * PPC64 rework. | ||
| 8 | * | ||
| 9 | * This program is free software; you can redistribute it and/or | ||
| 10 | * modify it under the terms of the GNU General Public License | ||
| 11 | * as published by the Free Software Foundation; either version | ||
| 12 | * 2 of the License, or (at your option) any later version. | ||
| 13 | */ | ||
| 14 | |||
| 15 | #include <asm/asm-compat.h> | ||
| 16 | #include <asm/page.h> | ||
| 17 | |||
| 18 | /* | ||
| 19 | * Segment table | ||
| 20 | */ | ||
| 21 | |||
| 22 | #define STE_ESID_V 0x80 | ||
| 23 | #define STE_ESID_KS 0x20 | ||
| 24 | #define STE_ESID_KP 0x10 | ||
| 25 | #define STE_ESID_N 0x08 | ||
| 26 | |||
| 27 | #define STE_VSID_SHIFT 12 | ||
| 28 | |||
| 29 | /* Location of cpu0's segment table */ | ||
| 30 | #define STAB0_PAGE 0x6 | ||
| 31 | #define STAB0_OFFSET (STAB0_PAGE << 12) | ||
| 32 | #define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START) | ||
| 33 | |||
| 34 | #ifndef __ASSEMBLY__ | ||
| 35 | extern char initial_stab[]; | ||
| 36 | #endif /* ! __ASSEMBLY */ | ||
| 37 | |||
| 38 | /* | ||
| 39 | * SLB | ||
| 40 | */ | ||
| 41 | |||
| 42 | #define SLB_NUM_BOLTED 3 | ||
| 43 | #define SLB_CACHE_ENTRIES 8 | ||
| 44 | |||
| 45 | /* Bits in the SLB ESID word */ | ||
| 46 | #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */ | ||
| 47 | |||
| 48 | /* Bits in the SLB VSID word */ | ||
| 49 | #define SLB_VSID_SHIFT 12 | ||
| 50 | #define SLB_VSID_B ASM_CONST(0xc000000000000000) | ||
| 51 | #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000) | ||
| 52 | #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000) | ||
| 53 | #define SLB_VSID_KS ASM_CONST(0x0000000000000800) | ||
| 54 | #define SLB_VSID_KP ASM_CONST(0x0000000000000400) | ||
| 55 | #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */ | ||
| 56 | #define SLB_VSID_L ASM_CONST(0x0000000000000100) | ||
| 57 | #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */ | ||
| 58 | #define SLB_VSID_LP ASM_CONST(0x0000000000000030) | ||
| 59 | #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000) | ||
| 60 | #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010) | ||
| 61 | #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020) | ||
| 62 | #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030) | ||
| 63 | #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP) | ||
| 64 | |||
| 65 | #define SLB_VSID_KERNEL (SLB_VSID_KP) | ||
| 66 | #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C) | ||
| 67 | |||
| 68 | #define SLBIE_C (0x08000000) | ||
| 69 | |||
| 70 | /* | ||
| 71 | * Hash table | ||
| 72 | */ | ||
| 73 | |||
| 74 | #define HPTES_PER_GROUP 8 | ||
| 75 | |||
| 76 | #define HPTE_V_AVPN_SHIFT 7 | ||
| 77 | #define HPTE_V_AVPN ASM_CONST(0xffffffffffffff80) | ||
| 78 | #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT) | ||
| 79 | #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & HPTE_V_AVPN)) | ||
| 80 | #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010) | ||
| 81 | #define HPTE_V_LOCK ASM_CONST(0x0000000000000008) | ||
| 82 | #define HPTE_V_LARGE ASM_CONST(0x0000000000000004) | ||
| 83 | #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002) | ||
| 84 | #define HPTE_V_VALID ASM_CONST(0x0000000000000001) | ||
| 85 | |||
| 86 | #define HPTE_R_PP0 ASM_CONST(0x8000000000000000) | ||
| 87 | #define HPTE_R_TS ASM_CONST(0x4000000000000000) | ||
| 88 | #define HPTE_R_RPN_SHIFT 12 | ||
| 89 | #define HPTE_R_RPN ASM_CONST(0x3ffffffffffff000) | ||
| 90 | #define HPTE_R_FLAGS ASM_CONST(0x00000000000003ff) | ||
| 91 | #define HPTE_R_PP ASM_CONST(0x0000000000000003) | ||
| 92 | #define HPTE_R_N ASM_CONST(0x0000000000000004) | ||
| 93 | #define HPTE_R_C ASM_CONST(0x0000000000000080) | ||
| 94 | #define HPTE_R_R ASM_CONST(0x0000000000000100) | ||
| 95 | |||
| 96 | /* Values for PP (assumes Ks=0, Kp=1) */ | ||
| 97 | /* pp0 will always be 0 for linux */ | ||
| 98 | #define PP_RWXX 0 /* Supervisor read/write, User none */ | ||
| 99 | #define PP_RWRX 1 /* Supervisor read/write, User read */ | ||
| 100 | #define PP_RWRW 2 /* Supervisor read/write, User read/write */ | ||
| 101 | #define PP_RXRX 3 /* Supervisor read, User read */ | ||
| 102 | |||
| 103 | #ifndef __ASSEMBLY__ | ||
| 104 | |||
| 105 | typedef struct { | ||
| 106 | unsigned long v; | ||
| 107 | unsigned long r; | ||
| 108 | } hpte_t; | ||
| 109 | |||
| 110 | extern hpte_t *htab_address; | ||
| 111 | extern unsigned long htab_size_bytes; | ||
| 112 | extern unsigned long htab_hash_mask; | ||
| 113 | |||
| 114 | /* | ||
| 115 | * Page size definition | ||
| 116 | * | ||
| 117 | * shift : is the "PAGE_SHIFT" value for that page size | ||
| 118 | * sllp : is a bit mask with the value of SLB L || LP to be or'ed | ||
| 119 | * directly to a slbmte "vsid" value | ||
| 120 | * penc : is the HPTE encoding mask for the "LP" field: | ||
| 121 | * | ||
| 122 | */ | ||
| 123 | struct mmu_psize_def | ||
| 124 | { | ||
| 125 | unsigned int shift; /* number of bits */ | ||
| 126 | unsigned int penc; /* HPTE encoding */ | ||
| 127 | unsigned int tlbiel; /* tlbiel supported for that page size */ | ||
| 128 | unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */ | ||
| 129 | unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */ | ||
| 130 | }; | ||
| 131 | |||
| 132 | #endif /* __ASSEMBLY__ */ | ||
| 133 | |||
| 134 | /* | ||
| 135 | * The kernel use the constants below to index in the page sizes array. | ||
| 136 | * The use of fixed constants for this purpose is better for performances | ||
| 137 | * of the low level hash refill handlers. | ||
| 138 | * | ||
| 139 | * A non supported page size has a "shift" field set to 0 | ||
| 140 | * | ||
| 141 | * Any new page size being implemented can get a new entry in here. Whether | ||
| 142 | * the kernel will use it or not is a different matter though. The actual page | ||
| 143 | * size used by hugetlbfs is not defined here and may be made variable | ||
| 144 | */ | ||
| 145 | |||
| 146 | #define MMU_PAGE_4K 0 /* 4K */ | ||
| 147 | #define MMU_PAGE_64K 1 /* 64K */ | ||
| 148 | #define MMU_PAGE_64K_AP 2 /* 64K Admixed (in a 4K segment) */ | ||
| 149 | #define MMU_PAGE_1M 3 /* 1M */ | ||
| 150 | #define MMU_PAGE_16M 4 /* 16M */ | ||
| 151 | #define MMU_PAGE_16G 5 /* 16G */ | ||
| 152 | #define MMU_PAGE_COUNT 6 | ||
| 153 | |||
| 154 | #ifndef __ASSEMBLY__ | ||
| 155 | |||
| 156 | /* | ||
| 157 | * The current system page sizes | ||
| 158 | */ | ||
| 159 | extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT]; | ||
| 160 | extern int mmu_linear_psize; | ||
| 161 | extern int mmu_virtual_psize; | ||
| 162 | extern int mmu_vmalloc_psize; | ||
| 163 | extern int mmu_io_psize; | ||
| 164 | |||
| 165 | /* | ||
| 166 | * If the processor supports 64k normal pages but not 64k cache | ||
| 167 | * inhibited pages, we have to be prepared to switch processes | ||
| 168 | * to use 4k pages when they create cache-inhibited mappings. | ||
| 169 | * If this is the case, mmu_ci_restrictions will be set to 1. | ||
| 170 | */ | ||
| 171 | extern int mmu_ci_restrictions; | ||
| 172 | |||
| 173 | #ifdef CONFIG_HUGETLB_PAGE | ||
| 174 | /* | ||
| 175 | * The page size index of the huge pages for use by hugetlbfs | ||
| 176 | */ | ||
| 177 | extern int mmu_huge_psize; | ||
| 178 | |||
| 179 | #endif /* CONFIG_HUGETLB_PAGE */ | ||
| 180 | |||
| 181 | /* | ||
| 182 | * This function sets the AVPN and L fields of the HPTE appropriately | ||
| 183 | * for the page size | ||
| 184 | */ | ||
| 185 | static inline unsigned long hpte_encode_v(unsigned long va, int psize) | ||
| 186 | { | ||
| 187 | unsigned long v = | ||
| 188 | v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm); | ||
| 189 | v <<= HPTE_V_AVPN_SHIFT; | ||
| 190 | if (psize != MMU_PAGE_4K) | ||
| 191 | v |= HPTE_V_LARGE; | ||
| 192 | return v; | ||
| 193 | } | ||
| 194 | |||
| 195 | /* | ||
| 196 | * This function sets the ARPN, and LP fields of the HPTE appropriately | ||
| 197 | * for the page size. We assume the pa is already "clean" that is properly | ||
| 198 | * aligned for the requested page size | ||
| 199 | */ | ||
| 200 | static inline unsigned long hpte_encode_r(unsigned long pa, int psize) | ||
| 201 | { | ||
| 202 | unsigned long r; | ||
| 203 | |||
| 204 | /* A 4K page needs no special encoding */ | ||
| 205 | if (psize == MMU_PAGE_4K) | ||
| 206 | return pa & HPTE_R_RPN; | ||
| 207 | else { | ||
| 208 | unsigned int penc = mmu_psize_defs[psize].penc; | ||
| 209 | unsigned int shift = mmu_psize_defs[psize].shift; | ||
| 210 | return (pa & ~((1ul << shift) - 1)) | (penc << 12); | ||
| 211 | } | ||
| 212 | return r; | ||
| 213 | } | ||
| 214 | |||
| 215 | /* | ||
| 216 | * This hashes a virtual address for a 256Mb segment only for now | ||
| 217 | */ | ||
| 218 | |||
| 219 | static inline unsigned long hpt_hash(unsigned long va, unsigned int shift) | ||
| 220 | { | ||
| 221 | return ((va >> 28) & 0x7fffffffffUL) ^ ((va & 0x0fffffffUL) >> shift); | ||
| 222 | } | ||
| 223 | |||
| 224 | extern int __hash_page_4K(unsigned long ea, unsigned long access, | ||
| 225 | unsigned long vsid, pte_t *ptep, unsigned long trap, | ||
| 226 | unsigned int local); | ||
| 227 | extern int __hash_page_64K(unsigned long ea, unsigned long access, | ||
| 228 | unsigned long vsid, pte_t *ptep, unsigned long trap, | ||
| 229 | unsigned int local); | ||
| 230 | struct mm_struct; | ||
| 231 | extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap); | ||
| 232 | extern int hash_huge_page(struct mm_struct *mm, unsigned long access, | ||
| 233 | unsigned long ea, unsigned long vsid, int local, | ||
| 234 | unsigned long trap); | ||
| 235 | |||
| 236 | extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend, | ||
| 237 | unsigned long pstart, unsigned long mode, | ||
| 238 | int psize); | ||
| 239 | |||
| 240 | extern void htab_initialize(void); | ||
| 241 | extern void htab_initialize_secondary(void); | ||
| 242 | extern void hpte_init_native(void); | ||
| 243 | extern void hpte_init_lpar(void); | ||
| 244 | extern void hpte_init_iSeries(void); | ||
| 245 | extern void hpte_init_beat(void); | ||
| 246 | |||
| 247 | extern void stabs_alloc(void); | ||
| 248 | extern void slb_initialize(void); | ||
| 249 | extern void slb_flush_and_rebolt(void); | ||
| 250 | extern void stab_initialize(unsigned long stab); | ||
| 251 | |||
| 252 | #endif /* __ASSEMBLY__ */ | ||
| 253 | |||
| 254 | /* | ||
| 255 | * VSID allocation | ||
| 256 | * | ||
| 257 | * We first generate a 36-bit "proto-VSID". For kernel addresses this | ||
| 258 | * is equal to the ESID, for user addresses it is: | ||
| 259 | * (context << 15) | (esid & 0x7fff) | ||
| 260 | * | ||
| 261 | * The two forms are distinguishable because the top bit is 0 for user | ||
| 262 | * addresses, whereas the top two bits are 1 for kernel addresses. | ||
| 263 | * Proto-VSIDs with the top two bits equal to 0b10 are reserved for | ||
| 264 | * now. | ||
| 265 | * | ||
| 266 | * The proto-VSIDs are then scrambled into real VSIDs with the | ||
| 267 | * multiplicative hash: | ||
| 268 | * | ||
| 269 | * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS | ||
| 270 | * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7 | ||
| 271 | * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF | ||
| 272 | * | ||
| 273 | * This scramble is only well defined for proto-VSIDs below | ||
| 274 | * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are | ||
| 275 | * reserved. VSID_MULTIPLIER is prime, so in particular it is | ||
| 276 | * co-prime to VSID_MODULUS, making this a 1:1 scrambling function. | ||
| 277 | * Because the modulus is 2^n-1 we can compute it efficiently without | ||
| 278 | * a divide or extra multiply (see below). | ||
| 279 | * | ||
| 280 | * This scheme has several advantages over older methods: | ||
| 281 | * | ||
| 282 | * - We have VSIDs allocated for every kernel address | ||
| 283 | * (i.e. everything above 0xC000000000000000), except the very top | ||
| 284 | * segment, which simplifies several things. | ||
| 285 | * | ||
| 286 | * - We allow for 15 significant bits of ESID and 20 bits of | ||
| 287 | * context for user addresses. i.e. 8T (43 bits) of address space for | ||
| 288 | * up to 1M contexts (although the page table structure and context | ||
| 289 | * allocation will need changes to take advantage of this). | ||
| 290 | * | ||
| 291 | * - The scramble function gives robust scattering in the hash | ||
| 292 | * table (at least based on some initial results). The previous | ||
| 293 | * method was more susceptible to pathological cases giving excessive | ||
| 294 | * hash collisions. | ||
| 295 | */ | ||
| 296 | /* | ||
| 297 | * WARNING - If you change these you must make sure the asm | ||
| 298 | * implementations in slb_allocate (slb_low.S), do_stab_bolted | ||
| 299 | * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly. | ||
| 300 | * | ||
| 301 | * You'll also need to change the precomputed VSID values in head.S | ||
| 302 | * which are used by the iSeries firmware. | ||
| 303 | */ | ||
| 304 | |||
| 305 | #define VSID_MULTIPLIER ASM_CONST(200730139) /* 28-bit prime */ | ||
| 306 | #define VSID_BITS 36 | ||
| 307 | #define VSID_MODULUS ((1UL<<VSID_BITS)-1) | ||
| 308 | |||
| 309 | #define CONTEXT_BITS 19 | ||
| 310 | #define USER_ESID_BITS 16 | ||
| 311 | |||
| 312 | #define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT)) | ||
| 313 | |||
| 314 | /* | ||
| 315 | * This macro generates asm code to compute the VSID scramble | ||
| 316 | * function. Used in slb_allocate() and do_stab_bolted. The function | ||
| 317 | * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS | ||
| 318 | * | ||
| 319 | * rt = register continaing the proto-VSID and into which the | ||
| 320 | * VSID will be stored | ||
| 321 | * rx = scratch register (clobbered) | ||
| 322 | * | ||
| 323 | * - rt and rx must be different registers | ||
| 324 | * - The answer will end up in the low 36 bits of rt. The higher | ||
| 325 | * bits may contain other garbage, so you may need to mask the | ||
| 326 | * result. | ||
| 327 | */ | ||
| 328 | #define ASM_VSID_SCRAMBLE(rt, rx) \ | ||
| 329 | lis rx,VSID_MULTIPLIER@h; \ | ||
| 330 | ori rx,rx,VSID_MULTIPLIER@l; \ | ||
| 331 | mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \ | ||
| 332 | \ | ||
| 333 | srdi rx,rt,VSID_BITS; \ | ||
| 334 | clrldi rt,rt,(64-VSID_BITS); \ | ||
| 335 | add rt,rt,rx; /* add high and low bits */ \ | ||
| 336 | /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \ | ||
| 337 | * 2^36-1+2^28-1. That in particular means that if r3 >= \ | ||
| 338 | * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \ | ||
| 339 | * the bit clear, r3 already has the answer we want, if it \ | ||
| 340 | * doesn't, the answer is the low 36 bits of r3+1. So in all \ | ||
| 341 | * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\ | ||
| 342 | addi rx,rt,1; \ | ||
| 343 | srdi rx,rx,VSID_BITS; /* extract 2^36 bit */ \ | ||
| 344 | add rt,rt,rx | ||
| 345 | |||
| 346 | |||
| 347 | #ifndef __ASSEMBLY__ | ||
| 348 | |||
| 349 | typedef unsigned long mm_context_id_t; | ||
| 350 | |||
| 351 | typedef struct { | ||
| 352 | mm_context_id_t id; | ||
| 353 | u16 user_psize; /* page size index */ | ||
| 354 | u16 sllp; /* SLB entry page size encoding */ | ||
| 355 | #ifdef CONFIG_HUGETLB_PAGE | ||
| 356 | u16 low_htlb_areas, high_htlb_areas; | ||
| 357 | #endif | ||
| 358 | unsigned long vdso_base; | ||
| 359 | } mm_context_t; | ||
| 360 | |||
| 361 | |||
| 362 | static inline unsigned long vsid_scramble(unsigned long protovsid) | ||
| 363 | { | ||
| 364 | #if 0 | ||
| 365 | /* The code below is equivalent to this function for arguments | ||
| 366 | * < 2^VSID_BITS, which is all this should ever be called | ||
| 367 | * with. However gcc is not clever enough to compute the | ||
| 368 | * modulus (2^n-1) without a second multiply. */ | ||
| 369 | return ((protovsid * VSID_MULTIPLIER) % VSID_MODULUS); | ||
| 370 | #else /* 1 */ | ||
| 371 | unsigned long x; | ||
| 372 | |||
| 373 | x = protovsid * VSID_MULTIPLIER; | ||
| 374 | x = (x >> VSID_BITS) + (x & VSID_MODULUS); | ||
| 375 | return (x + ((x+1) >> VSID_BITS)) & VSID_MODULUS; | ||
| 376 | #endif /* 1 */ | ||
| 377 | } | ||
| 378 | |||
| 379 | /* This is only valid for addresses >= KERNELBASE */ | ||
| 380 | static inline unsigned long get_kernel_vsid(unsigned long ea) | ||
| 381 | { | ||
| 382 | return vsid_scramble(ea >> SID_SHIFT); | ||
| 383 | } | ||
| 384 | |||
| 385 | /* This is only valid for user addresses (which are below 2^41) */ | ||
| 386 | static inline unsigned long get_vsid(unsigned long context, unsigned long ea) | ||
| 387 | { | ||
| 388 | return vsid_scramble((context << USER_ESID_BITS) | ||
| 389 | | (ea >> SID_SHIFT)); | ||
| 390 | } | ||
| 391 | |||
| 392 | #define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER) % VSID_MODULUS) | ||
| 393 | #define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea)) | ||
| 394 | |||
| 395 | /* Physical address used by some IO functions */ | ||
| 396 | typedef unsigned long phys_addr_t; | ||
| 397 | |||
| 398 | #endif /* __ASSEMBLY__ */ | ||
| 399 | |||
| 400 | #endif /* _ASM_POWERPC_MMU_HASH64_H_ */ | ||
